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GENERALIZED DEGREE
IN NORMED SPACES

Fraxcisco ROMERO Rulz DEL PORTAL

Abstract

We present a generalized degree theory for continuous maps f
{D,8D) — (E, E\{0}), where F is a normed veclorial space, 7 is
an open subset. of [8* x E such that py (D) is bounded in B* and f is
a compact perturbation of the sceond projection p2 B x £ — F.

Introduction

In 1934 J. Leray and S. Schauder extended the definition of the topo-
logical degree or Brouwer to compact perturbations of the identity in
Banach spaces. They used finite-dimensional approximations of this
compact functions ([D} and [LL]}). If one consider the generalized de-
gree theory presented in [G.M.V.] it is possible to extend it to the
corresponding classes of maps in infinite-dimensional normed spaces.

Then the starting point is the degree theory given by Geba, Massabd
and Vignoli in [G.M.V.] or the eguivalent version, using framed cobor-
dism, presented in [R] and [R1]. We are going to extract briefly here, to
do this paper as selfcontained as we can, the definitions and main results
that we will need.

A k-normally framed submonifold of R™* is a pair (M* F) where
AM* is a compact submanifold of R*** and F = {u;,...,u,} is a normal
frame for M*. Two k-normally framed manifolds of R*%, (M, Fy) and
{M;, F1), are said to be homologous, if there exist. a compact subrnanifold
M+ of B+ x {0, 1] and a normal frame G = {v1, va, .., vy} for M5+
in B"** x [0, 1) such that:

1) aM*+Y = Afy x {0} U M, x {1}.

2) MEHFIN(R R x {t)) = Mg x {t} for every t € [0,1/3) and M5¥1n
(B2  {(8}) = My x {t} for every t € (2/3,1].

3) Glasox oy = Fo and Glur, x(1y = F1-
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The homelogy relation is an equivalence relation and let us denote
F5(R™*) as the set of the equivalence classes of k-normally framed sub-
manifolds of R**¥.

L. Pontryagin showed {[P]) that there is a bijection IT% : 4 (S") —
F%(R™T*) defined by TE((f]) = (({g0@n+x) T (), Fropass )] Where prs -
Rtk — S5\ {4’} is the inverse of the projection from the North Pole
¢ of 87tk g . 7tk 87 is a O map homotopic to f, such that
p is a regular value of g, ¢’ ¢ g7 '{p) and Fyop.., = {ui,uz,...,us}
is the normal frame for (g © @nik)”'(p) in R*** such that D{p,{, o
g 0 @nak)(@)(u;{z}) = €; for every z € {g © @nyr) H{p) and every j €
{1,2,...,n} where {e1,€e32,...,€n} is the canonical basis of R™.

In (R] and [R1] we follow an approximation process, similer to the
diffcrential version of the classical degree theory of Brouwer, and there-
fore given a continuous map f : Q C R** — R™, defined in the closure
of an bounded open subset € of ™, such that 0 € R™\ f(9Q} we write
the generalized degree of f,d(f, ) = d{g, Q) = ([T&}~{(g71(0), F})] €
I, x(S™), where g : ¢ — R”® is a C° map such that [|f(z) — g{=}|| <
dist(0, £{8)) for every z € § and 0 is a regular value of g. One can
prove that this definition and the definition of K. Geba, I. Massabd and
A. Vignoli coincide.

This way of obtaining the gencralized degree present some advantages,
for example we can point up that additivity and diffeomorphism invari-
ance properties can be studied with more precision. Besides let us em-
phasizc that considering the group structure in 9% (R"+*) we proved that
additivity holds if n > k + 2 and this 1s the best dimensional conditions
for above property to hold. We also constructed examples, for arbitrary
high dimensional cases, where additivity fails,

Now the extension of the gencralized degree to proper maps is com-
pletely natural.

As we have mentioned additivity does not hold in general in finite-di-
mensional spaces. However when one consider normed spaces of infinite
dimension the generalized degree will satisfy additivity property without
any restriction and the properties are analogous to the corresponding of
the theory of Leray-Schauder {Coroliary § and Proposition 10).

By making little changes to the constructions used to extend the degrec
of Leray-Schauder to bigger classes of maps, for example y-condensing
perturbations, degree theory in locally convex spaces, ete., one also can
extend this generalized degree to the corresponding classes of maps {[R]).

Applications of this theory can be found in [R] and [R2].

An equivariant gencralized degree in Banach spaces from a different
point of vicw has been given in [LM.V.].
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1. Generalized degree for compact perturbations
of the projection p: R* x E - E

We start giving the basic notation and definitions
Definition 1.

Let (E,| - llg) and (F, || - | ¢} be two real normed spaces and {2 he a
subset of E. A map f: ) — F is sald to be compact if f is continuous
and F{Q} is a compact subsct of . We will write that f is finite-
dimensional if f(§2) C F, C F, where F,, is a linear subspace of F' such
that dim F,, = n, for some n € N.

Denote K(§, F) = {f : @ — F : f is compact} and F{Q, F) = {f:
£ — F: f Is compact and finite-dimensional}.

The following lemmas arc casy to prove

Lemma 2.

Let (E,||-|g) and (F, |- ||F) be two normed spaces and §Y be a subset of
E. Then for every f € K{5}, F) and every e > 0 there exists f- € F(Q, F)
such that || f{x) — flx)l < e forallz e ).

Lemma 3.

Let (E,||-|g) be a normed space and Q be a closed subset of REX E (k €
N U {0}) such that pi{R) is bounded R* and let f € K(Q, E). Then the
map g Q — E is proper.

(a,z) - z — fla, 1)

Remark. Let us chserve that if p1{f)) is unbounded it is casy to find
examples where g fails to he proper.

Let £ e NU{0}. It is well known that the suspension homomorphism
T My k(8™ — Mgy (™) is an isomorphism provided n > k + 2.
One can consider the directed set N, with the usual order <, and the
sequence of groups {1 {5™) }nen. For i € j there is a homomorphism
E,;J' : Hk-}—i(si) — Hk+3'(sj) defined by Ei.j = Ej_.] o] EJ'HQ Q---0 Ei- It
follows that X, ; =Id, and forevery i < j<lonchas Z;, = £; 0L, ;.
Then, {Tlkyn(S™), 5, ;1,7 € N, C}nen is direct system of groups.
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Denote by (T, o), o ¢ [ryi(8%) — Ik, the direct limit of the above
system. Therefore the diagram

Hk_H'(Si) Hk+j(sj)

oy

Ik

is commutative for overy 1 € j.

Let us observe that Il and T1,4 (5™ Jare somorphic i n > k+ 2.

The generalized degree that we are going to give will take values in
;.

Let k£ € NU {0}, D be an open subsct of R* x E such that 0 € D
and p1{D) is bounded in R, Let g : D — E be a map of the form
gloyxy = 2 — flo,x), where f: D — E is compact and 0 € E\g(8D).
It follows that

A) r =dist{0,¢{(8D)) > 0.

Indeed, since g is proper (Lemma 3}, is a closed map. Henee g(8D) 15
closed suhset of E. Then there exists € > 0 such that B, (0}ng{adD) =0
and v > e > (B0} = {z € E: dist{0,2) = |z} < e}.

BYIf r > 0 and 8§ < ¢ € r, Lemma 2 implies that there exists a
compact and finite-dimensional T such that [|[T.{2} — f(2)|| < ¢ for
every z € D Let us define g, : D — E by glo,z) = z — Tole, £) and
T.(D) € L{z1,72,...,7,} = Vi (n-dimensional subspace of E). Denote
D. = DN{RF x V.)(D: # 0, because 0 € D). Then D, € DN{R* x V2)
and ge(De) € V.. Since R* x V; is closed R* x E, the closure of D, in
R* % F and in B* x V. coincide.

On the other hand, for cach (o, z) € 8D,

Nge(e 2}l = llz — Tele ) + fla,z) — fla,2)ll 2
2z — flonz)l - 1 flenz) - T z)| > 7 —e 2 0.
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Then the gencralized degree d{gelp,, D) € IMyi{S™) is well defined
because g¢|p, is a proper map ([G.M.V.] and [R]).
In order to continue we need the following lemma

Lemma 4.

Let U be an open subset of RE x B" = R¥™ 0 e U. Let . U —
R™~1 C R™ be @ continuous map and g : U — R™ be the map defined by
glo,z) = — flo,r). Suppose that g is proper and that 0 € R™\g(6U).
Then, d(g,U) = En—l(d(mm,{f N (Hk X Rn_l))).

Proof:

Using the homotopy invariance property there is no loss of generality
in assuming that f is a C™ map and 0 € (rv.){gly) (the set of regular
values of g|i).

It is clear that ¢71(0) = (g|{jm(akxmn—l))_](0),

Let (o, 2) € g7 H{0). One can easily check that

kerDg(e, z) = ker D{glynmexr= 1y} (0, ) C RE x R,
Then, if we denotc by N{e, &) and N'{er, &) the normal spaces to g~ (0)
at (o, 7} in R*T* and R*t*~! respectively, we have that
N{e,z) = N'{o,2) 8 [(0,0,...,0,1)].

Let F(_,”[Ihmk } = {t41,- ., %n_1} be the normal frame for ¢~ (0)
induced by glynmsxgrn-1y.

Therefore D{g|lynme.rn 1N, 2Xu; (o, 2)) =¢; forcach je {1,.,n-1}.

wam—1)

Since Dgla, 1)(enn) = (F22,.. ., E=1,1) and Dg(a, o)(u, (e, 7)) =
€5, it follows that the frame for g7H0) induced by ¢ is Fp ={u), .., Usemi, Tine }

where u, (o, x) = %’%‘m (e,2)+ - + a{,{;:'un_l (e, 0} + ergr.

Let Gy : g~ (0) — GLL{R™)} be the €% map defined by

1 o 0 0
Gy, ) = ) S 1 0
8fi  Ofu
dx, dz.,
Then, the map G : g7 H0) x I — GL,{R™) defincd by
1 ¢ e 0 0
Gllaz) t)=1 0 0 - 1 0
faf]_ taf? o ta.fﬂ—l

e Orn 7y,
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is €, Gy = Id and G({a,z), 1) = Gy{«, ). Therefore (g~1{0) x I, F)
where F({c, 7),t) = G({a, ), t){11, - . ., #tn—1, €ny k) achieves a homology
between (g~ (0), Fy) and (g7{0), {1, ..., ¥n-1,€ntx}). Then

({71 (0), Fodl = (9710, EFg1y mepgn 1)) =
= 2{[{glynm*xzn 1)) 7 (O Floly mgionan 1))

(see [P]). W

We are now in a situation of define the generalized degree when D
is an open subset of R* x B, 0 € D, py{D) is bounded and the map
g : {(D,8D) — (E, E\{0}) is defined by g{a,z) = z — fla,z), where
f: D — E is a compact map.

Definition 5.

Let € € r = dist(0,g(8D)) and T. be a compact finite-dimensional
approximation of f such that || f{e, z) — To{a, z)|| < € for every (o, z) €
D. We dcfine dig, D) = om(d(ge, De)) € Tk, where ge{e,z) = 7 -
Tole, #), D, = DN (R* x Vey and n = dimV; (T.(D) c V).

Lemma 8.

The generalized degree, defined in Definition § does not depend one, Ve
and T;. '

Proof:

et 0 < e € rand 0 < g € v Let us consider V), = L{V,, V,}.
Assume that dimV,, = 5, dim V; = n and dimVy, = m. Let D, = DNV,
then T.(D) C V. C V, and T(D) C V,; C V.. Lemma 4 unplies that
d(gzjf),u) = En.s(d(ffssps)) and d(.‘?mDp) = Em,s(d(gm D“)),

On the other hand, the map H : D, x I — V,,, defined by H(z,t) =
tge(2)+{1-t)g, (2}, satisfies that H({&D,)xI) C V,\{0}, then d{g:, D, )=
d{g,, D). Consequently

an{d{ge, D)) = (asozn,S)(d(gs v Be)) = ws(d(ge, D;x)) =lky (d(gn-D;A)) =
= (Qs o Em,s){d’(gr;n Dn)) = am(d(gm Dn))' u

Definition 7 {General case).

Let k € NU {0}, E be a normed space, D be an open subset of B* x E
such that p; (D) is bounded in B*. Let g @ (D,8D) — (E,E\{0}) be 2
map of the form g(a.z) = z — flo, ) = (p2 — fY{e, x), where f: D — E
is a compact map and pe(e, z} = z. We define

diyg, D) = d(g o T(aé,xu):G(oo.Ic)) ¢ I,
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where (oo, o) is an arbitrary element of D, Gap,z0) = D — (e, %o),
T(ea,z0) ' Claoze) — D is the map defined by 74, u0){a, 2} = (o, z) +
{ao, ze} and d(g © T(ag,20)» Glas,z0)) € Lk 18 an in Definition 5 ((0,0) €
Glao,zo) 204 (9 © Tiag o)), £) =  — (f{a + ag,  + Zo) — o) satisfics
0 ¢ (9 ° T(ag,20)) (G (a0,20)) = 9{8D)).

Remark. Chbviously one has to justify that Definition 7 does not
depend on the cholce of {ap, o).

Let {ao, o) and {ay, 1)) be two arbitrary elements of D.

Assume that £ < r=dist(0, g(8D)) = dlSt(O (90 T(as, ’-’0))(30(“0’:“)))
dlcif(o (g o] T(o:-[ I]))(aG{Q‘hTI)))

There exists a map T; € F(D, E) such that ||T{a,z) — fle,z)] < ¢
for every (o, ) € D. Let V be a finite-dimensional subspace of F such
that (DY C V, V, = L{V U {z0,7z1}} and n = dim V,.

We consider the compact and finite-dimensional maps 72 : G(QU z0) =
Ve, T} 2 Gia, Tl) — Ve, defined by T2{a,z) = To{a + e,z + 7o) — 7o
and T}, z) = Te{o + @1,z + 1) — 21 respectively. Since | T9(e, 2} —
(f(a+ag,r+£g) — zo)|l < € for every (@, 2) € Giag,xq) 2nd T (e, z) —
(fla+anz+x) - z1)|| < € for every (o, 2) € Gia, 2,). it follows that
d(g o T(cxo,zo)’G((m,ro)) = Qn(d(gi}! Dg)) and dg o T{m,zu)sc(m,zl)) =
aﬂ(d(gzl, Dé)): where 92 =p2— Té)! gsl = P2~ Tslv DE = G(Cm.:‘?o) N (Rk x
Vo) and D} = Ga, 2,y N{RF x V).

We have to check that d(g°, D?) = d(g!, D}).

It is clear that = 7_,,, =) © T{az z0) = 'r(_a,+%,_zl+ro) is a home-
omorphism from DY onto DI such that gl o = g°. Now, using that
Prik O O <pﬂ+k : (pn+k(D§) can be extended to a homeomorphism
h o ™tk g7k of degree 1, from 1.1.11 of [R] (or [R1]) we have
that d(g?, D7} = d{g! o ¢, D¢) = d(g}, D}).

Lemma 8.

Let D be an open subset of R x E such that pi(D) is bounded in R*.
Let g D — E be a map of the form glo, z) = z — T{e, 2} where T is
a compact map, 0 € E\g(8D) and r = dist{0,g(8D)). Let S: D — E
be another compact map such that |[S{e, ) — T{a,z)|| < r/2 for every
{a,z) € D. Let us consider h: D — E defined by h{e,x) = z — S(cr, z).
It follows that 0 € E\NR(AD) and d(h, D) = d{g, D).
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Proof:

If {og, zo) € D, for every (o, 2} € G((,'(,‘IO) = D — {ag, To) one has that
IS{e + @o,x + #0) — o — {T{er + a0, % + x0) — To)ll < /2. Then there
is no loss of generality in assuming that 0 € D

1) Let x € 8D then |k(e,z)]| = Ikl z) — glo,z) + glo, 2}l 2
lglc, )|l = ke, 2) — gle, z)lIr — 7/2 > 0.

2 Lete=r/4,T,: D —> Eand S, : D — E be the correspond-
ing compact and finite-dimensional maps such that ||[T{a,z} —
T.lo, )| < /4 and |S{a, z) — Sclo, z}{|r < 4 for every (e, ) €
D, TAD) c VT and S(D) ¢ V5. Let V = L{VT uV5}
and dimV = n. It is clear that d(h, D) = an{d{h, D)) and
d{g, D) = c(d(ge, Do)} where he(a, z) = z — Se{e, 2}, gelo, 1) =
x — Tule, 2y and Dy = DN (RFE x V).

Now we define the map F: Dy x I — V by F{{a,7),t) = the(e, z) +

{1—)ge (v, x). It is straightforward that | F{{(a, z),£)]| > Oforall (o, 2) €
gDy caD and t € 1.

Thercfore d(ge, Dy ) =d(he, Dv) and consequently d(g, D) =d(h, D).W

Corollary 9 (Homotopy invariance property).

Let D be on open subset of RF x E, such thot py(D) is bounded in R
Let H: Dx I — E be a compact map end F - D x I — E be defined
by F{{a, ) t) = . — H{{a,z},t). Assume that 0 € ENF(8D x I}, hence
d{F,, D) #¢€(0,1] is constant.

Proof:

Since H is compact Lemma 3 implics that F: D x I — E is a proper
map. Then F(@D x Iy and dist(0, F(D % I} > 0. Consider the compact
set ){ = H{D x I) C E. Since Idg : K — E i1s a compact map there

is a compact and finite-dimensioral map T : K — E such that |T(x) —
Idu{r)| < /2 for every z € K.

Let ns define G : D x I — E by G{{a,2),t) = 2 — (T o H){{ar,x}, t)
and let V be a subspace of E such that T(K) C V and dimV =n.

For each y € D ||H{y) — (T o H)Y)|| < »/2, then d{F,,D) =
d(G,, D). On the other hand d{(G,, D) = e, (d{G, IW, DN {R* x

V))) has constant value for t € [0,1). Therefore d{F;, D} is constant
te0,1]. m
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Proposition 10.

The generolized degree given in Definition 7 has alse the following
properiies:

1) Selution. If d(g, D) # 0, then there czists (oo, To) € D such that
g(ag,:ﬁﬁ) = 0.

2} Excision. Let U C D be an open such thet g{D\U) ¢ E\{0}.
Then one has that d(g|g, U) = d{g, D}.

3) Additivity. Let Uy and Us be open subsets contained in D such
that Uy N Uy = B and (DN, W UR)) € E\{0}. It follows that
dig, D} = d{gly,, Uh) + d{glg,, U2).

The proof is easy and we will omit it.

Remark. It is interesting to point out that additivity property of
above proposition iinplies that one ean construct a generalized degree, d,
int linear finite-dimensional spaces (as a particular case of normed spages)
such that d' always satisfics additivity property. However in many caes
wec wonld lose an important, information because if d(f,U) € I1,,4£(5™)
is not trivial and T{d{f,U)} = 0, one would have that 4'(f,U) = 0.
Then using the solution preperty of the generalived degree, d, presented
in [G.M.V.] one deduce that there exists solutions of the equation
Ffla,z) = 0. This is not possible with d'.
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