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OSCILLATIONS OF THE SOLUTIONS OF
NONLINEAR HYPERBOLIC EQUATIONS
OF NEUTRAL TYPE

I3.P. MIsHEY aND D.D. BaiNgy

Abstract

In this paper nontinear hyperbolic equations of neutral type of the
form
6’2
3 [wlz,t) + AEyufz, t — 7)) — [Aulz, ) + p{t)Au(z, L - o))

te(z,tu) = f(z,0), (2.0 € x (0,000 = C,

are considered, where 7, & = const > (0, with boundary conditions

u +y(z, thu = g{x, t), {z,8) € 80 x [0,00)
én
or
u=20, {x, t) € 35 x [0, 00}

Under certain constraints on the coefficients of the equation
and the boundary conditions, sufficient conditions for oscillation
of the solutions of the problems considered are obtained.

1. Introduction

In the last few years results related to the oscillatory properties and
asymptotic behaviour of the solutions of some classes of hyperbolic cqua-
tions were published, We shall mention especially the work of K. Kreith,
T. Kusano and N. Yoshida [4] in which sufficient conditions for oscillation
of the sclutions of the nonlinear hyperbolic equation

uy — Au+ ez, t,u) = Hz,t)

considered in a cylindrical domain are obtained. Oscillatory properties
.of the sclutions of hyperbolic differential equations with a deviating ar-
gument were investigated in the works of D. Georgiou, K. Kreith 2], D.
Georgiou [3]. Hyperbolic differential equations with mazime were inves-
tigated in the work of D. Mishev [6] and some conditions for oscillation
of the solutions of hyperbolic equations of neutral type were obtained by
D. Mishev and D. Bainov in (7], [8].

The present investigation is supported by Lhe Ministry of Culture, Science and Edu-
catior of People’s Republic of Bulgaria under Grant 61.
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2. Preliminary notes

In the present paper sufficient conditions for oscillation of the solutions
of nonlinear hyperbolic equations of neutral type of the form

& [ufz, £) + M)ulz,t — 7)) — [Dulz, ) + pt)Au(z,t — o)+

(1) B2
+ ez, t,u) = flx,t), (z,t) € 2 x (0,00) =G,

n
are obtained, where 7, ¢ = const > 0, Au{z,£) = 3 Uz, {2,1) and Q0 is
i=1
a bounded domain in B" with a piccewise smooth boundary.

Consider boundary conditions of the form

(2) % + y(z, e = glz, ), (z,t) € 80 x [0, 2}

(3) u=0, (z,t) € 88 x [0, 00)

We shall say that conditions (H) are satisfied if the following conditions
hold:

H1. A(t) € C%{[0, oc); [0, 00}),
u(t) € C([0,00); R),

H2 oz, t,u) € C(G x B;R),

H3. clz,f, —u) = —clz,t,u), (z,t,1u) € G x {0,00),

H4. cf{z,t,u) > p(t) - h{u), (z,t,u) € & x {0,00),
where p(t) is a continuous and positive function in the interval (0, 00) and
h(u) is a continuous, positive and convex function in the same interval
(0, o).

HS. f(z,t) € C{G;R)

HB. g{z,t) € C{80 x [0,00); R)

H7. (x,t) € C{32 x [0, 00); [0, 00)).

Definition 1. The solution u{z,t) € C%(G) N CYG) of problem
(1}, (2) ((1, (3)) is said to oscillate in the domain G if for any positive
number p there exists a point (g, to) € {2 x [, 00}, such that the equality
u{zo, o) = 0 holds.

In the subsequent thecrems sufficient conditions for oscillation of the
solutions of problems {1}, (2) and (1), {3) in the domain G are obtained.
We shall note that in the work of K. Kreith, T. Kusano, N. Yoshida
[4] conditions are obtained for the oscillation of the solutions only of
problem (1), (2} in the casc when A(#) = 0, p{t) = 0 and ~(z,¢) = 0.
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Introduce the following notation:
(4) F(t) = / fix, t)d:c‘ t >0,
(5) G(t) = f g{z,t)ds, t >0,
|Q| o0

where [Q] = f, dz
With any solution u(z,t) € C*(G) N C{G) of problem (1), (2) we
associate the function

(5 v(i) = ﬁ : / u(z, t) dz, £ >0
Ja

Lemma 1. Let conditions (H)} hold and let u(x,t) be a positive solu-
tion of problem (1), (2) in the domain . Then the function v(t) defined
by (5) satisfies the differential inequality of neuiral type

2
(6) %{v(t) +AR)o{t — )] + p()h(v()) £ G(t) + u(t)CG(t — o) + F(1),

t 2 to, where ty is o sufficiently large pesitive number.

Proof: Let u{z,t) be a positive solution in the domain & of problem
(1), (2) and to == max{r,o¢}. Then u(z,t—7) > 0 and uw(z,i — &) > 0 for
(z,t) € 81 x [to, 00). We integrate both sides of equation (1) with respect
to x over the domain 2 and obtain for ¢ 2 fo:

% U u{z, t)dr + Alt) | u(z,t—7) dz] [/ Aulz,t) dz+
Y]
+ p(t)/ﬂAu(I,t—U)dx] +/QC(I,t,?L)dI=‘/Qf(:r:}t)d3;‘

From Green’s formula and condition H7 it follows that

{8) .
du
-/QAu(z,t) dr = ]an In ds = /aﬂ[g(a:, ) — vz, tu)ds £ /mg(:r., t)ds

{9) Aul{z,t —o)dr = —{z,
9 a0 On

= / lg(z,t — o} — y(z,t — o) ulz,t — o)) ds < / glz,t —o)ds
an an

—ag)ds =
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. Moreover, from condition H4 and Jensen’s inequality it follows that

{10} /ﬂ clz,t,u)dr 2 plt) -/Q AMulz,t))dz 2

> p{t)h ( [ utoras( [ as) _1) [ as=pt0) ol - 1

Using (8)-(10) and condition HI, from (7) we obtain

d?

g2 @)+ At~ )] £ G(t) + p(t)G(t — o) + FE) - p(t) - Alu(®)),

which proves Lemma 1. B

3. Main results

Theorem 1. Let conditions (H) hold and let the differenticl inequal-
tties of neutral type

()
2
L obo(t) + Mgt =) + ple) - A < G + WGt~ o) + F()

(12)
2
%[v(t) +A(u(t ~ 7))+ p(t) - M{v(t)) £ G(8) — u{t) - Gt — o) - F(¢)

have no cventually positive solutions. Then each soluiion ulx,t} of prob-
lem (1}, {2) oscillates in the domain G.

Proof: Let p > 0 be a positive number. Suppose that the assertion
of the theorem is not true and let u{z,t) be a solution of problem (1},
{2) without zeroces in the domain G, = 0 x [g,00). If u{z,t) > O for
(z,t) € G, then from Lemma 1 it follows that the function v(t) defined
by (8} is a positive solution of inequality (11} for ¢ 2 to + p, ie it is an
eventually positive solution of (11) which contradicts the assumption of
the theorem. If u{z,?) < 0 for (z,t) € G, then the function —u{z,t} is
a positive solution of the problem

g_;[u + A)ulz, t — 1)) — |Au + u(t)Aulz,t — o)+
+e(z,t,u) = —flz,t), (3,1) € G
u

an + W(I: t)'?}. = _g(x! t)g (3:, t) = 3Q X [0, OO)
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From Lemma 1 it follows that the function 1%[ Jo(—ulz,t)} dz is a posi-
tive solution of ineguality {12) for ¢ 2 tg + p which also contradicts the
assumption of the theorem. Thus Theorem 1 is proved. B

Now we shall investigatge the oscillatory properties of the solutions
of problem (1}, (3). Consider in the domain §2 the following Dirichlet
problem:

{ﬂU+aU=0inQ
Ulaa =10

where o = const. It is well known {1] that the smallest eigenvalue g
is positive and the corresponding eigenfunction @(z) can be chosen to
satisfy the inequality {z) > 0 for z € §L

With any solution u(z,t) € CHG) N CHG) of problem (1), (3) we
associate the function

(13} w(t) = jﬂu(x,t}@(:r)dzv (/ﬂ wlr) d3:>_l, t>0

We shall note that a similar averaging was first used by N. Yoshida in
the work [10].

Lemma 2. Let conditions Hi-HE hold and let u(x,t) be a peositive
solution in the domain G of problem (1), (3). Then the function w(t)
defined by (13) satisfies the differential inequelity of neutral type

2
(19) () + ADwls — 7)) + aowle) + conlt) - wlt — o)+

. —1
0 b)) £ [ fene@ s ([ o@as) L tze,
0 Q
where to 15 a sufficiently large positive number.

Proof: Let u(x,t) be a positive solution in the domain G of problem
(1), (3} and tp = max{r,o}. Then u(z,t — 7} > 0 and u{z,t — o) > 0
for (z,t) € @ x (to,00). Multiply both sides of equation (1} by the
eigenfunction (r) of the Dirichlet problem and integrate with rcspect
to r over the domain . For £ 2 tn we obtain

2

{15) j? [/ﬂ u(z, tho(z)dr + z\(t)‘/r;u(z,t - T}ga{x)d:c] -
- [/ Aulz, typ(z)dz + lu(t}f Aulz,t — olplz) d?:] +
0 0

+./Q ez, t,uyplz)dr = /Q flz, thyplz) do.
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From Green's formmla it follows that

{16) /{}Au(z,t)cp(z)d:c = .[mu(x‘t)fltp(z)dx =
= —ag - Lu(x,t)go(:c) de = —opw(t) - /ng(x) dz

(17} -/nAu(x,t —oyplzide = /ﬂu(m,t -o)Ag{z)dr =
= —cm/ﬁu(x,t ~o)pl{z)dz = —apwit — o) - /ng(:c) dz,

where o is the smallest eigenvalue. Meoreover, from condition H4 and
Jensen's inequality it follows that

(18} /n clz, tulp{c)dr 2 p(t) _/g; hluppla)de 2

> p(t) - h ( | e typt) de ( I x) _i) | oty -
| = pl0) - W) | ole)ds

Using (16)-(18) and condition H1, from {15} we obtain
d?
E[w(t) + AR wl(t — 7)) £ —aolw(t) + pthwl(t — o)]—

ot i) + [ s 0o as- ([ pteyas)

which completes the proof of Lemma 2. |
Introduce the notation

-1
(19) Fi{t)y = ‘/Qf(:.':,t)tp(;l:) dr - (/ng{::;)d:}:) , t>0

Analogously to Theorem 1 the following theorem is proved.

Theorem 2. Lei conditions H1-HS hold and let the differential in-
equalifies of neutral {ype
d'z
— [w{t) + ABw{t — 7Y + aolw{t) + p{Hwl(t — 7))+

(0) 7z
+ p(t) - Mw(t)) = Fi(t), t 2 to,
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2
(21) %[w(t) + Al w(t — 7} + colw(t) + p{t)w(t — o)]+
+p(t)-Rw(t) S -At), t21

have no eventually positive soluiions. Then each solution u{z,t) of prob-
lem (1), (8) oscillates in the domain G

From the theorems proved above it follows that the finding of sufficient
conditions for oscillation of the solutions of equation (1) in the domain G
is reduced to the investigation of the oscillatory properties of differential
inequalities of neutral type of the form

2
(22) d—g[z(f) + A{t)x(t — 7)) + go(O)x(E) + glt)z(t — o)+

dt
+p(t) - k(z(t)) £ H(t), t 2t

We shall say that condition (A) are satisfied if the following conditions
hold:

Al A(E) € C?%[tp, 00); [0,c0)),

AZ qolt), q(t) € C([to, o0); [0, 00)},

A3 p(t) € C{[to, c0); (D, 00)),

Ad. h{u) € C(R; B), A{u) > 0 for u > 0,

A5, H(t) € C([tg, ca); R).

Theorem 3. Lei conditions (A) hold as well as the condition

L
{23} lirm inf ! / {t—3) H{s)ds = —oc
L—0 f — tl t

for t1 2 to. Then the differential inequality (22) has no cventuatly posi-
frve solufions. .

Proof: Suppose that this is not truc and let z(i) be a positive solution
of inequality (22) defined in the interval [t;, 00), whore ¢; 2 t5. Then in
virtue of conditions A2-Ad we ebtain for £ 2 ¢, (t2 2 ) + max{s, 7})

2
L) + MOt )] £ HE) - o(t)(t) — g(e)z(t — o)
~ p{t) - h{z(t)) < H(t).

We integrate twice the above inequality over the interval [t9,2], £ > &5
and obtain

4
z

() + Azt — 1) S Cr + Ca(t — t9) + [ [/:H(s) ds] dp,
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where Cy, Cz = const. Since

/z: [ :H(s) ds] dﬁ=f£:(t — s)H(s)ds,

dividing both sides of last inequality by { — t2 > 0, we obtain

) + At -1) . G

24 =
( ) t—to T t—is

¢
+Cg+—1—/(t—s)H(s)ds
t—t2 Jy,

Then for t — oo from {24), making use of condition (23}, we obtain
that

(25) hming T AGE )

t—oo t— 1o

On the other hand, using condition Al and the fact that z(t} > 0, z{i—
7) > 0 for ¢t 2 t3, we obtain that

1
t—ty

ltim inf [={t) + AMB)z(t - 7)) 2 G,
which contradicts equality {(25).
This completes the proof of Theorem 3. W

"The following sufficient condition for oscillation of the solutions of
proeblem {1}, (2} is a corollary of Theorem 1 and Theorem 3.

Theorem 4. Let conditions (H) hold as well as the conditions

(26)

t

lim inf (1 - %) (G{s) + u(s)G(s — o) + F(s))ds = —co,

E—00 to

(27)

H

lim sup (l - ?) (G(s) + w(8)G(s — o)+ F(s)) ds =I+oo
t :

t—roo

for any sufficiently large number o, where the functions G(t) and F(t}
are defined by (4). Then cach solution u{z,t) of problem (1), (2) oscit-
lates in the domain G

The following sufficient condition for oscillation of the solutions of
problem {1}, (3} is a corollary of Theorem 2 and Theorem 3.
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Theorem 5. Let conditions HI-H5 hold as well as the condzttions

(28) u(t) 20 fort 20
t s

28y - fiminf | (1 - 'I) Fi(s)ds = —o0
t

{30) limsup (I - ;) Fi{s)ds = +o0

t—ro to

for any sufficiently large number tg, where the function Fi(t) is defined
by (19). Then each solution u(z,t) of problem (1), (3} oscillates in the

domain G.
Example 1. Consider the equation

—TT

{31} we+uplz,t—m) —wuge + u =2 cosz(sint + cost — e " - cost),

r p—
(z,8) € (0,5) x {0,00) = G
and the boundary conditions

(32) ~w(0,) =0, u (gz) ——¢t.sint, t20
A straightforward verification shows that the functions

elz, t,u) = u, flz,t) =2 - cosx - {sint + cost — ¢ cost),
9(0,0) =0, ¢ (%t) = —e'-sint, M) =1, p(t) = 0
y(z, t) =0 '
satisfy conditions (H)}. Mereover, from (4) we obtain that
2,
G{t) = ——e* - sint, t>0,
™
4 .
F{t) = ;ea(sint+cost-—e_”-cost), t>0
By straightforward calculations we find that

1) = f (1= 3) (Gls) + 5)G(s — o) + F(s)) ds =

=¢b- (tm)71 (2sint — 27" sint — cost) + C,
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where C' is independent of {. Hence

Hminff{t) = —o0, limsup/{¢) = +oo,
£

f=——100 g
ie. conditions (26), (27) of Theorem 4 hold as well. Then from
Theorem 4 it follows that each solution of problem {31}, (32) oscil-

m

lates in the domain G = (0,%) x {0,00). For instance, the function
u{z,t) = e’ sintcosz is such a solution.
Example 2. Consider the equation

(33)  wy + upelx,t — w) — [Uzz + uealz, t — W) +u= flz,t),
(z,8) € (0,7) x (0,00) =G,

where f(z,t) = ¢ sinz{2¢ " sint — 2sint + ¢ " cost) and the boundary
conditions

{(34) u(0,t) = ufm, ) = 0, tz20.
It is immediately verified that the functions
ez, t,u) = u, flz, ), Mty =pult) =1

satisfy conditions H1-H5. Moreover, the smallest eigenvalue of the
Sturm-Liouville problem

U" + ol =0, Ugy=U(x)=20

is oy = 1 and the corresponding eigenfunction is p{r) = \/gsin:c >
0, x € (0, 7). Then from (19} we find that

-1
Pty = / _f(:ﬂ‘t)\/?sin zdr - ([ \/Esin::: d:r:) =
0 n Jo b

= %e‘(?c‘" sint — 2sint + e~ " cost).

By straightforward calculations we obtain that
't s T e o 1.
Il(t)=/ (1——) Fifsyds=—=-2-{cost—e "cost+ e "sint 1 4+ C,
Jio ¢ 4 t\ 2

where €' is independent, of . Hence ltirn infl(#) = —coand limsupf; (¢} =
o l— o

400, i conditions {29), {30} of Theorem & hold as well. Then from
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Theorem 5 it follows that each solution of problem (33), (34) oscillates
in the domain G = (0,7) x {0,c0}. For instance, the function u(x,t) =
e'sinx - cost is such a solution.

In the subsequent theorems we shall restrict our attention to some
particular cases of equation (1) for which new sufficient conditions for
oscillation of the solutions are obtained.

Case A.

Assume that At} = 0. We shall use the following result of T. Kusano
and M. Naito [5] concerning differential inequalities of the form

(35) (qO)(p(t)-2)'Y + hit,z) Sr®), t24

We shall say that conditions (B) are satisfied if the following conditions
hold:

B1. p(t), qlt) € C{lto, 00); (0,00)), [ (a(t)) ™! dt = co.

B2. h{t,x) € C{[to, co}x (0, 00); (0, 00)), h{t, )} is a monotone increas-
ing function of its second argument z.

B3. r(t) € C{jte, 00); B).

Theorem 6 (5]. Let conditions (B) hold and let the differential in-
equality

(36) (glt)(p(t)z)') + hit,2) £ O

have no eventually positive solutions. Moreover, let a function
8(t) € C*([to, oo); R) exist with the following properties:

(37) 6(t) takes hoth positive and negative values
for arbitrarily large velues of £.

(38) (gt)(p(t) - 0(0))) =r(t), t2t
(39) lim inf[p(t) - 6(t)] =0

Then the differenticl ineguality (35) has no cventuolly positive solu-
fions.

The following sufficient condition for oscillation of the solutions of
problem (1), (2} in the case when A{t) = 0 is a corollary of Theorem 1
and Theorem 6.



14 ' D.P. Mistiev, D.D. BAINOV

Theorem 7. Let the following conditions be fulfilied:

1. Conditions (H) hold.
2. The function h{u) is monotone increasing in the interval (0, 00).
3. The differential inequality

() +pt) Rz 20, 2o

has no eventually positive solutions.
4. There ezists o function 8(t) € C?(jto,0); R) with the following
properties:
a) B{t) takes both positive and negutive values for arbitrarily
large values of t.
b) B@)" =G+ u)Glt o)+ F(t),  t2 4
¢) t’_n_r.nma(:} =0,
" Then each solution u(z,t) of problem (1), (2} oscillates in the domain
G.

Example 3. Consider the equation
(40) uu,(ﬁ,“, t} - ﬁmz{.zut) . uzr(xrt - ﬂ-) + 2u = f(.'l:,t), .
. _ T
(:B:t) € (O:E) x (01 OO),

‘where f(z,t) = et cosz-(3sint — 2cost — €™ sin¢) and the boundary
" condition '
7

(a1 —u2{0,8) = 0, ug (E
It is immediately verified that the functions

oz, t,u} = 2u, fz,t), M=o, plty =1,
vz, 3 =0, g{0,8) =g, g (-g,t) = —¢ ' sint

satisfy conditions (H). Moreover, from (4) we obtain

,t) = —ctsing, © t> 0.

: 2
G(t) = —=e"*sint, t>0
T . .
2 - '
F(t) = —e~* - (3sint — 2cost — e” sint), >0
T : .
Then

Lt = / (1-3) (G(s) + u(s)Gls — o)+ F(s)) ds =

la

.t s 2 . :
:/ (1—?)-—-e"-(3sin3—2coss—e"sins)ds,
to E .
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which immediately implies that tlim I2(t) < oo. Hence conditions (26)
—_—
and {27} of Theorem 4 are not satisfied. It is easy to check that the
differential inequality z” + 2z £ 0 has no eventually positive solutions.
—L
Let #(t) = 2—[2sint + (3 — €™} cost]. Then for n € 7 wc obtain

e 3
— — 42 .
9(2+2mr)>0, 9(2+ ml:)<0

Moreover, [8(t)]” = Ze~t - (3sint — 2cost — ¢"sint) = G(t) + G{t —
)+ F(#) and Ll_ir,réoﬁ(t) = (. Hence the function §(¢) satisfies condition
4 of Theorem 7. Then by Theorem 7 each solution u{x,t) of problem
(40), (41) oscillates in the domain G = {0, I} x (0, c0). For instance, the
function u{z,t) = e 'sintcosz is such a sclution.

We shall note that a result analogous to that of Theorcm 7 can be
obtained for problem (1), {3} as well.

Case B.

Assume that f{z,t) = 0, g{z,t) = 0. In this case the finding of suf-
ficient conditions for oscillation of the solutions of equation {1} in the
domain & is reduced to the investigation of the oscillatory properties of
differential inequalitics of neutral type of the form

2
(42) %[x(:) + MO~ )] + q0()a(t) + )t - o)+
+ p(t)  A{z(t)) £ 0, t 2 to,

2
d fx(t) + Alt)z{t — 7)) + qo(t)z(t) + q(t)z(t — o)+

(43) pr
+p(t) Mz(g)) 20, t24

Together with {42) and (43) we shall consider the nonlinear differential
equation of neutral type

2
(44) j?[:c(t) + M1zt — 7)) + go(t)z(t) + q(t)z{t - o)+
+p{t)-hfz(t) =0, 2t

We shall say that conditions {C} are satisfied if the following conditions
hold:
CL. A(t) € C*([to, 00); R},
0< A ZA{E) S M fort 2 49, A1, Ax = const.,
C2. qot), ¢(t} € C{[to, 0); [0, 00)},
C3. p(t} € Cllto, o0}; (G500},
C4. h{u) € C(R;R), h{—u) = —h{u},
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h(w) is a positive and monotone increasing funetion in the inferval
(0, c0).

Theorem 8. Let the following conditions be satisfied:

1. Conditions {C) hold.

2. For any closed and wmeasureble sei E C  [to,00) for which
meas(EN[t,t+ 27)) 2 7,t € [to,00), the following condition
holds

(45} /Ep(t) dt = o0

Then:

(i) the differential inequality (42) has no eventually positive solutions;
(i) the differentiol incquality (43) has no eventuolly negative solu-
Lions; ' .
(iil) ol solutions of the differential equation (44} oscillate.

Proof:

(i) Let z(t) be an eventually positive solution of the differential in-
equality. (42). Then there exists a number ¢ 2 to such that x{t) >
0, 2(t —7) > 0 and z2{t — o) > 0 for t 2 ¢;. From conditions C2-C4 and
{42) it follows that

2
(46) g-;[;(f) + Myt ~ 7)) £ —qo(t)x () — g(f)x(t — o) —
- p(t) - h(z(t)) £ -pt) A(=()) <0, 2t

Hence the function £(z{t) + A{t)z(t — 7)) is monotone decreasing in
the interval [ty 00). Supposc that there cxists a number t3 2 ) such
that £[z(t2) + A(t2)z{tz — )] = —¢ < 0. Then for any point ¢ 2 t2 the
following inequality holds

£ i
L (8 + MRt — )] S —[E(te) + At)alts — )] = —¢
df dit

Integrate last inequality over the interval [tp,1], ¢t > £y and obtain
() + M)z{t — 7) € 2(dy) + Alto)z{ts — 7) — ¢t — ta).

Hence limsuplz(t) + M)z (t — )] £ 0 which contradicts the assumption

L—or

that xz(#) is an eventually positive solution, Hence

(47) -L% 2B+ M)zt —T1)) 20, t2
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whenee we obtain that z(8) + A(@)z(i —7) 2 ¢y > O for £ 2 #,. From
Lemma 1 [8], [11] it follows that there exists a closed and measurable
sct E C [ty,00) and a constant ¢ > 0 such that z{t) 2 ¢, for t € E and
meas{EN[§,t+ 27]) = 7 for t 2 ;. Then from condition C4 it follows
that

h(z(t)) 2 h{cs) =ea>0fort € E.

Integrate both sides of incquality {46) over the interval [£1,¢], ¢ > #; and
using {47}, we obtain

¢

Cf | s / ECIEOE D (i) + Attt — 7))~

d ¢
- EE[:::(&) + Azt — 7)) £ d—i[;ﬁ(tl) + Alty )zt — 7)) = Cs.

For t — o0 from the above inequality it follows that f__r plE) dt < oo,
which contradicts condition (45}. Thus assertion (i) of Theorem 8 is
proved.

(it} The proof follows immediately from the fact that if #{t} is an
cventually negative solution of the differential inequality (43}, then —x{t)
is an eventually positive solution of the differential inequality (42).

(iii) The proof follows immediately from assertions (i) and (ii). B

The following sufheient, condition for oscillation of the solutions of
problem {1}, (2) or (1}, (3} in the case when f{z,?) = 0 and g{z,{) =0
is a corollary of Theorem 1, Theorem 2 and Theorem 8.

Theorem 9. Lef the follownng conditions hold:

1. Conditions (H) are fulfilled.

2. G < A ZAE) < A, £ 2 to, A1, Az = const,

3. h{—u) = —hi{u}, v € R; h{u) is a monotone fncreosing function
in the intervol (0, 00).

4. For any closed and measureble set E C  [tg,00) for which
meas(EN{t i+ 27)) 2 1,1 € [tg, 00) the following condition holds

{48) /Fp(t) dt =

Then each soluiion w(z, t) of problem (1), (2) or {1}, {8) vseil-
lates in the doman G
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