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REDUNDANT DECOMPOSITIONS, ANGLES BETWEEN

SUBSPACES AND OBLIQUE PROJECTIONS

G. Corach and A. Maestripieri

Abstract

Let H be a complex Hilbert space. We study the relationships
between the angles between closed subspaces of H, the oblique
projections associated to non direct decompositions of H and a
notion of compatibility between a positive (semidefinite) opera-
tor A acting on H and a closed subspace S of H. It turns out
that the compatibility is ruled by the values of the Dixmier an-
gle between the orthogonal complement S⊥ of S and the closure
of AS. We show that every redundant decomposition H = S+M⊥

(where redundant means that S ∩M⊥ is not trivial) occurs in the
presence of a certain compatibility. We also show applications of
these results to some signal processing problems (consistent re-
construction) and to abstract splines problems which come from
approximation theory.

1. Introduction

Let H be a Hilbert space, L(H) the algebra of bounded linear op-
erators on H and L(H)+ the convex cone of all positive semidefinite
operators in L(H); in this paper, “positive” means “semidefinite posi-
tive”. A closed subspace S of H and A ∈ L(H)+ are called compatible if
there exists a projection Q ∈ L(H) with image S such that AQ = Q∗A.
The notion of compatibility between subspaces and positive operators
has been introduced in [13] and applied to abstract splines in [14]. Re-
lated notions have been studied earlier by Hassi and Nordström [25].
We recently noticed [12] that Sard considered a similar notion in 1952
in his studies on approximation processes [38]. Sard’s idea received little
attention, perhaps because the concept of ill-conditioned matrices (op-
erators) was not still fully developed. In statistics, inner products are
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frequently defined by certain correlation matrices, which are supposed to
be positive definite. The orthogonal projection matrices, with respect to
these inner products, are extensively treated in the text by Harville [24].
For an infinite dimensional Hilbert space H, Pasternak-Winiarski [35]
studied the analytical dependence on A of the projection PA,S onto a
closed subspace S, which is orthogonal with respect to the inner prod-
uct defined by the invertible operator A. In [2], Pasternak-Winiarski’s
results were extended to the case where also S varies. This provides a
well-defined map GL(H)+×Gr(H) → Q, where GL(H)+ denotes the set
of positive invertible operators in H, Gr(H) is the Grassmannian of H
and Q is the set of all bounded linear projections on H. If, for a fixed
S ∈ Gr(H), QS denotes the set of all Q ∈ Q such that its image R(Q)
is S, then PA,S ∈ QS . One of the goals in [13] was the extension
of the map (A,S) → PA,S allowing A to be non invertible. However,
there is no such map L(H)+ ×Gr(H) → Q as before. As we said, a pair
(A,S) ∈ L(H)+×Gr(H) is called compatible if there exists Q ∈ QS such
that AQ = Q∗A. This means that 〈Qh, k〉A = 〈h,Qk〉A for all h, k ∈ H,
where 〈h, k〉A = 〈Ah, k〉. We show that, if (A,S) is compatible, then
there exists a particular PA,S ∈ QS which is A-orthogonal. The domain
of the map (A,S) → PA,S is the set of all compatible pairs. It is a set
which lies strictly between GL(H)+ ×Gr(H) and L(H)+ ×Gr(H). One
of the goals of this paper is to characterize compatible pairs in terms
of Dixmier’s angles. Recall that, given closed subspaces S1 and S2,
the Dixmier angle between S1 and S2 is that α ∈ [0, π/2] such that
cosα = sup{|〈s1, s2〉| : s1 ∈ S1, s2 ∈ S2, ‖s1‖ = ‖s2‖ = 1}. This concept
is also related to non direct decompositions H = S1 + S2, i.e., such that
S1 ∩ S2 is not trivial. These decompositions, which are relevant in com-
patibility theory, have received much attention in linear reconstruction
problems from signal processing. A previous application of compatibility
to reconstruction problems appeared in [3]. Another goal of the paper is
to make explicit the relationship between redundant decompositions of
H and certain compatibility conditions. As an application, we show that
many problems like those studied by Unser and Aldroubi [40], Eldar [20]
and Hirabayashi and Unser [27] can be extended to infinite dimensional
settings in the presence of compatibility. The same type of extension
holds for abstract splines problems [5], [9], [28], [11], [16] which we
describe below. We show that the usual hypothesis are stronger than
a compatibility condition, which allows one to solve several problems
on interpolating and smoothing splines. It should be remarked that
Shekhtman [39], de Boor [9], Izumino [28] and Deutsch [16] also use
angles between subspaces in abstract splines problems.
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We briefly describe the contents of the paper. Section 2 surveys some
results on two notions by Friedrichs [21] and Dixmier [18] of angles be-
tween closed subspaces (see definitions in Section 2). We use these angles
to describe decompositions of H as a sum of two closed subspaces: given
subspaces S1, S2 it holds H = S1+S2 if and only if the Dixmier angle be-
tween their orthogonal complements is non zero; moreover, H = S1+̇S2

if and only if, in addition, the Dixmier angle between S1 and S2 is non
zero. In Section 3 we introduce the notion of compatibility. Using the
results of Section 2 we prove that the existence of such projections is
equivalent to the fact that S⊥ and AS have non-zero Dixmier angle and
that the redundant decompositions of Section 2 are indeed manifesta-
tions of compatibility. We include here an application to reconstruction
problems of signals, using the notion of consistent reconstruction defined
by M. Unser and A. Aldroubi [40]. Section 4 contains different descrip-
tions of the set P(A,S) of all projections Q ∈ QS , such that AQ = Q∗A,
in the case where S and A are compatible. It is remarked that in this
case there exists a distinguished projection PA,S ∈ P(A,S) with several
optimal properties, which are analogous to those of the classical orthogo-
nal projection PS in the set of all projections with image S. This section
contains an extension of a construction, due to Minamide and Naka-
mura, of a restricted pseudoinverse of an operator T with closed range
to a closed subspace S such that TS is closed. Section 5 is devoted to
study the minimality properties of PA,S mentioned above. These prop-
erties show that PA,S , in many senses, plays the role of the classical
orthogonal projection PS . Finally, Section 6 contains several results and
applications to abstract spline problems. Atteia [5], [6] introduced the
subject and obtained the main results. He got, by Hilbert space methods,
a unified approach to the study of different kinds of splines. Essentially,
one has operators T ∈ L(H, E), V ∈ L(H,F) such that R(T ) is closed
and R(V ) = F . The problem of interpolating abstract splines is to min-
imize ‖Th‖, subject to V h = f0, for a given f0 ∈ F . The problem of
smoothing abstract splines is to minimize ‖Th‖ + ρ‖V h − f0‖ with no
constraint, where f0 ∈ F and ρ > 0. Atteia solved these problems with
the hypothesis above together with the condition that TN(V ) is closed.
We extend his results replacing the closedness of R(T ) and TN(V ) by
the compatibility of the nullspace N(V ) and A = T ∗T . This hypothesis
is strictly weaker than Atteia’s. We also show that there exist compat-
ible pairs (A,S) such that R(A) is not closed. The last result extends,
in the same sense as before, a mixed spline problem, which has at the
same time interpolating and smoothing properties. This approach was
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introduced by Bezhaev, Rozhenko and Vasilenko [8], who solved it with
hypothesis which are analogous to those of Atteia.

2. Angles between subspaces

In what follows, H and K are complex Hilbert spaces and L(H,K)
denotes the Banach space of all bounded linear operators from H into K,
with the operator norm. If H = K we write L(H). By L(H)+ we denote
the subset of all semidefinite positive operators. Observe that these
operators are automatically selfadjoint because we deal with complex
Hilbert spaces.

Throughout, +̇ denotes a direct sum, ⊕ an orthogonal sum and ⊖ is
the orthogonal substraction, i.e., M ⊖ N = M ∩ (N ∩ M)⊥. Every
(bounded linear) projection Q : H → H produces a (direct sum) decom-
position H = R(Q)+̇N(Q), (where R denotes the range and N is the
kernel). The set of all (bounded linear) projections on H is denoted
by Q. Observe that R(Q) is closed, because R(Q) = N(I − Q) and
I−Q is also a bounded projection. Conversely, if H = M+̇N , where M
and N are closed subspaces of H, then there exists a unique projection
Q : H → H such that R(Q) = M and N(Q) = N . Denote by PS//T the
projection onto S, with nullspace T , and PS = PS//S⊥ , the orthogonal
projection onto S. Thus, there is a natural bijection between Q and the
set of all direct sum decompositions H = M+̇N . Under this bijection,
the set P of all orthogonal projections on H corresponds to the set of all
orthogonal decompositions H = M+̇M⊥.

Among the variety of notions of angles between subspaces in a
Hilbert space we only need to consider those due to Friedrichs [21] and
Dixmier [18]. We follow the excellent survey by Deutsch [16], [17, Chap-
ter 9].

Let S1 and S2 be closed subspaces of a Hilbert space H. The angle
α(S1,S2) ∈ [0, π/2] is that whose cosine is

c(S1,S2) = sup {|〈x, y〉| : x ∈ S1 ⊖ S2, ‖x‖ ≤ 1, y ∈ S2 ⊖ S1, ‖y‖ ≤ 1} .

The Dixmier angle α0(S1,S2) ∈ [0, 2π] is that whose cosine is

c0(S1,S2) = sup {|〈x, y〉| : x ∈ S1, ‖x‖ ≤ 1, y ∈ S2, ‖y‖ ≤ 1} .

Both definitions are symmetric in S1, S2 and they coincide if S1∩S2 =
{0}. However, if S1 ∩ S2 6= {0} then, automatically, c0(S1,S2) = 1,
but c(S1,S2) depends on the closedness of S1 + S2. More precisely,
c(S1,S2) < 1 if and only if S1 + S2 is closed. By a theorem of Kato [29,
Theorem 4.8], it holds that S1 + S2 is closed if and only if S⊥

1 + S⊥
2

is closed, and in this case (S1 ∩ S2)
⊥ = S⊥

1 + S⊥
2 . This also follows
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from the equality c(S⊥
1 ,S

⊥
2 ) = c(S1,S2), which is not trivial (see [16,

Theorem 16]). For the Dixmier angle, it holds c0(S1,S2) < 1 if and
only if S1 + S2 is closed and S1 ∩ S2 = {0}. In terms of the orthogonal
projections PS1

and PS2
, the following identities are useful:

(1) c0(S1,S2) = ‖PS1
PS2

‖, c(S1,S2) = ‖PS1
PS2

− PS1∩S2
‖.

More than the exact value of α(S1,S2), we are here interested in deter-
mining whether α(S1,S2) 6= 0, i.e., c(S1,S2) < 1; analogously for α0, c0.

The contents of the next theorem are mostly known, but they are
quite sparsed in the literature. Let us mention a paper by Pták [37] for
part of item (2), and [13] for item (1). We choose to state and prove it
here to emphasize the role of the Dixmier angle in these matters: thus
the property “H = S1 + S2” only depends on the angle α0(S⊥

1 ,S
⊥
2 ),

and the property “H = S1+̇S2” only depends on the angles α0(S⊥
1 ,S

⊥
2 )

and α0(S1,S2).

Theorem 2.1. Let S1 and S2 be two closed subspaces of H. Then,

(1) H = S1 + S2 ⇔ c0(S⊥
1 ,S

⊥
2 ) < 1 ⇔ ‖PS⊥

1

PS⊥

2

‖ < 1;

(2) H = S1+̇S2 ⇔ c0(S1,S2) < 1 and c0(S⊥
1 ,S

⊥
2 ) < 1.

Proof: (1) If H = S1 +S2 then S1+S2 is obviously closed and, therefore,
c(S1,S2) < 1, which is equivalent to c(S⊥

1 ,S
⊥
2 ) < 1. On the other hand,

S⊥
1 ∩ S⊥

2 = (S1 + S2)
⊥ = H⊥ = {0}. Thus, c0(S⊥

1 ,S
⊥
2 ) < 1, by the

comment above. Conversely, if c0(S⊥
1 ,S

⊥
2 ) < 1 then S⊥

1 ∩ S⊥
2 = {0}

and S⊥
1 + S⊥

2 is closed. As before, this implies that S1 + S2 is closed;
also (S1 + S2)

⊥ = S⊥
1 ∩ S⊥

2 = {0}. Therefore, H = S1 + S2. The last
equivalence is obvious.

(2) If H = S1+̇S2 then H = S⊥
1 +̇S⊥

2 . Therefore, by the last theorem,
we get c0(S⊥

1 ,S
⊥
2 ) < 1 and c0(S1,S2) < 1. Conversely, if c0(S1,S2) < 1

then S1 + S2 is closed and S1 ∩ S2 = {0}. But c0(S⊥
1 ,S

⊥
2 ) < 1 implies

that S⊥
1 ∩S⊥

2 = {0}; since S⊥
1 ∩S⊥

2 = (S1 + S2)
⊥, S1 + S2 is dense and,

since it is also closed, S1+̇S2 = H.

This result explains why the property “c(S1,S2)<1 ⇔ c(S⊥
1 ,S

⊥
2 )<1”

does not hold for c0, in general. In fact, the equality H = S1 + S2 is
obviously not equivalent to H = S⊥

1 +S⊥
2 if the sum S1+S2 is not direct.

3. Compatibility

A positive operator A ∈ L(H)+ and a closed subspace S of H are
called compatible if there exists a bounded linear projection Q ∈ L(H)
with image S such that AQ = Q∗A. This means that Q is selfadjoint
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with respect to the semi-inner product 〈 , 〉A given by 〈x, y〉A = 〈Ax, y〉.
Thus, Q is like an “orthogonal” projection onto S with respect to 〈 , 〉A,
or A-orthogonal.

Every Q ∈ Q is A-orthogonal for some A ∈ L(H)+; moreover, A can
be chosen to be invertible. For example, if A = Q∗Q+ (I −Q∗)(I −Q)
then A ∈ L(H)+ is invertible and AQ = Q∗A.

Of course, if A is invertible then 〈 , 〉A is an inner product which
is equivalent to the original 〈 , 〉 and therefore, by the projection the-
orem, there exists a unique A-orthogonal projection over every closed
subspace S. Thus, for an invertible A, every closed subspace is com-
patible. However, if A and S are not compatible, there exists no such
projection. Even if A and S are compatible, there may exist uncount-
able many such projections. Observe that non compatibility only may
occur for infinite dimensional spaces. More precisely, if dimAS < ∞
then (A,S) is compatible. In fact, if dimAS < ∞ then AS is closed
and c0(S⊥, AS) = 〈s⊥, As〉 for suitable s⊥ ∈ S⊥, s ∈ S with ‖s⊥‖ =
‖As‖ = 1. If c0(S⊥, AS) = 1 then Cauchy-Schwarz inequality implies
that s⊥ = λAs for some scalar λ with |λ| = 1, but this is imposible:
As ∈ S⊥ ⇔ As = 0. On the other side, there are many examples of non
compatible pairs. In [13], [14], [15], the reader will find many examples
of compatible and non compatible pairs; see also the example at the end
of Sard’s paper [38].

There are many instances where the original inner product is per-
turbed or even dramatically changed. The conjugate gradient method
of Lanczos, Hestenes and Stiefel (see [31], [26] or [22]) is one of these
situations. In general, one needs to change 〈 , 〉 by an equivalent inner
product 〈 , 〉A. However, if the invertible operator is what in numerical
analysis is called “ill-conditioned” (which, essentially, means that ‖A−1‖
is much bigger than 1

‖A‖ ), then one is forced to consider a positive non

invertible A. This induces one to study compatibility. The idea is that,
in the presence of a suitable compatibility assumption one will get the
same type of results as in a finite dimensional setting or in an infinite
dimensional one but with a positive invertible A.

We present now a short résumé of results on compatibility which
contains several theorems proved in [13], [14], [15], together with a
set of new results. They are unified by the notions of Dixmier angle
and redundant (i.e., non direct) decompositions of the space. In what
follows, we first present a characterization of compatibility in terms of
Dixmier angles. It is based on the following lemma of M. Krein [30].
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Lemma 3.1. If Q ∈ L(H) is a projection with image S and A ∈ L(H)+,
then AQ = Q∗A if and only if N(Q) ⊆ (AS)⊥.

Proof: If AQ = Q∗A and x ∈ N(Q) then for every s ∈ S we get 〈x,As〉 =
〈Q∗Ax, s〉 = 〈AQx, s〉 = 0, which proves that N(Q) ⊆ (AS)⊥.

Conversely, if N(Q) ⊆ (AS)⊥ and z ∈ H is decomposed as z = Qz +
(I −Q)z, for every x ∈ H we get 〈AQx, z〉 = 〈AQx,Qz〉 = 〈Q∗AQx, z〉.
Thus, AQ = Q∗AQ, which is Hermitian, so AQ = Q∗A.

Theorem 3.2. Given a closed subspace S of H and A ∈ L(H)+ then,
the following conditions are equivalent:

(1) (A,S) is compatible;

(2) H = S + (AS)⊥;

(3) ‖PS⊥PAS‖ < 1 (or equivalently, c0(S⊥, AS) < 1).

The equivalence between (1) and (2) can be found in [13]. However,
for the sake of completeness we include a proof.

Proof: (1) ⇔ (2): if (A,S) is compatible and Q is a projection over S
such that AQ = Q∗A, by Krein’s lemma N(Q) ⊆ (AS)⊥ and therefore
H = R(Q) +N(Q) ⊆ S + (AS)⊥.

Conversely, if H = S + (AS)⊥ then H = S+̇(AS)⊥ ⊖ S. Then, by
Krein’s lemma, again, the projection onto S defined by the last decom-
position satisfies AQ = Q∗A, which shows that (A,S) is compatible.

The equivalence between (2) and (3) is a rewriting of Theorem 2.1.

Remark 3.3. Given A,B ∈ L(H)+ and a closed subspace S such that
AS = BS then (A,S) is compatible if and only if (B,S) is compatible.

In [15, Proposition 2.14] it was proven that the compatibility between
A ∈ L(H)+ and a subspace S is equivalent to the direct decomposition
R(A) = AS+̇R(A) ∩ S⊥. For a later use see Theorem 4.6. We extend
this result to non necessarily positive operators. More precisely:

Proposition 3.4. Let T ∈ L(H) and let S be a closed subspace of H.
If A = T ∗T then the following conditions are equivalent:

(1) the pair (A,S) is compatible;

(2) R(T ) = TS ⊕ (TS)⊥ ∩R(T );

(3) if M = TS, then R(PMT ) ⊆ TS.

Proof: We use the fact that (AS)⊥ = A−1(S⊥).

(1) ⇔ (2): If (A,S) is compatible then, by Theorem 3.2, H = S+(AS)⊥

and applying T to both sides of the equality we get that R(T ) = TS +
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TA−1(S⊥). Observe that

TA−1(S⊥) = T (T ∗T )−1(S⊥) = TT−1(T ∗−1(S⊥)) = T ∗−1(S⊥) ∩R(T ).

But T ∗−1(S⊥) = (TS)⊥ so that TA−1(S⊥) = (TS)⊥ ∩R(T ). Therefore
R(T ) = TS ⊕ (TS)⊥ ∩R(T ). The converse is similar.

(2) ⇔ (3): If y ∈ R(T ) then y = y1 + y2 for unique y1 ∈ TS and
y2 ∈ (TS)⊥, then PMy = y1 ∈ TS. The converse is similar.

Corollary 3.5. Let S be a closed subspace of H and A ∈ L(H)+ with
closed range, then (A,S) is compatible if and only if S +N(A) is closed,
or equivalently, if AS is closed.

Proof: It is easy to see that if A has closed range then S+N(A) is closed
if and only if AS is closed: in fact, since R(A) is closed then A : H →
R(A) is a quotion map, by the Open Mapping theorem. Therefore AS
is closed if and only if S +N(A) is closed.

Observe that R(A) = R(A1/2) because R(A) is closed. If (A,S)
is compatible, applying Proposition 3.4, with T = A1/2, we get that
R(A1/2) = A1/2S ⊕ (A1/2S)⊥ ∩R(A1/2). Then, the set A1/2S must be
closed because the decomposition of R(A1/2) is orthogonal and R(A1/2)
is closed. It follows that S +N(A1/2) = S +N(A) is closed. Conversely,
suppose that S +N(A) is closed, then A1/2S is closed. In this case, it is
easy to see that R(A1/2) = A1/2S ⊕ (A1/2S)⊥ ∩R(A1/2), so that (A,S)
is compatible, by Proposition 3.4.

Corollary 3.6. Given closed subspaces M, S such that S⊥ ∩M = {0},
the pair (PM,S) is compatible if and only if ‖PS⊥PM‖ < 1.

Proof: By Corollary 3.5, the pair (PM,S) is compatible if and only if
S + M⊥ is closed, or equivalently, if S⊥ + M is closed, or c(S⊥,M) <
1. By (1), c(S⊥,M) = ‖PS⊥PM − PS⊥∩M‖ = ‖PS⊥PM‖, because
S⊥ ∩M = {0}.

Example 3.7. The following example is due to J. Antezana. Let T =
{z ∈ C : |z| = 1}. Consider the space L2(T) and its subspaces H2(T),
S = {f ∈ L2(T) : f(z) = 0 if Im z ≥ 0} and S⊥ = {f ∈ L2(T) :
f(z) = 0 if Im z ≤ 0}. Every ψ ∈ L∞(T) defines a multiplication
operatorMψ : f → ψf in L(L2(T)) and a Toeplitz operator Tψ = PMψP
in L(L2(T)), where P is the orthogonal projection onto H2(T) (the so-
called Riesz projection). Observe that PS = Mχ, where χ(z) = 0 if
Im z ≤ 0, χ(z) = 1 if Im z ≥ 0, analogously PS⊥ = MI−χ. It is well
known that ‖Tψ‖ = ‖ψ‖∞ and H2(T) ∩S = H2(T) ∩S⊥ = {0} (see, for
instance, [34]).
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It holds ‖PPS⊥‖=1: in fact, 1≥‖PPS⊥‖=‖PM1−χ‖≥‖PMI−χP‖ =
‖TI−χ‖ = ‖I − χ‖∞ = 1. This implies, by Corollary 3.6, that the
pair (P,S) is not compatible.

Suppose that M and S are two closed subspaces of H such that H =
S + M⊥ and consider the set

P(S,M) = {Q ∈ Q : R(Q) = S, N(Q) ⊆ M⊥}.

The next theorem explicity shows that P(S,M) is an affine submanifold
of L(H). It will be useful in the study of compatibility.

Theorem 3.8. Let M and S be two closed subspaces of H such that
H = S + M⊥, then

P(S,M)=PS//M⊥⊖S+{W ∈ L(H) : R(W ) ⊆ S∩M⊥ and S ⊆ N(W )}.

Proof: Let N = S∩M⊥. IfQ ∈ P(S,M), considerW = Q−PS//M⊥⊖S .

Then, Q = PS//M⊥⊖S +W , R(W ) ⊆ S and also R(W ) ⊆ M⊥, because
we can write W = (I −PS//M⊥⊖S)− (I −Q). Therefore R(W ) ⊆ N . It
is obvious that S ⊆ N(W ).

Conversely, ifQ = PS//M⊥⊖S+W , whereR(W ) ⊆ N and S ⊆ N(W ),

it follows that PS//M⊥⊖SW = W , WPS//M⊥⊖S = 0 and W 2 = 0;

therefore Q2 = Q. Also Qs = s, for all s ∈ S and R(Q) ⊆ S, so that
R(Q) = S; finally, if Qx = 0 then PS//M⊥⊖Sx = −Wx ∈ N so that

x = PS//M⊥⊖Sx+ (I − PS//M⊥⊖S)x ∈ M⊥. Then Q ∈ P(S,M).

The next one is a kind of dual of the theorem above.

Corollary 3.9. Suppose that M and S are two closed subspaces of H
such that M+ S⊥ is a proper closed subspace of H and M∩S⊥ = {0}.
Consider the set

P∗(S,M) = {Q ∈ Q : N(Q) = S⊥, M ⊆ R(Q)}.

Then, P∗(S,M) = PM+S∩M⊥//S⊥ + {W ∈ L(H), R(W ) ⊆ S⊥, M +

S⊥ ⊆ N(W )}.

Proof: It suffices to notice that P∗(S,M) = P(S,M)∗ and that if M+

S⊥ is closed then (S + M⊥)⊥ = M + S⊥ = M + S⊥.

In Section 2, devoted to angles between subspaces, we proved that
two subspaces span the whole space if and only if its Dixmier angle is
not 0. We prove now a different characterization, this time in terms of
the notion of compatibility.
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Theorem 3.10. Let S, M be closed subspaces of H. Then the following
conditions are equivalent:

(1) H = S + M⊥;

(2) there exists a projection Q ∈ L(H) with image S such that PMQ =
PM;

(3) PMS = M and the pair (PM,S) is compatible;

(4) there exists A ∈ L(H)+ such that AS = M and the pair (A,S) is
compatible.

Proof: (1) ⇒ (2): Even if H = S +M⊥ is a non direct sum, the decom-
position H = S+M⊥⊖S is direct. Let Q ∈ L(H) be the projection with
image R(Q) = S and nullspace N(Q) = M⊥ ⊖ S ⊆ M⊥. Therefore,
PM(I −Q) = 0 so that PM = PMQ.

(2) ⇒ (3): Let Q ∈ L(H) be the projection with image R(Q) = S and
PM = PMQ then PMQ = Q∗PM and (PM,S) is compatible. On the
other hand, PMS = R(PMQ) = R(PM) = M.

(3) ⇒ (4): Take A = PM.

(4) ⇒ (1): If (A,S) is compatible then H = S+(AS)⊥. Since AS = M,
we get H = S + M⊥.

Remark 3.11. 1. The choice of M⊥ instead of M in the definition
of P(S,M) and in condition (1), simplifies the form of the other
conditions (2), (3) and (4).

2. If H is infinite-dimensional and S is finite-dimensional, then M is
also finite-dimensional.

3. A consequence of the theorem is that one is forced to admit non
invertible positive operators when dealing with non-direct sums.

Consistent reconstruction of signals.

The notion of consistent reconstruction in signal processing was in-
troduced by Unser and Aldroubi [40]. Let H be a Hilbert space of
functions (“signals”) and consider two closed subspaces of H: the sam-
pling space Vs and the reconstruction space Vr. Suppose that for h ∈ H,
the scalars

ci = 〈h, si〉, i ∈ I

are known, for a fixed set of “sampling vectors” {si}i∈I which spans Vs.
A process of linear reconstruction of signals consists of a linear operator
which assigns to any h ∈ H a certain h̃ ∈ Vr, satisfying that if h ∈ Vr
then h̃ = h and if PVs

h̃ = 0 then h̃ = 0 (uniqueness condition) and
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PVs
h̃ = PVs

h, for h ∈ H (consistency condition). It is easy to see that
the first condition implies that Vr∩V⊥

s = {0}: suppose that h ∈ Vr∩V⊥
s ;

then, by the first condition, h̃ = h and PVs
h̃ = 0, because h ∈ V⊥

s ;

therefore h̃ = 0, so that h = 0.
In [20] Eldar proved that if Vr+̇V⊥

s = H, there exists a unique consis-

tent reconstruction of h given by h̃ = PVr//V⊥
s
h. The following corollary

of Theorem 3.10 establishes a relation between the notion of compatibil-
ity and the existence of consistent reconstructions.

Corollary 3.12. Given Vs and Vr two closed subspaces of H, there exists
a consistent reconstruction with sampling space Vs and reconstruction
space Vr if and only if the pair (PVs

,Vr) is compatible and Vr∩V⊥
s = {0}.

Even if H = Vr + V⊥
s but the sum is not direct, one can always

construct a consistent reconstruction Q with a smaller reconstruction
space R(Q) ⊆ Vr. In fact, if we choose any subspace Ṽr ⊆ Vr such that

H = Ṽr+̇V⊥
s then Q = PṼr//V⊥

s
is the unique consistent reconstruction

with sampling space Vs and reconstruction space Ṽr [27].

4. The set P(A, S)

We fix some notations. If (A,S) is a compatible pair, P(A,S) denotes
the set of allA-orthogonal projections onto S. Denote by N = S∩(AS)⊥ ;
it is easy to see that N = S ∩N(A).

Lemma 4.1. If H = S1 +S2 for some closed subspaces S1, S2 of H then
the set of closed complements of S1 ∩ S2 in S2 coincides with the set of
closed complements of S1 which are contained in S2, i.e.

AS1,S2
= {M ∈ Gr(H) : H = S1+̇M, M ⊆ S2}

= {M ∈ Gr(H) : S2 = M+̇S1 ∩ S2}.

Proof: Straightforward.

Theorem 4.2. Let (A,S) be a compatible pair in H. Then

P(A,S) = {Q ∈ Q : R(Q) = S, N(Q) ∈ AS,(AS)⊥}.

Proof: By Krein’s lemma, if Q ∈ Q and R(Q) = S then Q ∈ P(A,S)
if and only if N(Q) ⊆ (AS)⊥. If we identify each Q ∈ Q with the
decomposition H = R(Q)+̇N(Q), the theorem follows from the lemma
above.

Observe that, if H = S1+S2 as before there is a distinguished element
of AS1,S2

, namely, M = S2 ⊖ S1. In particular, we get a distinguished
projection in P(A,S). More precisely, PA,S ∈ P(A,S) is the unique
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projection such that R(PA,S) = S and N(PA,S) = (AS)⊥ ⊖ N . Notice
that PA,S implicitly appeared in the proof of Theorem 3.2.

Now, we use PA,S to characterize the set P(A,S). An analogous
description of this set appears in [13]. We include a one-line proof.

Proposition 4.3. Let (A,S) be a compatible pair. Then

P(A,S) = PA,S + {W ∈ L(H) : R(W ) ⊆ N and S ⊆ N(W )}.

In particular, if N = {0} then P(A,S) = {PA,S}.

Proof: Notice that P(A,S) = P(S,M), with M = AS and apply The-
orem 3.8.

Remark 4.4. Observe that Theorem 3.10 proves that if H = S+M⊥ then
there exists a positive operator A ∈ L(H) such that P(S,M) = P(A,S);
in fact, if A = PM then (A,S) is compatible and P(S,M) = P(A,S).

The next result offers an easy expression for PA,S . For its proof we
need the following theorem by R. G. Douglas [19]:

Theorem 4.5. Let A,B ∈ L(H). Then the following conditions are
equivalent:

(1) R(B) ⊆ R(A);

(2) there exists D ∈ L(H) such that B = AD.

Moreover, in this case there exists a unique solution D of the equa-

tion AX = B such that R(D) ⊆ R(A∗) (the Douglas solution) and it
holds ‖D‖2 = inf{λ : BB∗ ≤ λAA∗}.

Theorem 4.6. Consider T ∈ L(H) and S a closed subspace of H. Let
A = T ∗T , P = PS and suppose that the pair (A,S) is compatible. Then,

PA,S⊖N = (TP )†T = (A1/2P )†A1/2.

In particular, if N = {0}, it holds PA,S = (TP )†T = (A1/2P )†A1/2.

Proof: Suppose that (A,S) is compatible and consider M = TS. By
item (3) of Proposition 3.4 and Theorem 4.5, equation TPX = PMT
admits a solution. Let D be the Douglas solution. Then, by [4], D =
(TP )†PMT (notice that (TP )† may be unbounded, but the product

(TP )†PMT is bounded). Observe that R(TP ) = TS = M, so that
M⊥ = R(TP )⊥ = N((TP )†). Therefore (TP )†(I − PM) = 0 or, equiv-
alently, (TP )† = (TP )†PM. This equality shows that D = (TP )†T .
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In what follows we prove that (TP )†T = PA,S⊖N : first notice that
R(D) ⊆ S ⊖ N : in fact, N(TP ) = N ⊕ S⊥, because TPh = 0,
for h ∈ H, if and only if Ph ∈ N(T ) ∩ S = N , or equivalently, h ∈
P−1(N ) = N ⊕ S⊥. Then R((TP )†) = N(TP )⊥ = (N ⊕ S⊥)⊥ =
S ∩ N⊥ = S ⊖ N . Also N(D) = (AS)⊥: Dx = 0 if and only if
Tx ∈ N((TP )†) = (TS)⊥ = T ∗−1(S⊥). Then x ∈ N(D) if and only
if x ∈ T−1(T ∗−1(S⊥)) = A−1(S⊥) = (AS)⊥.

Finally, sinceD=PD, we getD2 =DPD=(TP )†TPD=PN(TP )⊥D=
PS⊖ND = D (here we use the general fact that even if an opera-
tor B does not have closed range, one can define its Moore-Penrose
inverse B†, which is unbounded; in this case B†B is bounded and satis-
fies B†B = PN(B)⊥ , see [33]). Therefore, D is a projection, with R(D) ⊆

S ⊖ N and N(D) = (AS)⊥. To see that R(D) = S ⊖ N , observe that
H = (S ⊖ N )+̇(AS)⊥ because (A,S) is compatible, then if s ∈ S ⊖ N ,
write s = Ds + (I − D)s, so that (I −D)s ∈ (S ⊖ N ) ∩ (AS)⊥ = {0}
and s = Ds ∈ R(D); thus D = PA,S⊖N .

To prove the second equality, consider M′ = A1/2S instead of M.
Applying [15, Proposition 2.14], equation A1/2PX = PM′A1/2 admits
a solution. Let D′ be the Douglas solution. Following the same steps as
before, it can be proved that D′ = PA,S⊖N .

Restricted pseudoinverses.

Consider T ∈ L(H1,H2) and S ∈ L(H1,H3), with S = N(S). In [32]
Minamide and Nakamura defined the pseudoinverse of T restricted to S,

denoted by T †
S , as the Moore-Penrose inverse of T|N(S), provided that

TN(S) is closed. They proved that T †
S is the unique solution of the

equations

SX = 0, XTX = X, (TX)∗ = TX,

TXT = T on S, PS(XT )∗ = XT on S.

In the same way as the ordinary pseudoinverse, the restricted pseudoin-
verse provides the best approximation, when certain constrained prob-

lems are considered. It is not difficult to see that T †
S = (TPS)†; see [32]

and [7, p. 91].
Observe that, in general, TPS is not a closed range operator, so that

T †
S = (TPS)† is an unbounded densely defined operator; by this reason,

Minamide and Nakamura added the hypothesis of the closedness of TS =
R(TPS). However, in the presence of a compability hypothesis, the
operator (TS)†T is a bounded projection even if R(TS) is not closed.
More precisely:
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Corollary 4.7. If (T ∗T,S) is compatible, then

PA,S⊖N = (TS)†T = (A
1/2
S )†A1/2.

In particular, if N = {0}, it holds PA,S = (TS)†T = (A
1/2
S )†A1/2.

Proof: It is a rewriting of the previous proposition.

5. Variational properties of PA,S

In this section, the projections of the set P(A,S) and the distinguished
projection PA,S are characterized as solutions of different variational
problems.

Given S a closed subspace of H the orthogonal projection onto S⊥ is
the unique solution to the variational problem

(2) min
Q∈Q, N(Q)=S

Q∗Q.

To prove this assertion observe that if Q ∈ Q satisfies that N(Q) = S
then the matrix representation of Q, in terms of the decomposition H =
S ⊕S⊥, is Q = ( 0 x

0 1 ), where x ∈ L(S⊥,S) and 1 is the identity operator
of S⊥. Then Q∗Q =

(

0 0
0 1+x∗x

)

and therefore, Q∗Q−PS⊥ =
(

0 0
0 x∗x

)

≥ 0.
Suppose that Q0 ∈ Q, with N(Q0) = S is another solution of the

variational problem. Then, Q∗
0Q0 = PS⊥ , so that 0 = Q∗

0Q0 − PS⊥ =
(

cc0 0
0 x∗x

)

; therefore x∗x = 0 and x = 0.
The symmetric problem

(3) min
Q∈Q, R(Q)=S

QQ∗

has a unique solution given again by the orthogonal projection PS .
These results are interesting because they prove that PS is optimal

(in a precise sense) among all the projections with image S. We prove
now that PA,S is optimal, in a similar sense, among the projections
in P(A,S). Observe that, even if PA,S has optimal operator norm
in P(A,S), it is not the unique projection in P(A,S) with this prop-
erty (see [13, Theorem 3.5.5]).

Theorem 5.1 ([14, Theorem 3.2.4]). Let S be a closed subspace of H
and A ∈ L(H)+. If the pair (A,S) is compatible then for every Q ∈
P(A,S) and every h ∈ H

||(I − PA,S)h|| ≤ ||(I −Q)h||.

Moreover, (I − PA,S)h is the unique vector in the set {(I − Q)h : Q ∈
P(A,S)} with minimal norm.
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Proposition 5.2. Let S and M closed subspaces of H such that S +
M⊥ = H and consider the set A = {Q ∈ Q : R(Q) ⊆ M⊥ and N(Q) =
S}.

Then

(4) min
Q∈A

Q∗Q = P ∗
0 P0,

where P0 = PM⊥⊖S//S . Moreover, P0 is the unique projection in A
satisfying (4).

Proof: Observe that S⊥ ∩ M = (S + M⊥)⊥ = {0} and consider the
projection PM. Then PM ≥ 0 and (PMS)⊥ = P−1

M (S⊥) = P−1
M (S⊥ ∩

M) = N(PM) = M⊥. Therefore, by Theorem 3.2 the pair (PM,S)
is compatible. Observe that, by Krein’s lemma, Q ∈ A if and only if
I −Q ∈ P(PM,S).

Applying Theorem 5.1, for every E ∈ P(PM,S) it holds that ||(I −
PM,S)h|| ≤ ||(I − E)h||, for h ∈ H. Or equivalently, P ∗

0 P0 ≤ Q∗Q,
where P0 = I − PM,S and Q = I − E. Finally, observe that, by the
definition of PM,S it follows that R(P0) = M⊥ ⊖ S and N(P0) = S.

To see the uniqueness, suppose that P1∈A verifies that minQ∈AQ
∗Q=

P ∗
1 P1. Then, P ∗

1 P1 = P ∗
0 P0. Using Proposition 3.8 we can write P1 =

P0+W , where W is an operator in L(H) such that R(W ) ⊆ S∩M⊥ and
S ⊆ N(W ). Therefore, P ∗

0 P0 = P ∗
0 P0 −P ∗

0W −W ∗P0 +W ∗W . Observe
that P ∗

0W = W ∗P0 = 0, because R(W ) ⊆ N(P ∗
0 ) = M+S∩M⊥. Then,

W ∗W = 0, so that W = 0 and P1 = P0.

In this case, the symmetric problem is the following: suppose that
M and S are two closed subspaces of H such that M∩ S⊥ = {0} and
M + S⊥ is a proper closed subspace of H; consider the set A∗ = {Q ∈
Q : R(Q) = S⊥ and M ⊆ N(Q)}.

Then

(5) min
Q∈A∗

QQ∗ = Q∗
0Q0,

where Q0 = PS⊥//M+(S∩M⊥); moreover Q0 is the unique projection
satisfying (5).

Corollary 5.3. Let A ∈ L(H)+ and S a closed subspace of H such that
(A,S) is compatible. Then

min
Q∈P(A,S)

(I −Q∗)(I −Q) = (I − PA,S)∗(I − PA,S).

Moreover, the projection I −PA,S is the unique solution to this problem.
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Remark 5.4. If, instead of problem (2), we consider the problem of min-
imizing Q∗AQ among all the projections with kernel S (A ∈ L(H)+ is
fixed), then we obtain the following result [13, 4.2 and 4.3]): the min-
imum is attained if and only if (A,S) is compatible; in such case, the
minimum coincides with A(I −E), for any E ∈ P(A,S). It is called the
shorted operator of A to S; see [13] for details.

6. Interpolating and smoothing problems

Of course, orthogonal projections and Moore-Penrose inverses, and
their relatives, appear naturally when different least squares problems
are solved. This is the case here. In this section we study classical
interpolating and smoothing problems where the oblique projections and
compatibility hypothesis play an important role. These problems were
introduced and studied by Atteia [5], and they are known as “abstract
spline problems”. Throughout this section, we consider T ∈ L(H, E) and
V ∈ L(H,F) such that V is surjective; we write A := T ∗T , S := N(V )
and N = S ∩N(T ).

Interpolating problems.

Consider the following minimization problem

(6) argmin ‖Th‖, subject to V h = f0,

where f0 ∈ F . This is known as an interpolating spline problem. We
denote

spl(T,S, f0) := {h0 ∈ H : V h0 = f0, ‖Th0‖ = min
V h=f0

‖Th‖}.

Atteia [6] (see also the surveys by Champion, Lenard and Mills [10]
and [11]) proved that if R(T ) and TS are closed and N = {0} then there
exists a unique solution h0 of (6). In this case, Ah0 ∈ S⊥. The following
theorem, proved in [14], generalizes these results and characterizes the
set of solutions of (6). Observe that the Dixmier angle condition is
weaker than the closed range hypothesis usually used.

Proposition 6.1. The following conditions are equivalent:

(1) Problem (6) admits a solution for every f0 ∈ F ;

(2) c0(AS,S⊥) < 1.

If any (and then both) of these conditions hold, then

spl(T,S, f0) = {(I −Q)V †f0 : Q ∈ P(A,S)}.

In particular, if N = {0}, spl(T,S, f0) = {(I − PA,S)V †f0}.
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The same result holds replacing V † by any pseudoinverse V ′ of V . If
h0 ∈ spl(T,S, f0) then Ah0 ∈ S⊥. Moreover, h0 = (I −PA,S)V †f0 is the
unique vector in spl(T,S, f0) with minimal norm.

Consider Q ∈ P (A,S) and define V ′
Q = (I − Q)V †. It is easy to

see that V ′
Q verifies V V ′

QV = V , V ′
QV V

′
Q = V ′

Q, V ′
QV = I − Q and

V V ′
Q = IF . Observe that R(V ′

Q) = N(Q) and that V ′
Q is a generalized

pseudoinverse, corresponding to the decomposition H = N(Q)+̇R(Q)
(since V is surjective, no decomposition of H, associated to range of V ,
is needed). Define C : F → H by Cf0 := h0 = (I − PA,S)V †f0. Then
C = (I − PA,S)V † = V ′

PA,S
. It follows easily that

spl(T,S, f0) = V ′
PA,S

f0 + N = (I − PA,S)V †f0 + N .

An operator C∈L(H) is a (T,S)-spline operator if Ch ∈ spl(T,S, V h),
for every h ∈ H. This notion was defined by Izumino [28] who gave a
characterization of these operators, for a closed range operator T . Using
the formula for PA,S⊖N proved in Theorem 4.6, we are able to generalize
Izumino’s result.

Proposition 6.2. Suppose that c0(AS,S⊥) < 1 and let C ∈ L(H).
Then C is a (T,S)-spline operator if and only if C = I−(TPS)†T+W =
I − PA,S⊖N +W , where W ∈ L(H) and R(W ) ⊆ N .

Proof: The condition c0(AS,S⊥) < 1 guarantees the existence of solu-
tion of the interpolating problem for every f ∈ F and also the existence
of the projection PA,S . If C ∈ L(H) is a (T,S)-spline operator then
Ch ∈ spl(T,S, V h), for every h ∈ H. Therefore, by the formula above,
Ch = (I − PA,S)V †V h + w = (I − PA,S)h + w, with w ∈ N , because
(I−PA,S)V †V h = (I−PA,S)PS⊥h = (I−PA,S)h since (I−PA,S)PS = 0.
But PA,S = PA,S⊖N + PN , so that Ch = (I − PA,S⊖N )h + w′, with
w′ ∈ N . Applying Proposition 4.6, PA,S⊖N = (TPS)†T , hence, C =
I − (TPS)†T +W , where R(W ) ⊆ N . The converse is immediate.

Smoothing problems.

We use the same notations as before. Consider the following problem

(7) arg min(‖Th‖2 + ρ‖V h− f0‖
2), for h ∈ H,

where f0 ∈ F and ρ > 0. In the literature, this is known as a smoothing
problem. The choice of the parameter ρ is the subject of an extensive bib-
liography. This is closely related to Tikhonov regularization techniques
(see [23]).
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Define K : H → E × F , Kh = (Th, V h), for h ∈ H. Consider F with
the inner product 〈 , 〉ρ = ρ〈 , 〉 and E × F with the associated inner
product

〈(e, f), (e′, f ′)〉 = 〈e, e′〉 + ρ〈f, f ′〉, for e, e′ ∈ H, f, f ′ ∈ F .

Observe that problem (7) can be restated as

(8) arg min ‖Kh− (0, f0)‖, for h ∈ H,

where ‖(e, f)‖2 = 〈e, e〉2 + ρ〈f, f〉2, for all (e, f) ∈ E × F .

Lemma 6.3. If c0(AS ,S⊥) < 1, then

R(K) = TS × {0} ⊕ {(T (I − PA,S)V †f, f) : f ∈ F}.

Proof: By Theorem 3.2, the pair (A,S) is compatible. Let Q = PA,S
and decompose H = S+̇N(Q); then R(K) = KS + KN(Q). Observe
that KS = TS × {0} because V s = 0, for s ∈ S.

In order to compute KN(Q) observe that V N(Q) = V V ′
Q(F) = F

because V is surjective. Then KN(Q) = {(Th, V h) : h ∈ N(Q)} =
{(TV ′

Qf, f) : f ∈ F}. To see that the sum is orthogonal consider

(Ts, 0) ∈ TS×{0} and (TV ′
Qf, f), for f ∈ F ; then 〈(Ts, 0), (TV ′

Qf, f)〉 =

〈Ts, TV ′
Qf〉E = 〈T ∗Ts, V ′

Qf〉E = 〈As, V ′
Qf〉E = 0 because V ′

Qf ∈ N(Q) ⊆

(AS)⊥.

Theorem 6.4. If c0(AS,S⊥) < 1 then the set of solutions of problem (7)

is spl(T,S, f̃), where f̃ = (I + 1
ρV

′
Q
∗
AV ′

Q)−1f0 and Q = PA,S .

Proof: When f0 = 0, the set of solutions of (7) or (8) is N(K) = N(T )∩

N(V ). In this case f̃ = 0 so that spl(T,S, 0) = N(T ) ∩N(V ).
Suppose that f0 6= 0 and let Q = PA,S ; if h ∈ H, h = Qh + (I −

Q)h = s + V ′
Qf , with s = Qh ∈ S and f = V h ∈ F (observe that

V ′
Qf = V ′

QV h = (I −Q)h because V ′
QV = I −Q).

Then ‖Kh− (0, f0)‖2 = ‖(Ts, 0) + (TV ′
Qf, f − f0)‖2 = ‖(Ts, 0)‖2 +

‖(TV ′
Qf, f−f0)‖

2 = ‖Ts‖2+‖(TV ′
Qf, f−f0)‖

2 because the sets TS×{0}
and {(TV ′

Qf, f) : f ∈ F} are orthogonal, by Lemma 6.3. Therefore,

min
h∈H

‖Kh− (0, f0)‖
2 = min

s∈S
‖Ts‖2 + min

f∈F
‖(TV ′

Qf, f − f0)‖
2

= min
f∈F

‖(TV ′
Qf, f − f0)‖

2.

Observe that

min
f∈F

‖(TV ′
Qf, f−f0)‖=min

f∈F
‖(f, TV ′

Qf)−(f0, 0))‖F×E =d((f0, 0),Γ(TV ′
Q)),
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where Γ(C) denotes the graph of the operator C and d(P,M) denotes
the distance from the point P to the set M. Since TV ′

Q is bounded

Γ(TV ′
Q) is closed so that d((f0, 0),Γ(TV ′

Q)) = ‖(I − P )(f0, 0)‖, where

P is the orthogonal projection onto Γ(TV ′
Q).

In order to compute the projection P , recall that if C ∈ L(K), for
a Hilbert space K; then Γ(C)⊥ = U(Γ(C∗)), where U(x, y) = (−y, x).
In this case, observe that V ′

Q : (F , 〈 , 〉ρ) → (H, 〈 , 〉). Then, the adjoint

operator of V ′
Q is 1

ρV
′
Q
∗
, where V ′

Q
∗

is the adjoint of V ′
Q : (F , 〈 , 〉) →

(H, 〈 , 〉). Therefore,

Γ(TV ′
Q)

⊥
=

{(

−
1

ρ
V ′
Q
∗
T ∗e, e

)

: e ∈ E

}

.

Given (f0, 0), write (f0, 0) = P (f0, 0) + (I − P )(f0, 0) with

P (f0, 0) = (f̃ , TV ′
Qf̃) and (I − P )(f0, 0) =

(

−
1

ρ
V ′
Q
∗
T ∗ẽ, ẽ

)

for unique f̃ ∈ F and ẽ ∈ E . Then,

f0 = f̃ −
1

ρ
V ′
Q
∗
T ∗ẽ and 0 = TV ′

Qf̃ + ẽ.

Therefore f0 = f̃+ 1
ρV

′
Q
∗
T ∗TV ′

Qf̃ = (I+ 1
ρV

′
Q
∗
AV ′

Q)f̃ . If B = 1
ρV

′
Q
∗
AV ′

Q

then B ≥ 0 so that I + B is strictly positive. Therefore f0 = (I + B)f̃ ,

or f̃ = (I +B)−1f0. Hence P (f0, 0) = (f̃ , TV ′
Qf̃) and

min
h∈H

‖Kh− (0, f0)‖ = ‖(I − P )(f0, 0)‖.

We claim that h0 ∈ H verifies that ‖Kh0 − (0, f0)‖ = minh∈H ‖Kh−
(0, f0)‖ if and only if there exists E ∈ P(A,S) such that h0 = (I −
E)V †f̃ . To prove this assertion suppose that h0 = (I − E)V †f̃ , for

E ∈ P(A,S). Then Kh0 = (T (I − E)V †f̃ , V (I − E)V †f̃) = (T (I −
Q)V †f̃ , f̃) = (TV ′

Qf̃ , f̃) (because, by Proposition 4.3, E = Q+W , with

R(W ) ⊆ N(T ) ∩ S and S ⊆ N(W )), so that T (I − E) = T (I − Q)).
Therefore ‖Kh0 − (0, f0)‖ = ‖(I − P )(f0, 0)‖ = minh∈H ‖Kh− (0, f0)‖.

Conversely, suppose that h0 ∈ H verifies that ‖Kh0 − (0, f0)‖ =
minh∈H ‖Kh − (0, f0)‖. Then, as before, there exist unique s ∈ S and
f ′ ∈ F such that h0 = s+ V ′

Qf
′. Therefore,

‖Kh0 − (0, f0)‖
2 = ‖Ts‖2 + ‖(TV ′

Qf
′, f ′ − f0)‖

2.
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Hence,

‖Ts‖2+‖(TV ′
Qf

′, f ′−f0)‖
2 = min

h∈H
‖Kh− (0, f0)‖

2

= min
f∈F

‖(TV ′
Qf, f−f0)‖

2 =‖(TV ′
Qf̃ , f̃−f0)‖

2.

But since ‖(TV ′
Qf̃ , f̃ − f0)‖ ≤ ‖(TV ′

Qf, f − f0)‖, for all f ∈ F , in

particular for f ′, it follows that ‖Ts‖ = 0 and ‖(TV ′
Qf̃ , f̃ − f0)‖ =

‖(TV ′
Qf

′, f ′ − f0)‖ = ‖(I − P )(f0, 0)‖. From the last equality it fol-

lows that f ′ = f̃ . Then s ∈ N(T ) ∩ S and h0 = s + V ′
Qf̃ . De-

fine W ∈ L(S⊥, N(T ) ∩ S) such that WV †f̃ = −s, (observe that this

is possible because V †f̃ 6= 0). Then, E = Q + W ∈ P(A,S) and

(I − E)V †f̃ = V ′
Qf̃ −WV †f̃ = V ′

Qf̃ + s = h0.

Mixed problems.

These are problems which can be splitted in two parts, one on inter-
polating splines and the other on smoothing splines (see the book [8]).
From now on let H, E , F1 and F2 be Hilbert spaces. Consider T ∈
L(H, E), Vi ∈ L(H,Fi) such that Vi has closed range (i = 1, 2) and
ρ > 0. Denote A := T ∗T , Si := N(Vi) (i = 1, 2) and S := S1 ∩ S2;
we suppose that c0(AS,S⊥) < 1 and denote Q := PA,S . Consider the
following problem

(9) argmin(‖Th‖2 + ρ‖V2h− f2‖
2), subject to V1h = f1,

where f1 ∈ R(V1) and f2 ∈ F2.
As in the smoothing problem, define the operator K : H → E × F2,

Kh = (Th, V2h),

with ‖(e, f)‖2 = ‖e‖2 + ρ‖f‖2, for e ∈ E and f ∈ F2 (or equivalently we
consider (F2, 〈 , 〉ρ), where 〈 , 〉ρ = ρ〈 , 〉). Then, problem (9) is equiva-
lent to

(10) arg min ‖Kh− (0, f2)‖
2, subject to V1h = f1.

Theorem 6.5. If c0(AS,S⊥) < 1 and S1+S2 is closed then problem (9)
has a solution. Moreover, the set of solutions of (9) is given by

spl(T,S, (f1, PM2
f̃ + V2V

†
1 f1)),

where S = N(V ), with V = (V1, V2) ∈ L(H,F1 × F2) and f̃ is as in
Lemma 6.8.



Redundant Decompositions and Abstract Splines 481

Instead of presenting the complete proof, we describe the main steps
in a series of lemmas. In fact, these lemmas and the proof of Theorem 6.4
lead to a proof of Theorem 6.5. The common hypothesis for these lemmas
is that c0(AS,S⊥) < 1 and S1 + S2 is closed.

Lemma 6.6. (1) The subspaces M1 = (I−Q)S1 and M2 = V2S1 are
closed;

(2) (TV2|M1
)−1 : M2 → M1 is an isomorphism;

(3) KS1 = TS × {0} ⊕ {(TV2|M1
)−1r, r) : r ∈ M2}.

Lemma 6.7. If (e0, f0) = (0, f2) −K(I −Q)V1
†f1. Then

min
V1h=f1

‖Kh− (0, f2)‖ = d((f0, e0),Γ(T (V2|M1
)−1)).

Lemma 6.8. Consider P : F2 × E → F2 × E the orthogonal projection
onto Γ(T (V2|M1

)−1). Then

P (f0, e0) = (PM2
f̃ , T (V2PM1

)†f̃),

where B=I+1
ρ(V2PM1

)∗†A(V2PM1
)†, f̃=B−1(f2−(V2+

1
ρ (V2PM1

)∗†A)h1),

(f0, e0) is defined as in Lemma 6.7 and h1 = (I −Q)V1
†f1.
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