

AUTOMATIC DYNAMIC TUNING OF
PARALLEL/DISTRIBUTED

APPLICATIONS ON
COMPUTATIONAL GRIDS

Computer Architecture
and Operating Systems

Departament

Thesis submitted by Genaro Fernandes
de Carvalho Costa in fulfillment of the

requirements for the degree of Doctor per
la Universitat Autònoma de Barcelona.

Barcelona, May 29, 2009

AUTOMATIC DYNAMIC TUNING OF
PARALLEL/DISTRIBUTED

APPLICATIONS ON
COMPUTATIONAL GRIDS

Thesis submitted by Genaro Fernandes de
Carvalho Costa in fulfillment of the
requirements for the degree of Doctor per la
Universitat Autònoma de Barcelona. This work
has been developed in the Computer
Architecture and Operating Systems
department of the Universitat Autònoma de
Barcelona and was advised by Dra. Anna
Morajko and Dr. Tomàs Margalef Burrull.

Thesis Advisors

Anna Barbara Morajko Tomàs Margalef Burrull

 Barcelona, July 22, 2009

A Zequinha e Verbena

que me ensinaram que a vida
se construi com amor e dedicação.

E assim persigo sonhos,
amizades e realizaões.

A Tchukita,

essa tese é mais usa do que minha.
E pensar que tudo começou no

mar, nas estrelas e nos peixinhos.
Te amo.

Acknowledgements

First of all I would like to thank my parents Dr. Zequinha and Dona Bena for their love

and teaching. They are always present with me wherever I go. Their unquestioning

support and understanding motivates me and make me comfortable at trying new things.

I would like to thank my fiancée Larissa Couto for her love and trust and for being on

my side at all times. Without her nothing could be complete.

It is important to emphasize that this work could not have been done without many

people’s direct and indirect support, not just during this five-year period but throughout

my entire life.

Thanks go to Emilio Luque for the opportunity of doing this work, Tomás Margalef and

Ania Morajko, my advisors, for the support and key discussions. Without their

persistence and continuous inquiries this work could not have been completed. Thanks

also go to Josep Jorba and Eduardo Cesar for the frequent discussions that motivated

this work and the CAOS group for many technical discussions over many fields.

I would especially like to thank to Eduardo Argollo for his great friendship and support,

Angelo Duarte for the support and discussions about technology and Guna Alexander

for not to complaining about many difficult situations! Thanks to Dolores Isabel (Lola)

for her help in many ways and I would like to thank very much our CAOS group for

providing the friendship and the information exchange which made this work possible. I

also want to thank the PT for their infrastructure support. I give my thanks to Josemar

Souza for bringing about cooperation between UAB and UCSal.

i

Table of Contents

CHAPTER 1 INTRODUCTION ... 1

1.1 OVERVIEW ... 1

1.2 GOALS AND CONSTRAINTS .. 5

1.3 THESIS ORGANIZATION ... 7

CHAPTER 2 COMPUTATIONAL GRIDS ... 9

2.1 OVERVIEW ... 9

2.2 PARALLEL PROGRAMMING .. 9
2.2.1 Programming Models ... 10
2.2.2 Performance Characterization .. 12

2.3 GRID MIDDLEWARE ... 13
2.3.1 Overview ... 13
2.3.2 Globus Toolkit ... 14
2.3.3 Condor .. 20

2.4 HETEROGENEOUS SCENARIOS .. 22

2.5 MONITORING APPROACHES .. 23
2.5.1 Grid Monitoring Architecture – GMA .. 23
2.5.2 System Monitoring ... 26
2.5.3 Application Monitoring ... 30

CHAPTER 3 GRID PERFORMANCE MODELS ... 37

3.1 RELATED WORK .. 38

3.2 PERFORMANCE MODEL FOR DYNAMIC TUNING ... 39
3.2.1 Parameters Characterization .. 43
3.2.2 Metrics for Grain Decomposition .. 44
3.2.3 Grain Size and System Heterogeneity ... 47
3.2.4 Dynamic Tuning Requirements and Process ... 49

3.3 TUNING IN HETEROGENEOUS SCENARIOS ... 53

3.4 EFFECTS OF DATA ACCESS PATTERNS .. 57

3.5 SIMULATING MASTER-WORKER IN HETEROGENEOUS SCENARIOS ... 59

3.6 SUMMARY ... 67

CHAPTER 4 GMATE – GRID MONITORING ANALYSIS AND TUNING ENVIRONMENT 69

4.1 OVERVIEW ... 69
4.1.1 Problems ... 70
4.1.2 Clock Synchronization ... 73

ii

4.2 DYNAMIC TUNING ... 76
4.2.1 Active Harmony .. 76
4.2.2 Autopilot ... 77
4.2.3 MATE .. 79

4.3 GRID MONITORING ... 81
4.3.1 Design Architecture .. 83
4.3.2 Process Tracking ... 87
4.3.3 Monitoring Topology .. 96
4.3.4 Smart Event Gathering ... 101

4.4 GRID PERFORMANCE ANALYSIS .. 107
4.4.1 Tunlet Architecture ... 110

4.5 GRID TUNING ... 112
4.5.1 Smart Tuning Actions .. 115
4.5.2 Tuning in different layers .. 120

CHAPTER 5 EXPERIMENTAL VALIDATION ... 121

5.1 INTRODUCTION ... 121

5.2 MASTER-WORKER TUNING ON GRIDS ... 122
5.2.1 Framework Overview .. 123
5.2.2 System Description ... 123
5.2.3 Compute/Communication Dependency Analysis .. 124

5.3 APPLICATION CASE STUDIES .. 126
5.3.1 Synthetic Dynamic Master-Worker ... 126
5.3.2 Matrix-Multiplication Application .. 131
5.3.3 N-Body Application ... 132

5.4 ARCHITECTURE VALIDATION .. 133
5.4.1 Sensors Overhead Analysis ... 133

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ... 137

6.1 CONCLUSIONS .. 137
6.1.1 Process Location ... 139
6.1.2 Security Polices ... 140
6.1.3 Lower Communication Intrusion ... 140
6.1.4 Middleware Integration .. 141
6.1.5 Performance Models ... 142

6.2 OPEN LINES ... 143
6.2.1 Application Parallelism Support .. 145
6.2.2 Data Type and Domain Semantic Definition ... 147
6.2.3 Multi-Core Issues .. 148
6.2.4 Moving to Cloud Computing ... 148

BIBLIOGRAPHY ... 151

APPENDIX .. 161

A. CLUSTERSIM – A MULTI-CLUSTER SIMULATOR .. 161

iii

B. GMWAT – A HIERARCHICAL MASTER/WORKER APPLICATION TEMPLATE WITH SUPPORT FOR DYNAMIC GRAIN

SIZE SELECTION .. 166

iv

v

List of Figures

FIGURE 1 – ORGANIZATION AND VIRTUAL ORGANIZATIONS IN A GRID. ... 13
FIGURE 2 – GRID PROTOCOL ARCHITECTURE, FROM [2]. ... 15
FIGURE 3 – GENERAL CONDOR KERNEL ARCHITECTURE WITH THE SEQUENCE OF INFORMATION FLOW. 21
FIGURE 4 - GRID MONITORING ARCHITECTURE COMPONENTS, FROM [8]. ... 24
FIGURE 5 – COMPONENTS AND INTERACTION IN R-GMA, FROM [44]. .. 27
FIGURE 6 – NWS ARCHITECTURE OVERVIEW, FROM [46]. ... 29
FIGURE 7 – KOJAK TOOL ARCHITECTURE AS PRESENTED IN [49]. .. 32
FIGURE 8 – COMPONENT ARCHITECTURE OF THE GRID DYNAMIC INSTRUMENTATION SERVICE, FROM [53]. 33
FIGURE 9 – PARADYN OVERVIEW STRUCTURE [54]. .. 35
FIGURE 10 – EXAMPLE OF A MASTER/WORKER STARTUP WHERE THE TIME SPENT IN EACH ROUND CORRESPONDS TO THE TIME

EACH WORKER PROCESS ITS ASSIGNED GRAIN. AT TIME T1 ALL WORKERS ARE PERFORMING COMPUTATIONS AND AT

TIME T2 MASTER NETWORK INTERFACE IS SATURATED ON BOTH INPUT AND OUTPUT COMMUNICATION CAPACITY

CONSIDERING A FULL-DUPLEX NETWORK PORT [59]. ... 40
FIGURE 11 – COMPARISON BETWEEN ATLAS AND GNU GSL EXECUTIONS OF A MATRIX MULTIPLICATION PROBLEM USING

DIFFERENT GRAIN SIZES. .. 41
FIGURE 12 – IMPACT OF GRAIN SIZE IN TOTAL APPLICATION EXECUTION TIME AND USAGE EFFICIENCY OF A FIXED RESOURCE SET

SIZE OF 18 WORKERS. ... 42
FIGURE 13 – IMPACT OF THE NUMBER OF WORKERS IN TOTAL APPLICATION EXECUTION TIME AND USAGE EFFICIENCY OF THE

ASSIGNED RESOURCE SET. .. 42
FIGURE 14 – ABSTRACTION OF THE LOAD THROUGH OPERANDS, OPERATIONS AND RESULT VALUES. 43
FIGURE 15 – GRAPHICAL VIEW OF THE RELATION BETWEEN DATA PARTITION AND LOAD DIVISION SCENARIO WHERE GRAIN SIZE

HAS IMPACT ON COMPUTE/COMMUNICATION RATIO. .. 44
FIGURE 16 – GRAPHICAL VIEW OF THE BEST STARTUP AND FINALIZATION PHASES. .. 46
FIGURE 17 – IMPACT ANALYSIS OF HETEROGENEITY IN COMPUTE/COMMUNICATION TIME VALUES CONSIDERING NETWORK

AND PROCESSOR CAPACITY VARIATIONS. ... 48
FIGURE 18 – PRESENTS A GRAPHICAL VIEW OF WHERE AND WHEN MEASUREMENTS ARE GATHERED IN DIFFERENT PROCESSES.

 .. 52
FIGURE 19 – GRAPHICAL VIEWS OF DIFFERENT POSSIBLE ASSIGNATIONS FROM GRID RESOURCE BROKER/META-SCHEDULER IN

RESPONSE TO A REQUEST OF SEVEN COMPUTE NODES RESOURCE. .. 55
FIGURE 20 – PSEUDO ALGORITHM OF OPTIMUM NUMBER OF WORKERS AND GRAIN SIZE TUNING. IT USES RUNTIME METRICS

TO DECIDE IF AN APPLICATION NEEDS CHANGES IN THE COMPUTE/COMMUNICATION RATIO AND/OR CHANGE IN

NUMBER OF WORKERS IN USE. .. 56
FIGURE 21 – PLOT OF CACHE HIT RATIO BY NUMBER OF WORKERS CONSIDERING 256 WORK UNITS. 59
FIGURE 22 – THIS PRESENTS THE SIMULATOR OUTPUT OF A MASTER/WORKER EXECUTION WITH DYNAMIC GRAIN SIZE CHANGE.

BLUE BARS ARE SENDS AND GREEN ONES ARE RECEIVES. ORANGE BARS ARE TASK PROCESSING. THE NUMBERS INSIDE

THE BARS ARE THE TASK NUMBER. NOTE THAT TASK 4 WAS PROCESSED USING A DIFFERENT GRAIN SIZE AND WORKERS 2

AND 3 HAVE DIFFERENT PROCESSOR POWER THAN WORKERS 0 AND 1. ... 60
FIGURE 23 – OVERVIEW OF APPLICATION EXECUTION TIME REDUCTION BY USING DYNAMIC TUNING OF THE NUMBER OF

WORKERS AND GRAIN SIZE IN ALL HETEROGENEOUS SCENARIOS AND THE NUMBER OF WORKERS ASSIGNED TO

APPLICATION. .. 62
FIGURE 24 – OVERVIEW OF RESOURCE EFFICIENCY INCREMENT AS RESULT OF DYNAMIC TUNING OF THE NUMBER OF WORKERS

AND GRAIN SIZE IN ALL HETEROGENEOUS SCENARIOS AND THE NUMBER OF WORKERS ASSIGNED TO APPLICATION. 64
FIGURE 25 – GAINS IN RESOURCE USAGE EFFICIENCY IN DISTINCT GROUPS OF PROCESSOR HETEROGENEITY. WE CONSIDER

EFFICIENCY AS THE PERCENTAGE OF TOTAL COMPUTATION AVAILABLE PERFORMANCE USED DURING THE APPLICATION

EXECUTION TIME. ... 65
FIGURE 26 – GAINS IN TOTAL EXECUTION TIME CONSIDERING DIFFERENT GROUPS OF PROCESSOR HETEROGENEITY, AS SHOWN,

ASSIGNED TO THE APPLICATION. .. 65
FIGURE 27 – EFFICIENCY OF RESOURCE USAGE COMPARED AGAINST DIFFERENT HETEROGENEOUS PROCESSORS’ DISTRIBUTION

BETWEEN LAN AND WAN. ... 66
FIGURE 28 – TOTAL EXECUTION TIME COMPARED BY HETEROGENEOUS PROCESSORS DISTRIBUTION BETWEEN LAN AND WAN.

 .. 66

vi

FIGURE 29 – CLOCK SYNCHRONIZATION MESSAGE EXCHANGE. .. 73
FIGURE 30 – TIME DIFFERENCE BETWEEN TWO STRATUM 2 SITES TO A CLIENT MACHINE. ... 75
FIGURE 31 – AUTOPILOT CONCEPTUAL ARCHITECTURE [76] .. 77
FIGURE 32 – AUTOPILOT COMPONENTS AND THE ITERATION SEQUENCE AMONG THEM. [76] ... 78
FIGURE 33 – DYNAMIC MONITORING, ANALYSIS AND TUNING APPROACH ... 79
FIGURE 34 – MATE COMPONENT ARCHITECTURE. ... 80
FIGURE 35 – INTERNAL REPRESENTATION OF THE ANALYZER. ... 81
FIGURE 36 – COMMUNICATION CHANNELS AMONG GMATE COMPONENTS. .. 82
FIGURE 37 – OUR MONITORING SCHEME MODEL IN COMPARISON TO GMA ... 84
FIGURE 38 – CONNECTION BETWEEN AC WRAPPER INSTANCES AND AC INSTANCES. .. 89
FIGURE 39 – INTEGRATION OF THE AC TO GLOBUS TOOLKIT – INITIALIZATION PHASE. .. 90
FIGURE 40 - INTEGRATION OF THE AC TO GLOBUS TOOLKIT – RUNTIME PHASE. .. 90
FIGURE 41 – APPLICATION DETECTION USING GRID INTEGRATION. .. 92
FIGURE 42 – BINARY PACKAGING STRUCTURE. .. 95
FIGURE 43 – BINARY PACKAGING INFORMATION BLOCK .. 95
FIGURE 44 – EVENT STRUCTURE REPRESENTATION. .. 98
FIGURE 45 – EXECUTION SCENARIO WHICH REQUIRES DIFFERENT GATHERING TOPOLOGY. .. 99
FIGURE 46 – LOCAL EVENT GATHERING STRATEGY COMPARISON. .. 101
FIGURE 47 –DIAGRAM FOR SENSOR CONCEPTS. ... 103
FIGURE 48 – PSEUDO CODE OF A SENSOR INSTRUMENTATION PROCESS. .. 104
FIGURE 49 – INTERNALS OF THE DYNAMIC MONITORING LIBRARY (DMTLIB) AND ITS ITERATION WITH THE INSTALLPOINTS

INSTRUMENTED BY DYNINSTAPI AND THE OTHER GMATE COMPONENTS. .. 108
FIGURE 50 – INTERNALS OF THE APPLICATION CONTROLLER (AC) AND ITS ITERATION WITH DYNINSTAPI AND OTHER GMATE

COMPONENTS. .. 109
FIGURE 51 – INTERNALS OF THE ANALYZER AND ITS ITERATION WITH THE ACS AND OTHER GMATE COMPONENTS. 109
FIGURE 52 – TUNLET INTERFACE. ... 110
FIGURE 52 – SOFTWARE MODULARITY ABSTRACTION FROM [14]. ... 114
FIGURE 53 – COMMUNICATION/ADMINISTRATIVE DOMAINS ABSTRACTIONS. .. 114
FIGURE 54 – ACTUATORS CONCEPT. ... 116
FIGURE 55 – ACTUATORS INTERNAL STATE MACHINE. ... 117
FIGURE 56 – PSEUDO CODE OF AN INSTRUMENTATION PROCESS OF A CHANGE VALUE ACTUATOR. 118
FIGURE 57 – PSEUDO CODE OF AN INSTRUMENTATION PROCESS OF A FUNCTION CALL ACTUATOR. 119
FIGURE 58 – BENCHMARK OF COMMUNICATIONS AMONG DIFFERENT NODES IN THE CONSTRUCTED GRID TESTBED USING THE

INTEL PALLAS MPI BENCHMARK [86]. ... 123
FIGURE 59 – RATIO OF DIFFERENT GRAIN SIZE DIVISION USING GSL AND ATLAS BLAS IMPLEMENTATIONS. 125
FIGURE 61 – TWO ITERATION EXECUTION OF SYNTHETIC MASTER-WORKER WHERE THE MASTER PROCESSOR IS MAPPED ON

CLUSTER I. THE PHASES A, B AND C ARE STARTUP, STEADY AND FINALIZATION, RESPECTIVELY. 128
FIGURE 62 – TWO ITERATION OF SYNTHETIC MASTER-WORKER WHERE THE MASTER PROCESSOR IS MAPPED ON CLUSTER P.

THE PHASES A, B AND C ARE STARTUP, STEADY AND FINALIZATION, RESPECTIVELY. .. 128
FIGURE 62 – HISTOGRAM PRESENTING THE TASKS SEND TIMES FROM MASTER TO WORKERS. 129
FIGURE 63 – COMPARISON BETWEEN EXECUTION WITH AND WITHOUT TUNING GRAIN SIZE, CONSIDERING THE MASTER

MAPPED ON CLUSTER P. .. 130
FIGURE 64 – GRAPHICAL REPRESENTATION OF GRAIN SIZE CHANGE IN THE PARALLELIZATION VERSION OF MATRIX

MULTIPLICATION PROBLEM. EACH TASK CAN BE DECOMPOSED INTO SMALLER ONES WITH DATA REUSE AMONG TASKS.
 .. 131

FIGURE 65 – COMPARISON OF SAME PROBLEM SIZE AND PARALLEL MACHINE CONFIGURATION CONSIDERING DIFFERENT

MASTER-WORKER PROCESSES TO NODE MAPPING. ... 132
FIGURE 66 – GRAPHICAL REPRESENTATION CONSIDERING GRAIN SIZE IN N-BODY PROBLEM WITH UNIFORM TASK LOAD AND

INPUT/OUTPUT DATA SIZE. ... 133
FIGURE 67 – SOURCE CODE FROM THE INSTRUMENTED PROGRAM. ... 134
FIGURE 68 – MODEL FOR SIMPLE SENSOR PROFILE EXPERIMENT. .. 135
FIGURE 69 – SPECIFICATION OF THE TIMER SENSOR FROM SIMPLE SENSOR. ... 136
FIGURE 70 – OVERHEAD OF MONITORING USING SIMPLE SENSORS TO TIME A FUNCTION. .. 136
FIGURE 71 – QUEUE SYSTEM USED TO SIMULATE THE CLUSTERSIM CLUSTER SIMULATOR .. 161
FIGURE 72 – SCREENSHOT FOR CLUSTERSIM FRONT END THAT ENABLES THE CONFIGURATION OF MULTIPLE GRAIN SIZES AND

THE MULTIPLICITY OF COMPOSITION/DECOMPOSITION. .. 163

vii

FIGURE 73 – OUTPUT OF EVENTS FROM CLUSTERSIM PLOTTED USING GNUPLOT. THE NUMBERS IN THE BARS ARE THE TASK

NUMBERS. THE BLUE BARS ARE SENDS AND THE GREEN BARS ARE RECEIVES. THE ORANGE BARS ARE PROCESSING EVENTS

FROM WORKERS. ... 164
FIGURE 74 – PRESENTS THE AMOUNT OF WORKERS BUSY BY TIME IN APPLICATION EXECUTION. 165
FIGURE 75 – GUI FOR COMPLEX TOPOLOGY CONFIGURATION. ... 165
FIGURE 76 – SEQUENCE DIAGRAM OF THE API EXPOSED FOR COMMUNICATION BETWEEN THE CLASSES MPIHANDLER AND

COMPUTEPROCESSOR. IT ALSO PRESENTS RELEVANT TEMPLATE FUNCTION THAT CAN BE USED TO MEASURE TIME SPENT

IN THE COMMUNICATION PROCESS. ... 167
FIGURE 77 – CLASS DIAGRAM PRESENTING THE INTERNAL CONCEPTS OF THE PROCESS ROLES INSIDE THE FRAMEWORK. 168
FIGURE 78 – CLASS DIAGRAM PRESENTING THE INTERNAL CONCEPTS OF THE LOAD INSIDE THE FRAMEWORK. 169
FIGURE 79 – SEQUENCE DIAGRAM PRESENTING THE ITERATION AMONG MASTER AND WORKER PROCESSES INCLUDING THE

SEQUENCE OF USER FUNCTION CALLING. ... 170
FIGURE 80 – IT PRESENTS A MULTI-CLUSTER CONFIGURATION WITHIN A PARALLEL MACHINE WITH 8 PROCESSES. 171

viii

ix

List of Tables

TABLE 1 – PARAMETERS USED IN DYNAMIC TUNING WITHIN A GRID PARALLEL APPLICATION EXECUTION. 52
TABLE 2 – CLOCK SYNCHRONIZATION TIMESTAMP INFORMATION [75]. .. 74
TABLE 3 – API USED IN PROCESS TO GATHER DATA AND SUPPORT SENSOR COMMUNICATION. .. 85
TABLE 4 – SYSTEM CHARACTERISTICS FOR EACH CLUSTERS USED TO THE EXPERIMENTAL VALIDATION. 124

x

xi

Abstract

When moving to Grid Computing, parallel applications face several performance

problems. The system characteristics are different in each execution and sometimes

within the same execution. Remote resources share network links and in some cases, the

processes share machines using per-core allocation. In such scenarios we propose to use

automatic performance tuning techniques to help an application adapt itself: thus a

system changes in order to overcome performance bottlenecks.

This thesis analyzes such problems of parallel application execution in Computational

Grids, available tools for performance analysis and models to suit automatic dynamic

tuning in such environments. From such an analysis, we propose system architecture for

automatic dynamic tuning of parallel applications on computational Grids named

GMATE. Its architecture includes several contributions. In cases where a Grid meta-

scheduler decides application mapping, we propose two process tracking approaches

that enable GMATE to locate where a Grid middleware maps application processes.

One approach consists of the integration of GMATE components as Grid middleware.

The other involves the need to embed a GMATE component inside application binaries.

The first requires site administration privileges while the other increases the application

binary which slows down application startup.

To obey organizational policies, all communications use the same application security

certificates for authentication. The same communications are performed using Grid

middleware API. That approach enables the monitoring and tuning process to adapt

dynamically to organizational firewall restrictions and network usage policies.

To lower the communication needs of GMATE, we encapsulate part of the logic

required to collect metrics and change application parameters in components that run

inside the processing space. For metric collection, we create sensor components that

reduce the communication by event inside the process space. Different from traditional

instrumentation, sensors can postpone the metric communication and perform basic

operations such as summarizations, timers, averages or threshold based metric

generation. That reduces the communication requirements in cases where network

bandwidth is expensive. We also encapsulate the modifications used to tune the

xii

application in components called actuators. Actuators may be installed at some point in

the program flow execution and provide synchronization and low overhead control of

application variables and function executions. As sensors and actuators can

communicate with each other, we can perform simple tuning within process executions

without the need for communication.

As the dynamic tuning is performance model-centric, we need a performance model that

can be used on heterogeneous processors and network such Grid Systems. We propose a

heuristic performance model to find the maximum number of workers and best grain

size of a Master-Worker execution in such systems. We assume that some classes of

application may be built capable of changing grain size at runtime and that change

action can modify an application’s compute-communication ratio. When users request a

set of resources for a parallel execution, they may receive a multi-cluster configuration.

The heuristic model allows for shrinking the set of resources without decreasing the

application execution time. The idea is to reach the maximum number of workers the

master can use, giving high priority to the faster ones.

When we change the number of workers in a Grid environment, we should perform

changes in application parameters and in the system configuration. That is an example

of multi-layer tuning. To grow or shrink the number of processors, we need to interact

with Grid middleware in synchronization with application process reconfiguration. To

accomplish that, we have actuators that interact with the Grid services.

We presented the results of the dynamic tuning of grain size and the number of workers

in Master-Worker applications on Grid systems, lowering the total application execution

time while raising system efficiency. We used the implementation of Matrix-

Multiplication, N-Body and synthetic workloads to try out different compute-

communication ratio changes in different grain size selections.

Chapter 1: Introduction

1

Chapter 1
Introduction
In this chapter, we setup the environment, its characteristics and the problems users find

when facing scenarios of tuning parallel/distributed applications on computational

Grids. We identify these problems and present the contributions this thesis states to

accomplish concerning the user’s requirements for application performance dynamic

tuning in such systems. In sequence, we discuss our goals and the assumed restrictions

of this work, as well as its organization and contributions.

1.1 Overview

Many big problems are presented for resolution by computers in the current climate. As

technology progresses, computers become more popular and their users require more

processing resources to do their work. Research fields such as physics, chemistry,

medicine and weather prediction are dealing with new computational challenges [1, 2].

These include high-level detailed simulations, the analysis of huge amounts of data and

high processing power requirements. Computer capacity evolution grows every year as

the cost per MFLOP gets cheaper [3].

An important challenge present for the HPC user community is the multiplicity of new

computer systems configurations. To achieve high performance, users combine

computers in many ways building new systems such as parallel machines, Beowulf

Clusters, MPP’s, NoW’s and HNoW’s [3]. The key idea is to break down the problem

Chapter 1: Introduction

2

into small pieces and distribute the pieces among different machines to work in parallel.

By using that strategy, called parallel programming, the time required to solve the

problem should be reduced. The computational time reduction achieved by parallel

programming depends on a large number of properties such as system configuration,

required communication between the nodes, load balance management overheads and

algorithm intrinsic parallelism (ratio of serial and parallel sections) [4].

The Internet age made cooperation on many levels possible by the ease of passing on

information through compute and storage resource sharing. Internet-based technologies

like the web turns to be the standard of human to machine and machine to machine

communication interfaces [5, 6]. With the popularity of the resources available online,

new semantics of resource sharing appeared. Computational resources from different

organizations started to take part in wide distributed systems currently known as

Computational Grids [2, 7]. A Computational Grid is an infrastructure that allows

resource sharing among different organizations. The scientific community has been

expending much effort to create standard technologies for Grid construction and

recommendations to get interoperability among system stakeholders [8, 9].

Currently, the most commonly adopted middleware used in Grid construction for

managing and resource sharing is the Globus Toolkit [7, 10]. It contains a set of services

that allow computational resources, like clusters or parallel machines, within different

organizations to be operated in agreement with each organization’s usage policy. In

communications, for example, the toolkit uses Internet technologies such as web

services, TCP as communication abstraction and private key infrastructure and TSL to

cover security requirements [2].

Many parallel programs design semantics were created to address problems of

application execution on wide systems such as Computational Grids. System

heterogeneity is a problem, since it can easily lead to poor performance execution due to

load imbalance [11]. In Grid executions, the network heterogeneity makes it more

difficult for the application developers to achieve an efficient resource use. Performance

depends on many factors, such as the level of parallelism of the problem and the

computation communication ratio. On Grid systems, application execution over more

than one organization should deal with inter-organization communications that

Chapter 1: Introduction

3

generally represent high latency and low throughput [2, 7]. The developer does not have

control over the compute nodes where the application executes its processes.

Application performance improvement is not an easy task. It relies on a deep

understanding of applications and systems. Application domain knowledge is required,

together with its parallelization and system architecture, to minimize communications

by using mapping and clustering techniques. A typical application performance

improvement methodology could be: execution, monitoring, analysis and code

modifications [12]. The user uses the information grabbed from execution through

monitoring and decides, based on analysis techniques, which changes should be made to

achieve performance improvement. The analysis can be empirical, by means of attempts

to reduce total execution time through improvements on heavily used functions in an

execution path or by means of performance models which intend to describe the

application behavior [13].

Performance is a major issue in parallel programming. When a programmer develops a

parallel application she expects to reach some performance indexes. Therefore, in the

last year, several efforts has sought to provide automatic performance analysis and

tuning tools that guide and help programmers and users of parallel applications to reach

those expected indexes. These were presented as automatic off-line performance

analysis, automatic on-line performance analysis and automatic dynamic performance

tuning. [14-17]

In the last ten years, grid systems have become a promising approach and have spread

widely, so that many groups are developing parallel applications to run on these

systems. However these systems are dynamic by nature and are composed by

heterogeneous and shared resources. Therefore, the performance of parallel applications

on these environments may vary dramatically depending on the particular conditions of

each execution. So, automatic performance tuning tools are critically necessary to

accomplish the performance expectations.

Automatic dynamic performance tuning has been used on parallel/distributed

environments and now our goal is to extend the applicability of such approaches to grid

environments. This application involves several aspects as there are several technical

issues that must be considered:

Chapter 1: Introduction

4

• The main point is that when a parallel application is launched on a grid

environment, the user does not have direct control of the environment and there are

several decisions that are taken by different software layers, such as meta-

schedulers. So, it is necessary to enable the tuning tool to have direct access to the

application processes wherever they are launched [18].

• Grid systems involve different organizations with several administration domains.

Therefore, the tuning tool must be able to fulfill the policies of the different

organizations so that it can access the processes running on any participant

organization [19].

• Since grid environments are geographically distributed environments,

communication is a critical issue that can significantly affect application

performance. Moreover, the tuning tool requires the collection information from

different sites. This implies that information collection can be slow and can compete

with and disturb application communication [7]. Therefore, it is necessary to

develop collecting policies and strategies that minimize the communication

requirements of the tool.

• In some cases it can be necessary to adjust the grid environment (change the number

of resources assigned to a parallel application or change the type of resources).

This implies that the tuning tool must be able to interact with the different

middleware layers of the grid environment.

There are aspects that need to be considered related to performance tool itself and

application development paradigm and architecture:

• It is necessary to analyze performance behavior to develop the performance models

that can be used to steer the application. This implies determining the parameters of

the application that affect its performance. So, it is necessary to know which

measurements must be taken to evaluate the actual behavior of the application. That

behavior should be used to develop some performance models that take these

measurements and provide the optimal value of the application parameters. These

Chapter 1: Introduction

5

suggestions should carry out the necessary adaptation in the execution application

processes to achieve better performance indexes.

• It is necessary to define the structure of the tuning tool. As has been mentioned,

certain measurements must be taken from the application processes and this

information must be used to evaluate a performance model. Therefore, the

distribution of the collector processes, the analyzer processes and the required

components involved in tuning processes must be distributed with a balance

between local and global architecture.

Moreover, we discuss the goals achieved and solutions proposed to overcome these

aspects in order to use automatic dynamic tuning techniques in parallel application

executions on computational Grids.

1.2 Goals and Constraints

The thesis proposes a Grid Monitoring Analysis and Tuning Environment (GMATE)

capable of the dynamic tuning of parallel/distributed applications within a Grid System.

The main contributions of this work are the analysis of performance issues inside

Computational Grids, the evaluation of application parameters based on performance

models and the design, development and implementation of an architecture for

distributed dynamic tuning enabled to Grids environments. The architecture is open so

that knowledge about different performance bottlenecks can be integrated. An example

to show the viability and applicability of the approach is that a performance model for

tuning grain size and the number of workers in hierarchical Master-Worker applications

has been developed.

The solutions adopted for the requirements described in the last section are the

following:

• In cases where a Grid meta-scheduler decides application mapping, we proposed

two process-tracking approaches that enable GMATE to locate where Grid

middleware maps application processes. One approach consists of the integration of

GMATE components as Grid middleware. The other consists of embedding

GMATE components inside application binaries. The first requires site

Chapter 1: Introduction

6

administration privileges while the other increases the application binary which

slows down application startup.

• To obey organizational policies, all communications use the same application

security certificates for authentication. The same communication is performed

using Grid middleware API. That approach enables the monitoring and tuning

process to adapt dynamically to organizational firewall restrictions and network

usage policies.

• To lower the communication needs of GMATE, we encapsulate part of the logic

required to collect metrics and change application parameters in components that

run inside process space. For metric collection we create sensor components that

reduce the communication by event inside the process space. As they are different

from traditional instrumentation, sensors can postpone metric communication and

perform basic operations such as summarizations, timers, averages or threshold

based metric generation. That reduces the communication requirements in cases

where network bandwidth is expensive. We also encapsulate the modifications used

to tune the application in components called actuators. Actuators may be installed at

some point in the program flow execution and provide synchronization and low

overhead controls over application variables and function executions. As sensors

and actuators can communicate with each other, we are able to perform simple

tuning within process execution without the need for communication with an

external analysis process.

• As dynamic tuning is based on performance models, we need a performance model

that could be used on heterogeneous processors and networks such Grid Systems.

We propose a heuristic performance model to find the maximum number of workers

and best grain size of a Master-Worker execution in such systems. We assume that

the compute to communication ratio, or grain size, is decided at the point of

algorithm parallelization and application development. In many cases that parameter

is a factor used in application tuning. Instead of having a fixed grain size, we

advocate that developers prepare the application/algorithm to work with different

grain sizes. These applications may be capable of changing grain size at runtime

which should be used as an action to modify application compute-communication

Chapter 1: Introduction

7

ratios. These actions can be used to adapt applications to different heterogeneous

configurations. For example, when users request a set of resources for a parallel

execution, they may receive a multi-cluster configuration. The heuristic model

allows for shrinking the set of resources without decreasing application execution

time. The idea is to reach the maximum number of workers, giving high priority to

the faster ones.

• When we change the number of workers in Grid environment, we should perform

changes in application parameters and in system configuration. That is an example

of multi-layer tuning. To grow or shrink the number of processors, we need to

interact with Grid middleware in synchronization with application processes

reconfiguration. To accomplish that we have actuators that interact with Grid

services.

• In the case of a hierarchical Master-Worker application, the tuning of the number of

workers and grain size of a sub-Master may be done by a process placed in the same

network domain. That decreases the tuning response time because it reduces

message latency for metrics collection and tuning action communications. We

present a comparison between three different approaches to analysis component

distribution: centralized, hierarchical and fully distributed. In hierarchical analysis,

local analysis reduces communication with global analysis components. In a fully

distributed approach, each analysis component maintains its local data and a shared

consensus of global analysis state required to tune the application.

We presented the results of dynamic tuning of grain size and the number of workers

using our performance model in Master-Worker applications on Grid systems, lowering

total application execution time while raising system efficiency. We used Matrix-

Multiplication, N-Body and synthetic workloads to try out different compute-

communication ratio changes in different grain size selections.

1.3 Thesis Organization

In order to understand the problem of dynamic tuning in Grid environments first we

have to describe Grid system characteristics. Chapter two presents assumptions about

Grid environments, their requirements and also discusses some applications issues. It

Chapter 1: Introduction

8

analyzes some active tools used in system and application monitoring that can be used

for performance analysis. In chapter three, we present our contribution with a

performance model for Master-Worker dynamic tuning in computational Grids.

The proposed architecture for distributed Grid monitoring, analysis and tuning

environment (GMATE) is described in detail in chapter four. This chapter presents, for

each issue of automatic dynamic tuning, proposed ideas, achieved solutions, constraints

and drawbacks. The model proposed in chapter three and the architecture proposed in

chapter four are the main contributions of this thesis.

The experimental validation of our contribution is evaluated in simulations and a real

enterprise Grid Testbed in chapter five. In chapter six, conclusions and open lines of

investigation that this work acknowledges are commented on.

Chapter 2: Computational Grids

9

Chapter 2
Computational Grids

2.1 Overview

The main idea behind grid environments is “coordinated resource sharing and problem

solving in dynamic, multi-institutional virtual organizations” [2]. The resources may be

distributed over the world interconnected by WAN infrastructures such as Internet. Grid

environments have interconnected resources distributed under different administrative

domains. These resources could be either physical or logical. Physical resource

examples range from simple processing nodes to a wide parallel machine. Logical

resources can be application services or middleware services. The main problem

addressed by Grid computing is to facilitate cooperation between sets of users from

different organizations. System architecture must be capable of the dynamic

coordination of resource sharing among different institutions [1, 2, 7]. Currently, this

requirement is covered by a set of software layers which abstract system heterogeneity

and interoperability.

2.2 Parallel Programming

Computational Grids expose different software layers. These layers allow trusted

resource interoperability among different administration domains. We may compare

these software layers to a general operating system concept. In a Grid we have a meta-

scheduler to determine application resource assignation, compute elements as compute

resources and storage elements as grid file systems. From an application point of view,

Chapter 2: Computational Grids

10

these resources may be used in different roles inside an application parallelization used

strategy. Moreover, that strategy relies on specific load breakdown and semantic. These

semantics allows us to classify applications that run in Computational Grids into the

following groups:

• Parametric Applications;

• Scientific Workflows;

• Distributed Applications.

A parametric applications class is the easiest form of parallelization semantics.

Generally, the application consists of the execution of a program using different

parameters or using different input data. An application finishes its execution when all

component tasks finish their execution. In this class, the maximum speedup is

determined by the number of executions and the minimum execution time is determined

by the largest single component execution.

Scientific Workflows consist of different program execution denominated jobs where

some jobs have dependences of data generated from other jobs forming a direct

asynchronous graph (DAG). The communication between jobs is achieved by means of

data files. The speedup of this class of application is determined by the level of

parallelism found on the execution graph. The minimum execution time is derived by

the sum of execution of jobs in DAG critical path.

Distributed applications consist of the collaboration of different processes during

execution. That collaboration is achieved by means of inter-process communication.

Current examples of communication mechanisms are GridRPC, Web Services and

Message Passing.

2.2.1 Programming Models

The process to build a distributed application determines its level of parallelism and

consequently its speedup. Generally, application parallelization is performed by

dividing the application load to be executed among processors. Foster in [20] presents a

methodology of application parallelization called ‘Task/Channel’ in which the process

consists of:

Chapter 2: Computational Grids

11

- Division: the application load is divided into small pieces of code execution or

tasks that communicate with each other forming a graph of execution.

- Clustering: due to the fact that communication may slow down dependent tasks,

tasks with high data decency for other tasks (which would generate higher

communication among these tasks) may be grouped.

- Mapping: the final step is to assign tasks to physical processors for execution.

There are many aspects that influence distributed applications executed in a

Computational Grid. Lessons learned from parallel computing suggest that

heterogeneity in compute and communication resources makes harder the task of

performance improvement [21]. The challenge of higher application speedup depends

on the efficient use of the maximum available compute resources achieving a load

balance. There are many performance models that explain the behavior of parallel

applications in homogeneous systems. These models generally analyze the influence of

communications paradigms in application parallelizations. Examples of communication

paradigms are: Master/Worker, Divide and Conquer, Pipeline and SPMD.

Master-Worker

In the Master/Worker paradigm (MW), the application load is divided into small parts,

called tasks, and the processor with the master role has the responsibility of managing

the tasks distribution to be processed by processors with worker roles. The load may be

divided into iterations. The master processor divides the load among workers for every

iteration. Iterations may be divided in three stages: startup, steady and finalization. The

startup stage is the period delimited by the iteration start and when all workers start

processing or a worker finishes processing: this is what comes first. In [22] the startup

phase is also called installment. The steady phase consists of the period between the end

of startup and the finalization phase. The finalization phase occurs when the master has

no more work units to deliver and a worker finishes its processing queue. The author in

[23] provides an exhaustive analysis of the different possible cases of startup and

finalization scenarios.

Divide and Conquer

The Divide and Conquer, Pipeline and SPMD are paradigms with a high dependency on

synchronization. That characteristic makes difficult its application in hetereogeneous

Chapter 2: Computational Grids

12

processors and even more in heterogeneous networks in which we easily found load

imbalance. To deal with this system heterogeneity easily found in computational Grids,

we need to divide dynamically and schedule work grains execution to achieve load

balance. In that direction, the dynamic Master/Worker paradigm results as a basic model

suited for heterogeneity and can be seen as the building block for more complex

models.

Pipeline

The pipeline programming model consists of an application functional decomposition in

different stages. The load processing should be divided among processors that are

responsible for each stage. The parallelism of pipeline programming is achieved in

functional decomposition where different parts of the pipeline represent different

functions applied over a stream of data.

2.2.2 Performance Characterization

An index used to measure application scalability is the speedup. Given a number of

processors N, the maximum speedup an application can achieve is a function from its

parallelism level. The parallel application is not complete parallel. The processors

assigned to compute the load need to receive the data, at least, and send or write the

results. The literature has some limit expressions of speedup representations. The most

famous is the Amdal’s Law, which rates the parts of the program that can be executed in

parallel to the serial program part. We may say that the processes of data distribution

and result collection can be characterized as serial parts. Equation (1) presents Amdal’s

Law where S(N) represents the maximum speedup of applications which have the P

fraction of the load that can be performed in parallel.

 (1)

Performance bottlenecks may be found in two basic resources: communications or

computations. So, we may divide applications as communication- or computation-

bound. In those which are communication-bound, master to workers communication

Chapter 2: Computational Grids

13

channels (network links) are busy most of the time, while workers processors wait for

computation. In those which are computation-bound, network links have idle periods

while processors are busy most of the time.

In both startup and finalization phases, we have idle workers. In [24] we model the

prediction of these phases in respect to grain size and homogeneous networks. In

section 4.1.1, we analyze the impact of grain size in these phases and provide the

knowledge necessary for expansion to scenarios with network and processor

heterogeneity.

2.3 Grid Middleware

Figure 1 – Organization and virtual organizations in a Grid.

2.3.1 Overview

Part of the services needed to create a Grid are provided by middleware software. The

multi-institution characteristic of the Grid requires that the cooperation should be driven

by strong security constraints. The resource usage should have specific use policies and

have to follow organizations policies. So, the available infrastructure can be used by

different groups distributed over many organizations. The set of users in different

organizations who have the same goals and objectives is called a Virtual Organization

(VO). Under the VO concept, users can be identified and group policies can be applied

[1, 2, 7]. Figure 1 presents an administrative view of a possible Grid scenario. Under the

Chapter 2: Computational Grids

14

presented scenario, three organizations cooperate on two distinct projects. The work

group cooperation in each project constitutes different virtual organizations “Genome

Sequence” and “Protein Research”. Those VOs may or not share physical resources

from component organizations.

Organization resource sharing is conditional: each resource owner shares the resources

based on their own constraints. In other words, the resource sharing mechanisms are

built on top of local policies and organization policies. The services needed to provide

such services can be analyzed into layers. The common community-adopted philosophy

model used to analyze the required services needed to build a Grid is the Grid protocol

architecture model proposed by Foster in [2]. Based on this model, we can differentiate

the services used the Grid system architecture.

2.3.2 Globus Toolkit

The architecture model adopted by most existing Grid implementations today is

presented in Figure 2. That architecture allows categorization of service requirements

and identification of existing technologies that can be used to fulfill requirements such

resource sharing and location, security policies, identification and authorization.

The software layers to provide resource sharing and use can be divided into: application,

collective, resource, connectivity and fabric as presented in Figure 2.The Fabric layer

represents the available infrastructure. In order to have security in fabric services use,

we need a software layer to manage inter-organization security operations. This is done

by the Connectivity Layer. By using the services provided by the Connectivity Layer,

we need services for resource abstraction and management, and this is done by the

Resource Layer. The Collective layers manage resource groups providing Grid-wide

services (that need to interact with more than one resource such as brokering and a

meta-scheduler).

Each layer has specific requirements to cover and there are many working software

solutions available. The requirements and implementations using the Globus Toolkit

services can be analyzed through these layers [2].

Chapter 2: Computational Grids

15

Figure 2 – Grid Protocol Architecture, from [2].

Fabric Layer: provides the interfaces for local control. The idea is to expose the

infrastructure as resources. Examples of resources are storage systems, catalogs,

network resource, computational resources and sensors. A richer Fabric interface

enables more sophisticated sharing operations and makes possible the creation of high-

level aggregation services such as co-scheduling and Grid-wide transaction services.

Most monitoring metrics are obtained in the Fabric Layer. Grid monitoring tools should

work with the provided services to gather performance data. In some cases, the

monitoring services should be exposed as Fabric Layer services to be used to construct

Grid-wide monitoring services.

Connectivity Layer: provides the core communications and authentication protocols

required for fabric services utilization. The authentication should provide services for

single sign on (user identification and authorization), delegation (ability to delegate

user’s rights to his/her submitted program), and integration with the existing local

security solutions, and also have user-based trust relationship (VPN, signed certificates,

security tokens based on PKI).

The authentication, communication protection, and authorization mechanisms in current

use employ the public-key Grid Security Infrastructure (GSI) protocols. GSI extends the

Transport Layer Protocol (TLS) to address the presented services requirements and uses

X.509-format identity certificates to handle identification and authorization based on

user certificates [2, 7].

 Application

Collective

Resource

Connectivity

Fabric
G

rid
 P

ro
to

co
l A

rc
hi

te
ct

ur
e

Chapter 2: Computational Grids

16

In order to fulfill these Grid security requirements, a Grid-wide monitoring tool should

use the connectivity infrastructure for security and transport. In monitoring and tuning

there are transmissions of events related to application behavior. These events could, for

example, be used to reverse engineering applications, so they should be protected by

security mechanisms such the use of cryptographics in communications.

Resource Layer: uses the Connectivity Layer services for the secure negotiation,

initiation monitoring, control, accounting and payment of sharing service operations on

individual resources [1]. The main classes of Resource Layer protocols are:

• Information Protocols: used for resource registration and localization, and resource

information shared over the wider system. Examples are resource state (current

status), configuration properties and running metrics. The information services are

provided by the Grid Information Service, also known as Monitoring and Discovery

Service (MDS), detailed in chapter 4, and are composed of:

o Information Providers (IP);

o Grid Index Information Services (GIIS) or Index Service;

o Aggregator Services;

o Trigger Services.

The composition of the Grid is dynamic. Organizations can insert or remove

resources without any control. To support that, the system should have protocols to

discover and record the information about resource availability and its capabilities.

Two protocols are provided to services access: The Grid Resource Information

Protocol (GRIP) which is used to define a standard resource information protocol

and the associated information model, and the Grid Resource Registration Protocol

(GRRP), used to register resources in GIIS [9].

• Management Protocols: used to negotiate resource allocation based, for example, on

a Service Level Agreement (SLA) or requirements properties. It also provides the

services for resource state monitoring whilst in use and control operations such as

termination (consensus about the end of resource utilization by a client). The Grid

Resource Access and Management (GRAM) protocol is used for allocation of

computational resources and the monitoring of resource usage [9].

Chapter 2: Computational Grids

17

From the point of view of a Grid monitoring tool, the resource layer provides

essential services for resource localization and information. It also provides services

for composing Grid-wide monitoring, using locally-based monitoring services

registered as resources within the Resource Layer.

Collective Layer: handles collective resource operations and provides Grid-wide

services. Those services include directory services, co-allocation, scheduling and

brokering services, monitoring and diagnostics services, data replication services, Grid-

enabled programming systems, workload management systems and collaboration

frameworks, software discovery services, community authorization servers, community

accounting and payment services, and collaboration services.

Many services are custom Grid solutions and others are adaptations of products to fulfill

Collective Layer requirements. We can cite Condor-G, an adaptation of the Condor

scheduling system to schedule jobs using individual resources services. Another

example is the GridWay co-scheduler. The Grid-wide monitoring services are exposed

in the Collective Layer which allows users to interact with a subset of active resources.

For example, a request for application execution may require a number of Compute

Elements to fulfill its requirements. Each Compute element may be a complex resource

composed by a cluster of Compute Hosts.

A common way of using the computational power of a Grid is to spawn the processes of

a massive parallel application within the available processors inside a resource.

Following the Grid Protocol layers presented in Figure 2, a user can interact with a Grid

Web Portal, a collaboration framework of Collective layer, and submit his batch

application. That application should enter a meta-scheduler queue such as Condor-G

[18, 25] or a Community Scheduler Framework (CSF), to services of the Collective

Layer. The meta-scheduler negotiates to Resource Layer services in order to do resource

reservation using authenticated and secure communication services provided by a

Connectivity Layer. Following the Grid Protocol Stack, that request is translated into

the Fabric Layer to a local cluster scheduler, such as Condor, PBS, LSF or SGE, where

the application job is executed [18, 25, 26]. Depending on the services used, users do

not know where their applications jobs runs. To monitor the internal structures of job

processes, a monitoring tool should be able to track process submission.

Chapter 2: Computational Grids

18

Not all the machines available for job execution in the Grid are exposed as single

processor resources. The resource capable of job execution is called a Compute Element

(CE). A CE may be composed of a single machine or a more complex parallel

architecture such as clusters, vector processing machines or even mainframes. The

machine component of a CE that does not have the Grid services installed is called a

Compute Node (CN).

Large Applications

Grid systems are built to allow resource sharing between users from the same VO. The

system composed by the available resources allows users to exploit more computation

power. The literature presents some example cases of blood system simulations [27, 28]

and weather forecasting [7]. Applications developed to have the maximum benefits of

Grid systems should be concerned about the system network topology. That requires the

application to be modified to have a benefits mutable network topology. Those

modifications are more complex that a simply application parallelization. The Grid is a

distributed system architecture generally composed by different levels of interconnected

networks between its resources. Some resources are shared among applications and

users. Data communication between different resources may have different throughput

and latencies and typical problems of distributed systems such as load balance and

synchronization bottlenecks are hard to locate and harder to solve [29]. A Grid

monitoring tool can provide the required information in order to help developers solve

those problems.

Parallel Applications

In order to reduce application execution time, and to use the available resources, the

application can divide up the work to different machines and perform it in parallel. To

process the divided work, the application processes generally need to communicate in

order to complete its execution. The communication semantics between processes

define two main programming paradigms: Distributed Shared Memory (DSM) [30] and

Message Passing (MP) [4].

MPICH-G2: Message Passing for the Grid

Different to DSM, where the developer should not be concerned how and when the

communication is done, Messaging Passing (MP) consists of explicit communication

Chapter 2: Computational Grids

19

primitives used in distributed process communications. If a process needs to send some

data to other processes, this calls a send function and the other process in some

execution point should call a receive function. There are some variants such as non-

blocking, asynchronous and synchronous, and collective operations. With synchronous

operations, the send operation only continues when the corresponding process calls the

receive function; and in asynchronous ones, the operations do not block and there are

some functions to test the operation completion. In collective operations, the MP library

handles the data distribution between participants of the communication.

MP has some advantages over DSM due the fact that the developer has a great deal of

control over the communications. However, the more complex the parallelization of the

application, the more problems should occur, such as lost of efficiency due to load

imbalance. Some process may get blocked by a receive call waiting for a send from

other process which is doing something else. That problem, for example, is called late

sender problem [31].

The Message Passing Interface (MPI) is a standard API for message passing. There are

many implementations of the Grid enabled MPI as MPICH-G2, PACX-MPI, MagPIe

and Stampi. [32] presents a comparative performance study of the performance of those

MPI implementations on multicluster1 environments.

With the popularity of MP-based applications, more users have concerns about

performance problems in their applications. That pushes tools developers to create

monitoring tools in order to help users to measure what application processes are

waiting while blocked by MP calls.

GridMPI: Message Passing with Multi-Cluster Support

The GridMPI is an implementation of the MPI standard 2.0 which allows multi-cluster

executions. Users may use different MPI implementations for intra-cluster

communications and the inter-communications are performed using sockets.

1 We assume the term multicluster for a system composed for more than one cluster, interconnected by a

LAN, and assume that the term Grid represents more requirements such different administrative domains

and interoperability.

Chapter 2: Computational Grids

20

The advantage of GridMPI over MPICH-G2 is the capability of multi-cluster executions

where the clusters have private IP addresses. MPICH-G2 requires that all machines that

participate in communications to have a valid IP address. That is not a common setup

issue for NoW’s or Beowulf’s, which generally use private networks inside the parallel

machine. A multi-cluster execution follows the Interoperability MPI (IMPI) standard

which defines a protocol for message and information exchange among processes

executing in different clusters. This execution can use different MPI implementations

and transport levels at intra-cluster message exchanges.

The GridMPI implementation provides two components to allow multi-cluster

executions: an IMPI Server and an IMPI Relay. The IMPI Server is responsible for

recording and informing the participants of a parallel execution of the information

required to establish point-to-point communications. If all machines have public IP

addresses, the IMP Server provides the information about the global process table and

listening ports.

In case of clusters with private IP addresses, the GridMPI provides a component called

IMPI Relay. That has the function to serve as a proxy from local machines to the

‘outside’ world. At startup, the IMPI Relay constructs two tables, a private table and a

public table. The private table has information on how local machines are identified and

the public table has all the participants that have public addresses.

2.3.3 Condor

The Condor is an environment for managing the execution of user jobs. Its philosophy

consists of matching jobs to be executed to machines with capability to run job. It

contributes with the Grid concept using a bottom-up strategy where Condor systems can

delegate jobs to outer Condor systems, Globus based middleware and cluster batch

schedulers such as PBS, SGE or LSF. The idea is that users use the same procedure to

execute local jobs and to execute jobs into remote locations.

Different from conventional cluster schedulers’ scheduling polices, Condor systems use

the concept of matchmaking based on Classified Advertisement (ClassAds). When

machines are available, they announce themselves with their properties, called

‘ClassAds’ in Condor jargon. When users submit a job for execution, that generates a

ClassAd containing the job requirements and properties. At periodic intervals, a process

Chapter 2: Computational Grids

21

within the role of Matchmaker tries to find a best match among ClassAds machines and

ClassAds jobs, evaluating a rank function specified in ClassAds jobs against properties

specified in ClassAds machines.

The Condor architecture is composed of a set of processes with distinct responsibilities,

as presented in Figure 3. The machines to which users submit their job execute two

daemons: the ‘schedd’ and ‘shadow’. The ‘schedd’ is an agent responsible for queuing

jobs waiting for execution. These queued jobs have their ClassAds published in the

central manager process.

Figure 3 – General Condor Kernel Architecture with the sequence of information flow.

A successful execution use case of a user job in a Condor system consists of the

following steps:

1. The user submits the job using a ClassAd specification.

2. The user agent and the resource publish its ClassAd on Matchmaker.

3. In periodic bases, the Matchmaker assigns a resource to a job. At this point, the

agent creates a shadow process in the user’s machine.

4. The job is created on resource machine and uses a shadow on a client machine to

exchange information.

Chapter 2: Computational Grids

22

Condor software is used as a Grid resource broker in many Grid production

environments as middleware package distributions such as Virtual Data Toolkit (VDT)

and GLite.

2.4 Heterogeneous Scenarios

When users submit a parallel application to a Grid System, they may not have control of

what computation resources will be assigned for application execution. Application

execution requirements can be satisfied by more than one resource. For example, the

user may explicitly require some physical resource in their application requirements.

Indeed, to get more opportunity to execute, the application requirements can be created

in order to be satisfied by more than one resource. In that case, the system evaluates its

current state and decides what would be the best choice in resource assignation. The

used control is a trade off between time to execution (waiting for fixed resources) and

resource availability due Grid dynamic behavior. Not all resources are available all the

time. In such scenarios, a user’s application machine assignation is controlled by a

Collective Layer (Meta-Scheduler and Resource Brokers) based on the requirements

provided by users.

Parallel application execution submission to a Grid may be classified in the following

scenarios of execution:

• Homogeneous Processors and Homogeneous Network (HoPHoN). This scenario

consists of a common cluster of dedicated processors. Examples are Ethernet based

commodity clusters exposed to the Grid by a head node running on two networks.

That scenario may occur when Grid meta-scheduler assigns all application processes

to a single homogeneous Compute Element composed of many Compute Hosts.

• Heterogeneous Processors and Homogeneous Network (HePHoN). Cluster

upgrades generally lead to heterogeneous processors. In such scenarios, network

characteristics remain the same in bandwidth and latency for the master/worker

paradigm and the compute time for the same piece of work may differ with different

groups of processors. We assume that each homogeneous part of the cluster as a

processor group for analysis purposes. As with the HoPHoN scenario, applications

may receive a heterogeneous cluster by a meta-scheduler assignation.

Chapter 2: Computational Grids

23

• Homogeneous Processors and Heterogeneous Network (HoPHeP). Different

clusters bought at similar times, from the same supplier tend to be homogeneous.

The scenario described in [33] reports that 75% of machines are homogeneous. This

scenario has two variants: the master may use only one network interface for local

and remote communications or may have different network interfaces for local and

remote communication.

• Heterogeneous Processors and Heterogeneous Network (HePHeN). In such

scenarios, the Grid resource broker may assign different groups of machines to

different organizations. The master should deal with processor heterogeneity in local

clusters and remote assigned workers. This scenario has also two variants: the

master may have only one or two network interfaces as in the scenario HoPHep.

2.5 Monitoring Approaches

A Grid system can be monitored on many levels from Collective to Fabric ayers. These

levels allow us to classify monitoring tools within System or Application monitoring

tools. In System monitoring, the metrics are related to system states as available

bandwidth, machines loads or available resources. In Application monitoring, the

performance data is related to application execution as time spent on some modules,

time spent on communications or cache misses related to some code region execution.

In many tools implementations, the monitoring process collect measurements using

sensors [34].

Sensors are software components that collect data from execution properties. For

example, a sensor that collects network utilization information may be a process that

interacts with some device using SNMP and feeds an information service or other

consumer. The first proposed standard for monitoring architecture in Grids is the Grid

Monitoring Architecture [8, 34].

2.5.1 Grid Monitoring Architecture – GMA

The Global Grid Forum (GGF) proposes a scalable architecture for Grid monitoring

called Grid Monitoring Architecture (GMA) [8, 34]. It describes requirements for

systems that collect and distribute performance information in Grid systems such as low

latency, high frequency and minimal measurement overheads, security and scalability.

Chapter 2: Computational Grids

24

In this architecture, trace event data is called an event with properties such as name,

timestamp and a structure that may contain other property items. The semantic concepts

presented in GMA, detailed in [8], are:

• Entity: any useful network enabled resource, unique and with a defined lifetime.

• Event: a collation of values containing timestamp and type data, associated to an

entity and defined by a specific structure.

• Event schema: defines the semantics of all events, consists of the event type

definition catalog.

• Sensor: a process that monitors an entity and generates events. Sensors are

divided into:

o Passive: read values available about an entity, such as counters and

properties.

o Active; generate data based on benchmarks such as network probes for

bandwidth and latency.

Figure 4 - Grid Monitoring Architecture Components, from [8].

The architecture is characterized by three main components: producer, consumer and

directory service. The producer is the component that generates the event data and the

consumer is the component that requests or accepts it, as presented in the figure below.

The third component is the Directory Service which is used by the producer in order to

Consumer

Producer

Events Directory
Service

Event
publication
information

Event
publication
notification

Chapter 2: Computational Grids

25

publish what event data is available and by the consumer in order to locate and contact

the producer.

Communication between the Producer and the Consumer may interact with each other

in three ways [8]:

• publish/subscribe;

• query/response;

• notification.

In publish/subscribe interaction mode, the components of the Consumer and Producer,

in an initial stage, use the Directory Service to locate each other and, after that, the

communication is done without accessing the Directory Service. After the initial stage,

the components agree which events should be transmitted and this characterizes the

event subscription by the Consumer which is published by the Producer. In

query/response iteration mode, the Consumer locates the producer similarly to the initial

stage of publish/subscribe and sends a request with one or more events data query. The

Producer later responds with the requested data. In notification iteration mode, the

Consumer configures the registry to event notification information. When event data is

generated by the Producer, it is sent to all registered Consumers by notification. The

event data is produced by sensors controlled by the Producers [8, 34].

The major characteristic of GMA architecture is the direct communication between

Producer and Consumer. That allows configurations where Consumer/Producer

components act as a proxy Consumer/Producer. Proxy-based configurations could allow

event filtering and transformation, the ability of data rewind and also cache behavior.

There are many systems such SCALEA-G [35] and R-GMA [36] that are built on top of

GMA architectures, although, the GMA architecture document does not specify the

interfaces used for communication between the components, which could be used for

monitoring system interoperability [34]. The GMA provides the base information which

can be used to classify the current implementation of monitoring tools. A good analysis

of current available tools in contrast to GMA architecture is provided by [34].

Chapter 2: Computational Grids

26

2.5.2 System Monitoring

A Grid system can be analyzed from many points of view. In a top down analysis, the

groups of resources sharing a VO may have some general properties such as available

compute elements, available storage information or even accounting information. Other

properties represent information from a specific organization inside the VO. Some

organizations may limit bandwidth utilization on a specific project, for example.

On other level, within the organization we may have clusters such as CEs. Each cluster

has specific properties concerning what should be interesting for users. The same

semantics can be used in the case of a CH inside the cluster CE. The machines have

properties which can be monitored and serve users’ needs.

Most of the Grid monitoring tools deal with monitoring of the environment where the

application runs [37-42]. These tools rely on fabric level services in core Grid concept

and protocols to fulfill a user’s requirements. The construction of monitoring tools for

Grid applications should take into consideration the proposed architecture design points

used in the construction of Grid system monitoring tools.

The gmond component collects from 28 to 37 different metrics depending on the

operating system. The data is sent in the multicast and unicast over TCP or UDP and it

is packaged in a XDR representation. The information can be collected from the gmond

daemon by listening to the multicast channel, configured by unicast or by pull mode, by

making a direct connection through the gmond daemon. There is no mechanism for

event selection or filtering [34, 37].

R-GMA

The Relational Grid Monitoring Architecture (R-GMA) [34, 36, 39] is a distributed

monitoring system compliant with GMA, based on a relational database system. It

specifies a data model, a query language, and the functionality of a directory service.

The data is distributed over the system. Users access the data using a global schema,

without knowing where the data is. The query language is a fragment of SQL.

For monitoring information created by the producer components, the R-GMA has two

types of data: static and stream, although the current implementation provides stream

producers. The static information is provided as stream data. The internal data

Chapter 2: Computational Grids

27

representation is known as a GLUE schema [43]. The idea is to use the background of

database management systems (DBMS) to help clients get information data. For many

years, DBMS components such as query optimizers and data distribution have been

active research areas. The data request and transport is done by Java Servlets as

presented in Figure 5.

Figure 5 – Components and interaction in R-GMA, from [44].

One drawback in this implementation is that the communication between producer and

consumer is done using server side components. That strategy has the overheads of two

steps of data delivery, the producer and the consumer servlets [44].

MonALISA

The Monitoring Agents in A Large Integrated Services Architecture (MonALISA) [38,

45] is a monitoring system built on a Dynamic Distributed Services Architecture

(DDSA) framework. The agents can collect data from any SNMP agents such CPU and

memory utilization from execution nodes, network link states and utilization statistics

from routers, switches and other devices. It allows integration with Ganglia and other

tools. That framework uses JINI for components communications.

The monitoring agents in MonALISA register themselves using a group JINI Lookup

and Discovery Service (LUS). The registration is based on a lease mechanism which

ensures the notification of clients in case the service fails. The clients connect directly to

Application

Sensor
Producer

Consumer
Servlet

Consumer
Servlet

Consumer

GMA Consumer

Consumer
Servlet

Consumer
Servlet

http Transport

Chapter 2: Computational Grids

28

selected agents in order to receive monitoring information. The agent management is

done using RMI over SSL.

The MonALISA provides some features for lower-event communication. Users can get

real-time or historical data based on a regular expression mechanism called a predicate

mechanism. Communication between clients and agents is done using web services.

Users can choose to use Agent Filters to get their information. Agent Filters are Java

dynamic modules that can be deployed to any MonaLISA service in order to preprocess

event data locally. Users may choose to receive information only when some trigger

alarm condition occurs by using Alarm Agents. Similar to Agent Filters, it can be

loaded and configured for information delivery based on logical expressions. An

example scenario is when a client wants to receive the network utilization information

only when the value is greater than 80% [38, 45].

NWS

The Network Weather Service (NWS) [46] is a forecast system that provides prediction

values for historical series. In a distributed system, the NWS can periodically monitor

parameters from a network to available computational resources. The prediction values

are derived periodically. There is a prototype implementation for Globus Grid

Information System (GIS) architecture.

The idea is to provide forecast values after successive measurements as a time series.

The process is done using different forecasting techniques. The supported forecasting

methods supported and implemented as predictors are:

• mean-based methods, which provide estimate values of the sample mean;

• median-based methods, which use a median estimator;

• autoregressive methods.

The NWS keeps track of the predicted values for all the predictors and chooses the best

forecasting method for the resource properties based on the cumulative error measure.

The NWS package comes with CPU and network utilization sensors. The data

extraction by users or applications can be done by web CGI or by a reporting API [46].

Chapter 2: Computational Grids

29

Figure 6 – NWS architecture overview, from [46].

MDS

The component of Globus Toolkit which provides information services is the

Monitoring and Discovery Service (MDS). This service centralizes all resources

information. The MDS version 2 (MDS2) has three main components: the Grid Index

Information Service (GIIS), the Grid Resource Information Service (GRIS) and the

Information Providers (IPs). These components provide soft-state registration and

enquiry protocols. The registration protocol allows MDS2 clients to publish information

in the MDS2 database using the GIIS and the enquiry protocol allows MDS2 clients to

request information from an information provider using the GRIS. The GIIS in MDS2 is

implemented using LDAP services [7, 9, 10].

In MDS version 4, available in Globus Toolkit version 4, the access to the MDS

services is based on WSRF presented on section 2.3.2 and it is called WS-MDS. The

data information is provided by the information sources, which are communication

interfaces implemented by Grid resources. The data extraction from information sources

can be done by pooling or by the subscription/notification mode. The main services in

WS-MDS are Aggregator, Index and Trigger Services [7, 10].

An aggregator Service is a kind of service that collects data from information sources

and carries out a process with it. This is based on a framework called Aggregator

Framework which is the base for the services under WS-MDS such as Trigger and

Index Services. The Index Service provides the interface for explicit Grid resource

Method 1

Machine 1

CPU sensor

Machine 2

CPU sensor

Sensor Subsystem

Sensor Data

Forecasting System

Network
Sensor

Method 2 Method 3

R
ep

or
tin

g
In

te
rfa

ce

Chapter 2: Computational Grids

30

registration. The Trigger service allows some action to be performed in response to data

changing within the WS-MDS such executing commands.

2.5.3 Application Monitoring

Static Instrumentation

The application static instrumentation has always been done by developers [12]. The

most primitive use of static instrumentation is simple screen print commands placed

before and after some code region in order to verify the time spent in that region. The

data generally is achieved during execution and analyzed after application execution. In

order to help developers in such processes, many tools analyze the source code and

insert function calls delimiting the interested code regions. Generally, this is done as a

step of the code compilation process. The inserted function calls can generate trace

events or can record profile information, depending on user needs. [14, 31]

TAU

The Tuning and Analyzes Utilities (TAU) [47] is a set of tools developed to help

developers improve application performance. The tool provides a wide range of

instrumentation types, performance data gathering, traces file format conversion

programs and also includes two visualization programs. The supported instrumentation

types are:

• Source code: handles an extensive list of languages, preprocessing the source

code in order to insert instrumentation.

• Object code: provided by a modified compiler, which inserts the instrumentation

on generated binary code after an optimization phase.

• Library wrapper: provides wrapper library for MPI, allowing measurements at

library use level.

• Binary code: uses DyninstAPI to insert calls to TAU components on running

binary code.

• Software Component: allows trace of component interface use by generating a

proxy component with instrumentation included.

Chapter 2: Computational Grids

31

• Virtual machineL uses the Java Virtual Machine Profiler Interface (JVMPI) to

register TAU components as a profiler agent in order to receive instrumentation

information from function calls.

TAU tools can collect performance data in many configured forms:

• They can profile for region execution, recording the time spent on the delimited

code region.

• They can record single events, to provide the number of events that have

occurred or, they can record full traces with the begin/end events for selected

regions.

The collected data is archived on a file; however, it has an interface which can be used

to program an agent inside TAU to send the event information over a network. Even

though it uses DyninstAPI [48] for dynamic instrumentation, the behavior is of a post-

mortem instrumentation tool, the there is no action or analysis during application

execution [42, 47].

KOJAK

The KOJAK project (Kit for Objective Judgment and Knowledge based Detection of

Performance Bottlenecks) is a set of tools for automatic performance analysis for

parallel programs to be used in application development. The performance data is

collected by static instrumentation on compile phase and stored in proprietary trace

format called EPILOG (Event Processing, Investigating and LOGing) [49].

The automatic performance analysis is done by recognition of inefficiencies patterns in

collected measurements expressed in EARL (Event Analysis and Recognition

Language). The analysis presents the performance data as a three-dimensional view

correlating kinds of behavior, problems within binary/source code and runtime locations

within processes and threads using the EXPERT (Extensible Performance Tool)

analyzer [49].

Chapter 2: Computational Grids

32

Figure 7 – KOJAK tool architecture as presented in [49].

Dynamic Instrumentation

The post mortem method of application performance improvement is intended to

change the code to have instrumentation, execute the application, and use the generated

execution information to make changes in the code. However, that cycle consumes a

significant amount of time because the application compilation time may be long. In

this case, the approach of a change in the application binary during its execution can

speed up the instrumentation process, cutting out the code change and compilation

phases. There are some binary instrumentation tools such GNU bfd [50], EEL [51],

DPCL [52] and DyninstAPI [48]. From those tools, the DyninstAPI library provides an

extensive API which allows process attachment, binary parsing, management and

modifications services.

When DyninstAPI attaches to a process, it parses the binary information and builds the

necessary structures to allow process modification. The management services are:

process stop, continue and terminate. The modifications services include variable

creation, code sequence insertion, function replacement and dynamic linked library

load. These services allow the dynamic instrumentation on a running process without a

need for its source code [48].

SCALEA-G

The SCALEA-G [31, 35] is a platform for performance monitoring and the analysis of

Grid environments. It provides components such visualization programss, performance

analyzers and instrumentation services. The instrumentation needed by monitoring is

user
program

OPARI /
TAU instr.

instrumented
program

compiler /
linker

POMP+PMPI
libraries

EPILOG
trace library

executable

run

EPILOG
trace file

EXPERT
analyzer

EARL

analysis
result

EXPERT
presenter

Semi-Automatic
Instrumentation

Automatic
Analysis

trace collection

Chapter 2: Computational Grids

33

done by the Dynamic Instrumentation Service which uses DyninstAPI for instrument

Grid Applications. It follows the GMA model and uses OGSA in communications. The

dynamic instrumentation service is composed of main components situated on different

locations [31]:

• Instrumentation Service: controls the instrumentation processes.

• Instrumentation Mediator: controls the client side service communication and it

runs on user identity proxy PKI certificates. It provides the transparency

abstraction in terms of PKI certificates used in communication with the

Instrumentation Forwarding Service.

• Mutator Service: a process that is executed on the same machine node where the

application process executes. It has the responsibility of performing the dynamic

instrumentation. It is based on the concept of application sensors inserted into an

application processes.

• Instrumentation Forwarding Service: controls the instrumentation exposing a

Grid web service for that purpose. It runs on service identity and provides the

communication between the Instrumentation Mediator and the Mutator Service.

Figure 8 – Component architecture of the Grid dynamic instrumentation service, from [53].

All the communication within the components of dynamic instrumentation service is

based on XML. This is an advantage for the point of view of tool integration, but there

Instrumentation
Forwarding

Service

Instrumentation
Mediator

Instrumentation
Mediator

Custumer
Service

Application
Sensor

Requester Site

Computational Node

Service Site

Client Service

Mutator
Service

Sensor Manager
Service

Data Query and
subscription

Data
Receiving and

Publishing

Run with user identity

Run with user identity, create
process running under user

identity

Run with user identity Run with serivce identity

Chapter 2: Computational Grids

34

are data and processing costs. The XML representation of data consumes more space

than binary representation. In [31], some ideas such as data compression are presented

in order to lower network bandwidth. The application sensors that provide profiling-

based measurements and the profile data communication may be done in two ways: pull

mode or push mode. In pull mode, the profile data is stored in a shared memory and the

client gets it by request to the Instrumentation Mediator. In push mode, the update is

done by buffer overflow trigger events.

Paradyn

Paradyn [54] is a performance analysis tool which allows for dynamic interactive

analysis of performance data generated by application processes. DyninstAPI was built

as a component of Paradyn. The goal of Paradyn is to lower the instrumentation

overhead by instrumentation insert and remove on-demand, based on performance

analysis need. In this kind of approach, Paradyn allows us to measure top function calls

and do a top down search for function time consumption. The tool has two processing

kinds, the Paradyn daemon and the Paradyn application. The main components of the

Paradyn application are:

• Performance Consultant: responsible for analysis of the performance data and

requests for needed instrumentation.

• Visualization Manager: handles the graphical display representing the

performance information data.

• Data Manager: handles the communication of the Paradyn daemon.

• User Interface Manager: handles user interface commands.

The Paradyn daemon is executed on each machine where the application processes are

running. The main components of the Paradyn daemon are:

• Metric Manager: responsible for storing the metrics data.

• Instrumentation Manager: has the responsibility for generating the

instrumentation code and inserting the binary code into an application process. It

uses, through DyninstAPI, an library for application binary code patching [48].

Chapter 2: Computational Grids

35

Figure 9 – Paradyn overview structure [54].

We will not cover the analysis features of Paradyn here due to our focus on the

monitoring stage only. From the point of view of instrumentation and monitoring, the

Paradyn tool uses DyninstAPI for process instrumentation. The instrumentation can be

placed in a procedures entry, procedures exit and individual call statements. The metric

manager uses six primitives in order to collect metrics: set counter, add to counter,

subtract from counter, set timer, start timer, and stop timer. In these instrumentation

points, the primitives are inserted steered by the performance consultant. The values of

counters and timers are collected periodically [54-56].

Visualizartion
Manager

Performance
Consultant

Data
Manager

User Interface
Manager

Paradyn

Application
Process

Paradyn daemon

Metric
Manager

Instrumentation
Manager

Application
Process

Application
Process

Paradyn daemon

Metric
Manager

Instrumentation
Manager

Application
Process

Execution Node Execution Node

User Workstation

Chapter 2: Computational Grids

36

Chapter 3: Grid Performance Models

37

Chapter 3
Grid Performance Models
Performance is a major issue in parallel programming. When a programmer develops a

parallel application she expects to reach some performance indexes. In many cases the

situation is even more critical, when the system presents dynamic changes (for example,

load sharing changes) or application behavior varies during its execution due to data

evolution. Therefore, over recent years, several efforts has been undertaken to provide

automatic dynamic tuning tools that help users of parallel applications to reach those

expected indexes.

The automatic dynamic tuning process consists of collecting measurements, evaluating

current execution states based on a performance models and applying parameter

changes in order to improve performance indexes. A dynamic tuning tool (MATE:

Monitoring, Automatic and Tuning Environment) is presented in [57]. It carries out

parallel application dynamic tuning on local clusters.

Computational Grids aim to provide the sharing of a large number of computational

resources within different administration domains [2]. The Grid system can be used to

tackle a high number of users, running many different classes of application, and/or to

solve large problems. However, these systems are heterogenic and dynamic in nature

and the situation described above is emphasized dramatically. Thus, the automatic

dynamic tuning approach appears as an indispensable necessity in order to accomplish

performance expectations.

Chapter 3: Grid Performance Models

38

In [58] the required changes in MATE to collect measurements on Computational Grids

are presented. This chapter focuses on performance model development to enable

dynamic tuning of parallel applications in Computational Grids.

A well-known problem in parallel programming is the load imbalance in master/worker

applications. In these applications, an efficient execution depends on the balance

between communication (data volume vs. networks bandwidth) and computation (task

complexity vs. processors performance) [59]. The load balancing may be done

statically, prior to application execution, or dynamically, using an application level

schedule [60]. When the dynamic approach is used, finer grains workload divisions

facilitate the computation load balancing, but increase the total communication volume

[61]. Therefore, it is necessary to reach a trade-off that depends on the current

conditions of the system, which change over time.

In this work, we aim to reduce execution time without losing efficiency. We consider

efficiency to be the ratio between busy time and execution time of the processors

assigned to an application. Dynamic tuning of granularity and the number of workers at

runtime helps to reduce applications’ execution time and improves execution efficiency

in different scenarios of network and processor heterogeneity. We extend the work

presented in [59], which provides a model for evaluation and tuning of multi-cluster

post-mortem applications execution, to the Grid environments by providing a heuristic

to tune dynamically the execution grain size and number of workers.

3.1 Related Work

There are many resources in the literature which address load balance in heterogeneous

computing. We can categorize related work into approaches that suit parallel processing

and approaches that take into account distributed computing. Parallel related

performance models [61] use message latency as basic parameters to explain application

behavior. Distributed computing performance models consider that bandwidth has more

influence in application performance and it is considered to be a speedup limiting factor

[59].

A comprehensive survey of load divisions strategies is provided in [62]. Options range

from linear optimization considering heterogeneous scenarios and analytical multi-

cluster analysis using multi level queue systems [63], to different scheduling strategies

Chapter 3: Grid Performance Models

39

assuming that master processes compare to meta-schedulers as workers compare to

processing nodes [60, 64].

Javadi in [63] presents a greedy strategy for work distribution in which the priority in

worker selection relates to processor speed. Indeed, these models do not take into

account that changes in grain size impact on compute/communication ratios. Argollo in

[59] states that the grain size tuning is done in application development processes.

Machines on different networks in a multi-cluster system (local and remote cluster)

should use different grain sizes. We differ by using a dynamic analysis of execution

measurements, a heuristic resource selection and we advocate that applications may

have different grain size selections within their execution due to temporal system

heterogeneity.

Cesar in [61] provides a performance model for the optimal number of workers in

parallel master/worker applications using finer grains considering dynamic tuning, but

does not consider the variation in the total volume of communication in response to

grain size variation. Morajko in [65] presents a factoring-based strategy for load

division well suited for dynamic tuning. However this work, as well as [61], assumes

that the communication volume does not change as a result of different load partition.

3.2 Performance Model for Dynamic Tuning

Grid Systems are dynamic and users do not have control over the performance of

available resources. Network channels and processors may be used in shared modes

which result in variations in the available capacity over time. This aspect has a direct

impact on the application performance indexes [7]. When users submit a job to be

executed in a Grid environment, they do not know if the assigned resources meet their

expectations. In some cases, the application cannot scale to all resources due to a

communication boundary, and in others, the total execution time is limited by the

assigned capacity of processor power. In a system such as a Grid, it is possible to have

both problems within the same application version in different executions. Therefore

our main goal is to minimize application execution time while increasing the efficiency

of resource usage.

Application speedup in master/worker paradigms is limited by three constrains: total

time to send operands (input data) from the master to workers through communication

Chapter 3: Grid Performance Models

40

channels, time to compute tasks in processors and time to receive result values (output

data). In case of the master/worker paradigm, communication and computation may be

overlapped to reach maximum system efficiency expressed as the occupation of

workers’ processors and master network interface capacity as presented in Figure 10

[59].

Figure 10 – Example of a master/worker startup where the time spent in each round corresponds to the
time each worker process its assigned grain. At time T1 all workers are performing computations and at
time T2 master network interface is saturated on both input and output communication capacity
considering a full-duplex network port [59].

Consider a round as a sequence of grain distribution for all workers.

Communication/computation overlap should be obtained in two initial rounds of task

distribution. Subsequent data assignment follows a heuristic to feed faster processors

first while maintain maximum execution queue of two tasks. All workers should have a

work unit ready to be processed. Figure 10 illustrates that distribution pattern of a

homogeneous environment. The same distribution pattern works on heterogeneous

processor scenarios. Task scheduling is not addressed in this work. We focus on the

impact of changes in the number of workers and application grain size.

When working with different grain sizes, applications may suffer processor cache

interference. We assume that users may be shielded from such effects through using

high performance processing kernels. Figure 11 present the total execution time of a

Send Receive Compute

Master
…

Worker 1 proc T5

Worker 2 proc T6
send R2

Worker 3 proc T3 proc T7

Worker 4

first round second round third round

recv T2

T1 to W1

recv T1

T2 to W2 T3 to W3

proc T1

T4 to W4 T5 to W1

recv T6

recv R4recv R3recv R2recv R1
T9 to W4

startup phase

T6 to W2

recv T5

T7 to W3 T8 to W4

send R3

send R1

recv T3

recv T4
proc T8proc T4
send R4

recv T7

recv T8

proc T2

tl - message latency

T2

Chapter 3: Grid Performance Models

41

matrix multiplication using different sizes of grains and different multiplication kernels,

ATLAS and GNU GSL. The standard deviation of ATLAS executions is 1.95% and

GNU GSL is 2.26%.

Figure 11 – Comparison between ATLAS and GNU GSL executions of a matrix multiplication problem
using different grain sizes.

As defined in [59], application execution may be divided into three phases: startup,

steady and finalization. In the startup phase master distributes work units to all workers.

The steady phase starts when all workers are in a busy state and finishes when a worker

becomes idle and the master does not have any work to assign. After a steady phase

there is a finalization phase where master waits for remaining processing to be finished.

We consider that the master’s role is to manage workload distribution and results

collection in order not to have a application bottleneck.

In order to deal with system heterogeneity, we focus on application load balance,

applying dynamic tuning of application grain size and the number of processors. As a

case study, we choose the master/worker programming paradigm. In this paradigm the

change of application compute/communication ratio may balance the total execution

time and efficiency. These behaviors can be seen in Figure 12 and Figure 13. Figure 12

plots different execution times for a master/worker application of varying grain size and

Figure 13 plots executions varying the number of workers.

0

20000

40000

60000

80000

100000

120000

140000

64 256 1024 4096 16384 65536 262144 1048576

To
ta

l E
xe

cu
ti

on
 T

im
e

(s
ec

on
ds

)

Number of Work Units

GSL gemm ATLAS gemm

Chapter 3: Grid Performance Models

42

Figure 12 – Impact of grain size in total application execution time and usage efficiency of a fixed
resource set size of 18 workers.

Figure 13 – Impact of the number of workers in total application execution time and usage efficiency of
the assigned resource set.

In Figure 12, the network bandwidth limits the processor usage when using fine grains

from 1/8k to 1/256. Using these grains makes the application communication-bound.

When using coarse grains, an application becomes computation bound. This point

shows that the coarser the grains, the more efficiency an application losses due to the

impact of initial task distribution and final result collection.

0%

20%

40%

60%

80%

100%

120%

0

5

10

15

20

25

30

35

40

1/8k

1/4k

1/2k

1/1k

1/512

1/256

1/128

1/64

1/32

1/16

1/8

1/4

1/2

1/1

Re
so

ur
ce

 E
ff

ic
ie

nc
y

Ex
ec

ut
io

n
Ti

m
e

(t
ho

us
an

d
se

co
nd

s)

Grain Size

Exec. Time Efficiency

Processor Power Limit

fine grains coarse grains

0%

20%

40%

60%

80%

100%

120%

0

5

10

15

20

25

30

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Re
so

ur
ce

 E
ff

ic
ie

nc
y

Ex
ec

ut
io

n
Ti

m
e

(t
ho

us
an

d
se

co
nd

s)

Number of Workers

Exec. Time Efficiency

Network Limit

Chapter 3: Grid Performance Models

43

In Figure 13, the network bandwidth and selected grain size limits the maximum

number of workers to 18. If an application receives more workers than that, it will lower

the resource usage efficiency without decreasing execution time.

3.2.1 Parameters Characterization

The characterization of the load is done by the analysis of which parameters have more

impact in its composition. Some problems specify their load by the number of data

items or the number of processing steps over some data. In order to find out how to

change the compute/communication ratio, we need to find out which parameters are

relevant to compute and communication and how these can be used to change the ratio.

In the following, we use the abstraction that load consist in the transformation of input

to output data as presented in Figure 14.

Figure 14 – Abstraction of the load through operands, operations and result values.

Suppose we have a problem with a workload , characterized by operations

performed over input data operands and that generates output result values. In

such model, a machine which can process operations per second would take

seconds to complete the workload computation. For some problems, the workload can

be divided in () equal slice parts we call tasks that: and ,

where represents the grain size and represents a task unit with index using grain

size in load division.

Consider that is the volume of input data operands required to compute a task

and is the data volume generated in output data of result values of such

computation while using grain size . The total volume of data needed to be transferred

for remote execution is then and the volume of generated results is

Input Data

Operands
Operations

*

sqrt

/

Output Data

Result
Values

Workload

Chapter 3: Grid Performance Models

44

. During execution, and should be transmitted between the

master and workers. Given the network characteristics, the lower bound limit of

execution time is , where is the average network bandwidth,

considering overlap of input and output communications.

Figure 15 – Graphical view of the relation between data partition and load division scenario where grain
size has impact on compute/communication ratio.

We work with loads that have data reuse among different tasks. That allows us to

control the total communication volume using the grain size . The selection of

different values for may result in different values for and/or sizes, as

presented on Figure 15.

A general rule of grain size selection impact on application execution is presented in

equation (2). Data reuse among work blocks generates scenarios that smaller grain size

produces more total communication volume than bigger grains. The higher is value,

the finer are the grains and, the lower is value, the coarser are the grains distributed

by the master.

 (2)

3.2.2 Metrics for Grain Decomposition

Let be the total execution time required to process the application basic operations.

In case where an application is communication-bound, when

Problem Domain
or

Workload
Load Division

Input Data Partition

(…)
Data Reuse

Task 1 Task 2

Task 1
chunk 2chunk 1

Task 2
chunk 3chunk 2

chunk 1

chunk 2

chunk 3

(…)

givi

gi
kC 1=

gi
kC 2=

giVi

∑
=

=
wu

k

gi
kCW

1

W

Chapter 3: Grid Performance Models

45

, the communication between master and workers saturates the network

interface bandwidth and limits the number of workers that can be used without

efficiency decrease.

The granularity may be changed to improve the computation/communication ratio in

order to increment the amount of workers while keeping a high efficiency. If all workers

are performing computation and the master communication interface is saturated then it

is not possible to change the grain size. In this case, a system is in full utilization and

the application reaches its scalability limit.

We divide the work unit delivery into rounds. In a round, the master delivers one work

unit to every worker. To achieve full network bandwidth utilization in master networks,

the round time should match the time needed by the faster worker to process a work

unit. That limits of the maximum number of workers given a grain size , named

as , are defined by equation (3). In such cases, the maximum number of workers

is the time spent to process a work unit, , divided by the maximum between time

spent to transmit input values and time to receive output values , in a network

with message latency and inverse average bandwidth , as detailed in [59].

(3)

 (4)

 (5)

Equations (4) and (5), presents the behavior of the startup and finalization stages’ length

in an execution in a system with workers within a best execution scenario as

detailed in [59]. In those stages, system efficiency is directly related to grain size

selection. Bigger grains result in higher and which results in higher and

 stage time values. The execution time from those stages has a direct

Chapter 3: Grid Performance Models

46

influence on overall system efficiency. An example of that influence is presented in

Figure 12 where the efficiency decreases as the grain size gets finer.

This observation suggests the use of smaller grains, which represent a higher number of

tasks to be distributed, as a solution to load balancing [20] and consequently shorter

 time.

If we discard message latency, the efficiency of startup and finalization phases is

detailed in equations (6) and (7). Equation (7) presents the combined efficiency in both

phases considering the best execution scenario.

(6)

(7)

Figure 16 – Graphical view of the best startup and finalization phases.

There are some considerations that should be taken in account when the biggest grain is

used. First, due to bigger grain size, all execution time is spent on both startup and

finalization phases. As the best case of startup and finalization efficiency is 50%, we

have processors idle in a system for about 50% of the execution time [23]. The idea is

that the startup draws an upper triangle of busy processors and the finalization draws a

lower triangle of busy processors. The right value depends on a ratio between the time

spent to process a grain and the time spent in startup plus finalization. Second, the

Master S S S S S R R R R R Master
Worker 1 R S Worker 1
Worker 2 R S Worker 2
Worker 3 R S Worker 3
Worker 4 R S Worker 4
Worker 5 R S Worker 5

S Send

R Recv

P Processing

P

(…)

P
P

P
P

P

P
P

P
P

Startup Best Finalization

Chapter 3: Grid Performance Models

47

application does not know prior its execution what network characteristics will be

available at runtime in order to determine its processors’ needs.

During runtime execution it is possible to verify if, given a set of resources, the

application can scale and use them in an efficient manner or whether some resources

can be released without harming the total execution time, while there is a rise in total

efficiency. Considering a dynamic Master-Worker execution in scenarios of the

heterogeneity of network links and processor speed, we can achieve the lowest

execution time by tuning the grain size in order to allow the utilization of the maximum

number of assigned workers and the number of workers to be released from unnecessary

assigned compute elements without any penalization in execution time.

To have the benefits of dynamic grain size tuning, the application should support

dynamic grain size change. This support consists of working with coarser tasks if values

of decrease and work with finer tasks if increases. The , and

 averages should be measured continuously during application execution. These

values are sensible to bandwidth/network latency variations and effects derived from

process execution in shared environments.

Master-Worker applications with data reuse among different tasks should scale better

using SPMD paradigms which explore better data locality. However, load balance is

hard to achieve on heterogeneous scenarios using such paradigms. Some processors in a

shared environment, commonly found in Computational Grids, slow down all

application processes due to communication synchronization. Master-Worker

paradigms also apply in scenarios where application input data comes from one place

and under a low WAN bandwidth. The data required to process the problem comes from

one site or storage element. This data is accessed from the master processor at one site.

In cases under low WAN bandwidth, the data transmission should be as well managed

as the computation because it has a higher impact on the total communication time.

3.2.3 Grain Size and System Heterogeneity

When communication and computation overlap in a Master-Worker application, each

worker may be analyzed as a three stage pipeline composed of: task transmission, task

processing and results transmission. For task of grain size , those stage times are

, and . The task round trip time determines how fast the processor is

Chapter 3: Grid Performance Models

48

from the master point of view. The lower execution time is obtained when the master

uses the faster processors [62].

Figure 17 – Impact analysis of heterogeneity in compute/communication time values considering network
and processor capacity variations.

Changing value at runtime allows the tuning tool to find out if the system is

communication-bound or computation-bound, given a set of resources assigned to an

application. By tuning it is possible to get better compute/communication ratios in

heterogeneous systems.

In Figure 17 we present the distinct heterogeneous cases. In case A, the master

perceives all workers as working at the same speed. Considering homogeneous

networks, round trip time is limited by processor power capacity in case B. In case C,

lower communication time reduces the round trip time of worker 1. In such cases,

worker 1 is considered faster than worker 2.

The case D presents a particular sample of two workers with different processor powers

and distinct network accessibility. This case illustrates a worker speed from the master

point of view and is related directed to processor power and network capacity.

givi*λ giTc givo*λ

time

Homogeneous Scenario

Heterogeneous Processor

givi*λ giTc givo*λ

givi*λ giTc givo*λ
givi*λ giTc givo*λ

givi*λ giTc givo*λ
Heterogeneous Network

givi*λ giTc givo*λ

Worker 1

Worker 2

Worker 1

Worker 2

Worker 1

Worker 2

givi*λ giTc givo*λ
Heterogeneous Processor and Network

givi*λ giTc givo*λ

Worker 1

Worker 2

Round Trip Time

A

B

C

D

Chapter 3: Grid Performance Models

49

To lower execution time in cases of processor heterogeneity in master-worker

applications, the master must first choose faster workers for task assignation to get the

lowest execution time. However, considering master process execution on a one port

machine2, communication time should be considered as serial due the network

bandwidth limit. Working with coarse grains allows a decrease in the communication

volume and increases the maximum number of workers that the master can feed.

Concurrent task communications increase and . In cases of network

heterogeneity, the use of communication managers3 isolates task delivery throttling

caused by communications within slow networks [59]. In application parallelization

supports task composition/decomposition, it is possible to configure a hierarchical

master-worker as presented in [23]. With such capability, in a multi-cluster

configuration, remote clusters receive coarser tasks and decompose them into finer ones

for local processing. The remote decomposition/composition lowers the time to process

coarser tasks on remote clusters and reduces the required communication volume.

3.2.4 Dynamic Tuning Requirements and Process

Dynamic tuning techniques consist of three main phases: monitoring, performance

analysis and program/system modification [57]. The technique is centered on

performance models. During tuning processes, performance models specify what should

be measured by applications and systems, and suggest modifications which can be

applied to applications in order to obtain better performance indexes.

Basically, the performance models explain why an application has some performance

problem based on what is measured and when and how it should be measured. As a

result of that process, it produces what should be changed, and when and how this

should be done. All processes are performed without user intervention.

2 That is a very common scenario. In that case, the machine where the master processor executes has only

one network card. Overlapped send operations competes to network bandwidth.

3 Communication managers are just processes with the role to proxy communication operations from

network with different characteristics. The idea behind that model is to avoid blocking due to

transmission through low bandwidth links.

Chapter 3: Grid Performance Models

50

Our group had a tool called MATE, to perform dynamic tuning of parallel/distributed

applications in clusters [57] and it was used in the tuning of master-worker applications

in such systems [66] using the performance models developed in [61]. Previous work

has presented that the more dynamic is the system, the more the benefits achieved from

dynamic tuning [14].

Inside the tuning tool, each performance model is encapsulated in a component called

tunlet. During a monitoring phase, the tunlet interacts with its container to command

what should be instrumented in application processes. Such instrumentation produces

measurements that are transferred to the tunlets.

During an analysis phase, the internal logic of tunlet evaluates metrics based on a coded

performance model. During modification phase, such logic decides what should be

modified in order to raise performance indexes.

When applying the dynamic tuning technique based on models over Grids Systems,

some aspects should be considered:

• The tool must be running on the machine in which application processes are running

and should be able to communicate with the tunlet container. In Grid Systems where

the assignation of machines to the application is controlled by Meta-

Schedulers/Resource Brokers, users do not have control over where an application

runs. The tool modifications required to address such a problem is presented in

[58].

• Some measurements and modifications should be performed in different [2] Grid

software layers. For example, to change the number of resources assigned to an

application, the tool should make a request to the collective layer (Meta-

Schedulers/Resource Brokers) and modify application processes in order to use

obtained resources.

• The monitoring message amount may interfere in application communications,

which require a reduction of data produced by instrumentation and modification

commands.

Chapter 3: Grid Performance Models

51

Once these aspects are supported, the tuning process is steered by the equation (3) to

find what should be the number of workers and the heuristic selection to change the

grain size used by that application. Equations (4) and (5) are used to calculate the

startup and finalization phases and their impact on the predicted execution time.

To calculate the required metrics specified in section 3.2.2, it is necessary to collect

measurements as detailed in Table 1. Figure 18 associates such measurements to its

instrumentation locations in master and worker processes. At moment A, the tunlet can

obtain the compute/communication ratio in respect to . At moment B, the same

can be done in respect to . The other parameters required for tuning may be

calculated in sequence.

Using the measurements described in Table 1, the network latency value may be

obtained by the difference of and start point of . The inverse bandwidth

from upstream and downstream communications can be obtained from divided by

average and by average respectively.

By using equation (3), the tuning engine may verify what should be the optimum

number of workers, notated as , for runtime value. The tunlet may suggest

changes of the number of workers to or the using the following heuristic.

 The number of workers analysis consists of a continuous evaluation of equation (3)

during runtime and allows for the following tuning actions:

• If , workers processors are running under maximum efficiency but master

network interfaces may accept more workers. This may configure a heterogeneous

network and/or heterogeneous processor scenario which will be analyzed in a

following section. In a case when it is not possible to add more workers, should

be increased to reduce possible load balance problems.

• If ¸ a system is running bellow maximum efficiency. In this case, the

required tuning action is to decrement value in order to use more workers if

 and change the value of to , if .

Chapter 3: Grid Performance Models

52

• If ¸ a system is at maximum efficiency and its lowest execution time with

the assigned set of resources.

Table 1 – Parameters used in dynamic tuning within a Grid parallel application execution.

Id Description Location Semantic

wu Total number of work units Master Binary read

wp Work units waiting to be processed Master Binary read

gi Suggested work class (grain size) Master Binary read/write

vo Bytes received as output values Master Binary read

vi Bytes sent as a work unit Master Binary read

nw Amount of available workers Master Binary read/write

tms1 Time when master starts a task send of a work unit Master Binary read

tmr Time between start and end in output result receive Master Binary read

twr Time between start and end in work unit receive Worker Binary read

tc Computation time of a work unit Worker Binary read

tws1 Time when worker starts send an output result Worker Binary read

pinfo Processor Information (frequency and architecture) Worker Machine read

Figure 18 – Presents a graphical view of where and when measurements are gathered in different
processes.

There is no sense in incrementing value when a system is running below maximum

efficiency because this would be likely to minimize the computation/communication

ratio. A simple restriction to values would be the required work units of coarser ,

Tk to Wn

send Rk

proc Tk
recv Tk

Master

Worker n

recv Rk

time

tctwr tmrvi, gi, tms1tunlet vo,tws1

A BRuntime Measurements

start

Chapter 3: Grid Performance Models

53

that fits in the available memory information provided by

measurement .

To allow the dynamic tuning of grain sizes, such parameters should be exposed as a

program variable and should support changes at runtime or exposes some function call

that changes the grain size in response to a call. With this capability, the application can

be tuned by an external tool using the library DyninstAPI [48]. All collected

measurements should be gathered and analyzed by the tuning engine. A complete

architecture example for clusters is presented in [14] and its adaptations to the Grid

System is presented in Chapter 4 and published in [58].

3.3 Tuning in Heterogeneous Scenarios

The evaluation of equation (3) fits the scenario where processors are homogeneous. In

the case of heterogeneous scenarios, the analysis of the maximum number of workers is

obtained by a network bandwidth allocation heuristic.

First, we need to examine the different scenarios a master-worker application

encounters when running in a computational Grid. When users submit their application

for execution, they specify the application requirements in job description language.

Based on number the of machines present in such requirements, the Grid resource

broker may assign different resource groups to match job needs which configures

different levels of heterogeneity for processors and network links. For example, suppose

a scenario where a user has a parallel job request submitted to a Grid, specifying a

requirement for seven processors. If there are resources available, the Meta Scheduler

can assign one Compute Element (CE) containing all requested Compute Hosts (CHs).

However, different scenarios may occur where requested CHs are scattered among more

than one CE.

The following taxonomy classifies those different heterogeneity scenarios, from the

master processor point of view:

• Homogeneous Processors and Homogeneous Network (HoPHoN). This scenario

consists of a common cluster of dedicated processors. Examples are Ethernet based

commodity clusters exposed to the Grid by a head node with two network

interfaces. Such scenarios may occur when Grid meta-schedulers assign all

Chapter 3: Grid Performance Models

54

application processes to a single homogeneous CE composed of many CHs or when

the master processor is mapped to a CE with all workers in a different CE.

• Heterogeneous Processors and Homogeneous Network (HePHoN). In this scenario,

network characteristics remain the same in bandwidth and latency for the

master/worker paradigm and the compute time for the same piece of work may

differ with different group of processors. As with a HoPHoN scenario, applications

may receive a heterogeneous cluster by means of a meta-scheduler assignation.

• Homogeneous Processors and Heterogeneous Network (HoPHeN). The scenario

described in [33] reports that 75% of machines are homogeneous. This scenario has

two variants: the master may use only one network interface for local and remote

communications or may have different network interfaces for local and remote

communication.

• Heterogeneous Processors and Heterogeneous Network (HePHeN). In such

scenarios the Grid resource broker may assign different groups of machines

distributed over different organizations. The master should deal with processor

heterogeneity in local clusters and in remote assigned workers. This scenario has

also two variants: the master may have only one or have more than one network

interface as in the HoPHeN scenario.

Those scenarios presented in Figure 19, represent different levels heterogeneity caused

by the dynamic behavior of Grid Systems. Some homogeneous scenarios may become

heterogeneous during application execution. There are many examples of multi-core

and SMP machines inside a CE that are exported to a resource level as multiple CH.

That may temporally slow down concurrent processes if different cores/processors share

machine memory.

Due to continuous application monitoring, it is possible to adjust application processes

during execution using the following heuristic analysis to support scenario changes:

• If scenario matches a HoPHoN, then the analysis presented in section 3.2.4 is

sufficient to choose the optimum grain size and number of workers.

Chapter 3: Grid Performance Models

55

Figure 19 – Graphical views of different possible assignations from Grid Resource Broker/Meta-
Scheduler in response to a request of seven compute nodes resource.

• In the case of HePHoN, the proposed strategy used to deal with processor speed

heterogeneity is an adaptation of the methodology of multi-cluster execution tuning

proposed in [59] to each group of homogenous processors as if they were remote

processors. Consider as the total number of workers composed by groups

of workers with processors classified by speed where . Let

 be the ratio between the slowest processor and a sample of and to index

groups from faster to slower ones.

In such structures, the heuristic to tune HePHoN using the same measurements

nomenclature from section 3.2.4 is presented in the pseudo algorithm in Figure 20.

The goal of the heuristic presented in such a pseudo algorithm is to allocate

available master output/input bandwidth to faster workers. The allocation of master

processor input/output network bandwidth is based on the ratio between different

task processing time measurements among heterogeneous workers.

• Same heuristics can be used in the case of HoPHeN with some modifications. First,

local Wg groups are taken into account before remote ones. For the variation of the

scenarios, where the master has two or more network interfaces, a remote group of

workers should compete for the external interface. That is noted on runtime

M

W1 W2

W3

HoPHoN
or M

W1

CE1

W2

W3

CE2

M

CE1
W2

W3

HePHoN
or M CE1

W2

W3

CE2

W1

W1

M

W1

CE1

W2

W3

HoPHeN

W4

CE2
W5

W6

CE3

M
CE1

W3

HePHeN

W5

W6

CE3

W1

W4
CE2

W4
W5

W6

W4

W5

W6

W4
W5

W6

W4
W5

W6

W2

Chapter 3: Grid Performance Models

56

measurements and the heuristic reacts to this shared condition to balance the

computation/communication ratio.

Figure 20 – Pseudo algorithm of optimum number of workers and grain size tuning. It uses runtime
metrics to decide if an application needs changes in the compute/communication ratio and/or change in
number of workers in use.

• In a HoPHeN scenario, the task round trip time is used to sort the list of workers to

help finding which processors should be selected. This approach consists in

allocating the bandwidth to faster processors until a match in the round time. That is

Variables Description
slot - Allocated network busy time
nw - Allocated number of workers
Wg(k) - Homogeneous set of workers, index k
Nopi - Calculated optimal number of workers
gs - Grain size to set
Tc(k) - Moving average of compute time, index k
Nopt - Tuned optimal number of workers

let slot = 0 and nw = 0
for each Wg(k) from k=0 to Wgn-1
 # measure required parameters
 let Nopt = calc(Nopt for Wg(k))
 if Nopt <= Wg(k) then
 if gs < max(gi) then
 # tune grain size
 let gs = gs + 1
 else
 # network saturated
 let Nopt = Nopi
 end if
 exit for
 else
 let Tc(k) = (Tc(0)-slot)*(Tc(k)/Tc(0))
 let Nopi = calc(Nopt in Tc(k))
 if Nopi < Wg(k) then
 # network saturated
 let Nopt = Nopi
 exit for
 else
 let Nw = Nw + Wg(k)
 let slot = slot + Wg(k)*(Tc(k)/Nopi))
 end if
 end if
end for

Chapter 3: Grid Performance Models

57

done using the slot variable in the pseudo-code presented in Figure 20. It is done for

master communication ports when the master has more than one interface. In the

case of one network interface, the available network bandwidth (which may be used

to transmit work units to remote workers) could be obtained by the difference

between and the slot time allocated to the transmission to local workers.

The initial grain size selection is defined to have the number of tasks with one order of

magnitude higher than the number of workers according to the recommendation from

[20]. As soon as worker finishes one task, the tool can start to evaluate if the grain size

selected needs to be changed or not. As the analysis continues, it may need many rounds

to reach the best grain selection depending on how good the first estimation was.

The selection of finer grain at a premature point in the tuning process helps with an

initial evaluation of network and processor characteristics. Coarse grains however, have

better computation/communication ratios and consume less network resources. Indeed,

as presented by equations (4) and (5), coarse grains have a large startup time, which

lowers resource usage efficiency. Iterative applications have such penalization risks

only on first iteration. Following iterations should use the more recently tuned iteration

grain size and value for the number of workers.

3.4 Effects of Data Access Patterns

The operand reutilization among different grains suggests that a parallelization strategy

should use a paradigm other than a Master-Worker in order to reduce communications

such as SPMD or pipeline. The problem is how to deal with heterogeneity in such

paradigms. Pipeline load balance is hard to achieve using homogeneous networks and a

processor and should be even harder in heterogeneous scenarios.

When we parallelize an application using the Master-Worker paradigm and add the

support for grain size change, we play with the total volume of the communications to

change the compute/communication ratio. In cases of very slow network bandwidth,

this introduced redundancy may be too costly. One alternative to overcome this problem

is to introduce a cache of operands on master to worker communications. This reduces

the volume of communications and allows for better application scalability. However,

this scheme requires an increase in the complexity of the task level scheduler. In such

Chapter 3: Grid Performance Models

58

cases, the task scheduler deals with task affinity in order to have the maximum benefits

from operand caches.

The basic idea of an operand cache is to structure tasks in data chunks and label the

redundant data chunks. All operand caches are orchestrated by a master. In other words,

master processors knows what data is cached by clients and has a consensus about

whether a partial task content can be reconstructed on the assigned worker processor.

The task scheduling can use a greedy strategy and operand cache hit is a metric that can

be measured on runtime. The operand cache should be done in the memory, or on a

local disk in cases where the local disk is faster than the network bandwidth.

Consider an index of chunk cache hit which represents the percentage of work

reutilization by an application using grain size and number of workers . From a

performance model point of view, each problem mapped on Master-Worker paradigms

may have different grain size options, and because of that, different cache hit ratios. By

using an operand cache strategy, we have better scalability of applications with shared

operands among different tasks when implemented using a Master-Worker paradigm by

lowering the network bandwidth requirements.

Let’s use an example to illustrate the use of the operand cache in Master-Worker

paradigms. Consider a matrix multiplication A(M,K) by B(K,N), resulting in a matrix

C(M,N). Fist we need to choose a parallelization strategy to map to a Master-Worker.

One of the approaches is to divide matrixes A using first dimension by and B using

second dimension by generating grains to be scheduled, transferred and

processed by worker processors. That strategy allows for work break-down which

results in a change of the total volume needed to be transferred to workers, as explained

in section 3.2.2.

A simple greedy heuristic for grain scheduling is, given a time to send a grain to a

worker the scheduler, to choose the task that has more probability of being cached

by worker . Let be the number of blocks from where and are the

number of blocks from where assigned to worker For maximum cache hit,

 should be maximized, so, .

Chapter 3: Grid Performance Models

59

For example, if the worker 1 receives 4 work units, it might have different cache hit

values depending on scheduling options. In that case the following

 satisfies 4 work units assignation. Indeed, cases have

cache hit 3 blocks in 8 transmissions, while case have cache hit

of 4 blocks in same 8 transmissions, .

Figure 21 – Plot of cache hit ratio by number of workers considering 256 work units.

Figure 21 presents the cache hit ratio obtained in a matrix multiplication problem using

different division strategy. The divisions using 16 by 16, 32 by 32 and 64 by 64 blocks

result in 256, 1024 and 4096 tasks, respectively. The cache hits in that case depend on

the number of workers as the problem chosen grain size. Finer grains allow better load

balance in task distributions and better data reutilization in worker processing nodes.

The authors in [67, 68] provide an extensive evaluation of different strategies for

scheduling Matrix-Multiplication within homogeneous and heterogeneous scenarios.

3.5 Simulating Master-Worker in Heterogeneous Scenarios

The main goal of our experimental scenarios is to inspect the reduction of total

application execution time while increasing efficiency using dynamic tuning of the

number of workers and grain size selection in a master/worker application. To

accomplish this goal, a master/worker discrete events simulator was built based on

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Ch
un

k
Ca

ch
e

H
it

 R
at

io

Number of Workers

Cache Hit Ratio in 16x16 Cache Hit Ratio in 32x32 Cache Hit Ratio in 64x64

Chapter 3: Grid Performance Models

60

SMPL [69], with the support of a custom heterogeneous group of workers connected by

LAN or WAN link.

Based on real parameters, the simulator can predict the behavior of a dynamic

master/worker application with grain size and number of workers change support. The

scheduling policy used is based on a minimal queue. The master scheduler sends tasks

to the faster worker with a minimal queue. Each worker has a queue of two tasks at

maximum. The idea is to have one task in a processing state and another in a receiving

state.

Figure 22 – This presents the simulator output of a master/worker execution with dynamic grain size
change. Blue bars are sends and green ones are receives. Orange bars are task processing. The numbers
inside the bars are the task number. Note that task 4 was processed using a different grain size and
workers 2 and 3 have different processor power than workers 0 and 1.

The task distribution process tries to overlap computation and communication in order

to decrease worker idle times. The simulation engine was validated using the

performance model of multi-cluster executions from [59], with parallel applications

using MPICH-G2 [70] based on an application template which supports dynamic

change of grain size and number of workers. The simulator and the application template

share the same task schedule strategy code. It allows for visual event debugging where

task transmission, execution and response transmission are presented as a Gantt chart,

as can be seen in Figure 22.

Chapter 3: Grid Performance Models

61

To support our goal we analyzed the gains/losses in execution time and efficiency,

considering the tuning of grain size and number of workers in the different mapping

scenarios presented in section 3.3. The mapping of processors in different CEs is done

by Grid Meta-Schedulers/Resource Brokers at application startup. Thus, users cannot

choose the initial best grain size because the processors and network characteristics may

vary along with execution. We consider that if the dynamic tuning technique shows

gains in all those scenarios, whatever scenario the application encounters, it will have

the benefits from dynamic tuning.

The grain size range was selected to allow for the modification of application runtime

behavior from computation-bound to communication-bound. In the configured

scenarios, we have the same simulation, with the different cases varying only the grain

size: these cases configure computation-bound and communication-bound executions.

Coarse grains cause computation-bound executions and finer grains configure

communication-bound ones. The range is wide enough to cover the processor power

and network characteristics variations considering the presented parameters. The results

presented cover executions considering all grain size selections as startup parameters to

compare with the same basic case using dynamic tuning.

The application workload was a matrix multiplication having

 single precision elements. The mean and

deviation of task processing time was obtained by a real application execution. The

reference machine for the measurements of task execution times was an Intel Pentium

IV 2.8Gz class processor with 512Mb of memory.

The LAN input parameters were obtained through measurements sampled by a simple

MPI application using MPICH within a Fast Ethernet switch. The WAN link profile

metrics where obtained using the iperf tool between machines of UAB aogrdini and

UOC dpcsgrd machines.

The grain size4 was set to operands,

which corresponds to a maximum grain size value which the reference machine

4 Note that we choose to have the maximum grain size defined by the value zero. The grain size value

should be perceived as a denominator of a coarser task workload.

Chapter 3: Grid Performance Models

62

configuration could process without swap use. We sampled grain sizes from to

 elements of block of result matrix using ATLAS algebra kernel package,

which isolates us from cache effects. The strategy for obtaining the different grain size

used was a recursive alternate dimension division. For example, have

, have , have and so on. Such a

strategy divides the number of operations, and consequently the execution time, by

almost two. A detailed explanation of that division is provided on section 5.3.2.

Figure 23 – Overview of application execution time reduction by using dynamic tuning of the number of
workers and grain size in all heterogeneous scenarios and the number of workers assigned to application.

The scenarios presented in section III were composed as follows. Simulations were

performed using different job requirements of 8, 16, 24, 32, 40 and 48 nodes.

In order to test processor heterogeneity each job requirement was also simulated with 2

and 4 CE composed by heterogeneous set of workers. The processor speed of these sets

was normalized to reference processors resulting in (0.8, 1.3) relative processor power

for simulations with 2 groups, and (0.8, 1, 1.3, 1.6) for simulation with 4 groups.

8
16

24
32

40
48

0%

5%

10%

15%

20%

25%

HePHeN
(2 Grps)

HePHeN
(4 Grps)

HePHoN
(2 Grps)

HePHoN
(4 Grps)

HoPHeN HoPHoN

To
ta

l E
xe

cu
ti

on
 T

im
e

Re
du

ct
io

n

Different Scenario

8

16

24

32

40

48

Workers

Chapter 3: Grid Performance Models

63

The simulation also uses as a parameter the standard deviation for all model input

values. The tuning process was also implemented inside the simulator considering the

transmission of the measurements to a different host for analysis. Each experiment was

repeated using the 16 seeds for random number generation. These seeds are provided by

SMPL as streams. All these cases were executed with or without dynamic tuning.

The cases without dynamic tuning were executed with all possible sixteen values for

grain size. In cases of heterogeneous processors in heterogeneous networks (HePHeN),

three extra scenarios were generated: faster processors placed locally in LAN,

distributed equally and placed on WAN. With these parameter sweep configurations, a

total of 65536 simulations were executed.

Figure 23 presents a general view of the application execution time reduction while

using dynamic tuning techniques in all presented heterogeneous scenarios and number

of workers. Same characterizations can be seen in Figure 24 from the point of view of

resource efficiency improvement. As can be seen, major benefits from efficiency are

found in scenarios with a heterogeneous network.

The maximum execution time reductions are 21.4% and 16.5% in HoPHeN scenarios

with 16 and 24 workers respectively. In the HoPHoN scenario, the task distribution

strategy used is near optimal for the small number of workers, as seen in classes of 8

and 16 workers. The best efficiency gains are 19.7% and 19.0% presented in HePHeN

scenarios with 4 groups of heterogeneous processors in classes of 24 and 40 workers,

respectively. Higher resource usage efficiency improvements were found in scenarios

with heterogeneous networks HePHeN (2 Groups), HePHeN (4 Groups) and HoPHeN.

Figure 25 presents a flattened view of efficiency gains in all experiments with the

different number of workers as single values in the tested scenarios, considering

different groups of heterogeneity. The same behavior from the point of view of

execution time is presented in Figure 26.

Considering all job sizes, the HePHeN scenario with 2 and 4 groups of heterogeneity

presents reductions of 8.1% and 6.7% in total execution time and the HePHoN scenario

show reductions of 2.7% and 2.3% respectively. HoPHeN scenarios show reductions of

14.2% and scenario HoPHoN present reduction of 1.4%. The proposed tuning strategy

Chapter 3: Grid Performance Models

64

lowers total execution time by 6.8% while raising resource usage efficiency by 10.2%

considering all cases.

Figure 24 – Overview of resource efficiency increment as result of dynamic tuning of the number of
workers and grain size in all heterogeneous scenarios and the number of workers assigned to application.

The gains are higher in scenarios with heterogeneous networks because the original

application uses a dynamic task assignation on demand. This scheme assigns more tasks

to faster processors which results in a better load balance. However, there were cases in

which the tuned application presents no gain in execution time. In such cases, the

applications were using the suggested optimum grain size and number of workers.

We have more benefits from dynamic tuning when the number of heterogeneous groups

increases. In real world scenarios, when executed in shared environments, applications

may face changes in their resource processing capacity over time. Such behavior

increases the groups of heterogeneity and makes more important the use of dynamic

tuning for grain size and the number of workers in these applications.

8
16

24
32

40
48

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

HePHeN
(2 Grps)

HePHeN
(4 Grps)

HePHoN
(2 Grps)

HePHoN
(4 Grps)

HoPHeN HoPHoN

Re
so

ur
ce

 E
ff

ic
ie

nc
y

In
cr

ea
se

Different Scenario

8

16

24

32

40

48

Workers

Chapter 3: Grid Performance Models

65

Figure 25 – Gains in resource usage efficiency in distinct groups of processor heterogeneity. We consider
efficiency as the percentage of total computation available performance used during the application
execution time.

Figure 26 – Gains in total execution time considering different groups of processor heterogeneity, as
shown, assigned to the application.

Considering only the HePHeN scenario, it is possible to have three different instances:

faster processors on local networks, faster processors on wide area networks or close to

equally distributed. Figure 27 and Figure 28 are flattening aggregations of gains in

efficiency and total execution time respectively considering only these different cases of

HePHeN
(2 Grps)

HePHeN
(4 Grps)

HePHoN
(2 Grps)

HePHoN
(4 Grps)

HoPHeN HoPHoN

Normal 72.2% 70.2% 93.1% 91.9% 68.4% 96.3%

Tuned 81.0% 82.1% 96.2% 94.2% 77.7% 98.5%

0%

20%

40%

60%

80%

100%

120%

Re
so

ur
ce

 G
ro

up
 E

ff
ic

ie
nc

y

Groups of Processor Hetereogeneity

HePHeN
(2 Grps)

HePHeN
(4 Grps)

HePHoN
(2 Grps)

HePHoN
(4 Grps)

HoPHeN HoPHoN

Normal 6829.49 6269.93 5547.76 5025.13 5820.64 4337.63

Tuned 6279.12 5849.41 5395.73 4909.19 4996.19 4279.07

0

1

2

3

4

5

6

7

8

To
ta

l E
xe

tu
ti

on
 T

im
e

(t
ho

us
an

ds
 s

ec
on

ds
)

Groups of Processor Hetereogeneity

Chapter 3: Grid Performance Models

66

HePHeN scenarios. The result values shows gains in all cases, from 4% to 14.2% in

execution time and 7.3% to 29% in efficiency improvement, respectively.

Figure 27 – Efficiency of resource usage compared against different heterogeneous processors’
distribution between LAN and WAN.

Figure 28 – Total execution time compared by heterogeneous processors distribution between LAN and
WAN.

Divided
Equally
(2 Grps)

Faster
Local

(2 Grps)

Faster
Remote
(2 Grps)

Divided
Equally
(4 Grps)

Faster
Local

(4 Grps)

Faster
Remote
(4 Grps)

Normal 69.9% 77.5% 69.3% 67.3% 76.2% 67.1%

Tuned 82.6% 83.2% 77.4% 86.8% 87.2% 72.1%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Re
so

ur
ce

 G
ro

up
 E

ff
ic

ie
nc

y

Groups of Processor Hetereogeneity LAN and WAN division

Divided
Equally
(2 Grps)

Faster
Local

(2 Grps)

Faster
Remote
(2 Grps)

Divided
Equally
(4 Grps)

Faster
Local

(4 Grps)

Faster
Remote
(4 Grps)

Normal 7046.39 6360.86 7081.23 6501.05 5792.15 6516.58

Tuned 6498.53 5900.88 6437.96 6240.16 5488.83 5833.86

0
1
2
3
4
5
6
7
8

To
ta

l E
xe

tu
ti

on
 T

im
e

(t
ho

us
an

d
se

co
nd

s)

Groups of Processor Hetereogeneity LAN and WAN division

Chapter 3: Grid Performance Models

67

The more heterogeneous is the scenario, like mixing network and processor

heterogeneity, the greater the benefits from dynamic tuning of grain size and number of

workers. As shown in Figure 28, scenarios with more groups of heterogeneity present

higher reductions on total execution time when tuned.

3.6 Summary

In Computational Grids, the main problem for achieving high performance is to scale

applications, considering the high level of heterogeneity in network links and compute

processors. To deal with that, applications should be developed to have good compute-

communication relations or grain size. Indeed, different scenarios require different grain

sizes for optimal execution. That motivates the architecture of applications with

dynamic grain size support. Applications with such architectures can support changes

from being computation- to communication-bound by runtime reconfiguration in

response to tuning.

We proposed a heuristic to tune the grain size and the number of workers using the

models of multi-cluster tuning found in [23]. Our main contributions are:

• Evaluation of assigned workers in heterogeneous groups;

• Infrastructure for dynamic grain size change support of master-worker applications;

• Heuristic for combined grain size tuning considering heterogeneous workers and

placed in heterogeneous network links.

In this chapter we proposed a heuristic to change dynamically the application

compute/communication ratio in order to reduce execution time while maintaining

resource usage efficiency at certain levels. We contrasted our approach, considering

four main scenarios of applications execution in Computational Grids. These scenarios

combine different homogeneous and heterogeneous characteristics for processors and

networks. A simulator for master-worker applications was built in order to test the

dynamic tuning of these exhaustive scenarios. These scenarios are commonly found in

Grid Systems environments.

The proposed heuristic for dynamic tuning provides significant reductions in overall

time, considering all scenarios while rising overall efficiency. The obtained results

indicate that it is possible to take advantage of dynamic tuning techniques to adjust

Chapter 3: Grid Performance Models

68

applications to execute within Computational Grids. Scenarios with heterogeneous

network and heterogeneous processors obtained the best results in execution time

decrease and efficiency increase. The best gains were obtained in scenarios with higher

levels of heterogeneity.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

69

Chapter 4
GMATE – Grid Monitoring
Analysis and Tuning
Environment

4.1 Overview

The tuning based on performance analysis use with application runtime measurements

feeds some performance models as model parameters and guides the tuning actions. As

presented in Chapter 3, we can have performance models for different layers which

cover restricted sets of parameters. As presented in Chapter 2, Grid Environments

display heterogeneity in many properties which directly influence application

performance. The major properties are machine and network heterogeneity. Note that a

machine is a complex property composed of other important sub properties such as

processor architecture, processor speed, cache size, memory size, disk space and speed.

Each property can have its own location which can be measured in order to be analyzed.

The network parameter influences the communication between machines. In cluster

system architectures, the network parameter is fixed or limited to an architecture. Each

machine within a cluster expects the same network bandwidth and latency in

communications through other machines in the same cluster. The network heterogeneity

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

70

is complex due to the interconnected network used for Grid communications.

Communications between machines inside a cluster have different latencies and

bandwidth properties than communications between machines outside the cluster but

within the organization. Communications between machines located in distinct

organizations have different communication properties, generally low bandwidth and

high latency. Examples scenarios are provided by [71, 72] which present inter-cluster

communications through the Internet.

All the heterogeneous properties of Grid Systems contribute to the complication of the

performance analysis and application performance improvement. Differences in

processor speed, for example, should generate load imbalance problems, different

network properties should change the relation data transfer time to processing time,

generating barrier contentions and idle time due to different data transfer delays. It is

hard to balance the application to overcome such problems because most parameters are

known only at runtime. When the user submits her application through the Grid

Protocol Stack, a resource broker can select a different group of machines for an

application’s execution for each submission. In such scenarios, to monitor and tune the

application is to deal with application process locations within the Grid and cross

organization process and analysis of data gathering and tuning actions in response to

that analysis.

Another important aspect of Grid Systems is that most heterogeneous properties are

dynamic. Shared machines may have different processor speeds or available memory

measurements, due to external loads. The network property measurements have the

same behavior. Latencies and bandwidth capacity can dynamically fluctuate in response

to network congestion and shared utilization. In the following, we discuss in more detail

some of the main problems of Grid systems in respect to monitoring tools and then we

propose an architecture infrastructure for monitoring applications in such systems.

4.1.1 Problems

From the point of view of the application performance, heterogeneity is the

characteristic which most influences application execution. The literature has an

extensive analysis of load balance problems that have been studied over a long period.

The idea is that system heterogeneity is harmful for application developers [11].

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

71

In Computational Grid environments, system heterogeneity is a fact. There are some

reports about homogeneous Grids in [73], although, with technological advances, and

the multi-institutional characteristic of the Grid, it is hard to do system upgrades. Most

Grids uses commodity of the shelf (COTS) machines as resources and COTS

components today are not on sale due to the presence of newer, faster and cheaper

products.

Despite system heterogeneity problems, another characteristic that affects application

construction is the fact that Grid resources belong to more than one organization. Each

organization has its own policies. In the case of security policies, the application should

satisfy the requirements of identification, authorization of service usage and transport

level operations. In the case of execution policies, problems of accounting and resource

usage limits may affect application execution. At the fabric layer, for example, the

policy applied to a user may command the operating system to restrict memory, disk

quotas and other low level resources to the participant of some VO.

Administrative Domains

Computational Grids differ from conventional distributed systems in their

administration requirements. As mentioned before, Grids belong to more than one

organization and each organization imposes its own runtime and execution policy. In

such environments the application should satisfy all policies of the sites where it runs.

These policies’ appliances are handled by middleware. The middleware may apply

security policies using PKI certificates or existing policy systems. At a fabric level, for

example, the execution policies may be enforced by local schedulers such as Condor

[25] or PBS [26]. Some resources can have a maximum execution time or network

bandwidth restrictions.

From the point of view of monitoring and tuning Grid applications, the multi-

institutional characteristic of the Grid has its own security requirements. In most cases,

the communication required for the tuning process can be executed under a user

identity. In this case, the generated performance data and tuning action messages’

transport should use the user certificate to ensure authorization and private data transfer.

The GSI mechanism, explained in Chapter 2, ensures that the tuning tools have the

same security rights as the application. The tuning tool may use the proxy user

certificate delegated by execution to secure communication channels.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

72

Heterogeneous Structure

In Grid applications, performance goals depend on many aspects. The application itself,

at an algorithm level, may not scale well or have more sequential than parallel codes. In

the case of parallel parts, the relation between computation and communication time

may limit the application speedup [4].

One of the main differences between a cluster system and a Grid system is the network

heterogeneity characteristic. In Cluster systems, there are many studies of load balance

in order to seek high efficiency and lower execution times. With network heterogeneity,

some models were proposed to have load balance on the Internet [71, 72].

When a tuning tool steers the execution of a parallel application over a heterogeneous

structure, it consumes network and processing resources that in some cases may

compete with the application itself. To overcome such scenarios, the tuning tool should

balance its resource usage to lower network and processor utilization. The idea is the

tuning tool should be parallelized itself and work in a distributed manner.

Event Ordering

In cases of performance analysis of parallel applications, event ordering and time

synchronization is crucial for bottleneck detection. Event ordering is an old problem for

distributed systems, studied as a causal ordering issue [74]. In our case, if we want to

measure the time a process spent in a blocked message passing receive, we need to

correlate that receive to a message passing send on other processes. That can be done by

event ordering over the sender and receiver processes. Such kinds of event ordering

allows for a deeper analysis of such causal issues.

In MATE, covered in detail on section 4.2.3, the event ordering is done by event time

ocurrence. The tool has a syncronization phase executed at the beginning of the tuning

session and it generates the event timestamp based on the time offset among the

machines. There is no re-synchronization phase for long-runing applications.

In Computational Grids, due to network hereogeity characteristics, the clock

syncronization between machines is hard to maintain. We face problems in the tuning

process due to incorrect event ordering. For example, for small communications, we

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

73

may receive the response event trace before the corresponding send. To help the tuning

process, we need mechanisms to order events from different processes.

When state event ordering, the event collection can easily become the botleneck. If we

receive an event caused by another event, we may wait for the cause event, blocking the

event stream. To overcome such scenarios, the tuning tool should treat the event stream

and event processing asynchronously.

4.1.2 Clock Synchronization

If monitoring is used for performance analysis, performance analysts may want to

correlate events from different process within an application execution. That analysis is

based on time differences between events from different processes on different

machines with their own clock. In order to provide event synchronization in application

monitoring processes, we can use two approaches:

• Based on the tool;

• Based on the system.

Figure 29 – Clock synchronization message exchange.

In clock synchronization based on the tool, the synchronization process is done by the

estimation of communication messages’ roundtrip time plus clock difference. Two

machines can exchange timestamp messages and estimate the clock difference between

then. A simple algorithm is presented in Figure 29 [75]. The client calculates the

Client Server

tim
el

in
e

T1

T4

T3

T2

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

74

roundtrip delay d and local clock offset t relative to the server process, by sending a

message with client timestamp clock information T1. The server receives the message

on server time T2 and generates a reply message containing the T1 and T2 values and

then sends the message timestamp T3. The client receives the message at time T4 and

calculates the clock difference. Table 2 presents these timestamps descriptions and

equation (8) relates them to obtain the delay and offset.

)32()14(TTTTd −−−=
2

))43()12((TTTTt −+−
= (8)

Table 2 – Clock synchronization timestamp information [75].

ID Timestamp Name When Generated

T1 Originate Timestamp Time request sent by client

T2 Receive Timestamp Time request received by server

T3 Transmit Timestamp Time reply send by server

T4 Destination Timestamp Time reply received by client

The client can repeat the transmission many times in order to get the average roundtrip

time. Note that there are some drawbacks for this operation in Grid environments. In

these systems, network latency can have a high variance because it is a shared resource

and the hop5 path may change, due to the network load balance route schemes. In some

senses, machines distributed over the WAN should use some third part synchronization

source to overcome network latency variation problems. Another point is that machine

clocks are not synchronized. A simple measurement from different between and Internet

exposed server and two stratum 2 servers is presented in Figure 30. Note that the clock

difference among the machines varies over time. Within same day we have variations

The term ‘hop’ uses the same concept as TCP/IP networks. It consists of each network element having the

information it has to cross to reach the destination.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

75

from +115ms to -110ms to Site A and Site B have maximum of 32ms and minimum of -

33ms.

Figure 30 – Time difference between two stratum 2 sites to a client machine.

Note that the presented time variation graphed on Figure 30 uses the same site time

offset to synchronize the machine clocks. We state that such variation should not have

high influence on the performance models used in tuning. If the application needs more

time synchronism than 100ms, it should rely on causal relation among the instrumented

events. For a Master-Worker application, for example, it is possible to inspect the time

difference from the master to worker processes by analysis of the sampled events of task

sending by master and receiving by worker and result sending by worker and receiving

by master. That could also be applied in small message communication in any

communication paradigm.

The idea of using a third party machine as a time synchronization source is handled by a

system synchronization approach. In this approach, the machine should synchronize its

clock using a trusted and precision time-source. The service infrastructure for time

synchronization is standard and its services are available on the Internet, called Network

Time Protocol (NTP) servers. By now, most operating systems come with a NTP client.

By using a close NTP server (e.g., one with low latency or controlled latency between

server and client), clients distributed over the world should be synchronized.

-150

-100

-50

0

50

100

150

0 0.5 1 1.5 2 2.5 3 3.5 4

Cl
oc

k
D

iff
er

en
ce

 (
m

ill
is

ec
on

ds
)

Days

Site A Site B

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

76

The idea is that the NTP servers should be synchronized by high precision time-source

hardware. Other NTP servers may synchronize with those servers in a hierarchical

structure. The distance from machines running the NTP time daemon to an external

source of Coordinated Universal Time (UTC) is called a “stratum”. Stratum 1 servers

can connect directly to an external source of UTC, such as a radio clock synchronized to

a standard time signal broadcast. In general, the stratum value determines the number of

hops, minus one from a stratum 1 server [75].

To overcome the clock speed difference, the NTP client can detect and make the

correction by software, inside the OS. The NTP daemon that comes in most LINUX

distributions uses the kernel system call adjtime to configure such tune parameters.

Currently, it is easy to find stratum 2 or 3 servers to be synchronized with. That gives

clock synchronization with an error of less than 50ms in our test environment, as

described in section 5.2.2 (we used the stratum 2 servers with less variability). Note that

the machines inside a cluster have their clocks synchronized with an error less than

10ms, enough for event ordering and synchronization. Measurement of events using

such time resolution modifies the application behavior caused by overhead effects and

so its performance analysis.

4.2 Dynamic Tuning

With different system configurations, the application should have different performance

indexes. When these systems are used in shared mode, applications perceive more

system heterogeneity. In such scenarios, applications may suffer performance problems

due the difficulty in adapting to the different system characteristics. The dynamic tuning

technique can help the application adaptation to overcome these problems. In the

following sections we analyze some state of the art tools related to dynamic tuning.

4.2.1 Active Harmony

Active Harmony consists of a software library that developers can use to prepare an

application for adaptation in different systems. That adaptation is done by automatic

parameter search and evaluation. The programmer uses the library to expose some

tuning factors and runtime metrics. During application execution, Active Harmony

explores the tuning factor parameter variations and verifies the gains in runtime metrics.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

77

The current version supports two types of parameter search: exhaustive search and a

Nelder-Mead simplex algorithm. [15]

To deal with parallel applications, Active Harmony has a Client/Server model. The

client consists of the linked library in application binary. Within a server, the developer

may specify local and global variables. These variables are updated explicitly by API

calls.

The difference between Active Harmony and our work is the philosophy that drives the

parameter search. We assume that complex systems with high levels of heterogeneity

may generate a huge parameter search space. In such scenarios, a parameter search

guided by performance models should have faster responses and should avoid local sub-

optimal configurations.

4.2.2 Autopilot

Autopilot [76, 77] is a software toolkit used for the performance monitoring and

analysis of distributed applications and infrastructure data. The instrumentation is done

by the developer in source code and the performance data collection is selective by

means of a pattern classification scheme. The goal of the tool is to drive application

execution based on sensor information data and decision procedures. The main

components are sensors, decision procedures and policy actuators, as presented on

Figure 31.

Figure 31 – Autopilot conceptual architecture [76]

Local Pattern
Classification

Fuzzy Logic
Decision Process

Fuzzy Sets Fuzzy Rules

Sensors

Actuators

Police
Component

Local
Decisions

Global Pattern
Classification

Processor A

Local Pattern
Classification

Sensors

Actuators
Police

Component

Local
Decisions

Processor B

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

78

In contrast with the GMA model, detailed in section 2.5.1, the registry role is done by

the Autopilot manager, acting as a name server. The producer role is played by

application processes instrumented with Autopilot sensors and the consumer role is

played by the clients. In Autopilot, sensors have a set of associated properties defined at

the moment of sensor creation. These properties include sensor name, type, identifier,

IP address and custom user-defined pairs of attribute/value. Clients use properties to

query the Autopilot manager for distributed sensors over the system.

The sensors are associated with a process and a set of system variables used as a data

source. The sensors can be used in two programming models: threaded or non-threaded.

When a threaded sensor is activated by a client, it starts to monitor periodically and

transmit to the client. The non-threaded usage of sensors depends on an application’s

explicit function calls to perform data delivery. Sensors uses a NEXUS component of

Globus to send the collected data to clients [76, 77].

Figure 32 – Autopilot components and the iteration sequence among them. [76]

To allow a dynamic change of variables, Autopilot provides software components

called actuators. Clients can interact with actuators in order to change variables or to

invoke application level functions. Actuators, similar to sensors, can be located by

querying the Autopilot manager. Figure 32 present the iteration among these

components. Instrumented tasks when running register themselves in the Autopilot

manager. The client task, which performs the global pattern classification, connects to

Manager
Sensor/Actuator Repository

Instrumented
TaskClient

Query

Global Pointer

Registration

Sersor/Actuator
commands

Performance data
generated by Sensors

(1)
(1)

(2) (3)

(4)

(5)

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

79

the Autopilot manager to query what instrumented tasks are active. It receives a global

pointer from where it is possible to command sensors and actuators coded on the

instrumented tasks. When activated, sensors generate performance data that is used by a

task client for performance analysis. The analysis is done by continuous evaluation of

fuzzy logic rules which drive what commands should be performed by actuators on

instrumented tasks.

4.2.3 MATE

The Monitoring, Analysis and Tuning Environment (MATE) [14, 57] consists of an

execution environment that permits dynamic tuning of applications without the need for

code modification, compilation or linkage. The environment is based on DyninstAPI

[48]. The idea is that the developer does not need to be an expert to tune her application.

Internally, the tool has knowledge of the performance bottlenecks problems, and how to

detect and solve them. With this information, MATE introduces instrumentations and

modifications in the application binary to optimize its execution. That optimization

process is done without user interaction.

Figure 33 – Dynamic Monitoring, Analysis and Tuning Approach

Figure 33 shows the work done by the user and the tool. MATE inserts the

instrumentation needed by the performance analysis within the running application. The

instrumentation inserted by the monitoring process generates performance data that is

collected and represented by trace events. These event traces are analyzed using some

Modifications

Instrumentation

User

TuningMonitoring

Tool

Solution
Problem /

Performance
analysis

Performance data

Application development

Application

Execution

Source

Events

User

TuningMonitoring

Tool

Solution
Problem /
Solution

Problem /

Performance
analysis

Performance data

Application development

Application

Execution

Source

Events

DynInst

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

80

performance models to verify the existence of bottlenecks. For example, the

instrumentation can measure the size of messages sent and received, and buffer sizes: a

performance model could relate message sizes to optimal buffer size and the

modification could be a change of the buffer size in process binary.

Figure 34 – MATE component architecture.

As presented in Figure 34, MATE has two main components: (i) the Application

Controller (AC), and (ii) the Analyzer. The AC is the component which interacts with

the application process, inserting instrumentation code and doing dynamic tuning

modifications [14, 57]. The AC uses DyninstAPI to attach to the application process and

load within the application process space in a MATE dynamic library called DMLib.

This library helps the instrumentation and tuning process. In the current architecture, it

is required to run just one AC process instance per processor node. One AC process can

monitor and tune many application job processes on the same machine. The Analyzer

consists of a software container of tuning components called tunlets. It has the

responsibility of coordinating the tune session in cooperation with the AC components

distributed over the system. Each tunlet can encapsulate the logic of what should be

measured, how data can be interpreted by a performance model and what can be

changed to achieve a better execution time or better resource utilization [14, 57].

The Analyzer interacts with the tunlets through the Dynamic Tunlet Application

Programming Interface (DTAPI) as presented in Figure 35. That API allows for the

tunlet receiving callback events such as application startup, job process startup and the

Machine 3

Machine 2Machine 1

Analyzer

AC

instr.

events

modif.

events

DMLib
DMLibDMLib

Task1 Task2Task3

instr.

AC

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

81

event trace generated by instrumentation. Within these callback events, the tunlet can

request application process instrumentation or application modification. All

instrumentation requests generated by the tunlets are forwarded to the AC. The AC

receives the requests, instruments the application and forwards the trace back to the

Analyzer. By DTAPI, these trace events are dispatched to the desired tunlets. The tunlet

decides, based on its performance model, what should be changed to tune the

application and requests the Analyzer application to make changes. These requests are

forwarded to the AC and the appropriate changes are made in the application [14, 57].

Some cases of MATE are presented in [66, 78].

Figure 35 – Internal representation of the Analyzer.

4.3 Grid Monitoring

Once we saw the state of the art in automatic performance analysis and tuning, we

detailed our architecture for its appliance on computational Grids. First we started the

monitoring stage of the automatic performance tuning. Tuning requires sense

application behavior through measurements obtained by monitoring. Monitoring

parallel applications in computational Grids using a dynamic instrumentation approach

needs some requirements to work well. The first requirement is a technique to insert the

instrumentation into the running process. We presented some alternatives for dynamic

instrumentation in section 2.5. In our tool, the dynamic instrumentation is done by a

DyninstAPI library. By using DyninstAPI concepts [48], we treat application processes

Analyzer

DTAPI
Tunlet

Performance model

Measure points

Tuning point, action, sync

Tunlet

Performance model

Measure points

Tuning point, action, sync

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

82

as mutatees and one of our processes as the mutator. Using this scheme, we need a

process running on each machine where the application processes run.

Figure 36 – Communication channels among GMATE components.

The process which has the responsibility for controlling the application process is

called, in our architecture, an Application Controller (AC). The AC component is the

processes which uses DyninstAPI for the instrumentation of application processes. As

the execution of AC and application job processes are done on different machines that

are used to run the program which consumes the produced event data, we have the client

component. In our architecture, the client is the Analyzer component. The client process

establishes communication channels to the AC and its client. The communication

among presented components is done by three communication channels, as presented in

Figure 36:

• Management Channel: used to transport management commands between the AC

and the Analyzer. For this channel the AC can be controlled for instrumentation of

the application by installing process sensors, to continue or pause application

executions and establish new management and event channels.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

83

• Event Channel: used just for transfer data collected from the sensors to the

Analyzer. Currently it is used as an upstream data transfer channel.

• Trace Collector: the communication scheme for collecting information from the

running process. This channel is distinct from the Event Channel because overheads

generated due to the data transmission should be minimal. That is discussed in the

section on monitoring topology below.

To monitor an application execution in a Grid environment, we need to use the services

provided by the middleware infrastructures in order to comply with site usage and

security policies. In a Grid environment, an AC should fulfill some requirements such

as:

• Application Process Tracking: depending on the software layers installed over the

Grid, process tracking may not be a simple issue. The location of process execution

may be known only during execution. We propose two main approaches to solve

this problem [79], a System Service Approach and a Binary Service Approach. Both

topics are covered later on in this chapter.

• Locate the Analyzer: once the application process is located, the next step is to

establish communications between the AC and the Analyzer. This can be done by

using Grid Information Services such as MDS or can be passed as a configuration

parameter to the AC process. In order to fulfill Grid security requirements, the

message exchange among tool components should use the middleware infrastructure

to ensure data privacy [79].

4.3.1 Design Architecture

Our monitoring tool has the same components presented in MATE [14, 57]. The coarser

components are the Application Controller (AC), the Analyzer and the Dynamic

Monitoring and Tuning Library (DMTLib). The Analyzer corresponds to the Analyzer

component in MATE. As presented before, an AC component controls the application

using the DyninstAPI library [48]. This library facilitates the modification of binary

applications without the need for source codes. Using that library, the AC process is

capable of dynamically changing the application job process. These modifications are

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

84

function calls to the functions from the dynamic loaded library in order to allow

communication between the running application program and the AC.

Our tool follows the GMA model, as presented in Figure 37. We use the concept of a

sensor to collect event data from the application. Sensors are objects which have a

internal memory state and a defined protocol for communication. The AC installs

sensors into the application job process by inserting a sequence of function calls on an

execution point of the application. That is done using DyninstAPI. By doing that, when

the application execution reaches the changed execution point, the sensor receives the

information and acts in response to it. A more detailed form of sensor structure and

internal processing is presented later in this chapter.

Figure 37 – Our monitoring scheme model in comparison to GMA

All the sensor logic is implemented by a dynamic linked library called DMTLib. When

the AC starts to control the application job process, the first step is to load the DMTLib

inside the process memory space. DMTLib establishes the communication protocol

between the running process and installed sensors by exposing general API functions.

The instrumentation is done by inserting function calls using DyninstAPI in the selected

execution points. These function calls are implemented by DMTLib binary and allow

the instrumented execution points to activate the sensor components. Table 3 presents

Consumer

Producer

Events Directory
Service

Event
publication
information

Event
publication
notification

MDS

Analyzer

Sensor Install

Application
execution

information

Application
execution

information

Event Channel

Event Data

Application
Job Process

DMTLib

GMA – Comparison

AC

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

85

the API available and used within the instrumentation points and details its functionality

description.

The instrumented API calls can generate trace data which are transmitted in binary form

to the AC. When the AC receives the data, it decides, based on configuration, to store

locally or to forward it in the Event Data Channels. Moreover, to allow analysis of the

complete application execution behavior, we merge the collected event trace data. That

merge process is done using the event timestamp information.

Table 3 – API used in process to gather data and support sensor communication.

API Function Name Description

DMTLib_addSensor

(SensorConfig)

Allocates the sensor inside process memory space. The

sensor configuration data contains all the information

necessary to build the sensor.

DMTLib_reset

(EventId)

Informs the sensor about the beginning of data transfer.

When the sensor receives this call, it waits for a sequence

of DMTLib_setProperty function calls.

DMTLib_trigger

(EventId)

Informs the sensor about the end of data transfer. In this

point the sensor can send the trace data event to the AC or

can do other computation.

DMTLib_setProperty

(SensorId, propertyData)

Used to send runtime measurement data value to the

sensor.

DMTLib_sendValue

(FromSensor, Index,

ToSensor, Indwx)

Allows instrumentation of value exchange between

different sensors. Realizes the inter sensor communication

protocol.

DMTLib_bindSensors

(FromSensor, ToSensor)

Configure FromSensor to propagate trigger event to sensor

ToSensor. Allows trigger event subscription between

sensors. Realizes the inter sensor communication protocol.

Each application job process produces one set of events. On our architecture, the

generated events can be merged offline or online. In online mode, the AC and the

Analyzer establishes one Event Channel based on the Grid transport services, the

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

86

Globus Extensible Input Output System or Globus-XIO [80]. These services are

accessed through a common API for data transport. In such an API, it is possible to

configure a stack of protocols and use it in a transparent manner. In such configurations,

the Analyzer can receive all application event information while the event occurs. In

offline mode, the Analyzer configures the AC for storing on disk the event trace data

and the generated file is transmitted at the end of an application execution.

As we saw in chapter 3, in order to improve performance, the application processes

should be mapped to the selected execution nodes to overcome network bottlenecks.

The application can have a process group which has more inter-process communication

than another. In that case, that process group should be placed on a machine group with

high bandwidth and a low latency network such as a cluster. Other processes that do not

need much communication can be placed on ‘far’ machines over the Grid, with the

overhead of high latency and low bandwidth network. The monitoring tool should be

able to overcome the problem of different network properties such as latency and

bandwidth by a change in its topology of communication. If the event collection

generates more events that the available bandwidth of the network between the AC and

an Analyzer, the monitoring process slows down the application execution. To

overcome that problem, our monitoring tool provides a mechanism for the use of

different network paths. The monitoring topology is covered later in this chapter in

section 4.3.3.

The communication between the AC and the Analyzer is achieved by two channels

based on a Grid middleware infrastructure, Management Channels and Event Channels.

The Management channel is used to send control commands from the Analyzer to the

AC and to send application notification status changes from the AC to the Analyzer. We

distinguish the following control commands transferred in management channels:

• Application execution mode change: allows start, stop, continue and terminate

the application job processes.

• Sensor configuration: allows sensor install, remove, enable and disable.

• Topology construction: allows the creation of new management or event

channels to other destinations. This allows the construction of any topology over

the Grid.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

87

The Event Channels are used to transfer event data from the AC and the Analyzer.

These Globus-XIO channels connect the two components and the AC has the capability

to receive connections from other AC’s and forward event data to other established

event channels. In order to lower the network bandwidth used for event transmission,

the event data transmitted over event channels should be minimal or encoded to be

small. The concept is that on each endpoint of an Event Channel we have the same

configured sensors. The sensors configured on an Analyzer are used to decode the

information received by the Event Channel. The topology of Event Channel connections

can be changed using control commands and may differ from the topology

interconnection used for management.

4.3.2 Process Tracking

Due to the distribution of resources within the Grid, following the process execution

may not be an easy task. The Compute Elements on the Grid may be controlled by

cluster local schedulers and the job distribution may be done using broker services. The

resource allocation for the application should fit application requirements. These

requirements may not fix the execution machine of the application. The application has

the information about the allocated resources on execution time.

One execution scenario that presents this kind of problem may be a Grid environment

which uses Condor-G [18] as Grid-wide job scheduler. In such environments, the job

description specified on the submit command file should not force the target resource to

take advantage of the Grid capabilities. In this case, Condor-G will search for the

available resources which satisfy the application requirements, such as operating system

type, free memory and disk amount.

In order to track application job processes over the Grid, we need to get information

about the process startup on the resources. We assume a Globus Toolkit as the

middleware which provides the software layers required for Grid construction. On this

middleware, the information about where the processes are executing is not available on

MDS. Once the application process is started, we need to have our monitoring process

running on the allocated CN resource in order to instrument and monitor it. If the

execution information were available on Grid information services such MDS [9], we

also could not run our monitoring process on the allocated node using the current

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

88

scheme available for job submission because the job submission process does the

resources allocation in exclusive mode.

Another problem is the execution of SPMD applications. The submission of Grid MPI

applications may distribute only the application binary. This occurs, for example, on

simple submissions using a MPICH-G2 ‘mpirun’ command [70]. The ‘mpirun’

command in MPICH-G2 generates the job submission file and binary transmission in a

transparent way. In that case, we need to be able to follow and control the process

execution in a transparent way.

The lowest software layer, where the application jobs execute, is the operating system.

In order to support any software layers that exist between the user and the machine, we

found two approaches which can be used to steer the application execution. The first is

when the operating system starts the application in response to a high level request and

the other is the application execution itself. We can, using these events, plug in a

daemon to the operating system, in order to detect the application startup, or we can put

a code in the application and fake the submission system, identifying the execution

resources. These two different approaches are called System Service Approach and

Binary Packaging Approach respectively [79].

System Service Approach

The Grid infrastructure evolution indicates the emergence of Service Oriented

Architecture (SOA) semantics in Grid computing. In such semantics, the system

infrastructure and application components should be accessed through services. The

Globus Toolkit follows the SOA philosophy and its services interfaces are now, in

version 4 of Globus Toolkit, accessed through the Web Services Resources Framework

(WSRF) as we discussed in chapter 2. In a simple manner, the Grid services are

provided by resources and the access to these resources is achieved by web service calls

conforming to WSRF standards.

In this approach, the concept is to have monitoring and tuning (application change)

services pre-installed on machines in the Grid, similar to SCALEA-G tools [31, 35].

This mainly consists of having the AC as a system daemon running on the processor

nodes waiting for monitoring/tuning sessions. This approach requires administration

privileges because it must be capable of changing its security context to instrument

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

89

processes from different users. The key idea is to enable a machine with dynamic tuning

services that can be used by any registered application.

With the AC service daemon running on each machine of a cluster, this cluster is ready

to undertake the monitoring/tuning sessions by user request. In clusters exposed as a

CE, it is common to have Globus services installed only on the machine that controls

the cluster. The integration is done by WS built on top of WSRF that handle the control

of the AC daemons running on CN elements of the CE. Those services expose two

resources: the AC Wrapper (ACWS) and Application Session. The AC Wrapper

handles the integration through the Globus Index Service and exposes the services of

each AC. Because the ACWS is an exposed grid resource capable of indexing, the

resource properties are indexed by the MDS. The MDS propagates the collected

information to other configured MDS services that belong to the VO information

hierarchy. Figure 38 presents the relation of the AC Wrapper and the AC instances. The

integration actions to the Grid middleware are presented in Figure 39 and Figure 40.

Figure 38 – Connection between AC Wrapper instances and AC instances.

When the AC daemon starts, it creates an AC Wrapper instance inside the Globus

container. In this process, the AC Wrapper establishes a management channel to the AC

daemon. After that, all the communication between the AC Wrapper and the AC is done

using the established management channel. After initialization, the AC Wrapper

Globus Container

CE Head Node Machine

AC
Wrapper

AC
Wrapper

AC

AC

CN Machine

AC

CN Machine

CN Machine

AC
Wrapper

WS Call
Create Resource

Management
Channel

Management
Channel

WS Call
Create Resource

WS Call
Create Resource

Management
Channel

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

90

subscribes modifications to the ‘GMATE/ApplicationSession’ resource group in MDS

Index Service by using the Notification Service provided by the WSRF.

When a user starts a monitoring session, he/she creates an ApplicationSession resource

containing information about the application submission. When the application is

registered as an ApplicationSession resource, the associated information is collected by

MDS and the AC Wrapper service receives the notification of the resource creation.

Initialization phase use case

AC starts on CN

AC requests ACWS resource creation

ACWS receives resource creation command

ACWS establishes a management channel to AC

ACWS returns success to resource creation command

Figure 39 – Integration of the AC to Globus Toolkit – Initialization Phase.

Runtime phase use case

Analyzer creates an ApplicationSession

ACWS is notified by IndexSerivice of ApplicationSession creation.

ACWS send command to AC to monitor process startup

AC detects the application creation

AC send to ACWS process creation information

ACWS register itself on ApplicationSession

Figure 40 - Integration of the AC to Globus Toolkit – Runtime Phase.

The AC Wrapper uses the ApplicationSession services to get the application

information for local detection and transmits it to the AC daemon. In response to that,

the AC daemon starts a time-limited detection of application startup. In case of success,

it transmits this information to the AC Wrapper and the AC Wrapper resource registers

itself in the ApplicationResource. The sequenced use case of the initialization phase and

the runtime phase are provided in Figure 39 and Figure 40 respectively. The connection

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

91

between the AC daemon and the AC Wrapper service runs under the security context of

Host Identity, so it requires the running machine to have a valid host PKI certificate.

To start application monitoring, the Analyzer should register the application by creating

a resource ApplicationSession. The resource information is collected by MDS. The

resource ApplicationSession represents an application execution session that should be

monitored. This component exists to provide to running AC processes the information

necessary to start the monitoring session. This information includes:

• Application program name: used for application identification;

• Grid contact endpoint: used on AC management channels creation;

• Startup detection time: used by AC services for timeout detection;

• Monitoring control information: used by AC to choose the authentication

method of the application;

• Environment Variable Detection: includes a name/value pair used for detection;

• Binary Detection: includes the application binary size and MD5 hash number of

the application program used for application authentication.

The main concept is that when the application is registered, all the AC services

available on the Grid will be made aware of the application registration by the

notification service. At this phase, all AC services start to monitor their local machine

scheduler in order to find some process name that matches the registered information. If

startup detection times exceed the value provided on MDS, the AC stops searching for

application detection and assumes that the application programs were detected on other

machines. That corresponds to the steps 1, 2 and 3 on Figure 41.

The local process detection by AC daemon can operate in two modes: pooling mode or

pull mode. In pooling mode, it monitors changes in ‘/proc’ file systems to detect

application process startups. In pull mode, the AC service instruments the cluster batch

scheduler process such as PBS or Condor daemons with DyninstAPI and waits for the

callback event generated by an exec system call [48]. This makes known the exact time

of application startup and allows the instrumentation from the beginning of the

application.

With pooling mode detection, when the operation system starts a new process, the

‘/proc’ file system changes and the AC service reads its content looking for the

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

92

registered application program name received by the Grid integration. In pull mode

detection, the AC service checks for process startup on each callback generated by the

instrumentation of the batch scheduler instrumentation. In both modes, if it finds a

process name which matches the registered application program name, the AC service

authenticates the application. The authentication depends on the monitoring control

information provided in the MDS. On that information, the Analyzer specifies how the

authentication can be done: by application environment variable detection or binary

detection. Figure 41 presents the step sequence of application processes detection using

the Grid Services.

Figure 41 – Application detection using Grid integration.

Globus Container

CE Head Node Machine

AC
Wrapper

AC
Wrapper

AC

AC

CN Machine

CN Machine

Analysis Node

Application
Session1. Register Application

2. Notifications

3. Detection Request

3. Detection Request

Globus Container

CE Head Node Machine

AC
Wrapper

AC
Wrapper

AC

AC

CN Machine

CN Machine

Analysis Node

Application
Session7. Session State changed

6. Session Join

4. Detection Suceed

8. Create

Management Channel

9. Management Channel Creation

Tim
eline

Job

attach

Analyzer

Analyzer

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

93

The authentication can be done using application processes environment variables. The

AC daemon looks for known environment variables registered in the application session

information. If the process has the environment variable, the AC service assumes the

process is authentic and starts the monitoring/tuning session.

In cases of an authentication based on binary detection, the AC service checks for the

binary size matches to be provided on registration. If it matches, the AC service attaches

to the found process using DyninstAPI and perform a MD5 hash on a process binary file

in order to complete the authentication. Using this approach, we stop only programs that

have the same name as the registered application process and authenticate the binary

using the MD5 hash. In this scenario, we suppose the application program binary is

unique for that execution.

To use the AC service configured to ‘pull mode’ detection, it is necessary to having

high levels of privileges in order to allow the attach operation to the batch scheduler

process and follow the batch scheduler process to a user’s security identity. In this

mode, we performed tests over the OpenPBS [5] as proof of the concept. In each of the

presented models of execution, the target execution machine should support DyninstAPI

[7].

Binary Packaging Approach

The idea of an application plug-in approach is to track down application processes using

the same binary distribution and execution used by the application. This approach has as

advantages over the System Service Approach because the user has total control over

the software requirements of the tracking process. This approach allows transparent

execution, for example, of MPICH-G2 compiled SPMD programs over Grid Systems

using ‘mpirun’ submission script. The tool is packaged inside application binary.

When a user submits an MPICH-G2-based application for execution on a Grid System

using the ‘mpirun’ submission script it generates the resource specification needed and

lookup on Globus MDS in order to locate the hosts. If the lookup finds the required host

resources, the script uses the GASS to deliver the application binaries to selected hosts.

In sequence, the script uses the DUROC services [81] of Globus to coordinate the

application process startup and authentication, using GRAM services.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

94

In such scenarios, the application binary is the startup entry point. To follow binary

delivery and have total control of the application process startup we cheat the execution

system. The problem of process tracking in such scenarios can be broken in two:

• Follow the application binary;

• Control the process startup entry point.

In submissions using Condor tools or even Globus globusrun submission commands, it

is possible to specify which files should be delivered and which application is the

execution entry point. In cases of ‘mpirun’ use, the user can not specify the parameters.

In such scenarios, the process tracking should fake the binary delivery mechanism and

the application startup to get the monitoring tool binary transmitted to selected

machines and to get the AC program started as a first application.

To get the AC program delivered together with the application process binary, we

merge both binaries, the AC program, the application program and all configuration

data needed for the monitoring process. This process is called Binary Packaging and, as

a result, we have a single executable file containing:

• Glue program: a process that knows how to unpack the programs and libraries;

• AC program: our dynamic monitoring module which controls the application;

• DMTLib: our dynamic linked library which is loaded into application process

space to help process instrumentation and event trace collection;

• DyninstAPI Libraries: optional libraries that can be used in case the target

execution machines do not have DyninstAPI installed.

That binary packaging process can be done by the developer or even by the application

users before the execution as a preparation step for execution or a post compilation step.

That packs all required files into one using the structure presented in Figure 42. Using

this approach, the AC program manages to follow the application program on any

machine selected for execution over the Grid.

For controlling the application startup entry point, we need to change the application

startup process. The packaging process puts the Glue program as the first program in the

composed binary. By that composition, at runtime, the first executed code is the one that

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

95

is loaded on memory. The key idea is to have the Glue program as an independent

program which should care about the application startup process.

Figure 42 – Binary packaging structure.

Figure 43 – Binary Packaging information block

In the startup phase, the Glue program locates the application and AC programs within

the composed binary, extracts the packaged files, and does some checkups,

initializations and passes execution control to AC programs. To extract the packaged

files, the Glue program locates at the end of its execution some information included in

the packaging process. This information block, called a “Glue record”, contains the

number of packaged files, and for each file, an information block containing the name,

offset and size of the packaged file as presented in Figure 43. This information is

included at the end of the binary in an inverse order to allow easy location of each

information block.

Glue code

AC code

DMLib code

Original
Program code

Information block

Read
information block

Unpack
Files

Execute
AC code

Glue code
execution sequence

Number of files
File 1 size

File 1 name size
File 1 name

File 1 offset

File n size

File n name size
File n name

File n offset

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

96

After the file extraction, the Glue code tries to detect if the machine has DyninstAPI

installed by checking the environment variables and trying to load the DyninstAPI

runtime library. If it cannot find the libraries or the library load fails, and the binary

packaging has the DyninstAPI binaries included, the Glue program reconfigures the

environment variables and tries to load the library again. If it succeeds, the Glue

program starts the AC program by passing the name of the extracted application

program and the received command line parameters. If the Glue program cannot start

DyninstAPI, the instrumentation of the process is not possible on the running machine,

so, the application process is started using the command line parameters and the

instrumentation of the whole application will became partial. In a partial

instrumentation, some processes do not generate monitoring information. The Glue

program acts as a wrapper process to an AC execution configured to process startup

using the runtime properties of target system.

In cases where we have a machine which supports dynamic instrumentation, when AC

executes, it starts the application as a controlled process using the DyninstAPI library

services and starts the monitoring process described above.

Using the Binary Packaging approach, our tool has total control of the application

execution. It enables applications for monitoring in scenarios in which application

program submission for execution cannot be detailed as scheduler submission scripts

such as a Condor submission script or globusrun RSL files. Generally, in scheduler

submission scripts such as in Condor submission scripts and RSL files, the user can

specify which binaries should be transferred to the CN before execution. In that

scenario, the packaging is not necessary because the user can configure the script to

send all required files to the CN and configure the script to have the AC program as the

startup program.

4.3.3 Monitoring Topology

The capability of running wide applications is a well known Grid goal. With resource

sharing, new computational challenges can be addressed by the available resources. The

application should scale in order to cover these challenges. On the other hand, the

system communication configuration is not homogeneous. Grid systems may have

multiple networks interconnected by different technologies and different characteristics

of latency and bandwidth. Some networks are dedicated; others are shared and chaotic

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

97

such as the Internet. Grid systems generally are geographically distributed and, due to

available interconnection network communications, can easily become the application

bottleneck. Some example scenarios can be found in [71, 72]. The network throughput

determines the amount of data that some sites can produce. In scenarios with network

congestion, different topology can take advantage of network its utilization within the

application mapping to avoid congestion hostpots.

Nevertheless, developers construct applications communications by clustering processes

that have communication within domains with better network services. One strategy is

to maximize the data locality in order to minimize the communication. If the

communication is necessary, the processes should be mapped on CEs with good

interconnection network properties. The same strategy may be used in monitoring tools.

In order to handle the problem of trace event data transmission, monitoring/tuning tools

should be able to reconfigure the logic communication topology. Each machine that has

an application process job with instrumentation that generates a stream of event trace

data during job execution. If the monitoring process is used for a postmortem analysis,

for example, the event data can be stored on machines until the execution end. That

allows, for example, the possibility of good compression of the produced data and it is

the solution that has the best lower bandwidth requirements.

In cases of online utilization of the produced event trace data, the monitoring tool

should transfer the event data stream to a front end tool or other online analysis tool.

The event data stream may be configured by the user to be merged online and written on

a stable Grid storage service. The event trace data can be analyzed as a soft real time

system. The monitoring client should have specific time limits which determine if an

event is useful or not. The worst case is the reception of events on the application

execution end. The best case is determined by the network latency between the client

and the monitored application process.

Both ACs and Analyzer components of GMATE are capable of input and output Event

Channels. The user can configure different topologies and the tunlet have control to

establish new channels and close old ones within an application tuning session.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

98

Event Routing

The event information data is small compared to other structure types such as an IP

packet structure. One very simple event trace containing timestamp values and event

identification fits on 16 bytes. If the event contains more than 4 function parameters of

integer types, it fits on 28 bytes. In our architecture, we support events of different sizes

and the events may be generated by different sensors. Figure 44 presents our complete

event structure representation. The header used for routing have two integers (64 bits).

The event header consists of one sensor identification (16 bits), a packet size (32 bits)

and event identification (16 bits). The event structure may have unlimited data items

which follows the event header and it is coded and decoded by sensor components. The

monitoring tool uses this binary representation form of events in transmission to cover

the lower bandwidth requirements in comparison with text-based transmissions.

Figure 44 – Event structure representation.

If the monitoring tool sends the event at the exact time of the generation, each network

packet will contain only one event. In that case, the transmission consumes more

bandwidth due to the relation between the event data and network address information.

On TCP/IP networks, the packet header that handles IP and TCP addressing data is at

least 32 bytes. On 28 bytes event traces, 32 bytes of header corresponds to

approximately 79% of overhead per packet. To overcome that problem, monitoring

tools should relax the real-time properties and aggregate events when it is possible in

order to utilize the network Maximum Transfer Unit (MTU). On networks with a MTU

of 1500 bytes such as the Ethernet, the cost of sending a 32 bytes event trace is the same

From AC ID

Data Size

Event ID

Sensor ID

Data Item 1

Data Item N
(…)

To AC ID
Information

included in Event
Channel

Transmissions

These data itens
are generated and

interpreted by
Sensors

32 bits
32 bits

16 bits

16 bits

32 bits

Limited
to 4Gb

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

99

as sending 46 events of 32 bytes each. A TCP protocol uses the Nagle’s algorithm to

handle this problem. The time limit in Nagle’s algorithm is 200ms [82]. If the

monitoring client support more than that time limit, more events could be grouped in

one transmission packet.

Figure 45 – Execution scenario which requires different gathering topology.

The total time from the event generation and its storage or utilization depends on the

communication path used in the transmission. In order to have the benefits of

heterogeneous network topologies, the monitoring tool may be configured to transmit

the event data stream by a path different from the path used by common network

routing. Figure 45 presents a scenario where the monitoring process should route events

to the faster channel. The user located on site B submits an application for execution on

sites A, B and C. If that application is instrumented to online performance analysis, the

event stream generated from sites A and D will use common network routing

mechanisms and should get only 3.5Mb of network bandwidth (2MB from site A plus

1.5MB from site D). That topology is called the direct topology. An indirect topology

could be constructed to have the benefit of the high interconnection network between

sites B and C. The idea is to merge the generated event stream from sites A and D

within the C generated event data stream. That strategy allows the monitoring process to

aggregate more events per packet, which lowers the overheads of single event

transmissions and allows users to take advantage of Grid network heterogeneity. The

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

100

routing information is based on configuration information. That configuration may be

static, by configuration file or dynamic, commanded by a tunlet.

The proposed architecture allows for the construction of any topology of data gathering.

Any Application Controller is capable of event data routing and can be configured to

establish event stream connections and route its events through those connections. This

topology allows event ordering inside the Application Controller which reduces

processing time from the monitoring client. Indeed, those topologies can increase the

total latency for event data transmission because event trace data should pass to more

than one hop. Although the influence of such collateral effects should be a trade off

among network utilization and total transmission time.

Scalability Issues

In Grid environments, there are many different network communication architectures.

The event trace data path from generation to the analysis of the monitoring client has

many steps. Those steps influence total overhead costs and determine system scalability.

In a Grid environment, the event trace data passes from a local machine, a local cluster,

or other machines, depending on the selected topology, and reaches the user workstation

or some storage service. In first step, SMP machines can execute more than one

application process job. In the presented architecture, each machine should have only

one AC controlling the instrumentation and event data collection. The data transmission

among processes may be done by using domain or TCP/IP sockets, shared memory or

message queues. From these mechanisms, shared memory requires inter process

synchronization, and message queues have a performance lower than domain sockets

[83]. In some experiments using IPC mechanisms on UNIX systems, domain sockets

have bandwidth values approximately 96.57% higher than TCP/IP sockets on stream

transmission. Figure 46 presents the values from a Pentium IV 2.8 MHz machine.

The use of domain sockets provides better event trace collection bandwidths. In a local

cluster, machines from the same cluster can have the benefits of merging the event trace

data stream generated by each machine into one before sending them to lower networks.

That helps solve event routing issues presented in the previous section. In the case of

Massive Parallel Processor (MPP) machines, the use of tree topologies inside the

machine can help to overcome network hotspot problems in network interfaces. This

technique is presented in recent version of the Paradyn tool in order to provide

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

101

scalability by using a Tree Based Overlay Network (TBON) topology [84]. Paradyn

also reduces the event amount in each node by event values summarization. This is

possible because the monitoring client generally need aggregation functions over the

event values.

Figure 46 – Local event gathering strategy comparison.

4.3.4 Smart Event Gathering

Application programs need to be instrumented in order to generate event trace data. In

dynamic instrumentation, this is done by changing binary codes and inserting calls to

code sequences. In DyninstAPI terminology, the places where these modifications can

be inserted are called execution points. A simple instrumentation capable of measuring

a function execution time can be achieved by inserting the instrumentation in the

function entry point to record the current timestamp value and inserting the

instrumentation in the function exit point to calculate the difference between the

recorded value and the current timestamp value. DyninstAPI allows such program

binary patching programming capabilities. The overhead of the introduced code is

proportional to its execution in relation to the original program code execution. In that

sense, instrumentation of very small and greatly used functions may have high

overheads and event tracing is not recommended in such situations [85].

Event tracing over processes consists of the execution of the code instrumented in a

binary program and the transmission of the collected data to a monitoring tool program.

In our architecture the instrumentation consists of a sequence of function calls that

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

TCP/IP Sockets Domain Sockets

B
an

dw
id

th
 (M

B
)

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

102

record the program’s state such as the parameters of functions or variables and sends the

event trace data through domain sockets to the AC process. In such architectures, the

overheads can be divided into the overhead of the instrumentation of runtime data

collection and the overhead of data sending to the AC process. The overhead of event

transmission depends on socket buffer sizes and the amount of data transmitted.

In our architecture, to lower the need for data transmission, we propose a more

sophisticated component called sensors to be inserted at points inside the application

process. The idea is to reduce and postpone the data transmission as much as possible

by doing some simple logic and arithmetic operations inside the process space.

Nevertheless, that kind of improvement affects the monitoring use of the generated

event data trace because the received events can contain more information than simple

trace data associated to a point of execution. The sensor concept is not new. The

Autopilot tool [76, 77] uses this concept to collect data and preprocess data before

sending it to its clients. We propose a more sophisticated use of sensors by inserting

some codes to provide smart event gathering.

InstallPoints

Once we know what should be measured, the other parameter to consider is where it

should be measured. That also applies to the tuning part. The changes we make in

application binary should be located in program execution and somehow synchronized.

Similar to the Sensor concept, we encapsulate the logic of locating such points in

program execution as InstallPoint.

The current prototype of GMATE implements the following InstallPoint types for

placing Sensors and Actuators:

• Function Entry/Exit: locates execution address of functions by querying

DyninstAPI using a pattern rule and generates install points on the entry or

exit of first found points.

• Multi-Function Entry/Exit: same as the above, but installs the Sensor or

Actuator at the entry or exit of all found functions.

• Binary Location: corresponds to an execution address in a program loaded

binary. These points may be probed by a debugger tool such as GDB.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

103

• File and Line Number Location Entry/Exit: an InstallPoint using the name of

a source code file and a line number. Can be installed before the execution of

the line or after its execution. Needs to use debug symbols.

All the presented InstallPoints are built over the capabilities of DyninstAPI for binary

code patching.

Simple Sensors

To lower instrumentation overheads resulting from event data transmission, some event

consolidation should be done inside the process space. Simple consolidations such as

sum, average and differences do not represent much computation overhead and can save

some transmission operations. Sensors are software components that can be installed

inside running processes at one or more points and have the logic to decide what to

collect and when to generate the event data transmission.

Figure 47 –Diagram for sensor concepts.

The simplest sensor is a software component that is activated at the installed points. On

activation, the instrumentation placed by the installation process collects the running

process information and sends the data through domain sockets to the AC process.

These can be used by traditional event tracing. Sensors can be installed at any

InstallPoint. In our architecture, an event consists of a data record that can be generated

in one or more InstallPoints. Figure 47 presents a concept diagram associating sensors,

install points and events. The idea is to use a same sensor to generate the same events

Sensor

Gather execution information such
as variables, parameter or return values.

Have the sequence of function
calls for event creation.

Event

1

1..n

InstallPoint1..n1

1

1..n

1..n1

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

104

from different functions. That can be achieved by installing the sensor at different install

points. Event identification is how the sensor binds to different installation points.

The concept of an event allows the sensors to identify different installation points and

allows sensors to handle more than one tem of event information. At runtime, the event

generation is represented by the instrumentation code used to call the sensors. Each

event may contain information about program execution such as parameters of function

or variables. Sensor components handle all the information required for event collection

on installation points within user applications. Figure 48 presents a pseudo code of a

sensor that handles multiple events installed on more than one installation point.

Sensor Installation

Execution of function DMTLib_addSensor(SensorConfig)

For each Event Mapped InstallPoint ip on Sensor s

 Get binary location usin Installation Point ip for Event e

 For each Installation Point

 Instrument call DMTLib_sensorReset(s.sensor ID, e.event ID)

 For each Event Data Property from e

 Instrument call DMTLib_setProperty(s.sensor ID, measurementValue)

 Loop For

 Instrument call DMTLib_sensorTrigger (s.sensor ID, e.event ID)

 Loop For

Loop For

Figure 48 – Pseudo code of a Sensor instrumentation process.

Function Timer Sensors

Most event tracing is used to measure function execution times by computing the

difference from function exit time minus function entry time. That calculation generally

is done by the monitoring client. By bringing that computation to sensors, we save time

on event trace generation because we can generate one event trace instead of two. That

is called “Function Time Sensors” in our architecture.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

105

Function Timer Sensors are sensors that recognize two specific events: region entry and

region exit identified by installation points. Each event can be configured to sample

values from parameters of function and variables and store it in the sensor. When the

instrumentation triggers a region exit event, all the collection of stored event data are

sent into the Event Channels. That allows, for example, to timer a complex code region

in different slices and generates only one event trace.

Other Sensors Types

By including the collection of logic inside the process space, it makes it possible that

there are other ways of overhead reduction using more elaborated sensors. In that sense,

sensors can be classified by the source of trace generation:

• Trace data generated by event: this is the case of function time sensors where the

trace is generated after the function end event. In those sensors, the transmission of

the trace event data is deterministic and identified by a mapped installation point.

• Trace data generated by trigger condition: in this case with sensors, the event

generation is not deterministic and depends on the collected data and internal sensor

logic. The sensor may use a trigger condition to control the generation or the trace

event data. In such situations, the trace is generated in cases where a condition is

evaluated to true.

• No trace data generation: the idea of these sensors is to provide information to be

used by other sensors. In our architecture these sensors are called ‘state sensors’.

Our architecture proposes some example sensors for both trace data generation types:

• Function Average Sensors: this is a ‘trace data generated by event type’. The

instrumentation is used to produce the average of a number of function executions.

For example, a performance model can include a parameter as the mean of

execution time of send and receive operations. In that scenario, this kind of sensor

can be useful by recording fixed circular list of timestamp differences and

generating events in a different frequency than a function time sensor. It can be

configured to record a fixed amount of executions or time period threshold and to

generate the trace data with the moving average execution a fixed number of

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

106

execution occurrences. The event generation can be disabled for use as ‘state

sensors’. For example, a sensor could generate the moving average of the last 16

send operation durations.

• Jitter Sensors: this sensor type has the logic needed for calculating the difference

between the different timestamps of different install points. That can help users in

measuring program iterations or sequences of function calls. It can operate as trace

data generated by events trigged on a configured number of samples collected or as

‘state sensors’.

• Threshold Sensor: this is a trace data generated by trigger condition sensor type.

The idea is that the collected event data items should be sent as event trace data only

when the value measured is below or above some threshold value. It can operate in

‘lower than’ or ‘greater than’ mode. The value evaluated in the install points can be

read from variables, parameters of functions or other sensors using the inter-sensor

communication protocol.

By using sensor communication, an Analyzer can configure sophisticated trace data

event collection configurations. Sensor values can feed other sensors and the event data

transmission can be dramatically reduced. Complex state machines (composed by many

interconnected sensors) can be built using the trigger event subscription and sensor

communication operation.

The idea is that the event data is generated only when it is really strictly necessary. The

client of the monitoring, the Analyzer in our architecture, may use the provided sensor

components to restrict the generation of event trace data. The sensor logic can build

inside process spaces as a part of the logic that would be performed in the monitoring

client. By using elaborated sensor types, much of the logic of the monitoring tool client

may be included in the process space, reducing the communication between the

monitoring engine and the tool which uses it. However, there will be a tradeoff between

processing event data and data transmission overheads. In Grid environments where

network bandwidth can easily become the application execution bottleneck, that

strategy will have more importance.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

107

4.4 Grid Performance Analysis

The monitoring interface provides all event trace data that can be used to sense

application behavior. Once we understand application behavior we can choose which

performance indexes should be evaluated as objective functions and as parameters

having an impact on such functions. To support such capabilities, GMATE inherits the

concept from MATE, presented in section 4.2.3, and adds new features to help the

tuning not generate application performance problems. The major characteristics are:

• The Analyzer is written in pure Java;

• The tunlets are compiled and loaded dynamically;

• The instrumentation installs Sensors and Actuators in application binary are in

places specified by InstallPoint components;

• All communication between the Analyzer and AC is done using the Grid

middleware;

• Asynchronous tuning as follows:

o The event trace reception has its own thread;

o The tunlet callback is multi-threaded;

o The tunlet callback uses a different thread to the event trace reception;

o The instrumentations are non-blocking operations;

o The modifications on process binary are non-blocking operations.

• Have support for event routing;

• Have support for declarative Sensors, Actuator and InstallPoints;

• Independence of a message passing library;

• The DMLib is replaced by the DMTLib that also handles the tuning part;

• The event trace and action data are exchanged between a DMTLib dynamic

library and the Application Controller;

• The tunlet API was extended to support callbacks in response to actions

executed in an application program;

• Support for event ordering per application process and global issue;

• Provide statistics for event callback execution time for tunlet performance

evaluation;

• Include in container statistical packages that facilitate tunlet development;

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

108

• The actuators change the process on the fly and do not require a process to stop;

• Enhanced InstallPoint types such as source files and the line-based and binary

address-based;

• Smart monitoring with sensors to lower event trace generation

Figure 49 – Internals of the Dynamic Monitoring Library (DMTLib) and its iteration with the
InstallPoints instrumented by DyninstAPI and the other GMATE components.

Figure 49 presents the internals of the DMTLib in relation to the DyninstAPI and the

Application Controller. The library is a placeholder for the sensors and actuators

installed in program binary. The program is required to pause only when sensors and

actuators are installed. All the monitoring and changes are performed without the

overheads caused by program pause.

When initialized, the DMTLib starts a thread that is responsible for the collection of

Action parameters required for Actuator preparation. The detailed Actuator internals

will be presented in section 4.5. All the communication between the DMTLib and the

outside world are done through the AC.

Figure 50 presents an internal view of the Application Controller (AC) component. The

AC is connected to the DMTLib using Domain Sockets and to other components by

Event and Management Channels. The AC has the capability to install Sensors and

Actuators using the DyninstAPI and the DMTLib functions as detailed in sections 4.3

and 4.5.

Installed Actuators

Installed Sensors

Packet Channel

Trigger Notifications

Event Traces

Upstream Thread

Action parameters

Dynamic Monitoring and Tuning Library

DMTLib
0000000 2023 754a 706d 6873 746f 342d 7320 7465
0000010 7075 6620 6c69 0a65 4d23 6e6f 4d20 7261
0000020 3020 2032 3431 323a 3a36 3731 4720 544d
0000030 302b 3a31 3030 3220 3030 0a39 4556 5352
0000040 4f49 5f4e 4e49 4f46 313d 302e 312e 312e
0000050 410a 5443 5649 5f45 4552 5246 5345 3d48
0000060 6166 736c 0a65 5241 4f52 5f57 4548 4441
0000070 4c5f 4e45 5447 3d48 3031 4c0a 4745 4e45
0000080 5f44 4f54 4f50 4f4c 5947 4f5f 4452 5245
0000090 743d 7572 0a65 5250 5645 4549 5f57 5453
00000a0 5441 5f45 4f42 4452 5245 575f 333d 4c0a
00000b0 4645 4354 494c 4b43 495f 534e 4154 544e
00000c0 5a5f 4f4f 3d4d 7274 6575 530a 4d55 414d
00000d0 5952 415f 5252 574f 4c5f 474f 425f 5341
00000e0 3d45 0a35 5250 5645 4549 5f57 5241 4f52
00000f0 5f57 4f4c 5f47 4142 4553 353d 530a 4145
0000100 4352 5f48 5246 4d41 5f45 4854 4349 4e4b
0000110 5345 3d53 0a33 4f52 5f57 4552 4953 455a
0000120 4d5f 444f 3d45 6f52 0a77 5241 4f52 5f57
0000130 4e41 4954 4c41 4149 4953 474e 643d 6665
0000140 7561 746c 530a 5243 4545 5f4e 4548 4749
0000150 5448 525f 5441 4f49 303d 352e 410a 5455
0000160 5f4f 4957 444e 574f 5f53 4f4c 4143 4954
0000170 4e4f 743d 7572 0a65 5250 5645 4549 5f57

Running Program Binary

Change / Execute

 calls

 calls

 calls
InstallPoints

instrumented by
DyninstAPI

AC

Action prepare

D
om

ai
n

So
ck

et
s

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

109

Figure 50 – Internals of the Application Controller (AC) and its iteration with DyninstAPI and other
GMATE components.

All generated trace data are transmitted using Event Channels and can be used for

routing, using troughs other than AC, analysis and proxy. The management channels are

used for proxy, routing and tuning. The Action parameters are transmitted over the

management channels from an Analyzer to the AC and later to the DMTLib.

Figure 51 – Internals of the Analyzer and its iteration with the ACs and other GMATE components.

Figure 51 presents an internal view of the Analyzer component. As with the AC, the

Analyzer supports Event and Management Channels. It uses the Management Channel

to request Event Channel establishment, and Sensors and Actuators instal on

DMTLib
D

om
ai

n
So

ck
et

s

Packet Channel

Event Routing Thread

Event Trace
Event Trace

Event Channel Threads

Management Channel Threads
Action parameters

Event Channel

Event Channel

Event Channel

Management Channels

Management Channels

Application Controller

AC
AC

AC Wrapper

Analyzer

Analyzer

Management Channels ACProcess Management Thread
DyninstAPI

routing

analysis

proxy

Tuning,
routing and

management

routing

Analyzer

Management Channel Threads

Event Channel

Management Channels

Management Channels

AC

AC Wrapper

Analyzer

Analyzer

Management Channels

AC

analysis

proxy

Event Channel

Event Channel
Process Model

Actuator Model

Sensor Model

Endpoint Model

Tunlet Container
analysis

Tuning,
management
and routing

Event
Causal
Filter

Event Trace
Event Channel Threads

Event Data
trace Queue

Executor Thread Pool

Tunlet

Executor Thread Pool

Tunlet

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

110

InstallPoints. When an AC connects to a Management Channel on the Analyzer, it

corresponds to an Endpoint connection in the Analyzer model. The Analyzer maintains

a list of connected Endpoints6, registers application processes and creates Actuators and

Sensors.

When a process is located, the AC is registered on the Analyzer and initiates the

commands required by the installed tunlets. The analysis is done inside the tunlet. That

is done by following some heuristic targeting performance improvements. These

heuristics can range from simple index functions to data mining procedures, decision

trees and stochastic methods such as simulation or complex analytical analysis.

4.4.1 Tunlet Architecture

Figure 52 – Tunlet Interface.

The tunlet are any class write in Java that implements the interface presented on Figure

52. The interface allows the Analyzer to notify the tunlet about process, endpoint and

event management. Each application process is represented by an instance of object

Task. The endpoints are any Analyzer or AC that receives Event Data Channels or

Management Channels. That interface allows, for example, for notifications when the

Analyzer receives some connection from an AC or when an AC receives a connection

6 We name endpoint any component that may generate or receive Management and Event Data Channels

in our architecture.

<<Interface>>
Tunlet

+getVersion(): String
+Initialize(container: TunletContainer, args: String[]): void
+finalize(): void
+taskRegister(task: Task): boolean
+taskStop(task: Task): boolean
+endpointConnect(local: Endpoint, endpoint: Endpoint): boolean
+endpointDisconnect(local: Endpoint, endpoint: Endpoint): boolean
+handleEvent(task: Task, eventDataSet: EventDataSet): boolean
+handleActionFired(task: Task, status: Actuator.Action.FireStatus): boolean

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

111

from other AC, in case of event routing scenarios. The TunletContainer is an interface

that allows the tunlet to interact with the Analyzer.

Within the presented methods, the tunlet may interact with the Task, requesting Sensor

and Actuator installation, query process state, variables, available instrumentation

points and query binary composition. The frequently called methods and the

‘handleEvent’ and the ‘handleActionFired’ that are called in response from some sensor

event trigger or some actuator action fired on some application process respectively.

The helper classes/interfaces implemented by the Analyzer are:

• TunletContainer Services
o It maintains the SystemModel instance.
o It maintains the CausalControl instance per tunlet.

• SystemModel Services
o It maintains the list of Sensors, Actuators and InstallPoints.
o It maintains the list of EventInstall (where relates events from Sensors to

InstallPoints) and ActionInstall (where relates actions from Actuators to
InstallPoints).

o It maintains the list of running Tunlets and registered Tasks.
o It maintains the configurations of the engine.

• CausalControl Services
o Configures the local and global event filter.

• Task Services
o Sensor event install, enable, disable and remove.
o Actuator action install, enable, disable, remove and fire.
o Process start, stop and terminate.
o Binary structure.

• Sensor.EventDataSet Services
o It maintains a list of Sensor.Event.EventData instances.

• Sensor.Event.EventData Services
o It maintains the measurement values collected in application process.
o It knows when the event trace occurred.

• Actuator.Action.FireStatus Services
o It knows the status of the change action. It allows, for example, for error

detection.

The CausalControl is a mechanism that filters the events a tunlet receives based on

event metadata configuration. Each event may have two causal filters, one local and one

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

112

global. A causal filter is a simple an integer. The CausalControl maintains for each

process a local causal filter and one global causal filter. If the value configured on the

event is greater than the actual value of the CausalContol, the event is queue until the

CausalControl updates its values and the event configuration satisfies the filter. It allows

specifying in declaration form, that the tunlet receives only the events it is prepared to

deal with.

4.5 Grid Tuning

The main distinction between computational Grids and cluster computing is the high

level of heterogeneity in networks and processors. In addition, these systems are

generally geographically spaced and their components distributed among different

administration domains. As covered in monitoring session, the problem of security

needs due to multiple administrative domains should be left to Grid Middleware.

As with monitoring, the tuning module uses communication channels to perform

application changes as a result of performance model evaluation. When applying MATE

concepts to Computational Grids, we should deal with communication restrictions that

occur with communications to remote sites. The tuning process can use the same

concepts applied to monitoring to lower the intrusion in application execution due to

execution blocking. Those execution blocking occurs when the tuning is synchronized

to the application execution in the event trace generation or in the application changing

process.

Another important aspect in application tuning in Computational Grids is that changes

are performed in different conceptual layers. For example, the tuning of a number of

workers in cluster computing consists of application modification, while the same

changes in Computational Grids may require the addition to that interaction of

collective layers such as meta-schedulers and/or resource broker services. Any

additional resource should be obtained by the iteration with those collective services.

In fact, the original implementation of MATE has a tight integration with PVM process

controls in order to deal with process creation and management. Same concepts were

applied to the Grid, although that problem was broken down in two parts: First, we

needed to find where the application processes starts its execution. Second, if an

application supports changes to a number of processes, we considered how to grow or

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

113

shrink parallel virtual machines. The first part was covered by monitoring requirements.

The second part was covered by tuning processes.

The main aspects involved in the tuning process are where, how and when to allow

changes in applications. That classification allows us to trace a correlation between

MATE concepts in cluster computing and their appliance to Grids. The ‘where’ aspect

consists of the issue of which element receives the change actions. The change in the

number of workers in an application may require interface with meta-schedulers and/or

resource brokers in combination with application binary modifications. The ‘how’

aspect resides in what functionality is required to interface with elements identified by

the ‘where’ aspect. In a case of cluster computing, we had used runtime binary

modifications such as changes in variables’ values and function replacements. In Grids,

we need additional services such as petitions to collective services as a collection of

group metrics abstractions using MDS [9] or NWS [46]. The ‘when’ aspect consists of

the synchronization required to perform the changes. Some applications may only

support variable changes at some time in its execution. Those changes require being

synchronized among different application processes and being in synchronization with

some service requisition.

In fact, an execution of a parallel application in a Grid can be seen through different

prisms as in the case of clusters: software modularity, communication/administrative

domains, and isolation abstractions. By “software modularity” we mean the

classification proposed in [14] and illustrated by Figure 53. The idea is that if we

propose dynamic changes in common parts such as the Framework and Library code we

may benefit all applications that use these software modules, while modifications

applied to application codes benefit only the application. Changes in an Operating

System Kernel is also considered, but changes at that level are generally considered as

system tuning, which are out of the scope of this thesis work.

Within Computational Grids we may divide tuning processes as based on

communication and/or administrative domains, as illustrated by Figure 54, and isolation

layers, as illustrated by an ‘Hourglass model’ presented in Figure 2. There are changes

that may be performed in distributed system abstractions such as interface with

collective services. There were some changes that may be done in Virtual Organization

abstractions such as economic costs or limits regarding VO polices.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

114

Figure 53 – Software modularity abstraction from [14].

At the Organization level, we may have resources usage police which may also have

economic issues. In cases of CE and CH abstractions, we should have the same

concepts as cluster computing. In addition, we should have iteration with Fabric

services such as batch schedulers. In CH and node cores, we have the application

process instances that should receive binary modifications considering the software

modularity abstractions.

Figure 54 – Communication/Administrative domains abstractions.

In order to facilitate the tuning process, we need an abstraction that isolates different

modifications from different layers throughout an interface. For that direction, we

API

Hardware

Operating System
kernel

OS API

Libraries code

API

Applicationcode

Framework
code

Distributed System

Virtual Organization

Organization

Compute Element (e.g. Clusters)

Compute Host (e.g. Node)

Processor Core

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

115

borrow the concept of software Actuators presented in [76] and adapted to MATE

concepts. The idea is to have a component that can be ‘plugged’ in different places

covering the ‘where’ concept and hide some functionality logic to handle the ‘how’

concept and identify conditions for the synchronization required by the ‘when’ concept.

4.5.1 Smart Tuning Actions

Tuning actions consist in the appliance of changes which affect application execution

behavior. This process could be analyzed as a piece of code which is based on an

internal state interacting with some element which corresponds to the performance of

the change. In cluster computing implementation of MATE [14], the modifications were

performed by the Application Controller (AC) in response to Analyzer requests. That

implementation uses DynInstAPI breakpoints to stop applications at the synchronization

points and performs the desired change when the execution reaches that point.

One interesting behavior in changes performed by dynamic tuning is that applications

are constantly evaluated during execution. In some senses, the modifications are

generally performed at same points using different state data. For example, the tuning of

a number of workers generally consists of a variable value change or a function call

execution using different parameters. By perform smart tuning, we mean to install in

just one instrumentation operation a piece of software that makes the application

capable to change its behavior by receiving some action instruction from an AC.

We have found some benefits using that approach. First, the instrumentation is done just

once for each Actuator object instance, which reduces process stops and the overhead of

tuning. Second, the modified binary, after instrumentation, can be executed without

needing to be attached to an AC. That has special benefits for applications which

frequently use signals. When processes receive signals and they are attached to another

process, the parent process receives the signal and has the responsibility of continuing

child processes. That generates a lot of intrusion into application processes that make

intensive use of signals while also being controlled by DyninstAPI. We found also that

domain sockets are the communication scheme that has less overhead in action

reception.

The difference between tuning processes and monitoring concerns which thread

executes the operation. In a case of monitoring, trace data is transmitted using

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

116

application threads, while tuning requires a different thread to wait for change requests,

inside application process. We, in that case, are assuming that the system has threading

support.

The philosophy of tuning has the same principles of monitoring. Due to communication

costs, tuning processes should be implemented taking into account the low overhead in

process execution. At that point, part of the logic required to change application

configurations in order to tune may be encapsulated in components inside application

processes.

Figure 55 – Actuators concept.

Simple Actuators

An Actuator is an element of software that may perform one or more actions. These

actions represent the knowledge component needed to execute the change. These

actions may be installed in one or more InstallPoints. Take, for example, the action of

changing an integer variable value on some function entry. In that case, the action is an

integer that represents a new value and the InstallPoint is the function entry. Figure 55

presents a diagram correlating those concepts.

Basically, after an actuator is installed, it waits for a command from an AC containing

some action value collection. When an actuator receives the action state, it becomes

‘armed’. When an application passes on some install point related to an action, the

Actuator ‘fires’ an action which performs the change. In fact, actuator components work

Actuator

InstallPointAction

1..n

1

1..n

1

1..n1 1..n1

Represents state required to
perform the actuator functionality

Allows synchronization based on
execution placements.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

117

on an internal state machine that interacts with an AC. Figure 56 presents the internal

Actuator state machine. When an Actuator is installed, the initial state is Active. When

an AC sends a change request, the required data is stored inside an Actuator component

and its internal state become Armed. When a program execution reaches some

InstallPoint, the Actuator is triggered and the change is performed.

Figure 56 – Actuators internal state machine.

By using the runtime scheme illustrated in Figure 56, the change does not request

program stop as with MATE implementations and maintains the same synchronization

properties. For example, if we install an Actuator for changing the value of one variable,

when the Analyzer request the value to change, it commands the AC to send the new

value using domain sockets to the application process. Inside the application process,

our architecture has a thread waiting for such commands, called the ‘upstream thread’.

When the ‘upstream thread’ receives the new variable value, it arms the Actuator with

such value. When the program passes in an InstallPoint where the Actuator is installed,

the variable value is changed automatically by the Actuator.

In some situations, Actuators may be configured always to become ‘Armed’. That

means it is able to perform its logic all times when triggered. That functionality is useful

for some Actuators, as explained in following sections.

Active

Action Received

Armed

Perform Change

InstallPoint Pass

AC sends Action state using domain sockets.

Actuactor waits for any instrumented trigger calls.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

118

Actuator Installation

Execution of function DMTLib_addActuator(ActuactorConfig)

For each Action Mapped Installation Point on actuator c

 Get Installation Points for Action a

 For each Installation Point ip

 Instrument call DMTLib_actuactorReset (c.actuactor ID, a.action ID)

 For each property from Action a

 Get pointer ptr to value to be changed.

 Instrument call DMTLib_setProperty (c.actuactor ID, a.action ID, ptr)

 Loop For

 Instrument call DMTLib_actuactorTrigger (c.actuactor ID, a.action ID)

 Loop For

Loop For

Figure 57 – Pseudo code of an instrumentation process of a change value Actuator.

Figure 57 presents the pseudo-code of the Actuator installation with the capability of

variable and parameter change. When the application execution reaches these

instrumented function calls, the Actuator internal code may change the values passed by

reference if it is in ‘armed’ state.

Value Change Actuators

Generally, application tuning is done by configuration change. That configuration

generally consists of variable values that an application program uses to change its

behavior during execution. When an Actuator is installed into a program space, the

Action has its items associated with the references of variables. When an Actuator is

armed, it stores the new variable values in a temporal buffer and replaces the old values

when an Actuator is triggered.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

119

Actuator Installation

Execution of function DMTLib_addActuator(ActuactorConfig)

For each Action Mapped Installation Point on actuator c

 Get Installation Points for Action a

 For each Installation Point ip

 Instrument call DMTLib_actuactorReset (c.actuactor ID, a.action ID)

 For each property from Action a

 Create a variable var on process heap.

 Get the reference ref of var.

 Instrument call DMTLib_setProperty (c.actuactor ID, a.action ID, ref)

 Loop For

 Create a variable callFunction on process heap.

 Get the reference refCF to callFuntion.

 Instrument call DMTLib_getCallAction (c.actuactor ID, a.action ID, refCF)

 Instrument ‘if (callFunction!=0) call a àfunctionName using all allocated vars’

 Instrument call DMTLib_actuactorTrigger (c.actuactor ID, a.action ID)

 Loop For

Loop For

Figure 58 – Pseudo code of an instrumentation process of a function call Actuator.

Function Execution Actuators

Sometimes, the modification of program configurations should be done by function

calls. One example is the configuration of the buffer size of sockets. That can only be

done by a system call requesting a change of socket buffer size. For that situation we

build an Actuator that represents a function. The Action property items, or parameters,

are mapped to the function arguments using memory allocated in process heap.

The configured function is called when an Actuator is triggered by an install point and it

is in ‘armed’ state. That is controlled an allocated variable in heap space. The

instrumentation detail for such Actuator instrumentation is presented on Figure 58.

Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment

120

Other Actuator Types

Value Map Actuators: consist of an Actuator that has auto-armed actions that serve to

change the values of variables or parameters. That can be used, for example, to generate

different process mapping to MPI executions. At program startup, the tuning tool may

install one actuator of that type to swap some process ranks. That may be useful for

placing the master processor of a Master-Worker application in any rank in a

transparent manner. The installation of this actuator type is the same of the value change

actuators.

Web Service Actuator: consists of an Actuator that may be used to perform a web

service call. That is useful in cases of changing the number of processors of an

application which can be done by interacting with collective layers using web service

calls. Using the Globus middleware, for example, we can request more resources using

a web service call.

4.5.2 Tuning in different layers

Another problem when tuning applications in computational grids is to find out which

application parts are addressed to Grid Middleware. When a parallel application

executes on a Computational Grid, a number of processes may be a requirement but is a

runtime value that is controlled by a meta-scheduler. As a consequence, the application

may not use more machines unless as meta-schedulers for new ones.

When we talk about changing the number of workers in a Master-Worker application,

the changes must be done at many levels. The tool should, at a Compute Host

abstraction, change the process binary and, at a Compute Element and/or Collective

Layer, request more machines for a system.

In some senses, we may classify the changes in the distinct abstraction layers presented

in Computational Grids. If changes grow or shrink an application’s set of resources, it

should interact with Collective services, if not only Fabric changes are sufficient.

Chapter 5: Experimental Validation

121

Chapter 5
Experimental Validation

5.1 Introduction

In Chapter 2 we explained the properties that characterize a computational Grid and the

implications for parallel executions within that environment. We had shown that after

the application starts its execution, it has to deal with a multi-cluster environment. In the

same chapter, we presented some active state of the art tools used to generate

performance data for analysis. We use some ideas in our architecture detailed in chapter

four and for the application of dynamic tuning in Grids we proposed the model detailed

in Chapter 3. In the same chapter, we presented simulated results for the analytical

model. This chapter presents the validation of the performance model detailed in

chapter three and its evaluation in a controlled enterprise Grid environment testbed.

The main characteristics of a representative computational Grid testbed are a collection

of computer nodes grouped in clusters interconnected using a network with different

properties to an intra-cluster network. That should represent distinct CE’s distributed

among different geographic locations characterizing network heterogeneity. These

clusters should have machines with different processors and memory characteristics to

ensure CE heterogeneity.

Our main goal in this chapter is to highlight some case scenarios with real application

tuning using our model and architecture. That should provide a comprehensive set of

examples for its applicability using the provided ideas and techniques. We present some

Chapter 5: Experimental Validation

122

cases already exercised in Chapter 3 using simulations to illustrate real world scenarios.

The evaluation should cover applications with different compute/communication

characteristics. As we state, those applications should allow different grain sizes change

during execution: the provided workload should sample distinct examples of ratios from

different strategies for grain size partition.

Our tuning model and architecture should help Master-Worker applications execute

over a Grid Test-bed to adapt to system heterogeneity. From that, the first parameters

for the experiments are intra- and inter-cluster network latency, bandwidth and

processor speed, architecture and memory. Another important parameter is the mapping

of these resources to the application. Different application executions should get

different system configurations and a different process to parallel machine mapping.

From the parallel machine view, we have the parameters’ initial number of workers and

grain size selection.

From the provided parameters, the parallel machine mapping, initial number of workers

and initial grain size selection are evaluated by means of different factors. The

executions should be ranked using total execution time and processor efficiency. Due to

the current limitation of the available implementation of messages passing from

Computational Grids, we cannot increase the parallel machine size using dynamic

process spawn. Indeed, that characteristic should be available soon and does not affect

the provided experiments as proof of the concept.

Our model requires the parallel application to be developed using the Master-Worker

paradigm and supports dynamic grain size change during its execution. To facilitate

application coding with these properties, we developed a template to abstract the

communication logic and help the application work out when it should change the grain

size and how it should be done. We use some examples of applications developed using

this template as the experiment’s workload.

5.2 Master-Worker Tuning on Grids

In following sections we detail how we facilitate the development of applications with

runtime grain size change support. To apply the model presented in chapter three, there

are some requirements. The application should have a stable average task size in its

properties of time to compute and time to transfer input data from master to workers and

Chapter 5: Experimental Validation

123

output from workers back to the master. We analyzed the one port master model. As

input and output communication from a master to workers shares the same port

(considering full duplex communications), we serialized the communications. Serialized

communications within Master-Worker programming model results in lower startup and

finalization times, as described in chapter three.

5.2.1 Framework Overview

To abstract the Master-Worker paradigm we developed a Generic Master-Worker

Application Template (GMWAT) which consists of a set of C++ classes created to hide

communication logic from the application. Using that template, the developer should

implement a simple API to create tasks, compute tasks and write results. In addition to

that, we added the API to split tasks and merged results to allow grain size change.

When the template asks the application to split a task, it expects to have different

communication requirements from the resulting tasks and the original task. The detailed

framework implementation is provided in Appendix B.

Figure 59 – Benchmark of communications among different nodes in the constructed Grid testbed using
the Intel Pallas MPI Benchmark [86].

5.2.2 System Description

The enterprise Grid testbed consist of a set of 52 compute hosts spread over four

computer elements represented by clusters with different network and processor

0

10

20

30

40

50

60

70

80

90

100

110

128 512 2048 8192 32768 131072 524288 2097152

N
et

w
or

k
Th

ou
gh

pu
t

(M
B/

s)

Mesage Size (bytes)

PingPing Benchmark LAN Cluster I

LAN Cluster H

LAN Cluster D

LAN Cluster P

Inter Cluster (I, H)

Inter Cluster (I, D)

Inter Cluster (I, P)

Inter Cluster (H, D)

Inter Cluster (H, P)

Inter Cluster (D, P)

Chapter 5: Experimental Validation

124

characteristics. Figure 59 presents the different network throughput for intra-cluster

communications (LAN) and inter cluster (WAN), and the following Table 4 presents the

machine characteristic as processor architecture, memory specifications and operating

system versions. To facilitate the identification of different multi-cluster configurations

we labeled the clusters as I, H, D and P.

Table 4 – System characteristics for each clusters used to the experimental validation.

id frontend N Processor, Memory and Cache Network Bogomips

I aogrdini 6 Intel(R) Pentium(R) 4 CPU 2.80GHz,

512MB RAM, 512Kb L2 cache

100Mb Fast

Ethernet

±5550

H aohyper 8 AMD Athlon(tm) 64 X2 Dual Core

Processor 3800+ (2GHz), 2Gb RAM,

512Kb L2 cache

Gigabit

Ethernet

±4000

D aoclsd 8 Intel(R) Pentium(R) 4 CPU 3.00GHz,

1Gb RAM, 1024Kb L2 cache

Gigabit

Ethernet

±6010

P aoclsp 32 Intel(R) Pentium(R) 4 CPU 3.00GHz,

1Gb RAM 1024K L2 cache

Gigabit

Ethernet

±6010

5.2.3 Compute/Communication Dependency Analysis

Our model states that if there exists data reutilization among different tasks, we can

change the compute/communication ratio by selecting different grain size alternatives in

a stateless Master-Worker execution. As we needed lower variance in task execution

times (i.e., the compute should not be data dependent), we need to be able to divide a

task load in a uniform way. For example, a matrix multiplication problem can use

kernels as BLAS implementations to avoid cache influence in task load division. Figure

60 presents different task load divisions for matrix multiplication using the GNU

Scientific Library (GSL) and the Automatic Tuned Linear Algebra System (ATLAS)

implementations of BLAS API. As we can see, different grain sizes provide an almost

linear compute time.

Chapter 5: Experimental Validation

125

Figure 60 – Ratio of different grain size division using GSL and ATLAS BLAS implementations.

We found that using the strategy task division at runtime facilitates the implementation

of grain size change support in parallel application development. If we have data reuse

among these task divisions, different network and processor speeds may characterize

certain grain sizes as a compute- or communication-bound application.

As presented in Chapter 3, the parallel programming paradigms help developers to

divide a load among processors. In that process, we do not require that the grain size

selection follows certain functions (i.e., making task computation time be function of

grain size). Our model only requires that application support increases and decreases a

compute/communication ratio as a function of a numeric value named as grain size.

Different divisions may compose different computations and communications as a

function of grain value.

In a steady state the pipeline composed by task transmission, execution and result

transmission limits the number of workers. We expect that the grain size increase has

different impacts on task and/or result transmissions from the impact of task execution.

We consider that tasks are composed of data chunks. We may have, for example, the

following scenarios of data reutilization:

• Task division shares a data chunk. This scenario could be applied in forest fire

simulations where a task can be represented as a map and a set of different

simulation configurations. A sub task shares the full map from parent task but has a

subset of the simulation configuration. As a result, we may have different

simulations combined in one map. The master role in such applications may

0.06

0.25

1.00

4.00

16.00

64.00

256.00

1024.00

11/21/41/81/161/321/641/1281/2561/5121/1k1/2k1/4k1/8k1/16k

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Task Size Generated by Division

GSL ATLAS

Chapter 5: Experimental Validation

126

recombine the maps from results obtained from the sub tasks in the expected result

of the parent task or may assign this work in other phases to workers. We name that

division strategy as Fixed Shared Data Chunk (FSDC). Another application that

may be parallelized using the same heuristic is heat propagation simulation. Each

task reuses the border elements from other tasks for computation as detailed in

section 5.3.1.

• Task load is the product of chunks. In this scenario we classify the matrix

multiplication parallelization using row and column set division. A row set

participates in all tasks for each column set to generate the result matrix. We detail

such implementation in section 5.3.2. Another example is the NBody simulation in

which a group of bodies should be reused among tasks. That implementation is

detailed in section 5.3.3. We name this strategy as Product Data Chunk (PDC),

where computation grows exponentially from smaller to coarse grain tasks. We also

found that the popular implementation of a protein alignment search tool, BLAST,

has the same properties. The parallel version has same query data reused with

different database fragments [87]. In such cases, the task load is the product of query

subdivision and database subdivision.

In sequence, we present the analysis of grain size tuning in some example applications

with Fixed Shared Data Chunk and Product Data Chunk division strategies executed in

the detailed Grid Testbed. We assume that the master process mapping is a batch

scheduler attribution which we will not control.

5.3 Application Case Studies

5.3.1 Synthetic Dynamic Master-Worker

The following analysis is performed on a synthetic master-worker application that

mimics both Fixed Shared Data Chunk (FSDC) and Product Data Chunk (PDC)

division strategies. The number of different scenarios of multi-cluster configuration we

may construct is large, so we present limited cases, where a master process is mapped

onto a higher speed processor/network cluster (P) and slower speed processor/network

cluster (I).

Chapter 5: Experimental Validation

127

The FSDC load type consists of a number of tasks to be executed in a number of

configured iterations. Each task is composed by a number of data chunks. The data are

generated using a pattern which allows the worker to validate whether the data is

transmitted correctly. Each task can be decomposed by the application into two tasks

containing the first data chunk and splitting the other data chunks into two. The

compute interval for each task is calculated using the product of the chunks that

compose the task.

The Testbed described has Compute Hosts (CH) with a private IP address. The

communication between machines from different clusters requires that the used MPI

implementation supports that kind of infrastructure. The follow executions use the

GridMPI that supports the IMPI Standard for interoperability among MPI executions to

form a single parallel machine. In addition to that, the GridMPI implementations

provide messages relays to proxy messages passing between private networks as a

message passing proxy, as described in section 2.3.

The following experiments assume that we have assigned a multi-cluster by a resource

broker. The application maps the MPI rank using the sequence of clusters. The startup

process of the MPI parallel virtual machine consists of the following steps that are

explained in detail in section 2.3:

1. Start the IMPI-server and get the connection contact information;

2. For each cluster with private address

a. Start IMPI-relay with the IMPI-server connection contact information

and get the IMPI-relay connection contact information. In Globus

toolkit-based implementations, this process is started with the fork

type in GRAM job submission;

b. Start the MPI processes using the ‘mpirun’ command using the IMPI-

relay connection contact information.

Each process group started in step (2) contacts the IMPI-relay in each cluster and

provides the information about the local processes. The IMPI-relay contacts the IMPI-

server and exchanges local information with the other processes participating in the

execution. After that, all processes are capable of communicating with each other, using

the IMPI-relay as necessary. That allows for executions using the Internet, for example,

Chapter 5: Experimental Validation

128

using a configured TCP/IP port for inter-cluster communications. From the application

perspective, the processes show no differences between them, and all are identified as a

numeric rank in a MPI_COMM_WORLD communicator.

Fixed Shared Data Chunk (FSDC)

Figure 61 – Two iteration execution of synthetic Master-Worker where the master processor is mapped on
cluster I. The phases A, B and C are startup, steady and finalization, respectively.

Figure 62 – Two iteration of synthetic Master-Worker where the master processor is mapped on cluster P.
The phases A, B and C are startup, steady and finalization, respectively.

Figure 61 and Figure 63 present the execution of two iterations of FSDC data reuse with

maximum grain size selection for clusters I and P. Note that due to higher network

0

2

4

6

8

10

12

14

16

18

20

0 200 400 600 800 1000 1200 1400 1600 1800

Co
nc

ur
re

nt
 B

us
y

Pr
oc

es
so

rs

Execution Time (Two Iterations)

Iteration Division

A

B

C

Master on Cluster I

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800

Co
nc

ur
re

nt
 B

us
y

Pr
oc

es
so

rs

Execution Time (Two Iterations)

A

B

C
Master on Cluster P

Chapter 5: Experimental Validation

129

speed properties in cluster P in Figure 62, the startup and finalization phases (A and C)

are shorter than Figure 61.

As the limitation of processing is that the master is blocked by communications to slow

workers, we can analyze the Master to Worker task communication times. Figure 63

provides a histogram of these communication times where we can get a clear

differentiation between local and remote communications.

Figure 63 – Histogram presenting the tasks send times from Master to Workers.

In the tuned executions, as we control the environment, the ‘mpirun’ startup process

executes the Application Controller (AC) component of GMATE. The AC connects to

the Analyzer and parses the application process binary, loads the Dynamic Monitoring

and Tuning Library (DMTLib) inside the process memory space and initializes the data

structures to manage the actuators and sensors installed. After the binary parse, the AC

registers the process execution in the Analyzer using the configured management and

event channels. In the Analyzer container, the process registration locates which tunlet

is responsible for its tuning process. If it is the first process to register, the tunlet is

initialized and receives the process registration event.

Since we are working with the same binary for all process, we installed all the required

sensors to gather the measurements needed for the tuning process and command the

application to continue its execution. The tunlet instance repeats that procedure for all

application processes registrations. When the application executes, the sensors send

collected event data to the Analyzer that passes it concurrently to the tunlet. Depending

Chapter 5: Experimental Validation

130

on the Analyzer location, events from workers may arrive sooner than events from the

master. We use the causal order to evaluate if event data should be processed or should

wait for a preceding event. We leave that responsibility up to the tunlet since the

Analyzer does not have semantic information to provide event ordering.

Figure 64 – Comparison between execution with and without tuning grain size, considering the master
mapped on cluster P.

The first event received in the application processes is the configuration of the template

instrumented with a simple sensor installed in the execution of function ‘user_config’.

We collect from that event trace the application process role assigned by the template,

the number of work units per iteration and the number of iteration from the problem

size. When the tunlet receives that information from the master process the tunlet side

creates the master related data structures.

The decrease of concurrent busy processors in the middle of a steady phase (B) in

Figure 62 is a result of a master blocked in its communications due to slower inter-

cluster communication.

Figure 64 presents 28% of total execution time reduction. In the first iteration, it reduces

by 24% and the following by about 28%. The tunlet was configured to start with the

smallest grain size and balance to get the best grain size. Note that this is different from

the model proposed in [66]: within the first iteration we have gains.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Total

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

) Nomal Execution

Tuned Execution

Chapter 5: Experimental Validation

131

5.3.2 Matrix-Multiplication Application

The Matrix-Multiplication problem has a different compute/communication function of

grain size. Suppose, for example, that we have to multiply two matrices as presented in

Figure 65. We can, for example, have only one task where we transmit the two matrices

and receive the matrix result. We can call that the maximum grain size that the problem

supports and this is one task containing the complete problem.

Figure 65 – Graphical representation of grain size change in the parallelization version of matrix
multiplication problem. Each task can be decomposed into smaller ones with data reuse among tasks.

Suppose that we use a finer strategy. We can choose to divide each task into finer ones

using a strategy of alternate dimension division. In the example presented in Figure 65,

a task with grain size gi = 0 (maximum grain size) can generate two tasks of grain size

gi = 1, and these two tasks of grain size gi = 2 can be decomposed into four tasks of gi

= 3, and so on. That strategy allows that we may change the grain size of the tasks sent

to workers by decomposing coarse grains.

When executing the Master-Worker application within the scenario detailed in section

5.2.2 we may have different process mapping, considering the different localization of

the master process. Figure 66 presents the impact of the master process mapping given

the same resource set.

gi = 0à 1 Task
X

||

X X

|| ||

X

|| || || ||

gi = 1à 2 Tasks

gi = 2à 4 Task

(1)

(1)

(1)

(2)

(2) (3) (4)

A

A

A

A

A

A A

B

B

B B B

C

CC

C C C C

Chapter 5: Experimental Validation

132

Figure 66 – Comparison of same problem size and parallel machine configuration considering different
Master-Worker processes to node mapping.

Note that the application becomes communication-bound in the executions where the

master process is mapped in cluster I because it is the cluster with less network

performance. We monitored all machines and ensured that the application had no

memory swap use which could cause such execution time variations.

5.3.3 N-Body Application

The parallelization of n-body is done by load division. The most time-consuming

operation in an n-body problem is the calculation of distances between bodies in space.

Taking that in account, let it be a task to be processed composed of the permutation of

block divisions of total body counts, called segments. Each segment is present in the

same amount of tasks generated by permutation. See a complete example from a set of

12 bodies divided in 3 segments of 4 bodies each on Figure 67. Note that the operation

among bodies from same segment is fragmented in the permutations. Using such data

partition schedule we have uniform input and output task size and number of operations

performed in task computation.

To have a uniform time among task executions, the calculation of distances from a

block to itself should be divided into permutation participations. If d is number of

segments, the number of generated permutations are (d^2-d)/2. Each segment

participates in d-1 tasks, so the distance between bodies of the same segment should be

divided equally among these d-1 tasks in which this segment participates.

1.00 10.00 100.00 1000.00 10000.00 100000.00

Cluster I

Cluster H

Cluster P

Cluster D

M
as

te
r

Pr
oc

es
s

M
ap

pi
ng

Cluster I Cluster H Cluster P Cluster D

Execution Time (seconds) 52735.17 1331.14 595.87 656.80

Execution Time by Master Process Mapping

Chapter 5: Experimental Validation

133

Figure 67 – Graphical representation considering grain size in N-Body problem with uniform task load
and input/output data size.

Take, for other example, the following instance: a set of bodies divided into d=4

segments {A,B,C,D}. The generated tasks should be {(A,B), (A,C), (A,D), (B,C), (B,D),

(C,D)}. The task (A,B) should calculate the distances between the bodies from segment

A to segment B and one third of the calculations for distances from bodies from

segment A to itself and the same from bodies from segment B. This strategy divided the

amount of operations between tasks to nearly equal.

5.4 Architecture Validation

When centralizing the analysis of collected events, the machine where the Analyzer

executes receives all events from the Application Controllers. That may be a problem if

the Analyzer is mapped to a machine with low bandwidth and high message latency

from these Application Controllers. In following experiments we analyze the

performance of the monitoring and tuning phases.

5.4.1 Sensors Overhead Analysis

The tuning process requires the monitoring of application behavior using sensors to

acquire the runtime metrics and parameters. This data is transmitted back to the

1

8

7

6

5

4

3

2

9

12 Particles
bs = 4

0

1

2

gi 0 – 3 tasks
wn 0 à (0,1)
wn 1 à (0,2)
wn 2 à (1,2)

task (gi,wn) (0,0)
4 +2 +2 = 8 ops

input
1

8

7

6

5

4

3

2

0 1

output
1

8

7

6

5

4

3

2

0 1

10

11

12

segments
task (gi,wn) (0,1)
4 +2 +2 = 8 ops

input
1

4

3

2

0 2

output
1

4

3

2

0 2

task (gi,wn) (0,2)
4 +2 +2 = 8 ops

input

8

7

6

5

1 2

output

8

7

6

5

1 2

9

10

11

12

9

10

11

12

9

10

11

12

9

10

11

12

Means body (12) x (12)

x x

x

Chapter 5: Experimental Validation

134

Analyzer through Event Channels, as described in section 4.3.2. The path of the data

from the collection to processing is: sampled by binary instrumentation, transmission to

the AC via Domain Sockets, transmission to the Analyzer through Globus XIO or

socket communications and delivered to the tunlet.

When the produced sampling rate is higher than any step in that path, we introduce an

overhead in application execution. That overhead is higher when the analyzer receives

the communication over a slow WAN link. The goal of this experiment is to verify,

given LAN and WAN networks, how great is the overhead of event collection using the

Sensors.

void pfunc(int period) {

 usleep(period);

}

(...)

t1 = sampleTime();

for(i=0;i<count;i++)

 pfunc(period);

t2 = sampleTime();

Figure 68 – Source code from the instrumented program.

The load is generated by a simple program that calls a function named ‘pfunc’ a

thousand times and exits. That function has just an ‘usleep’ call as presented in Figure

68. The idea is to have a different frequency of event generation. The load is

characterized by the parameter ‘period’ which represents the value used in the ‘usleep’

function call. We expect that, if the given generation rate is higher than the network

transmission, the total program execution time should be higher than the program

without instrumentation. We use clusters I and D detailed in section 5.2.2.

We created a simple tunlet that does nothing with the collected data and a sensor

declaration with two events installed in the entry and exit of the program code. We used

Chapter 5: Experimental Validation

135

the following sensor/actuator xml model file presented in Figure 69 and the model from

the Timer Sensor is presented in Figure 70.

<?xml version="1.0" encoding="ISO-8859-1"
standalone="no"?>

<GMATEModel>

<installPoints>

 <installPoint id="1"
 localRule="pfunc" pointType="functionEntry"/>

 <installPoint id="2"
 localRule="pfunc" pointType="functionExit"/>

</installPoints>

<sensors>

 <sensor id="1001" type="simpleSensor">

 <event id="1" logInfo="pfunc" />

 <event id="2" logInfo="pfunc" />

 </sensor>

</sensors>

<eventInstalls>

 <eventInstall sensorId="1001" eventId="1"
 installPointId="1" installPattern="." />

 <eventInstall sensorId="1001" eventId="2"
 installPointId="2" installPattern="." />

</eventInstalls>

<actuators />

<actionInstalls />

<tunlets>

 <tunlet type="file">SimpleSensorProfile.java</tunlet>

</tunlets>

<startup>

 <managementChannel mode="listen" port="41007"/>

 <eventChannel mode="listen" port="41008"/>

</startup>

</GMATEModel>

Figure 69 – Model for simple sensor profile experiment.

Chapter 5: Experimental Validation

136

Figure 71 presents the overhead of the Simple Sensor monitoring with the Analyzer

placed in the ‘I’ cluster and the program in the ‘D’ cluster. The execution where the

Analyzer is placed in same cluster gives the mean execution with and without

instrumentation which are statistically equal (mean values ranged by standard deviation

overlaps).

<sensor id="1001" type="timerSensor">

 <event id="1" logInfo="pfunc" />

 <event id="2" logInfo="pfunc" trigger="yes" />

</sensor>

Figure 70 – Specification of the Timer Sensor from Simple Sensor.

Figure 71 – Overhead of monitoring using Simple Sensors to time a function.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

0 50 100 150 200 250 300

In
cr

em
en

t i
n

To
ta

l E
xe

cu
ti

on
 T

im
e

Time Between Calls (ms)

Monitoring Over WAN

Chapter 6: Conclusions and Future Work

137

Chapter 6
Conclusions and Future Work
This chapter presents the findings and conclusions obtained from our work for each

problem statement and our proposed contributions. The chapter also highlights the

possible open lines that can be pursued as research topics on dynamic and automatic

tuning of applications and heterogeneous systems.

6.1 Conclusions

With the emerging of Grid Computing, the use of HPC came closer to large numbers of

users distributed around the world. That facilitates collaboration among organizations

within research projects, providing shared resources and higher common computational

capabilities. These resources include clusters or workstations, MPP systems, and

supercomputers located in many university departments or industry organizations

interconnected by the Internet or private networks. The Grid concept abstracts these

resources as computational elements which can be used by applications to solve

complex and increasing problems that demand more computational power than that

available within local resources as single clusters.

Indeed, the dynamic behavior and heterogeneity characteristics of the Grid make

application tuning difficult due to the lack of system information. Some properties are

hard to predict, such as network bandwidth or the topology of the resource set that will

be assigned to an application execution. The dynamic behavior of Grid environments

reinforces the need for dynamic tuning tools since the user has less control over the

Chapter 6: Conclusions and Future Work

138

application target execution hosts. The heterogeneous character of Grid systems can

generate different performance problems from those found in the same execution in

controlled environment such as clusters. The number of parameters can influence the

execution time increase and most of them cannot be controlled, such as available

Internet bandwidth and latency (inter-cluster communications over shared networks).

This thesis presented contributions to the applicability problems for automatic dynamic

performance tuning in parallel/distributed applications in computational Grids. We

expect this research to provide technical and conceptual solutions that help the support

of dynamic tuning in systems with higher levels of heterogeneity, such as

Computational Grids. The first problem encountered was how to deal with system

transparency without replacing or reinventing the system services. In advance, we

noticed that the network heterogeneity of Grid systems boosted the overhead results

from the monitoring and tuning phases for automatic tuning. Many Grid systems use the

Internet as an inter-sites communication backbone. The Internet is well known as a

shared environment where we do not have control over the resources used.

Another interesting aspect is how application development was changed with the use of

these systems. To achieve parallelism, users used different mechanisms such as

functional decomposition in services, data decomposition in parametric executions,

scientific workflows, wide area job execution pipelines and wide application parallelism

using message passing. Each of them has benefits and drawbacks: we choose to work

with wide area application parallelism due to the performance analysis needs of such

applications. It is difficult to measure and analyze shared resources located in different

administrative domains and geographically distributed.

We chose the Master-Worker programming paradigm and analyzed the impact of the

uses of more than one virtual communication channel and communication managers to

hide network heterogeneity of application execution considering these environments.

During application behavior analysis, we found that applications may have benefits in

the reduction of execution time if it could deal with dynamic selection of different grain

sizes. In the literature, the granularity was seen as a choice of application/algorithm

design and it is fixed at the development time. After that, an application has some fixed

compute to communication ratios which limits its scalability in systems with different

characteristics.

Chapter 6: Conclusions and Future Work

139

To get better compute to communication ratios, we can play with two parameters, the

compute time and the communication time. There is nothing to be gained in increasing

the compute time because that would increase the total application execution time.

Indeed, the communication time, if it is overlapped with the compute time, could give

the possibility of exploring a different communication volume. We state that certain

types of applications, when parallelized using the Master-Worker paradigm, generate

data reuse among different tasks. That changes the total data communication volume

required for distributing the load considering different grain sizes. The variation of that

communication volume, when overlapped with compute, affects the total execution

time. The grain division strategy may suit a different resource set topology assigned to

the application.

We also had to adapt the architecture used in automatic tuning to overcome the intrusion

into application execution and possible bottlenecks resulting from tuning applications in

wide area network (WAN) executions. We found that using decoupled processes for

collecting, analyzing and tuning could reduce the overhead impact in the application

processes while maintaining the benefits of the application adaptation to system

characteristics. We break many synchronization issues of the tuning process in order to

expect architecture scalability with low overheads.

With these previous problems and findings we can divide the contribution into more

details and results in following sections.

6.1.1 Process Location

The main idea behind a Grid system is transparency. The user should launch her

application and the system uses its requirements to find a place to execute its processes.

The user shall not have direct control over those mechanisms because the resources

exposed by the system are in continuous change. Different executions of an application

generally receive different sets of resources based on decisions that are taken by

different software layers, such as a meta-scheduler.

We presented two approaches for process location within computational Grids that can

be used by an automatic tuning environment tool: one that uses the Grid information

services which require administrative privileges and another that uses user level access.

We found that the information systems provided in current implementation middleware

Chapter 6: Conclusions and Future Work

140

could slow down the application process startup. The information propagation among

the system may generate inconsistent global system views from the location process.

Indeed, it is the only solution that works in environments where the CH does not have

network access to outside world. Within the used level approach, the application

processes startup is guided by the Application Controllers which call back the Analyzer

establishing the management and event channels required for the automatic tuning

process. The ideas and results of that architecture were published in:

 G. Costa, A. Morajko, T. Margalef, E., “Process Tracking for Dynamic Tuning

Applications on the Grid”, Journal of Computer Science & Technology (2007),

vol. 7, no. 1.

6.1.2 Security Polices

The most predominant characteristic of Grid Computing is the different administrative

domains. The process execution should follow strict different local and organization

policies. That includes which TCP ports are open, the sequence of communication

establishments, the communication privacy identification and authorization [19].

We assume that the processes required to perform the application instrumentation and

tuning should share the same security infrastructure as the application. That includes in

the proxy PKI certifications the application exports on execution. These certificates

allow us to identify and to authorize communications among processes to services and

processes from different CEs and CHs. The implementation details and ideas are also

published with the process location results.

6.1.3 Lower Communication Intrusion

Different from MATE implementation, GMATE uses an asynchronous mode form in

communication between analyzer and application controllers. That reduces the total

time of data transmission and possible overheads due to communication blocking. Since

grid environments are geographically distributed environments, communication is a

critical issue that can significantly affect application performance.

We assume that the conventional event monitoring process generates too much raw

performance data. With limited available bandwidth to perform online collection, we

choose to move part of the analysis to where each process executes. The idea is to pre-

Chapter 6: Conclusions and Future Work

141

process and filter the data as much as possible by doing some analysis and aggregation

at the moment that the performance data is collected. Instead of inspecting the execution

behavior with event collection, we created a component that handles some simple

processing mechanism inside the application process in order to allow performance

event data preprocessing. We called that “smart sensors”. With a smart sensor concept,

we lowered the total number of messages required to gather performance data used to

feed the performance model analysis.

Another contribution concerns how the tuning actions are performed. Instead of

stopping application processes from acting over their state variables and/or functions

such as MATE, we chose to instrument trigged controlled components called Actuators

to control these variables and call functions whenever necessary. That reduces the time

we needed to change process parameters, thus expecting better performance

improvements where we lower the intrusion from the tuning process.

With the concept of smart Sensors and Actuators we do not need too much

synchronization between the Analyzer and the Application Controller because we do

not stop the application from collecting performance data and perform tuning actions.

That lowers the instrumentation phase with the possibility of a batch installation of

Sensors and Actuators and not generating signals to processes to stop their execution in

case of some variable change or some function execution in response to a performance

model implemented inside a tunlet instance. That reduces the overhead to less than

0.5% on GMATE compared with 2% to 5% of overhead generated by MATE.

6.1.4 Middleware Integration

We detail a strategy of middleware integration that allows the tool to use system

services in order to help the tuning process. That was the first initiative to move MATE

concepts to build a new tool called GMATE. We used the Globus XIO communication

layer provided by the Globus Middleware to ensure firewall passing and security policy

conformance. The communication messages among application controllers and analyzer

were routed in different and independent channels. The management and Actuator

activation messages are transmitted in management channels and the measurements

generated by the Sensors are transmitted in event channels. The AC can be integrated to

the Globus container using a proxy component which exposes AC managed commands

as web services. Within that interface, the Analyzer may request the creation of required

Chapter 6: Conclusions and Future Work

142

management and event channels. The details of process location and tool integration in

the Globus Toolkit middleware were published on:

 G. Costa, A. Morajko, T. Margalef, E., “Automatic Tuning in Computational

Grids”, Applied Parallel Computing. State of the Art in Scientific Computing,

Lecture Notes in Computer Science, vol. 4699/2008, pp. 381-389, ISBN 978-3-

540-75754-2, Umeå, Sweden, Jun. 18-21, 2006

6.1.5 Performance Models

We proposed a performance model that allows for the tuning of grain size within

applications over heterogeneous resources found in multi-cluster executions within Grid

systems. The model is based on a balance of the compute – communication ratio of

application load division in tasks in order to use all provided resources with minimal

startup and finalization time on master-worker executions. The analytical heuristic

model and exhaustive simulation results were published in:

 G. Costa, J. Jorba, A. Morajko, T. Margalef, E. Luque, “Performance models

for dynamic tuning of parallel applications on Computational Grids”, IEEE

International Conference on Cluster Computing, vol., no., pp.376-385, Sept. 29

2008-Oct. 1 2008, ISBN 978-1-4244-2639-3. Tsukuba, Japan, Sept. 29 -Oct. 1,

2008.

We use the benefits of the load balance provided by the Master-Worker executions

considering that the available workers can be grouped in different communication

domains. The analysis of application execution within such scenarios shows that we can

decompose in parallel Master-Workers overlapped sharing of the master and its

communication capabilities.

We designed an application template to help with application development using the

paradigm of multiple communication channels and independent task distribution among

available master communication channels. We included the necessary hooks for

dynamic binary instrumentation and we shielded the concurrent parameter changes from

outside processes with the necessary synchronization mechanisms. The experiments

with different multi threaded MPI implementations show that we can expect compute to

communication overlap and task received communication to result in send

communication overlap.

Chapter 6: Conclusions and Future Work

143

The proposed models were implemented in a tunlet capable of instrumenting the

application template to create communication channels, assign workers to

communication channels, change grain size and shutdown worker processes. We used

that tunlet to adapt the applications developed with the application template to execute

using four different clusters with different processor and network characteristics,

lowering application execution time and shutting down the workers that the master was

not capable of using, which raised the measured efficiency in resource use.

6.2 Open Lines

Due the dynamic characteristic of Grid computing, applications need to adapt

themselves to different system configurations over time. This can be driven by tools that

have knowledge of the properties of the system and about the application. Those tools

can dynamically monitor the application and the system and select actions that can be

made online in order to get performance improvements.

Due to network influence on the monitoring overheads, the analysis process called the

Analyzer may have different configurations. It can be done in a centralized, hierarchical

and complete distributed approach. In the centralized approach, the Analyzer process

responsible for collecting the information and doing the online analysis is placed close

to the resources in order to minimize network bandwidth influence. The hierarchical

approach can be used to reduce the necessity of data transmission among ‘far’

monitored resources.

The idea is to have the local Analyzers placed ‘close’ to analyzed resources in order to

preprocess and reduce the performance data produced by those resources. In response to

that, local Analyzers generate abstract events representing collected process data and

send it to a central analysis process. This case can reduce dramatically the network

requirements needed in communications. In such schemes, local Analyzers transmit to

central sites only small event abstractions required to compute global model states. In

the complete distributed approach, each Analyzer instance cooperates with others using

abstract events which represent the performance data of the controlled resources. For

example, in scenarios where we could have an SPMD application running among many

clusters, we may have one Analyzer in each cluster tuning grain size and load

distribution parameters. Following the SPMD heuristic, this Analyzer should only

Chapter 6: Conclusions and Future Work

144

inform communication partners about local cluster states and the global application

model should have partial updates with that information in a distributed shared view.

We can use a consensus to ensure view consistency.

The current analyzer implementation is developed in Java which can be adapted easily

to allow a tunlet migration capability. We can, for example, have a scenario in which a

tunlet acts like a mobile agent and the Analyzer as an agency. In such scenarios, the

tunlet may decide to migrate to a different tunlet container expecting to lower event

collection and provide a faster response time for system changes.

Different approaches of the Analyzer process distribution may require different models

which can be broken into partial models to be distributed among different Analyzers.

We expect that some performance models can be evaluated and tuning suggestions may

be applied inside process spaces, by the sensor model, some performance model tuning

suggestions can be applied on cluster level, by local Analyzers, and other model tuning

suggestions can be applied at a Grid level or, in Grid terminology, Collective layer. The

idea is to minimize event transmission among different levels of analysis lowering the

intrusion overhead as much as possible.

Other improvements that could be useful would be to have soft programmable sensors

and actuators. The idea is the tuning tool could complete customized sensor and

actuator behavior through a script language. That script language could directly program

the sensor and actuator code using DyninstAPI binary programming capabilities [48]. In

such scenarios, tools could program sensors and actuators logic cores inside process

spaces in order to monitor and change process behavior based on measurements taken

during the process execution. This could allow for the creation of tuning scenarios

completely inside process spaces, or in-process automatic tuning.

Concerning the topology aspects of data gathering, the monitoring process can use

information about Service Level Agreement (SLA) contracts to control the pace of the

event data stream generation. By means of those contracts, events can be packaged in

compressed information frames, and could lower the network requirements of event

data transmission.

Some interesting complementary tools that help monitoring and analysis in Grid

environments could be event storage services. Different from current Grid storage

Chapter 6: Conclusions and Future Work

145

services, these services could handle a decentralized and synchronized stable storage for

event data. In a postmortem analysis, users could query those storages for the events

they are interested in and receive ordered multiplexed event data. That could allow for

analysis of wide applications such complex Grid scientific workflows.

6.2.1 Application Parallelism Support

One recognized problem regarding parallel application development is the complexity

of the performance engineering. The application developers are generally field-specific

specialists, not high performance computer specialists. When they involve performance

specialists, the application and its embedded algorithms are generally coded and

running in a prototype implementation which should be analyzed in order to obtain

performance improvements. The problem we see in such processes is the analysis of

source code for potential parallelisms is much harder than at a conceptual level. When

an algorithm is developed, its conceptual problem is mapped in data and function

structures. Let us take the n-body parallelization strategy used in section 5.3.3. Without

breaking down the analysis of the forces of each body in a composition of single steps

(calculus of the force influence for the other bodies over the body under analysis), it was

not possible to generate different grain sizes with uniform load division and data

division among tasks. We acknowledge that there are many different algorithms for the

n-body problem considering SPMD approaches, but we advocate the use of simple load

balance mechanisms as master-worker or/and pipeline strategies to deal with complex

system configuration which involve a hetereogeneous network and processor.

There are many initiatives to declare the parallelism semantic during application

development. These semantic facilitates prototype applications with the use of

Application Templates [60], language preprocessing directives [88-90], automatic

parallel code generation [91] and different languages semantics [92, 93] where

developers have helped with problem parallelization decomposition. Indeed, we are far

away from semantics that work well with the high degree difference in the systems the

applications should run within. That problem grows when the number of cores increase

on many-core systems with many memory cache strategies and group core

specializations. Different approaches for these parallel application development

semantics have as a common goal how to help developers specify the application in a

way such that potential parallelism can be exploited. We can classify the ideas in

Chapter 6: Conclusions and Future Work

146

functional based and data based parallelism semantics, but there are no semantics of

how to specify the load division, considering for example, the parallelization

Task/Channel methodology presented by Foster. If the developer can specify in

semantic terms the units used to generate application grains we may have programs

capable of adapting themselves over these complex system architectures with the tool

support to tune performance.

As with the problem of mapping, the problem of task grouping is that its complexity is

also NP complete. The trends are that we have more elements in system architecture,

and, without application composition malleability, its adaptation within large systems

will be even harder. Within Grids, application developers experience some of the

solution when breaking applications in workflows with a thousand job tasks. These job

tasks are scheduled independently and, by having the benefit of High Throughput

Computing, we lower an application’s total execution time.

We see a promising research field in bringing these asynchronous task processing

queues, represented by CE’s schedulers, to application task’s

composition/decomposition, guided by the queues semantics, in HPC services provided

by the different systems. The use of queue theory in the development of parallel

applications allows for the construction of asynchronous out of order schemes for task

execution. The message passing API provides some facilities that can be used to queue

identification (message tags), what is missing is the semantic definition for processors

that consume those queues and the semantics for processors to queue routing

mechanisms.

With the task queues consumed by processors and the capability of task splitting and

merging semantics explicated by the application developers, we could have the

possibility or better performance prediction, system adaptability, and application state

definition that could help dependability, and give easier load balance in heterogeneous

architectures. We should note, indeed, that programming applications using such

paradigms may require a mind-shift, of the sort that is hard to achieve nowadays. The

standards that survive are the most used and, in some cases, not the ones with better

characteristics/results.

Chapter 6: Conclusions and Future Work

147

6.2.2 Data Type and Domain Semantic Definition

When we try to develop applications with different grain sizes and get the process of

working with those grain sizes set up in an independently manner, we did not find

support in programming languages. The mechanisms provided by a type definition are

static and without a type to type conversion process. It is common knowledge among

developers that a different data memory layout produces different performance indexes.

Most of the difference between the serial and parallel codes of NAS kernels is the

composition and decomposition of data types used to perform inter-process

communications and better memory layouts for intensive computes. That is a trade off

between simplicity and overheads. It is hard to get lower overheads in message passing

considering the complex types composed of a high number or non contiguous memory

segments. We found that, if we have a programming interface or language semantics to

specify how data types are composed, and how to identify instances of its compositions,

we could have systems with message passing implementations that may balance the

network load through caching known data.

Consider, for example, that we could have a data type definition semantic that allows

specifications in which different instances from some variables share common data. The

message passing could reduce the amount of data needed to be transferred, by

acknowledging the existence of the shared part within message composition. From the

application developer perspective, all codes required to pack and unpack those variable

in messages to be transmitted would be simplified. The semantics definition could be

added to the standard message passing its benefits to facilitate application development.

A more complex semantic could be found in type composition. Imagine a scenario

where we have three processors where two processors send messages that are assembled

in a complex message received by a third one. If we have some mechanisms for data

type definition which allow that the third process received a composed type, we could

simplify the application development to data domain engineering. The lesser code could

reduce error incidence and the message dependencies specification could help, or hide,

the problem of causal dependency among messages during application development.

We may say that, having explicitly support for message dependency, we could have

lower application synchronization points. With less synchronization requirements, we

have less load unbalance.

Chapter 6: Conclusions and Future Work

148

6.2.3 Multi-Core Issues

With new many-core systems, the application development semantics using shared

memory and distributed shared memory receive revived attention. One problem in using

these semantics in programming is to detect locality at runtime. When two or more

processes have their load centered over shared variables, we have serious performance

problems. For example, if two programs update different variables within the same

cache line, each update instruction invalidates the other process cache. To overcome

that, developers use some synchronization steps to reduce process to process locality

interference, creating working regions. The problem is to balance these region sizes,

when the application executes over machines with different architectures. In some

scenarios, the processes should shrink or expand their locality by regions using different

region sizes in order to balance the load among the available cores, lowering execution

time.

If applications could have hooks where they could be used to guide the regions’

shrinkage and expansion, the multi-threading programming could have more benefits

than the dynamic tuning. The parallel execution environment could detect how well

these regions block the execution threads, how well the jump prediction and cache hit

statistics are and play with the region size to get better application adaptation to the

execution environment. In certain ways, the region sizes could be the grain size options

within shared memory systems.

 We should not forget to mention that the multi-core system can be analyzed as a cluster

on a chip, having the same performance problems and tuning possibilities and benefits

as the same solutions proposed for NOWs and Multi-Cluster studies. Roughly,

machines are cores, heterogeneous in some scenarios, interconnected by a network

(Network On a Chip – NOC), heterogeneous in other scenarios. We can, for example,

analyze a cluster of multi-core processors as a muti-cluster system, which can have the

benefits of channel selection, grain composition/decomposition, channel based load

distribution analysis and compute/communication overlap.

6.2.4 Moving to Cloud Computing

Grid technologies were the state-of-the-art model of systems for the last ten years.

Nowadays, the Grid research products are used in production environments most in

Chapter 6: Conclusions and Future Work

149

government and academic areas. Indeed, application development could use an

economic model based on commerce requirements. The lack of these economy indexed

performance models could be seen in different industry initiative to sell on demand

computing. Each seller has his service characteristics, most uses virtual machines and

network use to compose products for users. These companies sell these products as

Cloud Computing. The idea is that the client may buy virtual machines per hour of use

and network bandwidth. When uses HPC applications and such systems, we could

maximize the cost benefit of application execution, reducing its execution time, wide

area network and adapt application execution within a multiple of time segments.

Imagine the following scenario. A user has an HPC application to execute on a Cloud

Computing system at minimal cost possible. The cost of application execution is

function of the number of virtual machines that it uses and the execution time and the

network bandwidth exchange if those machines are located in different sites. Suppose

that the virtual machine cost is sold per hour of use, without hour fragmentation. That

allows us, for example in case of dynamic tuning, to tune the application execution time

using different grain size in order to fit the machine utilization and execution time to

multiple of one hour to get maximum cost efficiency. If the application, for example

executes for ten hours and five minutes with ten machines have less cost if it executes

for eleven hours and nine machines.

Our dynamic tuning environment GMATE could be used to interact to the Cloud system

using some economic based tunlet that drives the activation and deactivation of virtual

machines within an application execution exploring the performance and economic

factor. It could be analyzed if a remote cluster of virtual machines cloud be activated

considering the cost per task/results communications and its impact in total application

execution time and cost. The uses of dynamic tuning have most benefits on those cases

where runtime system conditions are the parameter that drives the application

performance behavior.

Chapter 6: Conclusions and Future Work

150

Bibliography

151

Bibliography
[1] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, "The Physiology of the

Grid," in Grid Computing - Making the Global Infrastructure a Reality: John

Wiley & Sons, Ltd, 2003, pp. 217-249.

[2] I. T. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid - Enabling

Scalable Virtual Organizations," International Journal of High Performance

Computing Applications, vol. 15, 2001.

[3] J. L. Hennessy, D. A. Patterson, and D. A. Patterson, Computer architecture : a

quantitative approach, 3rd ed. San Francisco, CA: Morgan Kaufmann

Publishers, 2003.

[4] M. J. Quinn, Parallel programming in C with MPI and OpenMP. Boston, USA:

McGraw-Hill Higher Education, 2004.

[5] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen,

"Simple Object Access Protocol (SOAP)," W3C Recommendation24 June 2003.

[6] I. Foster and S. Tuecke, "Describing the elephant: the different faces of IT as

service," Queue, vol. 3, pp. 26-29, 2005.

[7] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New Computing

Infrastructure, 2 ed. San Francisco: Morgan Kauffman, 2003.

[8] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and R. Wolski,

"A Grid Monitoring Architecture," GGF Performance Working Group, 2002.

Bibliography

152

[9] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, "Grid information

services for distributed resource sharing," in High Performance Distributed

Computing, 2001. Proceedings. 10th IEEE International Symposium on, 2001,

pp. 181--194.

[10] I. T. Foster, "Globus Toolkit Version 4: Software for Service-Oriented

Systems," in NPC, 2005, pp. 2-13.

[11] M. Cierniak, M. J. Zaki, and W. Li, "Compile-Time Scheduling Algorithms for a

Heterogeneous Network of Workstations," The Computer Journal, vol. 40, pp.

356-372, 1997.

[12] R. Jain, The art of computer systems performance analysis : techniques for

experimental design, measurement, simulation, and modeling. New York:

Wiley, 1991.

[13] J. K. Hollingsworth, J. Lumpp, and B. P. Miller, "Techniques for Performance

Measurement of Parallel Programs," Parallel Computers: Theory and Practice,

1995.

[14] A. Morajko, "Dynamic Tuning of Parallel/Distributed Applications," in

Departament d'Arquitectura de Computadors i Sistemes Operatius. vol. Phd

Barcelona: Universitat Autonoma de Barcelona, 2004.

[15] C. Tapus, I.-H. Chung, and J. K. Hollingsworth, "Active Harmony: Towards

Automated Performance Tuning," SC’02, November 2002.

[16] M. Gerndt, K. Furlinger, and E. Kereku, "Periscope: Advanced techniques for

performance analysis," in Proceedings of the 2005 International Conference on

Parallel Computing (ParCo 2005), 2005, pp. 15–26.

[17] M. Gerndt, "Automatic performance analysis tools for the Grid," Concurrency

and Computation: Practice and Experience, vol. 17, pp. 99-115, 2005.

[18] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, "Condor-G: A

Computation Management Agent for Multi-Institutional Grids," in Cluster

Computing, 2002, pp. 237-246.

[19] I. Foster, T. Freeman, K. Keahy, D. Scheftner, B. Sotomayer, and X. Zhang,

"Virtual Clusters for Grid Communities," 2006, pp. 513-520.

Bibliography

153

[20] I. Foster, Designing and building parallel programs : concepts and tools for

parallel software engineering. Reading, Mass.: Addison-Wesley, 1995.

[21] L. Colombet and L. Desbat, "Speedup and efficiency of large-size applications

on heterogeneous networks," Theoretical Computer Science, vol. 196, pp. 31--

44, 1998.

[22] V. Bharadwaj, D. Ghose, V. Mani, and T. Robertazzi, Scheduling Divisible

Loads in Parallel and Distributed Systems: IEEE Computer Society Press, 1996.

[23] E. Argollo, A. Gaudiani, D. Rexachs, and E. Luque, "Tuning Application in a

Multi-cluster Environment," in Euro-Par 2006 Parallel Processing, 2006, pp.

78-88.

[24] G. Costa, J. Jorba, A. Morajko, T. Margalef, and E. Luque, "Performance

models for dynamic tuning of parallel applications on Computational Grids," in

Cluster Computing, 2008 IEEE International Conference on, 2008, pp. 376-385.

[25] D. Thain, T. Tannenbaum, and M. Livny, "Distributed computing in practice:

the Condor experience," Concurrency and Computation: Practice and

Experience, vol. 17, pp. 323--356, 2005.

[26] "Portable Batch System Administrator Guide," Veridian Systems PBS Products

Dept. 2672 Bayshore Parkway, Suite 810 Mountain View, CA 94043: Veridian

Information Solutions, Inc., 2000.

[27] S. Dong, G. E. Karniadakes, and N. T. Karonis, "Cross-site computations on the

TeraGrid," Computing in Science \& Engineering [see also IEEE Computational

Science and Engineering], vol. 7, pp. 14--23, 2005.

[28] K. Yurkewicz, "Grid Gets the Blood Flowing," Science Grid, March 29 2006.

[29] B. Lowekamp, B. Tierney, L. Cottrell, R. H. Jones, T. Kielmann, and M. Swany,

"A Hierarchy of Network Performance Characteristics for Grid Applications and

Services," GFD-R-P.023 (Proposed Recommendation), 2004.

[30] J. Proti*c, M. Tomaševic, and V. Milutinovi*c, Distributed shared memory :

concepts and systems. Los Alamitos, Calif.: IEEE Computer Society Press,

1998.

Bibliography

154

[31] H.-L. Truong, "Novel Techniques and Methods for Performance Measurement,

Analysis and Monitoring of Cluster and Grid Applications," University of

Innsbruck, 2005.

[32] M. Muller, M. Hess, and E. Gabriel, "Grid enabled MPI solutions for clusters,"

in Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd

IEEE/ACM International Symposium on, 2003, pp. 18--25.

[33] S. Genaud, M. Grunberg, and C. Mongenet, "Experiments in running a scientific

MPI application on Grid’5000," 4th High Performance Grid Computing

International Workshop, IPDPS conference proceedings.

[34] S. Zanikolas and R. Sakellariou, "A taxonomy of grid monitoring systems,"

FUTURE GENERATION COMPUTER SYSTEMS, vol. 21, pp. 163--188,

January 2005.

[35] H. L. Truong and T. Fahringer, "SCALEA-G: A Unified Monitoring and

Performance Analysis System for the Grid," in European Across Grids

Conference, 2004, pp. 202-211.

[36] A. W. Cooke, A. J. G. Gray, L. Ma, W. Nutt, J. Magowan, M. Oevers, P. Taylor,

R. Byrom, L. Field, S. Hicks, J. Leake, M. Soni, A. J. Wilson, R. Cordenonsi, L.

Cornwall, A. Djaoui, S. Fisher, N. Podhorszki, B. A. Coghlan, S. Kenny, and D.

O'Callaghan, "R-GMA: An Information Integration System for Grid

Monitoring," in CoopIS/DOA/ODBASE, 2003, pp. 462-481.

[37] M. L. Massie, B. N. Chun, and D. E. Culler, "The ganglia distributed monitoring

system: design, implementation, and experience," Parallel Computing, vol. 30,

pp. 817-840, 2004.

[38] H. B. Newman, I. C. Legrand, P. Galvez, R. Voicu, and C. Cirstoiu,

"MonALISA : A Distributed Monitoring Service Architecture," CoRR, vol.

cs.DC/0306096, 2003.

[39] A. W. Cooke, A. J. G. Gray, W. Nutt, J. Magowan, M. Oevers, P. Taylor, R.

Cordenonsi, R. Byrom, L. Cornwall, A. Djaoui, L. Field, S. M. Fisher, S. Hicks,

J. Leake, R. Middleton, A. Wilson, X. Zhu, N. Podhorszki, B. Coghlan, S.

Kenny, D. Oâ€™Callaghan, and J. Ryan, "The Relational Grid Monitoring

Bibliography

155

Architecture: Mediating Information about the Grid," Journal of Grid

Computing, vol. 2, pp. 323--339, December 2004.

[40] Z. Balaton and G. Gombás, "Resource and Job Monitoring in the Grid," in Euro-

Par 2003 Parallel Processing. vol. 2790: Springer Berlin / Heidelberg, 2003,

pp. 404-411.

[41] A. Cooke, A. J. G. Gray, and W. Nutt, "Stream Integration Techniques for Grid

Monitoring," in Journal on Data Semantics II, 2005, pp. 136--175.

[42] M. Gerndt, R. Wismuuller, Z. Balaton, G. Gombás, P. Kacsuk, Z. Námeth, N.

Podhorszki, H.-L. Truong, T. Fahringer, M. Bubak, E. Laure, and T. Margalef,

"Performance Tools for the Grid: State of the Art and Future," APART White

Paper, 2004.

[43] "The Grid Laboratory Uniform Environment (GLUE).": http://www.cnaf.infn.it/

sergio/datatag/glue/index.htm.

[44] X. Zhang, J. L. Freschl, and J. M. Schopf, "A Performance Study of Monitoring

and Information Services for Distributed Systems," in HPDC, 2003, pp. 270-

282.

[45] I. LeGrand and H. Newman, "Monalisa: An Agent Based, Dynamic Service

System To Monitor, Control And Optimize Grid Based Applications,"

Computingin High Energy Physics, 2004.

[46] R. Wolski, "Dynamically forecasting network performance using the Network

Weather Service," Cluster Computing, vol. 1, pp. 119--132, March 1998.

[47] S. S. Shende and A. D. Malony, "The Tau Parallel Performance System,"

International Journal of High Performance Computing Applications, vol. 20, pp.

287-311, 2006.

[48] B. Buck and J. K. Hollingsworth, "An API for Runtime Code Patching," Journal

of High Performance Computing Applications, 2000.

[49] B. Mohr and F. Wolf, "KOJAK – A Tool Set for Automatic Performance

Analysis of Parallel Programs," Lecture Notes in Computer Science, vol. 2790,

pp. 1301 - 1304, Jan 2003.

Bibliography

156

[50] R. H. Pesch, J. M. Osier, and C. Support, "The gnu Binary Utilities," Free

Software Foundation, Inc, Manual.

[51] R. L. James and S. Eric, "EEL: machine-independent executable editing," in

Proceedings of the ACM SIGPLAN 1995 conference on Programming language

design and implementation La Jolla, California, United States: ACM Press,

1995.

[52] D. M. Pase, "Dynamic Probe Class Library (DPCL): Tutorial and Reference

Guide," IBM CorporationJuly 13 1998.

[53] H.-L. Truong, T. Fahringer, and S. Dustdar, "Dynamic Instrumentation,

Performance Monitoring and Analysis of Grid Scientific Workflows," Journal of

Grid Computing, vol. 3, pp. 1--18, June 2005.

[54] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin,

K. L. Karavanic, K. Kunchithapadam, and T. Newhall, "The Paradyn parallel

performance measurement tool," Computer, vol. 28, pp. 37--46, 1995.

[55] J. K. Hollingsworth, R. B. Irvin, and B. P. Miller, "The Integration of

Application and System Based Metrics in a Parallel Program Performance

Tool," in PPOPP, 1991, pp. 189-200.

[56] J. K. Hollingsworth, B. P. Miller, M. Goncalves, O. Naim, Z. Xu, and L. Zheng,

"MDL: A Language and Compiler for Dynamic Program Instrumentation," in

International Conference on Parallel Architectures and Compilation

Techniques, 1997, pp. 201 - 212.

[57] A. Morajko, O. Morajko, T. Margalef, and E. Luque, "MATE : Dynamic

Performance Tuning Environment," LNCS, vol. 3149, pp. 98-107, 2004.

[58] G. Costa, A. Morajko, T. Margalef, and E. Luque, "Automatic Tuning in

Computational Grids," in Applied Parallel Computing. State of the Art in

Scientific Computing, 2007, pp. 381-389.

[59] E. Argollo, "Performance prediction and tuning in a multi-cluster environment,"

in Departament d'Arquitectura de Computadors i Sistemes Operatius. vol. Phd

Barcelona: Universitat Autonoma de Barcelona, 2006.

[60] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S.

Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A.

Bibliography

157

Su, and D. Zagorodnov, "Adaptive computing on the Grid using AppLeS," IEEE

Transactions on Parallel and Distributed Systems, vol. 14, pp. 369--382, 2003.

[61] E. César, J. G. Mesa, J. Sorribes, and E. Luque, "Modeling Master-Worker

Applications in POETRIES," HIPS 2004, pp. 22-30, 2004.

[62] V. Bharadwaj, D. Ghose, and T. G. Robertazzi, "Divisible Load Theory: A New

Paradigm for Load Scheduling in Distributed Systems," Cluster Computing, vol.

6, pp. 7-17, 2003.

[63] B. Javadi, M. K. Akbari, and J. H. Abawajy, "Performance analysis of

heterogeneous multi-cluster systems," Parallel Processing, 2005. ICPP 2005

Workshops. International Conference Workshops on, pp. 493-500, 2005.

[64] E. Heymann, M. A. Senar, E. Luque, and M. Livny, "Adaptive scheduling for

master-worker applications on the computational grid," Grid Computing-GRID,

pp. 214-227, 2000.

[65] A. Morajko, P. Caymes, T. Margalef, and E. Luque, "Automatic Tuning of Data

Distribution Using Factoring in Master/Worker Applications," in Computational

Science – ICCS 2005, 2005, pp. 132-139.

[66] P. Caymes-Scutari, A. Morajko, E. César, G. Costa, J. G. Mesa, T. Margalef, J.

Sorribes, and E. Luque, "Development and Tuning Framework of

Master/Worker Applications," in Automatic Performance Analysis, Dagstuhl,

Germany, 2006.

[67] J. Dongarra, J.-F. Pineau, Y. Robert, and F. Vivien, "Matrix product on

heterogeneous master-worker platforms," in Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice of parallel programming Salt

Lake City, UT, USA: ACM, 2008.

[68] J. F. Pineau, Y. Robert, F. Vivien, Z. Shi, and J. Dongarra, "Revisiting Matrix

Product on Master-Worker Platforms," Research Report, vol. 39, 2006.

[69] M. H. MacDougall, Simulating computer systems : techniques and tools.

Cambridge, Mass.: MIT Press, 1987.

[70] N. T. Karonis, B. Toonen, and I. Foster, "MPICH-G2: A Grid-enabled

implementation of the Message Passing Interface," Journal Of Parallel And

Distributed Computing, vol. 63, pp. 551--563, May 2003.

Bibliography

158

[71] E. Argollo, D. Rexachs, F. Tinetti, and E. Luque, "Efficient Execution of

Scientific Computation on Geographically Distributed Clusters," PARA, pp. 691-

698, 2004.

[72] E. Argollo, J. R. d. Souza, D. Rexachs, and E. Luque, "Efficient Execution on

Long-Distance Geographically Distributed Dedicated Clusters," PVM/MPI

2004, pp. 311-318 2004.

[73] H. E. Bal, A. Plaat, M. G. Bakker, P. Dozy, and R. E. Hofman, "Optimizing

Parallel Applications for Wide- Area Clusters," IPPS/SPDP, pp. 784-790, 1998.

[74] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems : concepts

and design, 2nd ed. Harlow, England ; Reading, Mass.: Addison-Wesley, 1994.

[75] D. Mills, "Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and

OSI," University of Delaware, RFC 20301996.

[76] R. L. Ribler, H. Simitci, and D. A. Reed, "The Autopilot performance-directed

adaptive control system," Future Gener. Comput. Syst., vol. 18, pp. 175--187,

2001.

[77] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed, "Autopilot: Adaptive

Control of Distributed Applications," in HPDC, 1998, pp. 172-179.

[78] P. Caymes-Scutari, A. Morajko, E. Cesar, J. Mesa, G. Costa, T. Margalef, J.

Sorribes, and E. Luque, "Entorno de Desarrollo y Sintonizacion de Aplicaciones

Master/Worker," in CACIC - Workshop de Procesamiento Distribuido y

Paralelo (WPDP), Argentina, 2005.

[79] G. Costa, A. Morajko, T. Margalef, and E. Luque, "Automatic Tuning in

Computational Grids," in Workshop On State-Of-The-Art In Scientific And

Parallel Computing Umeå, Sweden: June 18-21, 2006.

[80] W. Allcock, J. Bresnahan, R. Kettimuthu, and J. Link, "Globus eXtensible

Input/Output System (XIO): A Protocol Independent IO System for the Grid,"

ipdps, p. 179a, 2005.

[81] G. Team, "The Dynamically-Updated Request Online Coallocator ". vol. May

2007: http://www.globus.org/toolkit/docs/2.4/duroc/, 2007.

Bibliography

159

[82] J. Nagle, "Congestion control in IP/TCP internetworks," Ford Aerospace and

Communications Corporation, RFC 8966 January 1984.

[83] W. R. Stevens, UNIX Network Programming, Volume 2: Interprocess

Communication, 2nd edition. New Jersey: Prentice Hall PTR, 1998.

[84] P. C. Roth, D. C. Arnold, and B. P. Miller, "MRNet: A Software-Based

Multicast/Reduction Network for Scalable Tools," in SC '03: Proceedings of the

2003 ACM/IEEE conference on Supercomputing: IEEE Computer Society,

2003, p. 21.

[85] M. Gerndt and E. Kereku, "Selective Instrumentation and Monitoring,"

International Workshop on Compilers for Parallel Computers, 2004.

[86] Intel, "Intel MPI benchmarks (formally known as Pallas MPI Benchmarks)."

[87] A. Darling, L. Carey, and W. Feng, "The design, implementation, and evaluation

of mpiBLAST," Proceedings of ClusterWorld, vol. 2003, 2003.

[88] A. J. Dorta, J. M. Badía, E. S. Quintana, and F. de Sande, "Implementing

OpenMP for Clusters on Top of MPI," in Recent Advances in Parallel Virtual

Machine and Message Passing Interface, 2005, pp. 148-155.

[89] G. Jost, H. Jin, D. a. Mey, and F. F. Hatay, "Comparing the OpenMP, MPI, and

Hybrid Programming Paradigms on an SMP Cluster," NASA, NAS Technical

ReportNovember 2003.

[90] B. M. Chapman, L. Huang, H. Jin, G. Jost, and B. R. d. Supinski, "Support for

Flexibility and User Control of Worksharing in OpenMP," NASA, NAS

Technical ReportOctober 2005.

[91] D. Loveman, "High performance fortran," IEEE [see also IEEE Concurrency]

Parallel & Distributed Technology: Systems & Applications, vol. 1, pp. 25-42,

1993.

[92] C. Barton, C. Cascaval, and J. Amaral, "A Characterization of Shared Data

Access Patterns in UPC Programs," Lecture Notes in Computer Science, vol.

4382, p. 111, 2007.

[93] L. Kale and S. Krishnan, "CHARM++: A portable concurrent object oriented

system based on C++," ACM Sigplan Notices, vol. 28, pp. 91-108, 1993.

Bibliography

160

Appendix

161

Appendix

A. ClusterSim – a Multi-Cluster Simulator

Figure 72 – Queue system used to simulate the ClusterSim Cluster Simulator

Once we found out how a Master-Worker application behaves on some sample scenario,

we choose to build an approximation of such system in a discrete event simulator. The

Network Output

Network Input

(…)

Workers

Task
Scheduling

Complete
Monitoring

Appendix

162

implementation is done over the SMPL library and has events for three queue types

basically. The internal load structure and the internal behavior were built to mimic the

GMWAT application template.

The three queue types are, Network Input, Network Output and Workers. The SMPL

provides an API to represent queues called facilities. Each facility may have one or

more servers. All facilities used have one server. The item that is queued is called client

on SMPL semantic. For each conceptual queues presented on Figure 72, we create three

distinct events:

• Arrival – when a client arrives on queue.

• Request – when a client probes for server occupation.

• Release – when a client exist from queue.

The implemented event and its semantics are:

• EVT_WORK_GENERATION – controls the moment where the master

schedules the work.

• EVT_NET_OUT_ARRIVAL – Work arrival on queue Network Output.

• EVT_NET_OUT_REQUEST – Server probe for queue Network Output.

• EVT_NET_OUT_RELEASE – Work transmitted using queue Network Output.

• EVT_NET_IN_ARRIVAL – Work arrival on queue Network Input.

• EVT_NET_IN_REQUEST – Server probe for queue Network Input.

• EVT_NET_IN_RELEASE – Work transmitted using queue Network Input.

• EVT_WORKER_PROC_ARRIVAL – Arrival of a work to be processor on

some worker identified by client.

• EVT_WORKER_PROC_REQUEST – Server probe for work to be processed.

• EVT_WORKER_PROC_RELEASE – Work processed on worker identified by

client.

• EVT_WORKER_QUEUE_RELEASE – latency displaced from

EVT_NET_IN_ARRIVAL to mimic the framework code.

• EVT_STARTUP_END – used to graph MW phases.

• EVT_FINALIZATION_START – used to graph MW phases.

• EVT_FINALIZATION_PRE_START – used to graph MW phases.

Appendix

163

• EVT_DT_EVENT_RECEIVED – event to identify that a dynamic tuning event

trace is received by tuning tool.

• EVT_DT_ACTION_RECEIVED – event to identify that a dynamic tuning

action change is received by the application such as grain size change.

• EVT_DT_INIT_LOOP – initiates the tuning process.

• EVT_ACTIVATE_WORKER – event to ask for worker activation.

• EVT_DEACTIVATE_WORKER – event to ask for worker deactivation.

Figure 73 – Screenshot for ClusterSim front end that enables the configuration of multiple grain sizes and
the multiplicity of composition/decomposition.

Figure 73 presents the GUI that facilitates the configuration of different data reuse

scenarios and task composition and decomposition. The execution of SMPL engine

code generates the events of task execution that are used to plot the screen presented by

Figure 74. By such screen is possible to debug what task is assigned to what worker and

how the task composition/decomposition works. The idea is not to debug large number

Appendix

164

of workers but to identify on given different configurations how the task assignation and

grain composition and decomposition affect the application.

Figure 74 – Output of events from ClusterSim plotted using gnuplot. The numbers in the bars are the task
numbers. The blue bars are sends and the green bars are receives. The orange bars are processing events
from workers.

The other view that allows a quick view of the application parallelism degree is the busy

view presented on Figure 75. In such view we can analyzes the real use of the assigned

workers. The execution from Figure 74 and Figure 75 are related to the same problem.

The application has assigned six workers but uses only five.

Figure 76 presents the view of the workers, the network topology and the link

properties. From that is possible to configure LAN and WAN parameters and also

network contexts. Network contexts allows for configurations where a node access a

WAN link over a NAT, for example. In such case consumes the WAN link using the

LAN link.

Appendix

165

Figure 75 – Presents the amount of workers busy by time in application execution.

Figure 76 – GUI for complex topology configuration.

Appendix

166

B. GMWAT – a Hierarchical Master/Worker Application

Template with Support for Dynamic Grain Size Selection

When we thought about working with change in application compute to communication

ratio, we take a parallel of o Master-Worker matrix multiplication program to identify

what characteristics could be generalized in order to facilitate the development of

application with such characteristics. First we choose the Master-Worker paradigm. The

implementation should have uniform tasks sizes in computation and communication.

The common characteristic that makes an application to change the compute to

communication ratio is the data reuse among the generated tasks.

We search for available implementation like Skeletons, AppLeS and Quiron but none of

them provides the requirements to be used for dynamic tuning of number of workers

and grain size. The AppLeS does not fix the size of communication. The Skeletons does

not allow for working with more than one input and output data sizes for tasks. And the

Quiron have static structures for the parallel machine topology and data problem

mapping.

To facilitate the development of parallel applications suitable for dynamic tuning of

grain size and number of workers in computational Grids we decide to create an

application template that can be easily used to fix application behavior to such

characteristics. The main requirements are:

• Tasks should have a strong type and uniform.

• Task should be composed by data segments or chunks.

• Task can be decomposed to change grain size.

• Should support the following process roles:

• Master

• Submaster

• Worker

• Communication Manager

• Can add and remove workers.

• Support of iterative applications.

• Can change the grain size within or between iteration.

Appendix

167

To separate the computation from communication we use two classes

ComputeProcessor and MPIHandle. The ComputeProcessor manage the task

generation, processing and routing, and the MPIHandle handles the asynchronous

transmission from a ComputeProcessor and other processors. The Figure 77 presents

the iteration between the ComputeProcessor and MPIHandler instances. These classes

follow the singleton pattern on application process. The interface between the two

classes follows the queue semantics with the methods ‘give’, ‘notifyInput’,

‘notifyOutput’ and ‘report’ send.

Figure 77 – Sequence diagram of the API exposed for communication between the classes MPIHandler
and ComputeProcessor. It also presents relevant template function that can be used to measure time spent
in the communication process.

The ComputeProcessor class is an abstract meta-class placeholder for more elaborate

processors. The implemented specialization and its responsibilities are:

• Master – loads problem data from disk and schedule the tasks to other

processors. It controls the number of iterations, the grain size and the amount

of work for each iteration.

• SubMaster – waits tasks from some processor and schedule the load from

those tasks to other processes. It is capable of break tasks to schedule finer

grains to other processors.

• Communication Manager – just acts as a proxy among two processes A and

B. If the task received is from A, it is forwared to B, and if it is from B, it is

forwarded to A.

Compute Processor MPI Handler

give(rank, comm)

notifyOutput(rank, comm)

MPI Handler Compute Processor

Assyncronous MPI Send/Recv notifyInput(rank, comm)

report(rank, comm) give(rank, comm)

Appendix

168

• Worker – waits tasks from a processor, execute its load and returns the result

task.

Figure 78 presents the relationship among these processes roles. The MasterProcess,

WorkerProcess and CommunicationManager extend the ComputeProcessor. The

SubMaster extends the MasterProcessor and Workerprocessor.

Figure 78 – Class diagram presenting the internal concepts of the process roles inside the framework.

The MasterProcessors groups the workers in clusters7. The master schedules the tasks

independently for each cluster. Each cluster has its grain size, a number of workers and

parallel input and output threads for sending and receiving tasks using the MPIHandler

interface.

The MPIHandler internally is composed of Channels. Channels are threads classes from

input and output data using the MPI library. We use the capability of message tags to

differ messages from different channels. For example, if the master has two clusters, the

MPI library can have two sends in parallel to two different processes, one from each

cluster.

7 Here the cluster word refers to a set of workers with same properties. For example, to group workers

that shares a network link.

mpiHandler
rank

Compute Processor

workers
Master Processor

masterRank
Worker Processor

fromRank
toRank

Communication Manager

This class is implemented virtually inside MasterProcessorSubMaster Processor

Appendix

169

The tasks are the basic unit that a ComputeProcessor needs for processing. The task

inside the template is implemented by class Work. Each work has a WorkIndex

information which contains the grain size gi and the work sequence number wn. The

load of a Work is represented by the class WorkData. WorkData instances from same gi

are composed by fixed instances of DataChunks. Figure 79 presents these concepts and

the cardinality of those compositions.

Figure 79 – Class diagram presenting the internal concepts of the load inside the framework.

The structure of WorkData in DataChunks allows for memory saving when we have

reuse. If a DataChunk is used in many WorkData instances, there is no need of data

redundancy inside some process. Note that we follow the concept of stateless worker.

The DataChunk allows labeling. That may be use for DataChunk caching within

processors.

The template interacts with non-template code or user code by a simple C API. The API

is used for input data reading and output data write initialization and finalization,

iteration management, task creation, composition, decomposition and processing and

grain size management.

When the template code starts, it queries the user code about the problem load

parameters in terms of number of work units by iteration and the number of iterations. It

also query how the task composition/decomposition.

The Figure 80 presents a sequence diagram of a complete execution where the master

sends a task and receives its results. The template code probes how the application

count
chunks

WorkData
size
data

DataChunkchunks

1..* 1..*

gi
wn

Work Index
index
data

Work index

1 1

data1

1

Appendix

170

supports the different grain size by calling the function ‘user_canBreakDown’ for the

range of grain size values.

Figure 80 – Sequence diagram presenting the iteration among Master and Worker processes including the
sequence of user function calling.

The template code accepts configuration parameters form which is possible to specify

the following directives:

• Intial Grain Size – what grain size the clusters will work on.

• Base Grain Size – minimal grain size the master reads and writes.

• Clusters – the configuration topology as presented in Figure 81.

Template CodeUser Code

user_canBreakDown()

user_canBreakDown()

(…)

user_buildWorkData()

user_readWorkData()

user_writeWorkData()Consumes Workload

Detect Application
Grain Size
Capabilities

user_finalize()

user_iteration_start()

user_iteration_end

Template Code User Code

user_config()

user_buildWorkData()

user_processWorkData()

user_finalize()

user_iteration_start()

user_iteration_end()

user_config()

MPI Comm

MPI Comm

Master Role Worker Role

user_freeWorkData() user_freeWorkData()

Appendix

171

• Channels – the configuration of different channels for overlapped

communications among different processors.

Figure 81 – It presents a multi-cluster configuration within a parallel machine with 8 processes.

An example of multi-cluster complex configuration is presented on Figure 81. Such

configuration only requires an input parameter that indicates the roles for the processes.

For this example, if the parameter ‘--gmat-clusters’ receives the value ‘0_1-3,3.4_5-7”

the template executes using the topology presented on Figure 81.

0

0

0 – Master
4 – SubMaster
1,5,6,7 – Workers
3 – Communication Manager

0

1

2

3

4 7

6

5

	Chapter 1 Introduction
	1.1 Overview
	1.2 Goals and Constraints
	1.3 Thesis Organization

	Chapter 2 Computational Grids
	2.1 Overview
	2.2 Parallel Programming
	2.2.1 Programming Models
	Master-Worker
	Divide and Conquer
	Pipeline

	2.2.2 Performance Characterization

	2.3 Grid Middleware
	2.3.1 Overview
	2.3.2 Globus Toolkit
	Large Applications
	Parallel Applications
	MPICH-G2: Message Passing for the Grid
	GridMPI: Message Passing with Multi-Cluster Support

	2.3.3 Condor

	2.4 Heterogeneous Scenarios
	2.5 Monitoring Approaches
	2.5.1 Grid Monitoring Architecture – GMA
	2.5.2 System Monitoring
	R-GMA
	MonALISA
	NWS
	MDS

	2.5.3 Application Monitoring
	Static Instrumentation
	TAU
	KOJAK

	Dynamic Instrumentation
	SCALEA-G
	Paradyn

	Chapter 3 Grid Performance Models
	3.1 Related Work
	3.2 Performance Model for Dynamic Tuning
	3.2.1 Parameters Characterization
	3.2.2 Metrics for Grain Decomposition
	3.2.3 Grain Size and System Heterogeneity
	3.2.4 Dynamic Tuning Requirements and Process

	3.3 Tuning in Heterogeneous Scenarios
	3.4 Effects of Data Access Patterns
	3.5 Simulating Master-Worker in Heterogeneous Scenarios
	3.6 Summary

	Chapter 4 GMATE – Grid Monitoring Analysis and Tuning Environment
	4.1 Overview
	4.1.1 Problems
	Administrative Domains
	Heterogeneous Structure
	Event Ordering

	4.1.2 Clock Synchronization

	4.2 Dynamic Tuning
	4.2.1 Active Harmony
	4.2.2 Autopilot
	4.2.3 MATE

	4.3 Grid Monitoring
	4.3.1 Design Architecture
	4.3.2 Process Tracking
	System Service Approach
	Binary Packaging Approach

	4.3.3 Monitoring Topology
	Event Routing
	Scalability Issues

	4.3.4 Smart Event Gathering
	InstallPoints
	Simple Sensors
	Function Timer Sensors
	Other Sensors Types

	4.4 Grid Performance Analysis
	4.4.1 Tunlet Architecture

	4.5 Grid Tuning
	4.5.1 Smart Tuning Actions
	Simple Actuators
	Value Change Actuators
	Function Execution Actuators
	Other Actuator Types

	4.5.2 Tuning in different layers

	Chapter 5 Experimental Validation
	5.1 Introduction
	5.2 Master-Worker Tuning on Grids
	5.2.1 Framework Overview
	5.2.2 System Description
	5.2.3 Compute/Communication Dependency Analysis

	5.3 Application Case Studies
	5.3.1 Synthetic Dynamic Master-Worker
	Fixed Shared Data Chunk (FSDC)

	5.3.2 Matrix-Multiplication Application
	5.3.3 N-Body Application

	5.4 Architecture Validation
	5.4.1 Sensors Overhead Analysis

	Chapter 6 Conclusions and Future Work
	6.1 Conclusions
	6.1.1 Process Location
	6.1.2 Security Polices
	6.1.3 Lower Communication Intrusion
	6.1.4 Middleware Integration
	6.1.5 Performance Models

	6.2 Open Lines
	6.2.1 Application Parallelism Support
	6.2.2 Data Type and Domain Semantic Definition
	6.2.3 Multi-Core Issues
	6.2.4 Moving to Cloud Computing

