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Abstract 

When moving to Grid Computing, parallel applications face several performance 

problems. The system characteristics are different in each execution and sometimes 

within the same execution. Remote resources share network links and in some cases, the 

processes share machines using per-core allocation. In such scenarios we propose to use 

automatic performance tuning techniques to help an application adapt itself: thus a 

system changes in order to overcome performance bottlenecks. 

This thesis analyzes such problems of parallel application execution in Computational 

Grids, available tools for performance analysis and models to suit automatic dynamic 

tuning in such environments. From such an analysis, we propose system architecture for 

automatic dynamic tuning of parallel applications on computational Grids named 

GMATE. Its architecture includes several contributions.  In cases where a Grid meta-

scheduler decides application mapping, we propose two process tracking approaches 

that enable GMATE to locate where a Grid middleware maps application processes.  

One approach consists of the integration of GMATE components as Grid middleware. 

The other involves the need to embed a GMATE component inside application binaries. 

The first requires site administration privileges while the other increases the application 

binary which slows down application startup. 

To obey organizational policies, all communications use the same application security 

certificates for authentication. The same communications are performed using Grid 

middleware API. That approach enables the monitoring and tuning process to adapt 

dynamically to organizational firewall restrictions and network usage policies.  

To lower the communication needs of GMATE, we encapsulate part of the logic 

required to collect metrics and change application parameters in components that run 

inside the processing space.  For metric collection, we create sensor components that 

reduce the communication by event inside the process space. Different from traditional 

instrumentation, sensors can postpone the metric communication and perform basic 

operations such as summarizations, timers, averages or threshold based metric 

generation. That reduces the communication requirements in cases where network 

bandwidth is expensive.  We also encapsulate the modifications used to tune the 



 

xii 

application in components called actuators. Actuators may be installed at some point in 

the program flow execution and provide synchronization and low overhead control of 

application variables and function executions. As sensors and actuators can 

communicate with each other, we can perform simple tuning within process executions 

without the need for communication.  

As the dynamic tuning is performance model-centric, we need a performance model that 

can be used on heterogeneous processors and network such Grid Systems. We propose a 

heuristic performance model to find the maximum number of workers and best grain 

size of a Master-Worker execution in such systems. We assume that some classes of 

application may be built capable of changing grain size at runtime and that change 

action can modify an application’s compute-communication ratio. When users request a 

set of resources for a parallel execution, they may receive a multi-cluster configuration. 

The heuristic model allows for shrinking the set of resources without decreasing the 

application execution time. The idea is to reach the maximum number of workers the 

master can use, giving high priority to the faster ones. 

When we change the number of workers in a Grid environment, we should perform 

changes in application parameters and in the system configuration. That is an example 

of multi-layer tuning. To grow or shrink the number of processors, we need to interact 

with Grid middleware in synchronization with application process reconfiguration. To 

accomplish that, we have actuators that interact with the Grid services. 

We presented the results of the dynamic tuning of grain size and the number of workers 

in Master-Worker applications on Grid systems, lowering the total application execution 

time while raising system efficiency. We used the implementation of Matrix-

Multiplication, N-Body and synthetic workloads to try out different compute-

communication ratio changes in different grain size selections. 
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Chapter 1  
Introduction 
In this chapter, we setup the environment, its characteristics and the problems users find 

when facing scenarios of tuning parallel/distributed applications on computational 

Grids. We identify these problems and present the contributions this thesis states to 

accomplish concerning the user’s requirements for application performance dynamic 

tuning in such systems. In sequence, we discuss our goals and the assumed restrictions 

of this work, as well as its organization and contributions. 

1.1 Overview 

Many big problems are presented for resolution by computers in the current climate. As 

technology progresses, computers become more popular and their users require more 

processing resources to do their work. Research fields such as physics, chemistry, 

medicine and weather prediction are dealing with new computational challenges [1, 2]. 

These include high-level detailed simulations, the analysis of huge amounts of data and 

high processing power requirements. Computer capacity evolution grows every year as 

the cost per MFLOP gets cheaper [3]. 

An important challenge present for the HPC user community is the multiplicity of new 

computer systems configurations. To achieve high performance, users combine 

computers in many ways building new systems such as parallel machines, Beowulf 

Clusters, MPP’s, NoW’s and HNoW’s [3]. The key idea is to break down the problem 
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into small pieces and distribute the pieces among different machines to work in parallel. 

By using that strategy, called parallel programming, the time required to solve the 

problem should be reduced. The computational time reduction achieved by parallel 

programming depends on a large number of properties such as system configuration, 

required communication between the nodes, load balance management overheads and 

algorithm intrinsic parallelism (ratio of serial and parallel sections) [4]. 

The Internet age made cooperation on many levels possible by the ease of passing on 

information through compute and storage resource sharing. Internet-based technologies 

like the web turns to be the standard of human to machine and machine to machine 

communication interfaces [5, 6]. With the popularity of the resources available online, 

new semantics of resource sharing appeared. Computational resources from different 

organizations started to take part in wide distributed systems currently known as 

Computational Grids [2, 7]. A Computational Grid is an infrastructure that allows 

resource sharing among different organizations. The scientific community has been 

expending much effort to create standard technologies for Grid construction and 

recommendations to get interoperability among system stakeholders [8, 9]. 

Currently, the most commonly adopted middleware used in Grid construction for 

managing and resource sharing is the Globus Toolkit [7, 10]. It contains a set of services 

that allow computational resources, like clusters or parallel machines, within different 

organizations to be operated in agreement with each organization’s usage policy. In 

communications, for example, the toolkit uses Internet technologies such as web 

services, TCP as communication abstraction and private key infrastructure and TSL to 

cover security requirements [2]. 

Many parallel programs design semantics were created to address problems of 

application execution on wide systems such as Computational Grids. System 

heterogeneity is a problem, since it can easily lead to poor performance execution due to 

load imbalance [11]. In Grid executions, the network heterogeneity makes it more 

difficult for the application developers to achieve an efficient resource use. Performance 

depends on many factors, such as the level of parallelism of the problem and the 

computation communication ratio. On Grid systems, application execution over more 

than one organization should deal with inter-organization communications that 



Chapter 1: Introduction 

3 

generally represent high latency and low throughput [2, 7]. The developer does not have 

control over the compute nodes where the application executes its processes. 

Application performance improvement is not an easy task. It relies on a deep 

understanding of applications and systems. Application domain knowledge is required, 

together with its parallelization and system architecture, to minimize communications 

by using mapping and clustering techniques. A typical application performance 

improvement methodology could be: execution, monitoring, analysis and code 

modifications [12]. The user uses the information grabbed from execution through 

monitoring and decides, based on analysis techniques, which changes should be made to 

achieve performance improvement. The analysis can be empirical, by means of attempts 

to reduce total execution time through improvements on heavily used functions in an 

execution path or by means of performance models which intend to describe the 

application behavior [13]. 

Performance is a major issue in parallel programming. When a programmer develops a 

parallel application she expects to reach some performance indexes. Therefore, in the 

last year, several efforts has sought to provide automatic performance analysis and 

tuning tools that guide and help programmers and users of parallel applications to reach 

those expected indexes. These were presented as automatic off-line performance 

analysis, automatic on-line performance analysis and automatic dynamic performance 

tuning. [14-17] 

In the last ten years, grid systems have become a promising approach and have spread 

widely, so that many groups are developing parallel applications to run on these 

systems. However these systems are dynamic by nature and are composed by 

heterogeneous and shared resources. Therefore, the performance of parallel applications 

on these environments may vary dramatically depending on the particular conditions of 

each execution. So, automatic performance tuning tools are critically necessary to 

accomplish the performance expectations. 

Automatic dynamic performance tuning has been used on parallel/distributed 

environments and now our goal is to extend the applicability of such approaches to grid 

environments. This application involves several aspects as there are several technical 

issues that must be considered: 
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• The main point is that when a parallel application is launched on a grid 

environment, the user does not have direct control of the environment and there are 

several decisions that are taken by different software layers, such as meta-

schedulers. So, it is necessary to enable the tuning tool to have direct access to the 

application processes wherever they are launched [18]. 

• Grid systems involve different organizations with several administration domains. 

Therefore, the tuning tool must be able to fulfill the policies of the different 

organizations so that it can access the processes running on any participant 

organization [19]. 

• Since grid environments are geographically distributed environments, 

communication is a critical issue that can significantly affect application 

performance. Moreover, the tuning tool requires the collection information from 

different sites. This implies that information collection can be slow and can compete 

with and disturb application communication [7]. Therefore, it is necessary to 

develop collecting policies and strategies that minimize the communication 

requirements of the tool. 

• In some cases it can be necessary to adjust the grid environment (change the number 

of resources assigned to a parallel application or change the type of resources).      

This implies that the tuning tool must be able to interact with the different 

middleware layers of the grid environment. 

There are aspects that need to be considered related to performance tool itself and 

application development paradigm and architecture: 

• It is necessary to analyze performance behavior to develop the performance models 

that can be used to steer the application. This implies determining the parameters of 

the application that affect its performance. So, it is necessary to know which 

measurements must be taken to evaluate the actual behavior of the application. That 

behavior should be used to develop some performance models that take these 

measurements and provide the optimal value of the application parameters. These 
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suggestions should carry out the necessary adaptation in the execution application 

processes to achieve better performance indexes. 

• It is necessary to define the structure of the tuning tool. As has been mentioned, 

certain measurements must be taken from the application processes and this 

information must be used to evaluate a performance model. Therefore, the 

distribution of the collector processes, the analyzer processes and the required 

components involved in tuning processes must be distributed with a balance 

between local and global architecture. 

Moreover, we discuss the goals achieved and solutions proposed to overcome these 

aspects in order to use automatic dynamic tuning techniques in parallel application 

executions on computational Grids. 

1.2 Goals and Constraints 

The thesis proposes a Grid Monitoring Analysis and Tuning Environment (GMATE) 

capable of the dynamic tuning of parallel/distributed applications within a Grid System. 

The main contributions of this work are the analysis of performance issues inside 

Computational Grids, the evaluation of application parameters based on performance 

models and the design, development and implementation of an architecture for 

distributed dynamic tuning enabled to Grids environments. The architecture is open so 

that knowledge about different performance bottlenecks can be integrated. An example 

to show the viability and applicability of the approach is that a performance model for 

tuning grain size and the number of workers in hierarchical Master-Worker applications 

has been developed. 

The solutions adopted for the requirements described in the last section are the 

following: 

• In cases where a Grid meta-scheduler decides application mapping, we proposed 

two process-tracking approaches that enable GMATE to locate where Grid 

middleware maps application processes.  One approach consists of the integration of 

GMATE components as Grid middleware. The other consists of embedding 

GMATE components inside application binaries. The first requires site 
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administration privileges while the other increases the application binary which 

slows down application startup. 

• To obey organizational policies, all communications use the same application 

security certificates for authentication.  The same communication is performed 

using Grid middleware API. That approach enables the monitoring and tuning 

process to adapt dynamically to organizational firewall restrictions and network 

usage policies.  

• To lower the communication needs of GMATE, we encapsulate part of the logic 

required to collect metrics and change application parameters in components that 

run inside process space.  For metric collection we create sensor components that 

reduce the communication by event inside the process space. As they are different 

from traditional instrumentation, sensors can postpone metric communication and 

perform basic operations such as summarizations, timers, averages or threshold 

based metric generation. That reduces the communication requirements in cases 

where network bandwidth is expensive.  We also encapsulate the modifications used 

to tune the application in components called actuators. Actuators may be installed at 

some point in the program flow execution and provide synchronization and low 

overhead controls over application variables and function executions. As sensors 

and actuators can communicate with each other, we are able to perform simple 

tuning within process execution without the need for communication with an 

external analysis process.  

• As dynamic tuning is based on performance models, we need a performance model 

that could be used on heterogeneous processors and networks such Grid Systems. 

We propose a heuristic performance model to find the maximum number of workers 

and best grain size of a Master-Worker execution in such systems. We assume that 

the compute to communication ratio, or grain size, is decided at the point of 

algorithm parallelization and application development. In many cases that parameter 

is a factor used in application tuning. Instead of having a fixed grain size, we 

advocate that developers prepare the application/algorithm to work with different 

grain sizes. These applications may be capable of changing grain size at runtime 

which should be used as an action to modify application compute-communication 
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ratios. These actions can be used to adapt applications to different heterogeneous 

configurations. For example, when users request a set of resources for a parallel 

execution, they may receive a multi-cluster configuration. The heuristic model 

allows for shrinking the set of resources without decreasing application execution 

time. The idea is to reach the maximum number of workers, giving high priority to 

the faster ones. 

• When we change the number of workers in Grid environment, we should perform 

changes in application parameters and in system configuration. That is an example 

of multi-layer tuning. To grow or shrink the number of processors, we need to 

interact with Grid middleware in synchronization with application processes 

reconfiguration. To accomplish that we have actuators that interact with Grid 

services. 

• In the case of a hierarchical Master-Worker application, the tuning of the number of 

workers and grain size of a sub-Master may be done by a process placed in the same 

network domain. That decreases the tuning response time because it reduces 

message latency for metrics collection and tuning action communications. We 

present a comparison between three different approaches to analysis component 

distribution: centralized, hierarchical and fully distributed. In hierarchical analysis, 

local analysis reduces communication with global analysis components. In a fully 

distributed approach, each analysis component maintains its local data and a shared 

consensus of global analysis state required to tune the application. 

We presented the results of dynamic tuning of grain size and the number of workers 

using our performance model in Master-Worker applications on Grid systems, lowering 

total application execution time while raising system efficiency. We used Matrix-

Multiplication, N-Body and synthetic workloads to try out different compute-

communication ratio changes in different grain size selections. 

1.3 Thesis Organization 

In order to understand the problem of dynamic tuning in Grid environments first we 

have to describe Grid system characteristics. Chapter two presents assumptions about 

Grid environments, their requirements and also discusses some applications issues. It 
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analyzes some active tools used in system and application monitoring that can be used 

for performance analysis. In chapter three, we present our contribution with a 

performance model for Master-Worker dynamic tuning in computational Grids.  

The proposed architecture for distributed Grid monitoring, analysis and tuning 

environment (GMATE) is described in detail in chapter four. This chapter presents, for 

each issue of automatic dynamic tuning, proposed ideas, achieved solutions, constraints 

and drawbacks. The model proposed in chapter three and the architecture proposed in 

chapter four are the main contributions of this thesis. 

The experimental validation of our contribution is evaluated in simulations and a real 

enterprise Grid Testbed in chapter five. In chapter six, conclusions and open lines of 

investigation that this work acknowledges are commented on. 
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Chapter 2  
Computational Grids 

2.1 Overview 

The main idea behind grid environments is “coordinated resource sharing and problem 

solving in dynamic, multi-institutional virtual organizations” [2]. The resources may be 

distributed over the world interconnected by WAN infrastructures such as Internet. Grid 

environments have interconnected resources distributed under different administrative 

domains. These resources could be either physical or logical. Physical resource 

examples range from simple processing nodes to a wide parallel machine. Logical 

resources can be application services or middleware services. The main problem 

addressed by Grid computing is to facilitate cooperation between sets of users from 

different organizations. System architecture must be capable of the dynamic 

coordination of resource sharing among different institutions [1, 2, 7]. Currently, this 

requirement is covered by a set of software layers which abstract system heterogeneity 

and interoperability. 

2.2 Parallel Programming 

Computational Grids expose different software layers. These layers allow trusted 

resource interoperability among different administration domains. We may compare 

these software layers to a general operating system concept. In a Grid we have a meta-

scheduler to determine application resource assignation, compute elements as compute 

resources and storage elements as grid file systems. From an application point of view, 
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these resources may be used in different roles inside an application parallelization used 

strategy. Moreover, that strategy relies on specific load breakdown and semantic. These 

semantics allows us to classify applications that run in Computational Grids into the 

following groups: 

• Parametric Applications; 

• Scientific Workflows; 

• Distributed Applications. 

A parametric applications class is the easiest form of parallelization semantics. 

Generally, the application consists of the execution of a program using different 

parameters or using different input data. An application finishes its execution when all 

component tasks finish their execution. In this class, the maximum speedup is 

determined by the number of executions and the minimum execution time is determined 

by the largest single component execution. 

Scientific Workflows consist of different program execution denominated jobs where 

some jobs have dependences of data generated from other jobs forming a direct 

asynchronous graph (DAG). The communication between jobs is achieved by means of 

data files. The speedup of this class of application is determined by the level of 

parallelism found on the execution graph. The minimum execution time is derived by 

the sum of execution of jobs in DAG critical path. 

Distributed applications consist of the collaboration of different processes during 

execution. That collaboration is achieved by means of inter-process communication. 

Current examples of communication mechanisms are GridRPC, Web Services and 

Message Passing. 

2.2.1 Programming Models 

The process to build a distributed application determines its level of parallelism and 

consequently its speedup. Generally, application parallelization is performed by 

dividing the application load to be executed among processors. Foster in [20] presents a 

methodology of application parallelization called ‘Task/Channel’ in which the process 

consists of: 
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- Division: the application load is divided into small pieces of code execution or 

tasks that communicate with each other forming a graph of execution.  

- Clustering: due to the fact that communication may slow down dependent tasks, 

tasks with high data decency for other tasks (which would generate higher 

communication among these tasks) may be grouped. 

- Mapping: the final step is to assign tasks to physical processors for execution. 

There are many aspects that influence distributed applications executed in a 

Computational Grid. Lessons learned from parallel computing suggest that 

heterogeneity in compute and communication resources makes harder the task of 

performance improvement [21]. The challenge of higher application speedup depends 

on the efficient use of the maximum available compute resources achieving a load 

balance. There are many performance models that explain the behavior of parallel 

applications in homogeneous systems. These models generally analyze the influence of 

communications paradigms in application parallelizations. Examples of communication 

paradigms are: Master/Worker, Divide and Conquer, Pipeline and SPMD. 

Master-Worker 

In the Master/Worker paradigm (MW), the application load is divided into small parts, 

called tasks, and the processor with the master role has the responsibility of managing 

the tasks distribution to be processed by processors with worker roles. The load may be 

divided into iterations. The master processor divides the load among workers for every 

iteration. Iterations may be divided in three stages: startup, steady and finalization. The 

startup stage is the period delimited by the iteration start and when all workers start 

processing or a worker finishes processing: this is what comes first. In [22] the startup 

phase is also called installment. The steady phase consists of the period between the end 

of startup and the finalization phase. The finalization phase occurs when the master has 

no more work units to deliver and a worker finishes its processing queue. The author in 

[23] provides an exhaustive analysis of the different possible cases of startup and 

finalization scenarios. 

Divide and Conquer 

The Divide and Conquer, Pipeline and SPMD are paradigms with a high dependency on 

synchronization. That characteristic makes difficult its application in hetereogeneous 
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processors and even more in heterogeneous networks in which we easily found load 

imbalance. To deal with this system heterogeneity easily found in computational Grids, 

we need to divide dynamically and schedule work grains execution to achieve load 

balance. In that direction, the dynamic Master/Worker paradigm results as a basic model 

suited for heterogeneity and can be seen as the building block for more complex 

models. 

Pipeline 

The pipeline programming model consists of an application functional decomposition in 

different stages. The load processing should be divided among processors that are 

responsible for each stage. The parallelism of pipeline programming is achieved in 

functional decomposition where different parts of the pipeline represent different 

functions applied over a stream of data. 

2.2.2 Performance Characterization 

An index used to measure application scalability is the speedup. Given a number of 

processors N, the maximum speedup an application can achieve is a function from its 

parallelism level. The parallel application is not complete parallel. The processors 

assigned to compute the load need to receive the data, at least, and send or write the 

results. The literature has some limit expressions of speedup representations. The most 

famous is the Amdal’s Law, which rates the parts of the program that can be executed in 

parallel to the serial program part. We may say that the processes of data distribution 

and result collection can be characterized as serial parts. Equation (1) presents Amdal’s 

Law where S(N) represents the maximum speedup of applications which have the P 

fraction of the load that can be performed in parallel. 

 

 (1) 

 

Performance bottlenecks may be found in two basic resources: communications or 

computations. So, we may divide applications as communication- or computation-

bound. In those which are communication-bound, master to workers communication 
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channels (network links) are busy most of the time, while workers processors wait for 

computation. In those which are computation-bound, network links have idle periods 

while processors are busy most of the time. 

In both startup and finalization phases, we have idle workers. In [24] we model the 

prediction of these phases in respect to grain size and homogeneous networks. In 

section 4.1.1, we analyze the impact of grain size in these phases and provide the 

knowledge necessary for expansion to scenarios with network and processor 

heterogeneity. 

2.3 Grid Middleware 

 

 

Figure 1 – Organization and virtual organizations in a Grid. 

 

2.3.1 Overview 

Part of the services needed to create a Grid are provided by middleware software. The 

multi-institution characteristic of the Grid requires that the cooperation should be driven 

by strong security constraints. The resource usage should have specific use policies and 

have to follow organizations policies. So, the available infrastructure can be used by 

different groups distributed over many organizations. The set of users in different 

organizations who have the same goals and objectives is called a Virtual Organization 

(VO). Under the VO concept, users can be identified and group policies can be applied 

[1, 2, 7]. Figure 1 presents an administrative view of a possible Grid scenario. Under the 
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presented scenario, three organizations cooperate on two distinct projects. The work 

group cooperation in each project constitutes different virtual organizations “Genome 

Sequence” and “Protein Research”. Those VOs may or not share physical resources 

from component organizations. 

Organization resource sharing is conditional: each resource owner shares the resources 

based on their own constraints. In other words, the resource sharing mechanisms are 

built on top of local policies and organization policies. The services needed to provide 

such services can be analyzed into layers. The common community-adopted philosophy 

model used to analyze the required services needed to build a Grid is the Grid protocol 

architecture model proposed by Foster in [2]. Based on this model, we can differentiate 

the services used the Grid system architecture. 

2.3.2 Globus Toolkit 

The architecture model adopted by most existing Grid implementations today is 

presented in Figure 2. That architecture allows categorization of service requirements 

and identification of existing technologies that can be used to fulfill requirements such 

resource sharing and location, security policies, identification and authorization.  

The software layers to provide resource sharing and use can be divided into: application, 

collective, resource, connectivity and fabric as presented in Figure 2.The Fabric layer 

represents the available infrastructure. In order to have security in fabric services use, 

we need a software layer to manage inter-organization security operations. This is done 

by the Connectivity Layer. By using the services provided by the Connectivity Layer, 

we need services for resource abstraction and management, and this is done by the 

Resource Layer. The Collective layers manage resource groups providing Grid-wide 

services (that need to interact with more than one resource such as brokering and a 

meta-scheduler). 

Each layer has specific requirements to cover and there are many working software 

solutions available. The requirements and implementations using the Globus Toolkit 

services can be analyzed through these layers [2]. 
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Figure 2 – Grid Protocol Architecture, from [2]. 

 

Fabric Layer: provides the interfaces for local control. The idea is to expose the 

infrastructure as resources. Examples of resources are storage systems, catalogs, 

network resource, computational resources and sensors. A richer Fabric interface 

enables more sophisticated sharing operations and makes possible the creation of high-

level aggregation services such as co-scheduling and Grid-wide transaction services. 

Most monitoring metrics are obtained in the Fabric Layer. Grid monitoring tools should 

work with the provided services to gather performance data. In some cases, the 

monitoring services should be exposed as Fabric Layer services to be used to construct 

Grid-wide monitoring services. 

Connectivity Layer: provides the core communications and authentication protocols 

required for fabric services utilization. The authentication should provide services for 

single sign on (user identification and authorization), delegation (ability to delegate 

user’s rights to his/her submitted program), and integration with the existing local 

security solutions, and also have user-based trust relationship (VPN, signed certificates, 

security tokens based on PKI). 

The authentication, communication protection, and authorization mechanisms in current 

use employ the public-key Grid Security Infrastructure (GSI) protocols. GSI extends the 

Transport Layer Protocol (TLS) to address the presented services requirements and uses 

X.509-format identity certificates to handle identification and authorization based on 

user certificates [2, 7].  
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In order to fulfill these Grid security requirements, a Grid-wide monitoring tool should 

use the connectivity infrastructure for security and transport. In monitoring and tuning 

there are transmissions of events related to application behavior. These events could, for 

example, be used to reverse engineering applications, so they should be protected by 

security mechanisms such the use of cryptographics in communications.  

Resource Layer: uses the Connectivity Layer services for the secure negotiation, 

initiation monitoring, control, accounting and payment of sharing service operations on 

individual resources [1]. The main classes of Resource Layer protocols are: 

• Information Protocols: used for resource registration and localization, and resource 

information shared over the wider system. Examples are resource state (current 

status), configuration properties and running metrics. The information services are 

provided by the Grid Information Service, also known as Monitoring and Discovery 

Service (MDS), detailed in chapter 4, and are composed of: 

o Information Providers (IP); 

o Grid Index Information Services (GIIS) or Index Service; 

o Aggregator Services; 

o Trigger Services. 

The composition of the Grid is dynamic. Organizations can insert or remove 

resources without any control. To support that, the system should have protocols to 

discover and record the information about resource availability and its capabilities. 

Two protocols are provided to services access: The Grid Resource Information 

Protocol (GRIP) which is used to define a standard resource information protocol 

and the associated information model, and the Grid Resource Registration Protocol 

(GRRP), used to register resources in GIIS [9]. 

• Management Protocols: used to negotiate resource allocation based, for example, on 

a Service Level Agreement (SLA) or requirements properties. It also provides the 

services for resource state monitoring whilst in use and control operations such as 

termination (consensus about the end of resource utilization by a client). The Grid 

Resource Access and Management (GRAM) protocol is used for allocation of 

computational resources and the monitoring of resource usage [9]. 
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From the point of view of a Grid monitoring tool, the resource layer provides 

essential services for resource localization and information. It also provides services 

for composing Grid-wide monitoring, using locally-based monitoring services 

registered as resources within the Resource Layer. 

Collective Layer: handles collective resource operations and provides Grid-wide 

services. Those services include directory services, co-allocation, scheduling and 

brokering services, monitoring and diagnostics services, data replication services, Grid-

enabled programming systems, workload management systems and collaboration 

frameworks, software discovery services, community authorization servers, community 

accounting and payment services, and collaboration services. 

Many services are custom Grid solutions and others are adaptations of products to fulfill 

Collective Layer requirements. We can cite Condor-G, an adaptation of the Condor 

scheduling system to schedule jobs using individual resources services. Another 

example is the GridWay co-scheduler. The Grid-wide monitoring services are exposed 

in the Collective Layer which allows users to interact with a subset of active resources. 

For example, a request for application execution may require a number of Compute 

Elements to fulfill its requirements. Each Compute element may be a complex resource 

composed by a cluster of Compute Hosts. 

A common way of using the computational power of a Grid is to spawn the processes of 

a massive parallel application within the available processors inside a resource. 

Following the Grid Protocol layers presented in Figure 2, a user can interact with a Grid 

Web Portal, a collaboration framework of Collective layer, and submit his batch 

application. That application should enter a meta-scheduler queue such as Condor-G 

[18, 25] or a Community Scheduler Framework (CSF), to services of the Collective 

Layer. The meta-scheduler negotiates to Resource Layer services in order to do resource 

reservation using authenticated and secure communication services provided by a 

Connectivity Layer. Following the Grid Protocol Stack, that request is translated into 

the Fabric Layer to a local cluster scheduler, such as Condor, PBS, LSF or SGE, where 

the application job is executed [18, 25, 26]. Depending on the services used, users do 

not know where their applications jobs runs. To monitor the internal structures of job 

processes, a monitoring tool should be able to track process submission. 
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Not all the machines available for job execution in the Grid are exposed as single 

processor resources. The resource capable of job execution is called a Compute Element 

(CE). A CE may be composed of a single machine or a more complex parallel 

architecture such as clusters, vector processing machines or even mainframes. The 

machine component of a CE that does not have the Grid services installed is called a 

Compute Node (CN). 

Large Applications 

Grid systems are built to allow resource sharing between users from the same VO. The 

system composed by the available resources allows users to exploit more computation 

power. The literature presents some example cases of blood system simulations [27, 28] 

and weather forecasting [7]. Applications developed to have the maximum benefits of 

Grid systems should be concerned about the system network topology. That requires the 

application to be modified to have a benefits mutable network topology. Those 

modifications are more complex that a simply application parallelization. The Grid is a 

distributed system architecture generally composed by different levels of interconnected 

networks between its resources. Some resources are shared among applications and 

users. Data communication between different resources may have different throughput 

and latencies and typical problems of distributed systems such as load balance and 

synchronization bottlenecks are hard to locate and harder to solve [29]. A Grid 

monitoring tool can provide the required information in order to help developers solve 

those problems. 

Parallel Applications 

In order to reduce application execution time, and to use the available resources, the 

application can divide up the work to different machines and perform it in parallel. To 

process the divided work, the application processes generally need to communicate in 

order to complete its execution. The communication semantics between processes 

define two main programming paradigms: Distributed Shared Memory (DSM) [30] and 

Message Passing (MP) [4]. 

MPICH-G2: Message Passing for the Grid 

Different to DSM, where the developer should not be concerned how and when the 

communication is done, Messaging Passing (MP) consists of explicit communication 
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primitives used in distributed process communications. If a process needs to send some 

data to other processes, this calls a send function and the other process in some 

execution point should call a receive function. There are some variants such as non-

blocking, asynchronous and synchronous, and collective operations. With synchronous 

operations, the send operation only continues when the corresponding process calls the 

receive function; and in asynchronous ones, the operations do not block and there are 

some functions to test the operation completion. In collective operations, the MP library 

handles the data distribution between participants of the communication. 

MP has some advantages over DSM due the fact that the developer has a great deal of 

control over the communications. However, the more complex the parallelization of the 

application, the more problems should occur, such as lost of efficiency due to load 

imbalance. Some process may get blocked by a receive call waiting for a send from 

other process which is doing something else. That problem, for example, is called late 

sender problem [31]. 

The Message Passing Interface (MPI) is a standard API for message passing. There are 

many implementations of the Grid enabled MPI as MPICH-G2, PACX-MPI, MagPIe 

and Stampi. [32] presents a comparative performance study of the performance of those 

MPI implementations on multicluster1 environments. 

With the popularity of MP-based applications, more users have concerns about 

performance problems in their applications. That pushes tools developers to create 

monitoring tools in order to help users to measure what application processes are 

waiting while blocked by MP calls. 

GridMPI: Message Passing with Multi-Cluster Support 

The GridMPI is an implementation of the MPI standard 2.0 which allows multi-cluster 

executions. Users may use different MPI implementations for intra-cluster 

communications and the inter-communications are performed using sockets. 

                                                 

1 We assume the term multicluster for a system composed for more than one cluster, interconnected by a 

LAN, and assume that the term Grid represents more requirements such different administrative domains 

and interoperability. 
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The advantage of GridMPI over MPICH-G2 is the capability of multi-cluster executions 

where the clusters have private IP addresses. MPICH-G2 requires that all machines that 

participate in communications to have a valid IP address. That is not a common setup 

issue for NoW’s or Beowulf’s, which generally use private networks inside the parallel 

machine. A multi-cluster execution follows the Interoperability MPI (IMPI) standard 

which defines a protocol for message and information exchange among processes 

executing in different clusters. This execution can use different MPI implementations 

and transport levels at intra-cluster message exchanges. 

The GridMPI implementation provides two components to allow multi-cluster 

executions: an IMPI Server and an IMPI Relay. The IMPI Server is responsible for 

recording and informing the participants of a parallel execution of the information 

required to establish point-to-point communications. If all machines have public IP 

addresses, the IMP Server provides the information about the global process table and 

listening ports. 

In case of clusters with private IP addresses, the GridMPI provides a component called 

IMPI Relay. That has the function to serve as a proxy from local machines to the 

‘outside’ world. At startup, the IMPI Relay constructs two tables, a private table and a 

public table. The private table has information on how local machines are identified and 

the public table has all the participants that have public addresses.  

2.3.3 Condor 

The Condor is an environment for managing the execution of user jobs. Its philosophy 

consists of matching jobs to be executed to machines with capability to run job. It 

contributes with the Grid concept using a bottom-up strategy where Condor systems can 

delegate jobs to outer Condor systems, Globus based middleware and cluster batch 

schedulers such as PBS, SGE or LSF. The idea is that users use the same procedure to 

execute local jobs and to execute jobs into remote locations. 

Different from conventional cluster schedulers’ scheduling polices, Condor systems use 

the concept of matchmaking based on Classified Advertisement (ClassAds). When 

machines are available, they announce themselves with their properties, called 

‘ClassAds’ in Condor jargon. When users submit a job for execution, that generates a 

ClassAd containing the job requirements and properties. At periodic intervals, a process 
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within the role of Matchmaker tries to find a best match among ClassAds machines and 

ClassAds jobs, evaluating a rank function specified in ClassAds jobs against properties 

specified in ClassAds machines.  

The Condor architecture is composed of a set of processes with distinct responsibilities, 

as presented in Figure 3. The machines to which users submit their job execute two 

daemons: the ‘schedd’ and ‘shadow’. The ‘schedd’ is an agent responsible for queuing 

jobs waiting for execution. These queued jobs have their ClassAds published in the 

central manager process. 

 

 

Figure 3 – General Condor Kernel Architecture with the sequence of information flow.  

 

A successful execution use case of a user job in a Condor system consists of the 

following steps: 

1. The user submits the job using a ClassAd specification. 

2. The user agent and the resource publish its ClassAd on Matchmaker. 

3. In periodic bases, the Matchmaker assigns a resource to a job. At this point, the 

agent creates a shadow process in the user’s machine. 

4. The job is created on resource machine and uses a shadow on a client machine to 

exchange information. 
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Condor software is used as a Grid resource broker in many Grid production 

environments as middleware package distributions such as Virtual Data Toolkit (VDT) 

and GLite. 

2.4 Heterogeneous Scenarios 

When users submit a parallel application to a Grid System, they may not have control of 

what computation resources will be assigned for application execution. Application 

execution requirements can be satisfied by more than one resource. For example, the 

user may explicitly require some physical resource in their application requirements. 

Indeed, to get more opportunity to execute, the application requirements can be created 

in order to be satisfied by more than one resource. In that case, the system evaluates its 

current state and decides what would be the best choice in resource assignation. The 

used control is a trade off between time to execution (waiting for fixed resources) and 

resource availability due Grid dynamic behavior. Not all resources are available all the 

time. In such scenarios, a user’s application machine assignation is controlled by a 

Collective Layer (Meta-Scheduler and Resource Brokers) based on the requirements 

provided by users. 

Parallel application execution submission to a Grid may be classified in the following 

scenarios of execution: 

• Homogeneous Processors and Homogeneous Network (HoPHoN). This scenario 

consists of a common cluster of dedicated processors. Examples are Ethernet based 

commodity clusters exposed to the Grid by a head node running on two networks. 

That scenario may occur when Grid meta-scheduler assigns all application processes 

to a single homogeneous Compute Element composed of many Compute Hosts.  

• Heterogeneous Processors and Homogeneous Network (HePHoN). Cluster 

upgrades generally lead to heterogeneous processors. In such scenarios, network 

characteristics remain the same in bandwidth and latency for the master/worker 

paradigm and the compute time for the same piece of work may differ with different 

groups of processors. We assume that each homogeneous part of the cluster as a 

processor group for analysis purposes. As with the HoPHoN scenario, applications 

may receive a heterogeneous cluster by a meta-scheduler assignation. 
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• Homogeneous Processors and Heterogeneous Network (HoPHeP). Different 

clusters bought at similar times, from the same supplier tend to be homogeneous. 

The scenario described in [33] reports that 75% of machines are homogeneous. This 

scenario has two variants: the master may use only one network interface for local 

and remote communications or may have different network interfaces for local and 

remote communication. 

• Heterogeneous Processors and Heterogeneous Network (HePHeN). In such 

scenarios, the Grid resource broker may assign different groups of machines to 

different organizations. The master should deal with processor heterogeneity in local 

clusters and remote assigned workers. This scenario has also two variants: the 

master may have only one or two network interfaces as in the scenario HoPHep. 

2.5 Monitoring Approaches 

A Grid system can be monitored on many levels from Collective to Fabric ayers. These 

levels allow us to classify monitoring tools within System or Application monitoring 

tools. In System monitoring, the metrics are related to system states as available 

bandwidth, machines loads or available resources. In Application monitoring, the 

performance data is related to application execution as time spent on some modules, 

time spent on communications or cache misses related to some code region execution. 

In many tools implementations, the monitoring process collect measurements using 

sensors [34].  

Sensors are software components that collect data from execution properties. For 

example, a sensor that collects network utilization information may be a process that 

interacts with some device using SNMP and feeds an information service or other 

consumer. The first proposed standard for monitoring architecture in Grids is the Grid 

Monitoring Architecture [8, 34].  

2.5.1 Grid Monitoring Architecture – GMA 

The Global Grid Forum (GGF) proposes a scalable architecture for Grid monitoring 

called Grid Monitoring Architecture (GMA) [8, 34]. It describes requirements for 

systems that collect and distribute performance information in Grid systems such as low 

latency, high frequency and minimal measurement overheads, security and scalability. 
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In this architecture, trace event data is called an event with properties such as name, 

timestamp and a structure that may contain other property items. The semantic concepts 

presented in GMA, detailed in [8], are: 

• Entity: any useful network enabled resource, unique and with a defined lifetime. 

• Event: a collation of values containing timestamp and type data, associated to an 

entity and defined by a specific structure. 

• Event schema: defines the semantics of all events, consists of the event type 

definition catalog. 

• Sensor: a process that monitors an entity and generates events. Sensors are 

divided into: 

o Passive: read values available about an entity, such as counters and 

properties. 

o Active; generate data based on benchmarks such as network probes for 

bandwidth and latency. 

 

 

Figure 4 - Grid Monitoring Architecture Components, from [8]. 

 

The architecture is characterized by three main components: producer, consumer and 

directory service. The producer is the component that generates the event data and the 

consumer is the component that requests or accepts it, as presented in the figure below. 

The third component is the Directory Service which is used by the producer in order to 
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publish what event data is available and by the consumer in order to locate and contact 

the producer. 

Communication between the Producer and the Consumer may interact with each other 

in three ways [8]:  

• publish/subscribe; 

• query/response; 

• notification. 

In publish/subscribe interaction mode, the components of the Consumer and Producer, 

in an initial stage, use the Directory Service to locate each other and, after that, the 

communication is done without accessing the Directory Service. After the initial stage, 

the components agree which events should be transmitted and this characterizes the 

event subscription by the Consumer which is published by the Producer.  In 

query/response iteration mode, the Consumer locates the producer similarly to the initial 

stage of publish/subscribe and sends a request with one or more events data query. The 

Producer later responds with the requested data. In notification iteration mode, the 

Consumer configures the registry to event notification information. When event data is 

generated by the Producer, it is sent to all registered Consumers by notification. The 

event data is produced by sensors controlled by the Producers [8, 34]. 

The major characteristic of GMA architecture is the direct communication between 

Producer and Consumer. That allows configurations where Consumer/Producer 

components act as a proxy Consumer/Producer. Proxy-based configurations could allow 

event filtering and transformation, the ability of data rewind and also cache behavior. 

There are many systems such SCALEA-G [35] and R-GMA [36] that are built on top of 

GMA architectures, although, the GMA architecture document does not specify the 

interfaces used for communication between the components, which could be used for 

monitoring system interoperability [34]. The GMA provides the base information which 

can be used to classify the current implementation of monitoring tools. A good analysis 

of current available tools in contrast to GMA architecture is provided by [34]. 
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2.5.2 System Monitoring 

A Grid system can be analyzed from many points of view. In a top down analysis, the 

groups of resources sharing a VO may have some general properties such as available 

compute elements, available storage information or even accounting information. Other 

properties represent information from a specific organization inside the VO. Some 

organizations may limit bandwidth utilization on a specific project, for example.  

On other level, within the organization we may have clusters such as CEs. Each cluster 

has specific properties concerning what should be interesting for users. The same 

semantics can be used in the case of a CH inside the cluster CE. The machines have 

properties which can be monitored and serve users’ needs.  

Most of the Grid monitoring tools deal with monitoring of the environment where the 

application runs [37-42]. These tools rely on fabric level services in core Grid concept 

and protocols to fulfill a user’s requirements. The construction of monitoring tools for 

Grid applications should take into consideration the proposed architecture design points 

used in the construction of Grid system monitoring tools. 

The gmond component collects from 28 to 37 different metrics depending on the 

operating system. The data is sent in the multicast and unicast over TCP or UDP and it 

is packaged in a XDR representation. The information can be collected from the gmond 

daemon by listening to the multicast channel, configured by unicast or by pull mode, by 

making a direct connection through the gmond daemon. There is no mechanism for 

event selection or filtering [34, 37]. 

R-GMA 

The Relational Grid Monitoring Architecture (R-GMA) [34, 36, 39] is a distributed 

monitoring system compliant with GMA, based on a relational database system. It 

specifies a data model, a query language, and the functionality of a directory service. 

The data is distributed over the system. Users access the data using a global schema, 

without knowing where the data is. The query language is a fragment of SQL. 

For monitoring information created by the producer components, the R-GMA has two 

types of data: static and stream, although the current implementation provides stream 

producers. The static information is provided as stream data. The internal data 
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representation is known as a GLUE schema [43]. The idea is to use the background of 

database management systems (DBMS) to help clients get information data. For many 

years, DBMS components such as query optimizers and data distribution have been 

active research areas. The data request and transport is done by Java Servlets as 

presented in Figure 5. 

 

 

Figure 5 – Components and interaction in R-GMA, from [44]. 

 

One drawback in this implementation is that the communication between producer and 

consumer is done using server side components. That strategy has the overheads of two 

steps of data delivery, the producer and the consumer servlets [44]. 

MonALISA 

The Monitoring Agents in A Large Integrated Services Architecture (MonALISA) [38, 

45] is a monitoring system built on a Dynamic Distributed Services Architecture 

(DDSA) framework. The agents can collect data from any SNMP agents such CPU and 

memory utilization from execution nodes, network link states and utilization statistics 

from routers, switches and other devices. It allows integration with Ganglia and other 

tools. That framework uses JINI for components communications. 

The monitoring agents in MonALISA register themselves using a group JINI Lookup 
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selected agents in order to receive monitoring information. The agent management is 

done using RMI over SSL. 

The MonALISA provides some features for lower-event communication. Users can get 

real-time or historical data based on a regular expression mechanism called a predicate 

mechanism. Communication between clients and agents is done using web services. 

Users can choose to use Agent Filters to get their information. Agent Filters are Java 

dynamic modules that can be deployed to any MonaLISA service in order to preprocess 

event data locally. Users may choose to receive information only when some trigger 

alarm condition occurs by using Alarm Agents. Similar to Agent Filters, it can be 

loaded and configured for information delivery based on logical expressions. An 

example scenario is when a client wants to receive the network utilization information 

only when the value is greater than 80% [38, 45]. 

NWS 

The Network Weather Service (NWS) [46] is a forecast system that provides prediction 

values for historical series. In a distributed system, the NWS can periodically monitor 

parameters from a network to available computational resources. The prediction values 

are derived periodically. There is a prototype implementation for Globus Grid 

Information System (GIS) architecture.  

The idea is to provide forecast values after successive measurements as a time series. 

The process is done using different forecasting techniques. The supported forecasting 

methods supported and implemented as predictors are:  

• mean-based methods, which provide estimate values of the sample mean;  

• median-based methods, which use a median estimator; 

• autoregressive methods. 

The NWS keeps track of the predicted values for all the predictors and chooses the best 

forecasting method for the resource properties based on the cumulative error measure. 

The NWS package comes with CPU and network utilization sensors. The data 

extraction by users or applications can be done by web CGI or by a reporting API [46]. 
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Figure 6 – NWS architecture overview, from [46]. 

 

MDS 

The component of Globus Toolkit which provides information services is the 

Monitoring and Discovery Service (MDS). This service centralizes all resources 

information. The MDS version 2 (MDS2) has three main components: the Grid Index 

Information Service (GIIS), the Grid Resource Information Service (GRIS) and the 

Information Providers (IPs). These components provide soft-state registration and 

enquiry protocols. The registration protocol allows MDS2 clients to publish information 

in the MDS2 database using the GIIS and the enquiry protocol allows MDS2 clients to 

request information from an information provider using the GRIS. The GIIS in MDS2 is 

implemented using LDAP services [7, 9, 10]. 

In MDS version 4, available in Globus Toolkit version 4, the access to the MDS 

services is based on WSRF presented on section 2.3.2 and it is called WS-MDS. The 

data information is provided by the information sources, which are communication 

interfaces implemented by Grid resources. The data extraction from information sources 

can be done by pooling or by the subscription/notification mode. The main services in 

WS-MDS are Aggregator, Index and Trigger Services [7, 10].  

An aggregator Service is a kind of service that collects data from information sources 

and carries out a process with it. This is based on a framework called Aggregator 

Framework which is the base for the services under WS-MDS such as Trigger and 

Index Services. The Index Service provides the interface for explicit Grid resource 
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registration. The Trigger service allows some action to be performed in response to data 

changing within the WS-MDS such executing commands. 

2.5.3 Application Monitoring 

Static Instrumentation 

The application static instrumentation has always been done by developers [12]. The 

most primitive use of static instrumentation is simple screen print commands placed 

before and after some code region in order to verify the time spent in that region. The 

data generally is achieved during execution and analyzed after application execution. In 

order to help developers in such processes, many tools analyze the source code and 

insert function calls delimiting the interested code regions. Generally, this is done as a 

step of the code compilation process. The inserted function calls can generate trace 

events or can record profile information, depending on user needs. [14, 31] 

TAU 

The Tuning and Analyzes Utilities (TAU) [47] is a set of tools developed to help 

developers improve application performance. The tool provides a wide range of 

instrumentation types, performance data gathering, traces file format conversion 

programs and also includes two visualization programs. The supported instrumentation 

types are: 

• Source code: handles an extensive list of languages, preprocessing the source 

code in order to insert instrumentation.  

• Object code: provided by a modified compiler, which inserts the instrumentation 

on generated binary code after an optimization phase. 

• Library wrapper: provides wrapper library for MPI, allowing measurements at 

library use level. 

• Binary code: uses DyninstAPI to insert calls to TAU components on running 

binary code. 

• Software Component: allows trace of component interface use by generating a 

proxy component with instrumentation included. 
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• Virtual machineL uses the Java Virtual Machine Profiler Interface (JVMPI) to 

register TAU components as a profiler agent in order to receive instrumentation 

information from function calls.  

TAU tools can collect performance data in many configured forms: 

• They can profile for region execution, recording the time spent on the delimited 

code region. 

• They can record single events, to provide the number of events that have 

occurred or, they can record full traces with the begin/end events for selected 

regions. 

The collected data is archived on a file; however, it has an interface which can be used 

to program an agent inside TAU to send the event information over a network. Even 

though it uses DyninstAPI [48] for dynamic instrumentation, the behavior is of a post-

mortem instrumentation tool, the there is no action or analysis during application 

execution [42, 47]. 

KOJAK 

The KOJAK project (Kit for Objective Judgment and Knowledge based Detection of 

Performance Bottlenecks) is a set of tools for automatic performance analysis for 

parallel programs to be used in application development. The performance data is 

collected by static instrumentation on compile phase and stored in proprietary trace 

format called EPILOG (Event Processing, Investigating and LOGing) [49]. 

The automatic performance analysis is done by recognition of inefficiencies patterns in 

collected measurements expressed in EARL (Event Analysis and Recognition 

Language). The analysis presents the performance data as a three-dimensional view 

correlating kinds of behavior, problems within binary/source code and runtime locations 

within processes and threads using the EXPERT (Extensible Performance Tool) 

analyzer [49]. 
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Figure 7 – KOJAK tool architecture as presented in [49]. 

 

Dynamic Instrumentation 

The post mortem method of application performance improvement is intended to 

change the code to have instrumentation, execute the application, and use the generated 

execution information to make changes in the code. However, that cycle consumes a 

significant amount of time because the application compilation time may be long. In 

this case, the approach of a change in the application binary during its execution can 

speed up the instrumentation process, cutting out the code change and compilation 

phases. There are some binary instrumentation tools such GNU bfd [50], EEL [51], 

DPCL [52] and DyninstAPI [48]. From those tools, the DyninstAPI library provides an 

extensive API which allows process attachment, binary parsing, management and 

modifications services.  

When DyninstAPI attaches to a process, it parses the binary information and builds the 

necessary structures to allow process modification. The management services are: 

process stop, continue and terminate. The modifications services include variable 

creation, code sequence insertion, function replacement and dynamic linked library 

load. These services allow the dynamic instrumentation on a running process without a 

need for its source code [48]. 

SCALEA-G 

The SCALEA-G [31, 35] is a platform for performance monitoring and the analysis of 

Grid environments. It provides components such visualization programss, performance 
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done by the Dynamic Instrumentation Service which uses DyninstAPI for instrument 

Grid Applications. It follows the GMA model and uses OGSA in communications. The 

dynamic instrumentation service is composed of main components situated on different 

locations [31]: 

• Instrumentation Service: controls the instrumentation processes. 

• Instrumentation Mediator: controls the client side service communication and it 

runs on user identity proxy PKI certificates. It provides the transparency 

abstraction in terms of PKI certificates used in communication with the 

Instrumentation Forwarding Service. 

• Mutator Service: a process that is executed on the same machine node where the 

application process executes. It has the responsibility of performing the dynamic 

instrumentation. It is based on the concept of application sensors inserted into an 

application processes.  

• Instrumentation Forwarding Service: controls the instrumentation exposing a 

Grid web service for that purpose. It runs on service identity and provides the 

communication between the Instrumentation Mediator and the Mutator Service. 

 

 

Figure 8 – Component architecture of the Grid dynamic instrumentation service, from [53]. 
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are data and processing costs. The XML representation of data consumes more space 

than binary representation. In [31], some ideas such as data compression are presented 

in order to lower network bandwidth. The application sensors that provide profiling-

based measurements and the profile data communication may be done in two ways: pull 

mode or push mode. In pull mode, the profile data is stored in a shared memory and the 

client gets it by request to the Instrumentation Mediator. In push mode, the update is 

done by buffer overflow trigger events. 

Paradyn 

Paradyn [54] is a performance analysis tool which allows for dynamic interactive 

analysis of performance data generated by application processes. DyninstAPI was built 

as a component of Paradyn. The goal of Paradyn is to lower the instrumentation 

overhead by instrumentation insert and remove on-demand, based on performance 

analysis need. In this kind of approach, Paradyn allows us to measure top function calls 

and do a top down search for function time consumption. The tool has two processing 

kinds, the Paradyn daemon and the Paradyn application. The main components of the 

Paradyn application are: 

• Performance Consultant: responsible for analysis of the performance data and 

requests for needed instrumentation. 

• Visualization Manager: handles the graphical display representing the 

performance information data. 

• Data Manager: handles the communication of the Paradyn daemon. 

• User Interface Manager: handles user interface commands.  

The Paradyn daemon is executed on each machine where the application processes are 

running. The main components of the Paradyn daemon are: 

• Metric Manager: responsible for storing the metrics data. 

• Instrumentation Manager: has the responsibility for generating the 

instrumentation code and inserting the binary code into an application process. It 

uses, through DyninstAPI, an library for application binary code patching [48]. 

 



Chapter 2: Computational Grids 

35 

 

Figure 9 – Paradyn overview structure [54]. 

 

We will not cover the analysis features of Paradyn here due to our focus on the 

monitoring stage only. From the point of view of instrumentation and monitoring, the 

Paradyn tool uses DyninstAPI for process instrumentation. The instrumentation can be 

placed in a procedures entry, procedures exit and individual call statements. The metric 

manager uses six primitives in order to collect metrics: set counter, add to counter, 

subtract from counter, set timer, start timer, and stop timer. In these instrumentation 

points, the primitives are inserted steered by the performance consultant. The values of 

counters and timers are collected periodically [54-56]. 
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Chapter 3  
Grid Performance Models 
Performance is a major issue in parallel programming. When a programmer develops a 

parallel application she expects to reach some performance indexes. In many cases the 

situation is even more critical, when the system presents dynamic changes (for example, 

load sharing changes) or application behavior varies during its execution due to data 

evolution. Therefore, over recent years, several efforts has been undertaken to provide 

automatic dynamic tuning tools that help users of parallel applications to reach those 

expected indexes. 

The automatic dynamic tuning process consists of collecting measurements, evaluating 

current execution states based on a performance models and applying parameter 

changes in order to improve performance indexes. A dynamic tuning tool  (MATE: 

Monitoring, Automatic and Tuning Environment) is presented in [57]. It carries out 

parallel application dynamic tuning on local clusters.  

Computational Grids aim to provide the sharing of a large number of computational 

resources within different administration domains [2]. The Grid system can be used to 

tackle a high number of users, running many different classes of application, and/or to 

solve large problems. However, these systems are heterogenic and dynamic in nature 

and the situation described above is emphasized dramatically. Thus, the automatic 

dynamic tuning approach appears as an indispensable necessity in order to accomplish 

performance expectations. 
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In [58] the required changes in MATE to collect measurements on Computational Grids 

are presented. This chapter focuses on performance model development to enable 

dynamic tuning of parallel applications in Computational Grids. 

A well-known problem in parallel programming is the load imbalance in master/worker 

applications. In these applications, an efficient execution depends on the balance 

between communication (data volume vs. networks bandwidth) and computation (task 

complexity vs. processors performance) [59]. The load balancing may be done 

statically, prior to application execution, or dynamically, using an application level 

schedule [60]. When the dynamic approach is used, finer grains workload divisions 

facilitate the computation load balancing, but increase the total communication volume 

[61]. Therefore, it is necessary to reach a trade-off that depends on the current 

conditions of the system, which change over time. 

In this work, we aim to reduce execution time without losing efficiency. We consider 

efficiency to be the ratio between busy time and execution time of the processors 

assigned to an application. Dynamic tuning of granularity and the number of workers at 

runtime helps to reduce applications’ execution time and improves execution efficiency 

in different scenarios of network and processor heterogeneity. We extend the work 

presented in [59], which provides a model for evaluation and tuning of multi-cluster 

post-mortem applications execution, to the Grid environments by providing a heuristic 

to tune dynamically the execution grain size and number of workers. 

3.1 Related Work 

There are many resources in the literature which address load balance in heterogeneous 

computing. We can categorize related work into approaches that suit parallel processing 

and approaches that take into account distributed computing. Parallel related 

performance models [61] use message latency as basic parameters to explain application 

behavior. Distributed computing performance models consider that bandwidth has more 

influence in application performance and it is considered to be a speedup limiting factor 

[59]. 

A comprehensive survey of load divisions strategies is provided in [62]. Options range 

from linear optimization considering heterogeneous scenarios and analytical multi-

cluster analysis using multi level queue systems [63], to different scheduling strategies 
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assuming that master processes compare to meta-schedulers as workers compare to 

processing nodes [60, 64]. 

Javadi in [63] presents a greedy strategy for work distribution in which the priority in 

worker selection relates to processor speed. Indeed, these models do not take into 

account that changes in grain size impact on compute/communication ratios. Argollo in 

[59] states that the grain size tuning is done in application development processes. 

Machines on different networks in a multi-cluster system (local and remote cluster) 

should use different grain sizes. We differ by using a dynamic analysis of execution 

measurements, a heuristic resource selection and we advocate that applications may 

have different grain size selections within their execution due to temporal system 

heterogeneity.  

Cesar in [61] provides a performance model for the optimal number of workers in 

parallel master/worker applications using finer grains considering dynamic tuning, but 

does not consider the variation in the total volume of communication in response to 

grain size variation. Morajko in [65] presents a factoring-based strategy for load 

division well suited for dynamic tuning. However this work, as well as [61], assumes 

that the communication volume does not change as a result of different load partition. 

3.2 Performance Model for Dynamic Tuning 

Grid Systems are dynamic and users do not have control over the performance of 

available resources. Network channels and processors may be used in shared modes 

which result in variations in the available capacity over time. This aspect has a direct 

impact on the application performance indexes [7]. When users submit a job to be 

executed in a Grid environment, they do not know if the assigned resources meet their 

expectations. In some cases, the application cannot scale to all resources due to a 

communication boundary, and in others, the total execution time is limited by the 

assigned capacity of processor power. In a system such as a Grid, it is possible to have 

both problems within the same application version in different executions. Therefore 

our main goal is to minimize application execution time while increasing the efficiency 

of resource usage. 

Application speedup in master/worker paradigms is limited by three constrains: total 

time to send operands (input data) from the master to workers through communication 
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channels, time to compute tasks in processors and time to receive result values (output 

data). In case of the master/worker paradigm, communication and computation may be 

overlapped to reach maximum system efficiency expressed as the occupation of 

workers’ processors and master network interface capacity as presented in Figure 10 

[59]. 

 

 

Figure 10 – Example of a master/worker startup where the time spent in each round corresponds to the 
time each worker process its assigned grain. At time T1 all workers are performing computations and at 
time T2 master network interface is saturated on both input and output communication capacity 
considering a full-duplex network port [59]. 

 

Consider a round as a sequence of grain distribution for all workers. 

Communication/computation overlap should be obtained in two initial rounds of task 

distribution. Subsequent data assignment follows a heuristic to feed faster processors 

first while maintain maximum execution queue of two tasks. All workers should have a 

work unit ready to be processed. Figure 10 illustrates that distribution pattern of a 

homogeneous environment. The same distribution pattern works on heterogeneous 

processor scenarios. Task scheduling is not addressed in this work. We focus on the 

impact of changes in the number of workers and application grain size. 

When working with different grain sizes, applications may suffer processor cache 

interference. We assume that users may be shielded from such effects through using 

high performance processing kernels. Figure 11 present the total execution time of a 
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matrix multiplication using different sizes of grains and different multiplication kernels, 

ATLAS and GNU GSL. The standard deviation of ATLAS executions is 1.95% and 

GNU GSL is 2.26%. 

 

 

Figure 11 – Comparison between ATLAS and GNU GSL executions of a matrix multiplication problem 
using different grain sizes. 

 

As defined in [59], application execution may be divided into three phases: startup, 

steady and finalization. In the startup phase master distributes work units to all workers. 

The steady phase starts when all workers are in a busy state and finishes when a worker 

becomes idle and the master does not have any work to assign. After a steady phase 

there is a finalization phase where master waits for remaining processing to be finished. 

We consider that the master’s role is to manage workload distribution and results 

collection in order not to have a application bottleneck. 

In order to deal with system heterogeneity, we focus on application load balance, 

applying dynamic tuning of application grain size and the number of processors. As a 

case study, we choose the master/worker programming paradigm. In this paradigm the 

change of application compute/communication ratio may balance the total execution 

time and efficiency. These behaviors can be seen in Figure 12 and Figure 13. Figure 12 

plots different execution times for a master/worker application of varying grain size and 

Figure 13 plots executions varying the number of workers. 
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Figure 12 – Impact of grain size in total application execution time and usage efficiency of a fixed 
resource set size of 18 workers. 

 

 

Figure 13 – Impact of the number of workers in total application execution time and usage efficiency of 
the assigned resource set. 

 

In Figure 12, the network bandwidth limits the processor usage when using fine grains 

from 1/8k to 1/256. Using these grains makes the application communication-bound. 

When using coarse grains, an application becomes computation bound. This point 

shows that the coarser the grains, the more efficiency an application losses due to the 

impact of initial task distribution and final result collection.  
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In Figure 13, the network bandwidth and selected grain size limits the maximum 

number of workers to 18. If an application receives more workers than that, it will lower 

the resource usage efficiency without decreasing execution time.  

3.2.1 Parameters Characterization 

The characterization of the load is done by the analysis of which parameters have more 

impact in its composition. Some problems specify their load by the number of data 

items or the number of processing steps over some data. In order to find out how to 

change the compute/communication ratio, we need to find out which parameters are 

relevant to compute and communication and how these can be used to change the ratio. 

In the following, we use the abstraction that load consist in the transformation of input 

to output data as presented in Figure 14. 

 

 

Figure 14 – Abstraction of the load through operands, operations and result values. 

 

Suppose we have a problem with a workload , characterized by  operations 

performed over  input data operands and that generates  output result values. In 

such model, a machine which can process  operations per second would take  

seconds to complete the workload computation. For some problems, the workload can 

be divided in ( ) equal slice parts we call tasks that:  and , 

where  represents the grain size and  represents a task unit with index  using grain 

size  in load division. 

Consider that  is the volume of input data operands required to compute a task  

and  is the data volume generated in output data of result values of such 

computation while using grain size . The total volume of data needed to be transferred 

for remote execution is then  and the volume of generated results is 
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. During execution,  and  should be transmitted between the 

master and workers. Given the network characteristics, the lower bound limit of 

execution time is , where  is the average network bandwidth, 

considering overlap of input and output communications. 

 

 

Figure 15 – Graphical view of the relation between data partition and load division scenario where grain 
size has impact on compute/communication ratio. 

 

We work with loads that have data reuse among different tasks. That allows us to 

control the total communication volume using the grain size . The selection of 

different values for  may result in different values for  and/or  sizes, as 

presented on Figure 15. 

A general rule of grain size selection impact on application execution is presented in 

equation (2). Data reuse among work blocks generates scenarios that smaller grain size 

produces more total communication volume than bigger grains. The higher is  value, 

the finer are the grains and, the lower is  value, the coarser are the grains distributed 

by the master. 
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, the communication between master and workers saturates the network 

interface bandwidth and limits the number of workers that can be used without 

efficiency decrease. 

The granularity may be changed to improve the computation/communication ratio in 

order to increment the amount of workers while keeping a high efficiency. If all workers 

are performing computation and the master communication interface is saturated then it 

is not possible to change the grain size. In this case, a system is in full utilization and 

the application reaches its scalability limit. 

We divide the work unit delivery into rounds. In a round, the master delivers one work 

unit to every worker. To achieve full network bandwidth utilization in master networks, 

the round time should match the time needed by the faster worker to process a work 

unit. That limits of the maximum number of workers given a grain size , named 

as , are defined by equation (3). In such cases, the maximum number of workers 

is the time spent to process a work unit, , divided by the maximum between time 

spent to transmit input values  and time to receive output values , in a network 

with message latency  and inverse average bandwidth , as detailed in [59]. 

 
(3) 

 

 (4) 

 (5) 

 

Equations (4) and (5), presents the behavior of the startup and finalization stages’ length 

in an execution in a system with  workers within a best execution scenario as 

detailed in [59]. In those stages, system efficiency is directly related to grain size 

selection. Bigger grains result in higher  and  which results in higher  and 

 stage time values. The execution time from those stages has a direct 
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influence on overall system efficiency. An example of that influence is presented in 

Figure 12 where the efficiency decreases as the grain size gets finer. 

This observation suggests the use of smaller grains, which represent a higher number of 

tasks to be distributed, as a solution to load balancing [20] and consequently shorter 

  time. 

If we discard message latency, the efficiency of startup and finalization phases is 

detailed in equations (6) and (7). Equation (7) presents the combined efficiency in both 

phases considering the best execution scenario. 

 
(6) 

 
(7) 

 

 

Figure 16 – Graphical view of the best startup and finalization phases. 

 

There are some considerations that should be taken in account when the biggest grain is 

used. First, due to bigger grain size, all execution time is spent on both startup and 

finalization phases. As the best case of startup and finalization efficiency is 50%, we 

have processors idle in a system for about 50% of the execution time [23]. The idea is 

that the startup draws an upper triangle of busy processors and the finalization draws a 

lower triangle of busy processors. The right value depends on a ratio between the time 

spent to process a grain  and the time spent in startup plus finalization. Second, the 
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application does not know prior its execution what network characteristics will be 

available at runtime in order to determine its processors’ needs. 

During runtime execution it is possible to verify if, given a set of resources, the 

application can scale and use them in an efficient manner or whether some resources 

can be released without harming the total execution time, while there is a rise in total 

efficiency. Considering a dynamic Master-Worker execution in scenarios of the 

heterogeneity of network links and processor speed, we can achieve the lowest 

execution time by tuning the grain size in order to allow the utilization of the maximum 

number of assigned workers and the number of workers to be released from unnecessary 

assigned compute elements without any penalization in execution time. 

To have the benefits of dynamic grain size tuning, the application should support 

dynamic grain size change. This support consists of working with coarser tasks if values 

of  decrease and work with finer tasks if  increases. The , and 

 averages should be measured continuously during application execution. These 

values are sensible to bandwidth/network latency variations and effects derived from 

process execution in shared environments. 

Master-Worker applications with data reuse among different tasks should scale better 

using SPMD paradigms which explore better data locality. However, load balance is 

hard to achieve on heterogeneous scenarios using such paradigms. Some processors in a 

shared environment, commonly found in Computational Grids, slow down all 

application processes due to communication synchronization. Master-Worker 

paradigms also apply in scenarios where application input data comes from one place 

and under a low WAN bandwidth. The data required to process the problem comes from 

one site or storage element. This data is accessed from the master processor at one site. 

In cases under low WAN bandwidth, the data transmission should be as well managed 

as the computation because it has a higher impact on the total communication time. 

3.2.3 Grain Size and System Heterogeneity 

When communication and computation overlap in a Master-Worker application, each 

worker may be analyzed as a three stage pipeline composed of: task transmission, task 

processing and results transmission. For task of grain size , those stage times are

,  and . The task round trip time determines how fast the processor is 
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from the master point of view. The lower execution time is obtained when the master 

uses the faster processors [62].  

 

 

Figure 17 – Impact analysis of heterogeneity in compute/communication time values considering network 
and processor capacity variations. 

 

Changing  value at runtime allows the tuning tool to find out if the system is 

communication-bound or computation-bound, given a set of resources assigned to an 

application. By tuning  it is possible to get better compute/communication ratios in 

heterogeneous systems. 

In Figure 17 we present the distinct heterogeneous cases. In case A, the master 

perceives all workers as working at the same speed.  Considering homogeneous 

networks, round trip time is limited by processor power capacity in case B. In case C, 

lower communication time reduces the round trip time of worker 1. In such cases, 
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point of view and is related directed to processor power and network capacity. 
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To lower execution time in cases of processor heterogeneity in master-worker 

applications, the master must first choose faster workers for task assignation to get the 

lowest execution time. However, considering master process execution on a one port 

machine2, communication time should be considered as serial due the network 

bandwidth limit. Working with coarse grains allows a decrease in the communication 

volume and increases the maximum number of workers that the master can feed. 

Concurrent task communications increase  and . In cases of network 

heterogeneity, the use of communication managers3 isolates task delivery throttling 

caused by communications within slow networks [59]. In application parallelization 

supports task composition/decomposition, it is possible to configure a hierarchical 

master-worker as presented in [23]. With such capability, in a multi-cluster 

configuration, remote clusters receive coarser tasks and decompose them into finer ones 

for local processing. The remote decomposition/composition lowers the time to process 

coarser tasks on remote clusters and reduces the required communication volume.  

3.2.4 Dynamic Tuning Requirements and Process 

Dynamic tuning techniques consist of three main phases: monitoring, performance 

analysis and program/system modification [57]. The technique is centered on 

performance models. During tuning processes, performance models specify what should 

be measured by applications and systems, and suggest modifications which can be 

applied to applications in order to obtain better performance indexes.  

Basically, the performance models explain why an application has some performance 

problem based on what is measured and when and how it should be measured.  As a 

result of that process, it produces what should be changed, and when and how this 

should be done. All processes are performed without user intervention. 

                                                 

2 That is a very common scenario. In that case, the machine where the master processor executes has only 

one network card. Overlapped send operations competes to network bandwidth. 

3 Communication managers are just processes with the role to proxy communication operations from 

network with different characteristics. The idea behind that model is to avoid blocking due to 

transmission through low bandwidth links.  



Chapter 3: Grid Performance Models 

50 

Our group had a tool called MATE, to perform dynamic tuning of parallel/distributed 

applications in clusters [57] and it was used in the tuning of master-worker applications 

in such systems [66] using the performance models developed in [61]. Previous work 

has presented that the more dynamic is the system, the more the benefits achieved from 

dynamic tuning [14].  

Inside the tuning tool, each performance model is encapsulated in a component called 

tunlet. During a monitoring phase, the tunlet interacts with its container to command 

what should be instrumented in application processes. Such instrumentation produces 

measurements that are transferred to the tunlets. 

During an analysis phase, the internal logic of tunlet evaluates metrics based on a coded 

performance model. During modification phase, such logic decides what should be 

modified in order to raise performance indexes. 

When applying the dynamic tuning technique based on models over Grids Systems, 

some aspects should be considered: 

• The tool must be running on the machine in which application processes are running 

and should be able to communicate with the tunlet container. In Grid Systems where 

the assignation of machines to the application is controlled by Meta-

Schedulers/Resource Brokers, users do not have control over where an application 

runs. The tool modifications required to address such a problem is presented in  

[58]. 

• Some measurements and modifications should be performed in different [2] Grid 

software layers. For example, to change the number of resources assigned to an 

application, the tool should make a request to the collective layer (Meta-

Schedulers/Resource Brokers) and modify application processes in order to use 

obtained resources. 

• The monitoring message amount may interfere in application communications, 

which require a reduction of data produced by instrumentation and modification 

commands. 
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Once these aspects are supported, the tuning process is steered by the equation (3) to 

find what should be the number of workers and the heuristic selection to change the 

grain size used by that application. Equations (4) and (5) are used to calculate the 

startup and finalization phases and their impact on the predicted execution time. 

To calculate the required metrics specified in section 3.2.2, it is necessary to collect 

measurements as detailed in Table 1. Figure 18 associates such measurements to its 

instrumentation locations in master and worker processes. At moment A, the tunlet can 

obtain the compute/communication ratio in respect to . At moment B, the same 

can be done in respect to . The other parameters required for tuning may be 

calculated in sequence. 

Using the measurements described in Table 1, the network latency value  may be 

obtained by the difference of  and start point of . The inverse bandwidth  

from upstream and downstream communications can be obtained from  divided by 

average  and  by  average respectively. 

By using equation (3), the tuning engine may verify what should be the optimum 

number of workers, notated as , for runtime  value. The tunlet may suggest 

changes of the number of workers to  or the  using the following heuristic.  

 The number of workers analysis consists of a continuous evaluation of equation (3) 

during runtime and allows for the following tuning actions: 

• If , workers processors are running under maximum efficiency but master 

network interfaces may accept more workers. This may configure a heterogeneous 

network and/or heterogeneous processor scenario which will be analyzed in a 

following section. In a case when it is not possible to add more workers,  should 

be increased to reduce possible load balance problems. 

• If ¸ a system is running bellow maximum efficiency. In this case, the 

required tuning action is to decrement  value in order to use more workers if 

 and change the value of  to , if .  
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• If ¸ a system is at maximum efficiency and its lowest execution time with 

the assigned set of resources. 

 

Table 1 – Parameters used in dynamic tuning within a Grid parallel application execution.  

Id Description Location Semantic 

wu Total number of work units Master Binary read 

wp Work units waiting to be processed Master Binary read 

gi Suggested work class (grain size) Master Binary read/write 

vo Bytes received as output values  Master Binary read 

vi Bytes sent as a work unit Master Binary read 

nw Amount of available workers Master Binary read/write 

tms1 Time when master starts a task send of a work unit Master Binary read 

tmr Time between start and end in output result receive Master Binary read 

twr Time between start and end in work unit receive Worker Binary read 

tc Computation time of a work unit Worker Binary read 

tws1 Time when worker starts send an output result Worker Binary read 

pinfo Processor Information (frequency and architecture) Worker Machine read 

 

 

Figure 18 – Presents a graphical view of where and when measurements are gathered in different 
processes. 

 

There is no sense in incrementing  value when a system is running below maximum 

efficiency because this would be likely to minimize the computation/communication 

ratio. A simple restriction to  values would be the required work units of coarser , 
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that  fits in the available memory information provided by 

measurement . 

To allow the dynamic tuning of grain sizes, such parameters should be exposed as a 

program variable and should support changes at runtime or exposes some function call 

that changes the grain size in response to a call. With this capability, the application can 

be tuned by an external tool using the library DyninstAPI [48]. All collected 

measurements should be gathered and analyzed by the tuning engine. A complete 

architecture example for clusters is presented in [14] and its adaptations to the Grid 

System is presented in Chapter 4 and published in  [58]. 

3.3 Tuning in Heterogeneous Scenarios 

The evaluation of equation (3) fits the scenario where processors are homogeneous. In 

the case of heterogeneous scenarios, the analysis of the maximum number of workers is 

obtained by a network bandwidth allocation heuristic.  

First, we need to examine the different scenarios a master-worker application 

encounters when running in a computational Grid. When users submit their application 

for execution, they specify the application requirements in job description language. 

Based on number the of machines present in such requirements, the Grid resource 

broker may assign different resource groups to match job needs which configures 

different levels of heterogeneity for processors and network links. For example, suppose 

a scenario where a user has a parallel job request submitted to a Grid, specifying a 

requirement for seven processors. If there are resources available, the Meta Scheduler 

can assign one Compute Element (CE) containing all requested Compute Hosts (CHs). 

However, different scenarios may occur where requested CHs are scattered among more 

than one CE.  

The following taxonomy classifies those different heterogeneity scenarios, from the 

master processor point of view: 

• Homogeneous Processors and Homogeneous Network (HoPHoN). This scenario 

consists of a common cluster of dedicated processors. Examples are Ethernet based 

commodity clusters exposed to the Grid by a head node with two network 

interfaces. Such scenarios may occur when Grid meta-schedulers assign all 
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application processes to a single homogeneous CE composed of many CHs or when 

the master processor is mapped to a CE with all workers in a different CE.  

• Heterogeneous Processors and Homogeneous Network (HePHoN). In this scenario, 

network characteristics remain the same in bandwidth and latency for the 

master/worker paradigm and the compute time for the same piece of work may 

differ with different group of processors. As with a HoPHoN scenario, applications 

may receive a heterogeneous cluster by means of a meta-scheduler assignation. 

• Homogeneous Processors and Heterogeneous Network (HoPHeN). The scenario 

described in [33] reports that 75% of machines are homogeneous. This scenario has 

two variants: the master may use only one network interface for local and remote 

communications or may have different network interfaces for local and remote 

communication. 

• Heterogeneous Processors and Heterogeneous Network (HePHeN). In such 

scenarios the Grid resource broker may assign different groups of machines 

distributed over different organizations. The master should deal with processor 

heterogeneity in local clusters and in remote assigned workers. This scenario has 

also two variants: the master may have only one or have more than one network 

interface as in the HoPHeN scenario. 

Those scenarios presented in Figure 19, represent different levels heterogeneity caused 

by the dynamic behavior of Grid Systems. Some homogeneous scenarios may become 

heterogeneous during application execution. There are many examples of multi-core 

and SMP machines inside a CE that are exported to a resource level as multiple CH. 

That may temporally slow down concurrent processes if different cores/processors share 

machine memory.  

Due to continuous application monitoring, it is possible to adjust application processes 

during execution using the following heuristic analysis to support scenario changes: 

• If scenario matches a HoPHoN, then the analysis presented in section 3.2.4 is 

sufficient to choose the optimum grain size and number of workers.  
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Figure 19 – Graphical views of different possible assignations from Grid Resource Broker/Meta-
Scheduler in response to a request of seven compute nodes resource. 

• In the case of HePHoN, the proposed strategy used to deal with processor speed 

heterogeneity is an adaptation of the methodology of multi-cluster execution tuning 

proposed in [59] to each group of homogenous processors as if they were remote 

processors. Consider  as the total number of workers composed by  groups 

of workers with  processors classified by speed where . Let 

 be the ratio between the slowest processor and a sample of and  to index 

groups from faster to slower ones.  

In such structures, the heuristic to tune HePHoN using the same measurements 

nomenclature from section 3.2.4 is presented in the pseudo algorithm in Figure 20. 

The goal of the heuristic presented in such a pseudo algorithm is to allocate 

available master output/input bandwidth to faster workers. The allocation of master 

processor input/output network bandwidth is based on the ratio between different 

task processing time measurements among heterogeneous workers. 

• Same heuristics can be used in the case of HoPHeN with some modifications. First, 

local Wg groups are taken into account before remote ones. For the variation of the 

scenarios, where the master has two or more network interfaces, a remote group of 

workers should compete for the external interface. That is noted on runtime 
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measurements and the heuristic reacts to this shared condition to balance the 

computation/communication ratio. 

 

 

Figure 20 – Pseudo algorithm of optimum number of workers and grain size tuning. It uses runtime 
metrics to decide if an application needs changes in the compute/communication ratio and/or change in 
number of workers in use. 

 

• In a HoPHeN scenario, the task round trip time is used to sort the list of workers to 

help finding which processors should be selected. This approach consists in 

allocating the bandwidth to faster processors until a match in the round time. That is 

# Variables Description 
# slot - Allocated network busy time 
# nw  - Allocated number of workers 
# Wg(k) - Homogeneous set of workers, index k 
# Nopi - Calculated optimal number of workers 
# gs - Grain size to set 
# Tc(k) - Moving average of compute time, index k 
# Nopt - Tuned optimal number of workers 

 
let slot = 0 and nw = 0 
for each Wg(k) from k=0 to Wgn-1 
   # measure required parameters 
   let Nopt = calc(Nopt for Wg(k)) 
   if Nopt <= Wg(k) then 
      if gs < max(gi) then 
         # tune grain size 
         let gs = gs + 1  
      else 
         # network saturated 
         let Nopt = Nopi 
      end if 
      exit for 
   else 
      let Tc(k) = (Tc(0)-slot)*(Tc(k)/Tc(0)) 
      let Nopi = calc(Nopt in Tc(k)) 
      if Nopi < Wg(k) then 
         # network saturated 
         let Nopt = Nopi 
         exit for 
      else 
         let Nw = Nw + Wg(k) 
         let slot = slot + Wg(k)*(Tc(k)/Nopi)) 
      end if 
   end if 
end for 
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done using the slot variable in the pseudo-code presented in Figure 20. It is done for 

master communication ports when the master has more than one interface. In the 

case of one network interface, the available network bandwidth (which may be used 

to transmit work units to remote workers) could be obtained by the difference 

between  and the slot time allocated to the transmission to local workers. 

The initial grain size selection is defined to have the number of tasks with one order of 

magnitude higher than the number of workers according to the recommendation from 

[20]. As soon as worker finishes one task, the tool can start to evaluate if the grain size 

selected needs to be changed or not. As the analysis continues, it may need many rounds 

to reach the best grain selection depending on how good the first estimation was. 

The selection of finer grain at a premature point in the tuning process helps with an 

initial evaluation of network and processor characteristics. Coarse grains however, have 

better computation/communication ratios and consume less network resources. Indeed, 

as presented by equations (4) and (5), coarse grains have a large startup time, which 

lowers resource usage efficiency. Iterative applications have such penalization risks 

only on first iteration. Following iterations should use the more recently tuned iteration 

grain size and value for the number of workers. 

3.4 Effects of Data Access Patterns 

The operand reutilization among different grains suggests that a parallelization strategy 

should use a paradigm other than a Master-Worker in order to reduce communications 

such as SPMD or pipeline. The problem is how to deal with heterogeneity in such 

paradigms. Pipeline load balance is hard to achieve using homogeneous networks and a 

processor and should be even harder in heterogeneous scenarios. 

When we parallelize an application using the Master-Worker paradigm and add the 

support for grain size change, we play with the total volume of the communications to 

change the compute/communication ratio. In cases of very slow network bandwidth, 

this introduced redundancy may be too costly. One alternative to overcome this problem 

is to introduce a cache of operands on master to worker communications. This reduces 

the volume of communications and allows for better application scalability. However, 

this scheme requires an increase in the complexity of the task level scheduler. In such 
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cases, the task scheduler deals with task affinity in order to have the maximum benefits 

from operand caches. 

The basic idea of an operand cache is to structure tasks in data chunks and label the 

redundant data chunks. All operand caches are orchestrated by a master. In other words, 

master processors knows what data is cached by clients and has a consensus about 

whether a partial task content can be reconstructed on the assigned worker processor. 

The task scheduling can use a greedy strategy and operand cache hit is a metric that can 

be measured on runtime. The operand cache should be done in the memory, or on a 

local disk in cases where the local disk is faster than the network bandwidth. 

Consider an index of chunk cache hit  which represents the percentage of work 

reutilization by an application using grain size  and number of workers . From a 

performance model point of view, each problem mapped on Master-Worker paradigms 

may have different grain size options, and because of that, different cache hit ratios. By 

using an operand cache strategy, we have better scalability of applications with shared 

operands among different tasks when implemented using a Master-Worker paradigm by 

lowering the network bandwidth requirements. 

Let’s use an example to illustrate the use of the operand cache in Master-Worker 

paradigms. Consider a matrix multiplication A(M,K) by B(K,N), resulting in a matrix 

C(M,N). Fist we need to choose a parallelization strategy to map to a Master-Worker. 

One of the approaches is to divide matrixes A using first dimension by  and B using 

second dimension by  generating  grains to be scheduled, transferred and 

processed by worker processors. That strategy allows for work break-down which 

results in a change of the total volume needed to be transferred to workers, as explained 

in section 3.2.2. 

A simple greedy heuristic for grain scheduling is, given a time to send a grain to a 

worker  the scheduler, to choose the task that has more probability of being cached 

by worker . Let  be the number of blocks from  where  and  are the 

number of blocks from  where  assigned to worker  For maximum cache hit, 

 should be maximized, so, .  
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For example, if the worker 1 receives 4 work units, it might have different cache hit 

values depending on scheduling options. In that case the following 

 satisfies 4 work units assignation. Indeed, cases  have 

cache hit 3 blocks in 8 transmissions,  while case  have cache hit 

of  4 blocks in same 8 transmissions, . 

 

 

Figure 21 – Plot of cache hit ratio by number of workers considering 256 work units. 

 

Figure 21 presents the cache hit ratio obtained in a matrix multiplication problem using 

different division strategy. The divisions using 16 by 16, 32 by 32 and 64 by 64 blocks 

result in 256, 1024 and 4096 tasks, respectively. The cache hits in that case depend on 

the number of workers as the problem chosen grain size. Finer grains allow better load 

balance in task distributions and better data reutilization in worker processing nodes. 

The authors in [67, 68] provide an extensive evaluation of different strategies for 

scheduling Matrix-Multiplication within homogeneous and heterogeneous scenarios. 

3.5 Simulating Master-Worker in Heterogeneous Scenarios 

The main goal of our experimental scenarios is to inspect the reduction of total 

application execution time while increasing efficiency using dynamic tuning of the 

number of workers and grain size selection in a master/worker application. To 

accomplish this goal, a master/worker discrete events simulator was built based on 
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SMPL [69], with the support of a custom heterogeneous group of workers connected by 

LAN or WAN link. 

Based on real parameters, the simulator can predict the behavior of a dynamic 

master/worker application with grain size and number of workers change support. The 

scheduling policy used is based on a minimal queue. The master scheduler sends tasks 

to the faster worker with a minimal queue. Each worker has a queue of two tasks at 

maximum. The idea is to have one task in a processing state and another in a receiving 

state.  

 

 

Figure 22 – This presents the simulator output of a master/worker execution with dynamic grain size 
change. Blue bars are sends and green ones are receives. Orange bars are task processing. The numbers 
inside the bars are the task number. Note that task 4 was processed using a different grain size and 
workers 2 and 3 have different processor power than workers 0 and 1. 

 

The task distribution process tries to overlap computation and communication in order 

to decrease worker idle times. The simulation engine was validated using the 

performance model of multi-cluster executions from [59], with parallel applications 

using MPICH-G2 [70] based on an application template which supports dynamic 

change of grain size and number of workers. The simulator and the application template 

share the same task schedule strategy code. It allows for visual event debugging where 

task transmission, execution and response transmission are presented as a Gantt chart, 

as can be seen in Figure 22. 
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To support our goal we analyzed the gains/losses in execution time and efficiency, 

considering the tuning of grain size and number of workers in the different mapping 

scenarios presented in section 3.3. The mapping of processors in different CEs is done 

by Grid Meta-Schedulers/Resource Brokers at application startup. Thus, users cannot 

choose the initial best grain size because the processors and network characteristics may 

vary along with execution. We consider that if the dynamic tuning technique shows 

gains in all those scenarios, whatever scenario the application encounters, it will have 

the benefits from dynamic tuning. 

The grain size range was selected to allow for the modification of application runtime 

behavior from computation-bound to communication-bound. In the configured 

scenarios, we have the same simulation, with the different cases varying only the grain 

size: these cases configure computation-bound and communication-bound executions. 

Coarse grains cause computation-bound executions and finer grains configure 

communication-bound ones.  The range is wide enough to cover the processor power 

and network characteristics variations considering the presented parameters. The results 

presented cover executions considering all grain size selections as startup parameters to 

compare with the same basic case using dynamic tuning. 

The application workload was a matrix multiplication having  

 single precision elements. The mean and 

deviation of task processing time was obtained by a real application execution. The 

reference machine for the measurements of task execution times was an Intel Pentium 

IV 2.8Gz class processor with 512Mb of memory.  

The LAN input parameters were obtained through measurements sampled by a simple 

MPI application using MPICH within a Fast Ethernet switch. The WAN link profile 

metrics where obtained using the iperf tool between machines of UAB aogrdini and 

UOC dpcsgrd machines. 

The grain size4  was set to  operands, 

which corresponds to a maximum grain size value which the reference machine 

                                                 

4 Note that we choose to have the maximum grain size defined by the value zero. The grain size value 

should be perceived as a denominator of a coarser task workload. 
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configuration could process without swap use. We sampled grain sizes from  to 

 elements of  block of result matrix using ATLAS algebra kernel package, 

which isolates us from cache effects. The strategy for obtaining the different grain size 

used was a recursive alternate dimension division. For example,  have 

,  have , have  and so on. Such a 

strategy divides the number of operations, and consequently the execution time, by 

almost two. A detailed explanation of that division is provided on section 5.3.2.  

 

 

Figure 23 – Overview of application execution time reduction by using dynamic tuning of the number of 
workers and grain size in all heterogeneous scenarios and the number of workers assigned to application. 

 

The scenarios presented in section III were composed as follows. Simulations were 

performed using different job requirements of 8, 16, 24, 32, 40 and 48 nodes. 

In order to test processor heterogeneity each job requirement was also simulated with 2 

and 4 CE composed by heterogeneous set of workers. The processor speed of these sets 

was normalized to reference processors resulting in (0.8, 1.3) relative processor power 

for simulations with 2 groups, and (0.8, 1, 1.3, 1.6) for simulation with 4 groups. 
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The simulation also uses as a parameter the standard deviation for all model input 

values. The tuning process was also implemented inside the simulator considering the 

transmission of the measurements to a different host for analysis. Each experiment was 

repeated using the 16 seeds for random number generation. These seeds are provided by 

SMPL as streams. All these cases were executed with or without dynamic tuning.  

The cases without dynamic tuning were executed with all possible sixteen values for 

grain size. In cases of heterogeneous processors in heterogeneous networks (HePHeN), 

three extra scenarios were generated: faster processors placed locally in LAN, 

distributed equally and placed on WAN. With these parameter sweep configurations, a 

total of 65536 simulations were executed. 

Figure 23 presents a general view of the application execution time reduction while 

using dynamic tuning techniques in all presented heterogeneous scenarios and number 

of workers. Same characterizations can be seen in Figure 24 from the point of view of 

resource efficiency improvement. As can be seen, major benefits from efficiency are 

found in scenarios with a heterogeneous network. 

The maximum execution time reductions are 21.4% and 16.5% in HoPHeN scenarios 

with 16 and 24 workers respectively. In the HoPHoN scenario, the task distribution 

strategy used is near optimal for the small number of workers, as seen in classes of 8 

and 16 workers. The best efficiency gains are 19.7% and 19.0% presented in HePHeN 

scenarios with 4 groups of heterogeneous processors in classes of 24 and 40 workers, 

respectively. Higher resource usage efficiency improvements were found in scenarios 

with heterogeneous networks HePHeN (2 Groups), HePHeN (4 Groups) and HoPHeN. 

Figure 25 presents a flattened view of efficiency gains in all experiments with the 

different number of workers as single values in the tested scenarios, considering 

different groups of heterogeneity. The same behavior from the point of view of 

execution time is presented in Figure 26.  

Considering all job sizes, the HePHeN scenario with 2 and 4 groups of heterogeneity 

presents reductions of 8.1% and 6.7% in total execution time and the HePHoN scenario 

show reductions of 2.7% and 2.3% respectively. HoPHeN scenarios show reductions of 

14.2% and scenario HoPHoN present reduction of 1.4%. The proposed tuning strategy 
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lowers total execution time by 6.8% while raising resource usage efficiency by 10.2% 

considering all cases. 

 

 

Figure 24 – Overview of resource efficiency increment as result of dynamic tuning of the number of 
workers and grain size in all heterogeneous scenarios and the number of workers assigned to application. 

 

The gains are higher in scenarios with heterogeneous networks because the original 

application uses a dynamic task assignation on demand. This scheme assigns more tasks 

to faster processors which results in a better load balance. However, there were cases in 

which the tuned application presents no gain in execution time. In such cases, the 

applications were using the suggested optimum grain size and number of workers. 

We have more benefits from dynamic tuning when the number of heterogeneous groups 

increases. In real world scenarios, when executed in shared environments, applications 

may face changes in their resource processing capacity over time. Such behavior 

increases the groups of heterogeneity and makes more important the use of dynamic 

tuning for grain size and the number of workers in these applications. 
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Figure 25 – Gains in resource usage efficiency in distinct groups of processor heterogeneity. We consider 
efficiency as the percentage of total computation available performance used during the application 
execution time. 

 

 

Figure 26 – Gains in total execution time considering different groups of processor heterogeneity, as 
shown, assigned to the application. 

 

Considering only the HePHeN scenario, it is possible to have three different instances: 

faster processors on local networks, faster processors on wide area networks or close to 

equally distributed. Figure 27 and Figure 28 are flattening aggregations of gains in 

efficiency and total execution time respectively considering only these different cases of 

HePHeN        
(2 Grps)

HePHeN       
(4 Grps)

HePHoN       
(2 Grps)

HePHoN       
(4 Grps)

HoPHeN HoPHoN

Normal 72.2% 70.2% 93.1% 91.9% 68.4% 96.3%

Tuned 81.0% 82.1% 96.2% 94.2% 77.7% 98.5%

0%

20%

40%

60%

80%

100%

120%

Re
so

ur
ce

 G
ro

up
 E

ff
ic

ie
nc

y

Groups of Processor Hetereogeneity

HePHeN        
(2 Grps)

HePHeN       
(4 Grps)

HePHoN       
(2 Grps)

HePHoN       
(4 Grps)

HoPHeN HoPHoN

Normal 6829.49 6269.93 5547.76 5025.13 5820.64 4337.63

Tuned 6279.12 5849.41 5395.73 4909.19 4996.19 4279.07

0

1

2

3

4

5

6

7

8

To
ta

l E
xe

tu
ti

on
 T

im
e 

(t
ho

us
an

ds
 s

ec
on

ds
)

Groups of Processor Hetereogeneity



Chapter 3: Grid Performance Models 

66 

HePHeN scenarios. The result values shows gains in all cases, from 4% to 14.2% in 

execution time and 7.3% to 29% in efficiency improvement, respectively. 

 

 

Figure 27 – Efficiency of resource usage compared against different heterogeneous processors’ 
distribution between LAN and WAN. 

 

 

Figure 28 – Total execution time compared by heterogeneous processors distribution between LAN and 
WAN. 
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The more heterogeneous is the scenario, like mixing network and processor 

heterogeneity, the greater the benefits from dynamic tuning of grain size and number of 

workers. As shown in Figure 28, scenarios with more groups of heterogeneity present 

higher reductions on total execution time when tuned. 

3.6 Summary 

In Computational Grids, the main problem for achieving high performance is to scale 

applications, considering the high level of heterogeneity in network links and compute 

processors. To deal with that, applications should be developed to have good compute-

communication relations or grain size. Indeed, different scenarios require different grain 

sizes for optimal execution. That motivates the architecture of applications with 

dynamic grain size support. Applications with such architectures can support changes 

from being computation- to communication-bound by runtime reconfiguration in 

response to tuning. 

We proposed a heuristic to tune the grain size and the number of workers using the 

models of multi-cluster tuning found in [23]. Our main contributions are: 

• Evaluation of assigned workers in heterogeneous groups; 

• Infrastructure for dynamic grain size change support of master-worker applications; 

• Heuristic for combined grain size tuning considering heterogeneous workers and 

placed in heterogeneous network links. 

In this chapter we proposed a heuristic to change dynamically the application 

compute/communication ratio in order to reduce execution time while maintaining 

resource usage efficiency at certain levels. We contrasted our approach, considering 

four main scenarios of applications execution in Computational Grids. These scenarios 

combine different homogeneous and heterogeneous characteristics for processors and 

networks. A simulator for master-worker applications was built in order to test the 

dynamic tuning of these exhaustive scenarios. These scenarios are commonly found in 

Grid Systems environments. 

The proposed heuristic for dynamic tuning provides significant reductions in overall 

time, considering all scenarios while rising overall efficiency. The obtained results 

indicate that it is possible to take advantage of dynamic tuning techniques to adjust 
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applications to execute within Computational Grids. Scenarios with heterogeneous 

network and heterogeneous processors obtained the best results in execution time 

decrease and efficiency increase. The best gains were obtained in scenarios with higher 

levels of heterogeneity. 
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Chapter 4  
GMATE – Grid Monitoring 
Analysis and Tuning 
Environment 

4.1 Overview 

The tuning based on performance analysis use with application runtime measurements 

feeds some performance models as model parameters and guides the tuning actions. As 

presented in Chapter 3, we can have performance models for different layers which 

cover restricted sets of parameters. As presented in Chapter 2, Grid Environments 

display heterogeneity in many properties which directly influence application 

performance. The major properties are machine and network heterogeneity. Note that a 

machine is a complex property composed of other important sub properties such as 

processor architecture, processor speed, cache size, memory size, disk space and speed. 

Each property can have its own location which can be measured in order to be analyzed.  

The network parameter influences the communication between machines. In cluster 

system architectures, the network parameter is fixed or limited to an architecture. Each 

machine within a cluster expects the same network bandwidth and latency in 

communications through other machines in the same cluster. The network heterogeneity 



Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment 

70 

is complex due to the interconnected network used for Grid communications. 

Communications between machines inside a cluster have different latencies and 

bandwidth properties than communications between machines outside the cluster but 

within the organization. Communications between machines located in distinct 

organizations have different communication properties, generally low bandwidth and 

high latency. Examples scenarios are provided by [71, 72] which present inter-cluster 

communications through the Internet. 

All the heterogeneous properties of Grid Systems contribute to the complication of the 

performance analysis and application performance improvement. Differences in 

processor speed, for example, should generate load imbalance problems, different 

network properties should change the relation data transfer time to processing time, 

generating barrier contentions and idle time due to different data transfer delays. It is 

hard to balance the application to overcome such problems because most parameters are 

known only at runtime. When the user submits her application through the Grid 

Protocol Stack, a resource broker can select a different group of machines for an 

application’s execution for each submission. In such scenarios, to monitor and tune the 

application is to deal with application process locations within the Grid and cross 

organization process and analysis of data gathering and tuning actions in response to 

that analysis. 

Another important aspect of Grid Systems is that most heterogeneous properties are 

dynamic. Shared machines may have different processor speeds or available memory 

measurements, due to external loads. The network property measurements have the 

same behavior. Latencies and bandwidth capacity can dynamically fluctuate in response 

to network congestion and shared utilization. In the following, we discuss in more detail 

some of the main problems of Grid systems in respect to monitoring tools and then we 

propose an architecture infrastructure for monitoring applications in such systems. 

4.1.1 Problems 

From the point of view of the application performance, heterogeneity is the 

characteristic which most influences application execution. The literature has an 

extensive analysis of load balance problems that have been studied over a long period. 

The idea is that system heterogeneity is harmful for application developers [11]. 



Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment 

71 

In Computational Grid environments, system heterogeneity is a fact. There are some 

reports about homogeneous Grids in [73], although, with technological advances, and 

the multi-institutional characteristic of the Grid, it is hard to do system upgrades. Most 

Grids uses commodity of the shelf (COTS) machines as resources and COTS 

components today are not on sale due to the presence of newer, faster and cheaper 

products. 

Despite system heterogeneity problems, another characteristic that affects application 

construction is the fact that Grid resources belong to more than one organization. Each 

organization has its own policies. In the case of security policies, the application should 

satisfy the requirements of identification, authorization of service usage and transport 

level operations. In the case of execution policies, problems of accounting and resource 

usage limits may affect application execution. At the fabric layer, for example, the 

policy applied to a user may command the operating system to restrict memory, disk 

quotas and other low level resources to the participant of some VO. 

Administrative Domains 

Computational Grids differ from conventional distributed systems in their 

administration requirements. As mentioned before, Grids belong to more than one 

organization and each organization imposes its own runtime and execution policy. In 

such environments the application should satisfy all policies of the sites where it runs. 

These policies’ appliances are handled by middleware. The middleware may apply 

security policies using PKI certificates or existing policy systems. At a fabric level, for 

example, the execution policies may be enforced by local schedulers such as Condor 

[25] or PBS [26]. Some resources can have a maximum execution time or network 

bandwidth restrictions.  

From the point of view of monitoring and tuning Grid applications, the multi-

institutional characteristic of the Grid has its own security requirements. In most cases, 

the communication required for the tuning process can be executed under a user 

identity. In this case, the generated performance data and tuning action messages’ 

transport should use the user certificate to ensure authorization and private data transfer. 

The GSI mechanism, explained in Chapter 2, ensures that the tuning tools have the 

same security rights as the application. The tuning tool may use the proxy user 

certificate delegated by execution to secure communication channels. 
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Heterogeneous Structure 

In Grid applications, performance goals depend on many aspects. The application itself, 

at an algorithm level, may not scale well or have more sequential than parallel codes. In 

the case of parallel parts, the relation between computation and communication time 

may limit the application speedup [4]. 

One of the main differences between a cluster system and a Grid system is the network 

heterogeneity characteristic. In Cluster systems, there are many studies of load balance 

in order to seek high efficiency and lower execution times. With network heterogeneity, 

some models were proposed to have load balance on the Internet [71, 72]. 

When a tuning tool steers the execution of a parallel application over a heterogeneous 

structure, it consumes network and processing resources that in some cases may 

compete with the application itself. To overcome such scenarios, the tuning tool should 

balance its resource usage to lower network and processor utilization. The idea is the 

tuning tool should be parallelized itself and work in a distributed manner. 

Event Ordering 

In cases of performance analysis of parallel applications, event ordering and time 

synchronization is crucial for bottleneck detection. Event ordering is an old problem for 

distributed systems, studied as a causal ordering issue [74]. In our case, if we want to 

measure the time a process spent in a blocked message passing receive, we need to 

correlate that receive to a message passing send on other processes. That can be done by 

event ordering over the sender and receiver processes. Such kinds of event ordering 

allows for a deeper analysis of such causal issues. 

In MATE, covered in detail on section 4.2.3, the event ordering is done by event time 

ocurrence. The tool has a syncronization phase executed at the beginning of the tuning 

session and it generates the event timestamp based on the time offset among the 

machines. There is no re-synchronization phase for long-runing applications. 

In Computational Grids, due to network hereogeity characteristics, the clock 

syncronization between machines is hard to maintain. We face problems in the tuning 

process due to incorrect event ordering. For example, for small communications, we 
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may receive the response event trace before the corresponding send. To help the tuning 

process, we need mechanisms to order events from different processes. 

When state event ordering, the event collection can easily become the botleneck. If we 

receive an event caused by another event, we may wait for the cause event, blocking the 

event stream. To overcome such scenarios, the tuning tool should treat the event stream 

and event processing asynchronously. 

4.1.2 Clock Synchronization 

If monitoring is used for performance analysis, performance analysts may want to 

correlate events from different process within an application execution. That analysis is 

based on time differences between events from different processes on different 

machines with their own clock. In order to provide event synchronization in application 

monitoring processes, we can use two approaches: 

• Based on the tool; 

• Based on the system.  

 

 

Figure 29 – Clock synchronization message exchange. 
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roundtrip delay d and local clock offset t relative to the server process, by sending a 

message with client timestamp clock information T1. The server receives the message 

on server time T2 and generates a reply message containing the T1 and T2 values and 

then sends the message timestamp T3. The client receives the message at time T4 and 

calculates the clock difference. Table 2 presents these timestamps descriptions and 

equation (8) relates them to obtain the delay and offset. 

 

)32()14( TTTTd −−−=    
2

))43()12(( TTTTt −+−
=  (8) 

 

Table 2 – Clock synchronization timestamp information [75]. 

ID Timestamp Name When Generated 

T1 Originate Timestamp Time request sent by client 

T2 Receive Timestamp Time request received by server 

T3 Transmit Timestamp Time reply send by server  

T4 Destination Timestamp Time reply received by client 

 

The client can repeat the transmission many times in order to get the average roundtrip 

time. Note that there are some drawbacks for this operation in Grid environments. In 

these systems, network latency can have a high variance because it is a shared resource 

and the hop5 path may change, due to the network load balance route schemes. In some 

senses, machines distributed over the WAN should use some third part synchronization 

source to overcome network latency variation problems. Another point is that machine 

clocks are not synchronized. A simple measurement from different between and Internet 

exposed server and two stratum 2 servers is presented in Figure 30. Note that the clock 

difference among the machines varies over time. Within same day we have variations 

                                                 

The term ‘hop’ uses the same concept as TCP/IP networks. It consists of each network element having the 

information it has to cross to reach the destination. 
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from +115ms to -110ms to Site A and Site B have maximum of 32ms and minimum of -

33ms.  

 

Figure 30 – Time difference between two stratum 2 sites to a client machine. 

 

Note that the presented time variation graphed on Figure 30 uses the same site time 

offset to synchronize the machine clocks. We state that such variation should not have 

high influence on the performance models used in tuning. If the application needs more 

time synchronism than 100ms, it should rely on causal relation among the instrumented 

events. For a Master-Worker application, for example, it is possible to inspect the time 

difference from the master to worker processes by analysis of the sampled events of task 

sending by master and receiving by worker and result sending by worker and receiving 

by master. That could also be applied in small message communication in any 

communication paradigm. 

The idea of using a third party machine as a time synchronization source is handled by a 

system synchronization approach. In this approach, the machine should synchronize its 

clock using a trusted and precision time-source. The service infrastructure for time 

synchronization is standard and its services are available on the Internet, called Network 

Time Protocol (NTP) servers. By now, most operating systems come with a NTP client. 

By using a close NTP server (e.g., one with low latency or controlled latency between 
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The idea is that the NTP servers should be synchronized by high precision time-source 

hardware. Other NTP servers may synchronize with those servers in a hierarchical 

structure. The distance from machines running the NTP time daemon to an external 

source of Coordinated Universal Time (UTC) is called a “stratum”. Stratum 1 servers 

can connect directly to an external source of UTC, such as a radio clock synchronized to 

a standard time signal broadcast. In general, the stratum value determines the number of 

hops, minus one from a stratum 1 server [75].  

To overcome the clock speed difference, the NTP client can detect and make the 

correction by software, inside the OS. The NTP daemon that comes in most LINUX 

distributions uses the kernel system call adjtime to configure such tune parameters. 

Currently, it is easy to find stratum 2 or 3 servers to be synchronized with. That gives 

clock synchronization with an error of less than 50ms in our test environment, as 

described in section 5.2.2 (we used the stratum 2 servers with less variability). Note that 

the machines inside a cluster have their clocks synchronized with an error less than 

10ms, enough for event ordering and synchronization. Measurement of events using 

such time resolution modifies the application behavior caused by overhead effects and 

so its performance analysis. 

4.2 Dynamic Tuning 

With different system configurations, the application should have different performance 

indexes. When these systems are used in shared mode, applications perceive more 

system heterogeneity. In such scenarios, applications may suffer performance problems 

due the difficulty in adapting to the different system characteristics. The dynamic tuning 

technique can help the application adaptation to overcome these problems. In the 

following sections we analyze some state of the art tools related to dynamic tuning. 

4.2.1 Active Harmony 

Active Harmony consists of a software library that developers can use to prepare an 

application for adaptation in different systems. That adaptation is done by automatic 

parameter search and evaluation. The programmer uses the library to expose some 

tuning factors and runtime metrics. During application execution, Active Harmony 

explores the tuning factor parameter variations and verifies the gains in runtime metrics. 
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The current version supports two types of parameter search: exhaustive search and a 

Nelder-Mead simplex algorithm. [15] 

To deal with parallel applications, Active Harmony has a Client/Server model. The 

client consists of the linked library in application binary. Within a server, the developer 

may specify local and global variables. These variables are updated explicitly by API 

calls. 

The difference between Active Harmony and our work is the philosophy that drives the 

parameter search. We assume that complex systems with high levels of heterogeneity 

may generate a huge parameter search space. In such scenarios, a parameter search 

guided by performance models should have faster responses and should avoid local sub-

optimal configurations. 

4.2.2 Autopilot 

Autopilot [76, 77] is a software toolkit used for the performance monitoring and 

analysis of distributed applications and infrastructure data. The instrumentation is done 

by the developer in source code and the performance data collection is selective by 

means of a pattern classification scheme. The goal of the tool is to drive application 

execution based on sensor information data and decision procedures. The main 

components are sensors, decision procedures and policy actuators, as presented on 

Figure 31. 

 

Figure 31 – Autopilot conceptual architecture [76] 
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In contrast with the GMA model, detailed in section 2.5.1, the registry role is done by 

the Autopilot manager, acting as a name server. The producer role is played by 

application processes instrumented with Autopilot sensors and the consumer role is 

played by the clients. In Autopilot, sensors have a set of associated properties defined at 

the moment of sensor creation. These properties include sensor name, type, identifier, 

IP address and custom user-defined pairs of attribute/value. Clients use properties to 

query the Autopilot manager for distributed sensors over the system. 

The sensors are associated with a process and a set of system variables used as a data 

source. The sensors can be used in two programming models: threaded or non-threaded. 

When a threaded sensor is activated by a client, it starts to monitor periodically and 

transmit to the client. The non-threaded usage of sensors depends on an application’s 

explicit function calls to perform data delivery. Sensors uses a NEXUS component of 

Globus to send the collected data to clients [76, 77]. 

 

 

Figure 32 – Autopilot components and the iteration sequence among them. [76] 
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the Autopilot manager to query what instrumented tasks are active. It receives a global 

pointer from where it is possible to command sensors and actuators coded on the 

instrumented tasks. When activated, sensors generate performance data that is used by a 

task client for performance analysis. The analysis is done by continuous evaluation of 

fuzzy logic rules which drive what commands should be performed by actuators on 

instrumented tasks. 

4.2.3 MATE 

The Monitoring, Analysis and Tuning Environment (MATE) [14, 57] consists of an 

execution environment that permits dynamic tuning of applications without the need for 

code modification, compilation or linkage. The environment is based on DyninstAPI 

[48]. The idea is that the developer does not need to be an expert to tune her application. 

Internally, the tool has knowledge of the performance bottlenecks problems, and how to 

detect and solve them. With this information, MATE introduces instrumentations and 

modifications in the application binary to optimize its execution. That optimization 

process is done without user interaction. 

 

 

Figure 33 – Dynamic Monitoring, Analysis and Tuning Approach 

 

Figure 33 shows the work done by the user and the tool. MATE inserts the 

instrumentation needed by the performance analysis within the running application. The 

instrumentation inserted by the monitoring process generates performance data that is 

collected and represented by trace events. These event traces are analyzed using some 

 

Modifications

Instrumentation

User

TuningMonitoring

Tool

Solution
Problem /

Performance 
analysis

Performance data

Application development

Application

Execution

Source

Events

User

TuningMonitoring

Tool

Solution
Problem /
Solution

Problem /

Performance 
analysis

Performance data

Application development

Application

Execution

Source

Events

DynInst



Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment 

80 

performance models to verify the existence of bottlenecks. For example, the 

instrumentation can measure the size of messages sent and received, and buffer sizes: a 

performance model could relate message sizes to optimal buffer size and the 

modification could be a change of the buffer size in process binary. 

 

  

Figure 34 – MATE component architecture. 
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event trace generated by instrumentation. Within these callback events, the tunlet can 

request application process instrumentation or application modification. All 

instrumentation requests generated by the tunlets are forwarded to the AC. The AC 

receives the requests, instruments the application and forwards the trace back to the 

Analyzer. By DTAPI, these trace events are dispatched to the desired tunlets. The tunlet 

decides, based on its performance model, what should be changed to tune the 

application and requests the Analyzer application to make changes. These requests are 

forwarded to the AC and the appropriate changes are made in the application [14, 57]. 

Some cases of MATE are presented in [66, 78]. 

 

 

Figure 35 – Internal representation of the Analyzer. 
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as mutatees and one of our processes as the mutator. Using this scheme, we need a 

process running on each machine where the application processes run. 

 

 

Figure 36 – Communication channels among GMATE components. 

 

The process which has the responsibility for controlling the application process is 

called, in our architecture, an Application Controller (AC). The AC component is the 

processes which uses DyninstAPI for the instrumentation of application processes. As 

the execution of AC and application job processes are done on different machines that 

are used to run the program which consumes the produced event data, we have the client 

component. In our architecture, the client is the Analyzer component. The client process 

establishes communication channels to the AC and its client. The communication 

among presented components is done by three communication channels, as presented in 

Figure 36: 

• Management Channel: used to transport management commands between the AC 

and the Analyzer. For this channel the AC can be controlled for instrumentation of 

the application by installing process sensors, to continue or pause application 

executions and establish new management and event channels. 
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• Event Channel: used just for transfer data collected from the sensors to the 

Analyzer. Currently it is used as an upstream data transfer channel. 

• Trace Collector: the communication scheme for collecting information from the 

running process. This channel is distinct from the Event Channel because overheads 

generated due to the data transmission should be minimal. That is discussed in  the 

section on monitoring topology below. 

To monitor an application execution in a Grid environment, we need to use the services 

provided by the middleware infrastructures in order to comply with site usage and 

security policies. In a Grid environment, an AC should fulfill some requirements such 

as: 

• Application Process Tracking: depending on the software layers installed over the 

Grid, process tracking may not be a simple issue. The location of process execution 

may be known only during execution. We propose two main approaches to solve 

this problem [79], a System Service Approach and a Binary Service Approach. Both 

topics are covered later on in this chapter. 

• Locate the Analyzer: once the application process is located, the next step is to 

establish communications between the AC and the Analyzer. This can be done by 

using Grid Information Services such as MDS or can be passed as a configuration 

parameter to the AC process. In order to fulfill Grid security requirements, the 

message exchange among tool components should use the middleware infrastructure 

to ensure data privacy [79]. 

4.3.1 Design Architecture 

Our monitoring tool has the same components presented in MATE [14, 57]. The coarser 

components are the Application Controller (AC), the Analyzer and the Dynamic 

Monitoring and Tuning Library (DMTLib). The Analyzer corresponds to the Analyzer 

component in MATE. As presented before, an AC component controls the application 

using the DyninstAPI library [48]. This library facilitates the modification of binary 

applications without the need for source codes. Using that library, the AC process is 

capable of dynamically changing the application job process. These modifications are 
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function calls to the functions from the dynamic loaded library in order to allow 

communication between the running application program and the AC.  

Our tool follows the GMA model, as presented in Figure 37. We use the concept of a 

sensor to collect event data from the application. Sensors are objects which have a 

internal memory state and a defined protocol for communication. The AC installs 

sensors into the application job process by inserting a sequence of function calls on an 

execution point of the application. That is done using DyninstAPI. By doing that, when 

the application execution reaches the changed execution point, the sensor receives the 

information and acts in response to it. A more detailed form of sensor structure and 

internal processing is presented later in this chapter. 

 

 

Figure 37 – Our monitoring scheme model in comparison to GMA 

 

All the sensor logic is implemented by a dynamic linked library called DMTLib. When 
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the API available and used within the instrumentation points and details its functionality 

description. 

The instrumented API calls can generate trace data which are transmitted in binary form 

to the AC. When the AC receives the data, it decides, based on configuration, to store 

locally or to forward it in the Event Data Channels. Moreover, to allow analysis of the 

complete application execution behavior, we merge the collected event trace data. That 

merge process is done using the event timestamp information.  

 

Table 3 – API used in process to gather data and support sensor communication. 

API Function Name Description 

DMTLib_addSensor 

(SensorConfig) 

Allocates the sensor inside process memory space. The 

sensor configuration data contains all the information 

necessary to build the sensor. 

DMTLib_reset 

(EventId) 

Informs the sensor about the beginning of data transfer. 

When the sensor receives this call, it waits for a sequence 

of DMTLib_setProperty function calls. 

DMTLib_trigger 

(EventId) 

Informs the sensor about the end of data transfer. In this 

point the sensor can send the trace data event to the AC or 

can do other computation. 

DMTLib_setProperty 

(SensorId, propertyData) 

Used to send runtime measurement data value to the 

sensor. 

DMTLib_sendValue 

(FromSensor, Index, 

ToSensor, Indwx) 

Allows instrumentation of value exchange between 

different sensors. Realizes the inter sensor communication 

protocol.  

DMTLib_bindSensors 

(FromSensor, ToSensor) 

Configure FromSensor to propagate trigger event to sensor 

ToSensor. Allows trigger event subscription between 

sensors. Realizes the inter sensor communication protocol. 

 

Each application job process produces one set of events. On our architecture, the 

generated events can be merged offline or online. In online mode, the AC and the 

Analyzer establishes one Event Channel based on the Grid transport services, the 
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Globus Extensible Input Output System or Globus-XIO [80]. These services are 

accessed through a common API for data transport. In such an API, it is possible to 

configure a stack of protocols and use it in a transparent manner. In such configurations, 

the Analyzer can receive all application event information while the event occurs. In 

offline mode, the Analyzer configures the AC for storing on disk the event trace data 

and the generated file is transmitted at the end of an application execution. 

As we saw in chapter 3, in order to improve performance, the application processes 

should be mapped to the selected execution nodes to overcome network bottlenecks. 

The application can have a process group which has more inter-process communication 

than another. In that case, that process group should be placed on a machine group with 

high bandwidth and a low latency network such as a cluster. Other processes that do not 

need much communication can be placed on ‘far’ machines over the Grid, with the 

overhead of high latency and low bandwidth network. The monitoring tool should be 

able to overcome the problem of different network properties such as latency and 

bandwidth by a change in its topology of communication. If the event collection 

generates more events that the available bandwidth of the network between the AC and 

an Analyzer, the monitoring process slows down the application execution. To 

overcome that problem, our monitoring tool provides a mechanism for the use of 

different network paths. The monitoring topology is covered later in this chapter in 

section 4.3.3. 

The communication between the AC and the Analyzer is achieved by two channels 

based on a Grid middleware infrastructure, Management Channels and Event Channels. 

The Management channel is used to send control commands from the Analyzer to the 

AC and to send application notification status changes from the AC to the Analyzer. We 

distinguish the following control commands transferred in management channels: 

• Application execution mode change: allows start, stop, continue and terminate 

the application job processes. 

• Sensor configuration: allows sensor install, remove, enable and disable. 

• Topology construction: allows the creation of new management or event 

channels to other destinations. This allows the construction of any topology over 

the Grid. 
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The Event Channels are used to transfer event data from the AC and the Analyzer. 

These Globus-XIO channels connect the two components and the AC has the capability 

to receive connections from other AC’s and forward event data to other established 

event channels. In order to lower the network bandwidth used for event transmission, 

the event data transmitted over event channels should be minimal or encoded to be 

small. The concept is that on each endpoint of an Event Channel we have the same 

configured sensors. The sensors configured on an Analyzer are used to decode the 

information received by the Event Channel. The topology of Event Channel connections 

can be changed using control commands and may differ from the topology 

interconnection used for management. 

4.3.2 Process Tracking 

Due to the distribution of resources within the Grid, following the process execution 

may not be an easy task. The Compute Elements on the Grid may be controlled by 

cluster local schedulers and the job distribution may be done using broker services. The 

resource allocation for the application should fit application requirements. These 

requirements may not fix the execution machine of the application. The application has 

the information about the allocated resources on execution time. 

One execution scenario that presents this kind of problem may be a Grid environment 

which uses Condor-G [18] as Grid-wide job scheduler. In such environments, the job 

description specified on the submit command file should not force the target resource to 

take advantage of the Grid capabilities. In this case, Condor-G will search for the 

available resources which satisfy the application requirements, such as operating system 

type, free memory and disk amount. 

In order to track application job processes over the Grid, we need to get information 

about the process startup on the resources. We assume a Globus Toolkit as the 

middleware which provides the software layers required for Grid construction. On this 

middleware, the information about where the processes are executing is not available on 

MDS. Once the application process is started, we need to have our monitoring process 

running on the allocated CN resource in order to instrument and monitor it. If the 

execution information were available on Grid information services such MDS [9], we 

also could not run our monitoring process on the allocated node using the current 
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scheme available for job submission because the job submission process does the 

resources allocation in exclusive mode. 

Another problem is the execution of SPMD applications. The submission of Grid MPI 

applications may distribute only the application binary. This occurs, for example, on 

simple submissions using a MPICH-G2 ‘mpirun’ command [70]. The ‘mpirun’ 

command in MPICH-G2 generates the job submission file and binary transmission in a 

transparent way. In that case, we need to be able to follow and control the process 

execution in a transparent way.  

The lowest software layer, where the application jobs execute, is the operating system. 

In order to support any software layers that exist between the user and the machine, we 

found two approaches which can be used to steer the application execution. The first is 

when the operating system starts the application in response to a high level request and 

the other is the application execution itself. We can, using these events, plug in a 

daemon to the operating system, in order to detect the application startup, or we can put 

a code in the application and fake the submission system, identifying the execution 

resources. These two different approaches are called System Service Approach and 

Binary Packaging Approach respectively [79]. 

System Service Approach 

The Grid infrastructure evolution indicates the emergence of Service Oriented 

Architecture (SOA) semantics in Grid computing.  In such semantics, the system 

infrastructure and application components should be accessed through services. The 

Globus Toolkit follows the SOA philosophy and its services interfaces are now, in 

version 4 of Globus Toolkit, accessed through the Web Services Resources Framework 

(WSRF) as we discussed in chapter 2. In a simple manner, the Grid services are 

provided by resources and the access to these resources is achieved by web service calls 

conforming to WSRF standards. 

In this approach, the concept is to have monitoring and tuning (application change) 

services pre-installed on machines in the Grid, similar to SCALEA-G tools [31, 35]. 

This mainly consists of having the AC as a system daemon running on the processor 

nodes waiting for monitoring/tuning sessions. This approach requires administration 

privileges because it must be capable of changing its security context to instrument 
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processes from different users. The key idea is to enable a machine with dynamic tuning 

services that can be used by any registered application.  

With the AC service daemon running on each machine of a cluster, this cluster is ready 

to undertake the monitoring/tuning sessions by user request. In clusters exposed as a 

CE, it is common to have Globus services installed only on the machine that controls 

the cluster. The integration is done by WS built on top of WSRF that handle the control 

of the AC daemons running on CN elements of the CE. Those services expose two 

resources: the AC Wrapper (ACWS) and Application Session. The AC Wrapper 

handles the integration through the Globus Index Service and exposes the services of 

each AC. Because the ACWS is an exposed grid resource capable of indexing, the 

resource properties are indexed by the MDS. The MDS propagates the collected 

information to other configured MDS services that belong to the VO information 

hierarchy. Figure 38 presents the relation of the AC Wrapper and the AC instances. The 

integration actions to the Grid middleware are presented in Figure 39 and Figure 40. 

 

 

Figure 38 – Connection between AC Wrapper instances and AC instances. 
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subscribes modifications to the ‘GMATE/ApplicationSession’ resource group in MDS 

Index Service by using the Notification Service provided by the WSRF. 

When a user starts a monitoring session, he/she creates an ApplicationSession resource 

containing information about the application submission. When the application is 

registered as an ApplicationSession resource, the associated information is collected by 

MDS and the AC Wrapper service receives the notification of the resource creation.  

 

Initialization phase use case 

AC starts on CN 

AC requests ACWS resource creation 

ACWS receives resource creation command 

ACWS establishes a management channel to AC 

ACWS returns success to resource creation command 

Figure 39 – Integration of the AC to Globus Toolkit – Initialization Phase. 

 

Runtime phase use case 

Analyzer creates an ApplicationSession 

ACWS is notified by IndexSerivice of ApplicationSession creation. 

ACWS send command to AC to monitor process startup 

AC detects the application creation 

AC send to ACWS process creation information 

ACWS register itself on ApplicationSession 

Figure 40 - Integration of the AC to Globus Toolkit – Runtime Phase. 

 

The AC Wrapper uses the ApplicationSession services to get the application 

information for local detection and transmits it to the AC daemon. In response to that, 

the AC daemon starts a time-limited detection of application startup. In case of success, 

it transmits this information to the AC Wrapper and the AC Wrapper resource registers 

itself in the ApplicationResource. The sequenced use case of the initialization phase and 

the runtime phase are provided in Figure 39 and Figure 40 respectively. The connection 
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between the AC daemon and the AC Wrapper service runs under the security context of 

Host Identity, so it requires the running machine to have a valid host PKI certificate. 

To start application monitoring, the Analyzer should register the application by creating 

a resource ApplicationSession. The resource information is collected by MDS. The 

resource ApplicationSession represents an application execution session that should be 

monitored. This component exists to provide to running AC processes the information 

necessary to start the monitoring session. This information includes: 

• Application program name: used for application identification; 

• Grid contact endpoint: used on AC management channels creation; 

• Startup detection time: used by AC services for timeout detection; 

• Monitoring control information: used by AC to choose the authentication 

method of the application; 

• Environment Variable Detection: includes a name/value pair used for detection; 

• Binary Detection: includes the application binary size and MD5 hash number of 

the application program used for application authentication. 

The main concept is that when the application is registered, all the AC services 

available on the Grid will be made aware of the application registration by the 

notification service. At this phase, all AC services start to monitor their local machine 

scheduler in order to find some process name that matches the registered information. If 

startup detection times exceed the value provided on MDS, the AC stops searching for 

application detection and assumes that the application programs were detected on other 

machines. That corresponds to the steps 1, 2 and 3 on Figure 41. 

The local process detection by AC daemon can operate in two modes: pooling mode or 

pull mode. In pooling mode, it monitors changes in ‘/proc’ file systems to detect 

application process startups. In pull mode, the AC service instruments the cluster batch 

scheduler process such as PBS or Condor daemons with DyninstAPI and waits for the 

callback event generated by an exec system call [48]. This makes known the exact time 

of application startup and allows the instrumentation from the beginning of the 

application. 

With pooling mode detection, when the operation system starts a new process, the 

‘/proc’ file system changes and the AC service reads its content looking for the 
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registered application program name received by the Grid integration. In pull mode 

detection, the AC service checks for process startup on each callback generated by the 

instrumentation of the batch scheduler instrumentation. In both modes, if it finds a 

process name which matches the registered application program name, the AC service 

authenticates the application. The authentication depends on the monitoring control 

information provided in the MDS. On that information, the Analyzer specifies how the 

authentication can be done: by application environment variable detection or binary 

detection. Figure 41 presents the step sequence of application processes detection using 

the Grid Services. 

 

 

Figure 41 – Application detection using Grid integration. 

 

Globus Container

CE Head Node Machine

AC 
Wrapper

AC 
Wrapper

AC

AC

CN Machine

CN Machine

Analysis Node

Application
Session1. Register Application

2. Notifications

3. Detection Request

3. Detection Request

Globus Container

CE Head Node Machine

AC 
Wrapper

AC 
Wrapper

AC

AC

CN Machine

CN Machine

Analysis Node

Application
Session7. Session State changed

6. Session Join

4. Detection Suceed

8. Create 

Management Channel

9. Management Channel Creation

Tim
eline

Job

attach

Analyzer

Analyzer



Chapter 4: GMATE – Grid Monitoring Analysis and Tuning Environment 

93 

The authentication can be done using application processes environment variables. The 

AC daemon looks for known environment variables registered in the application session 

information. If the process has the environment variable, the AC service assumes the 

process is authentic and starts the monitoring/tuning session. 

In cases of an authentication based on binary detection, the AC service checks for the 

binary size matches to be provided on registration. If it matches, the AC service attaches 

to the found process using DyninstAPI and perform a MD5 hash on a process binary file 

in order to complete the authentication. Using this approach, we stop only programs that 

have the same name as the registered application process and authenticate the binary 

using the MD5 hash. In this scenario, we suppose the application program binary is 

unique for that execution. 

To use the AC service configured to ‘pull mode’ detection, it is necessary to having 

high levels of privileges in order to allow the attach operation to the batch scheduler 

process and follow the batch scheduler process to a user’s security identity. In this 

mode, we performed tests over the OpenPBS [5] as proof of the concept. In each of the 

presented models of execution, the target execution machine should support DyninstAPI 

[7]. 

Binary Packaging Approach 

The idea of an application plug-in approach is to track down application processes using 

the same binary distribution and execution used by the application. This approach has as 

advantages over the System Service Approach because the user has total control over 

the software requirements of the tracking process. This approach allows transparent 

execution, for example, of MPICH-G2 compiled SPMD programs over Grid Systems 

using ‘mpirun’ submission script. The tool is packaged inside application binary. 

When a user submits an MPICH-G2-based application for execution on a Grid System 

using the ‘mpirun’ submission script it generates the resource specification needed and 

lookup on Globus MDS in order to locate the hosts. If the lookup finds the required host 

resources, the script uses the GASS to deliver the application binaries to selected hosts. 

In sequence, the script uses the DUROC services [81] of Globus to coordinate the 

application process startup and authentication, using GRAM services. 
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In such scenarios, the application binary is the startup entry point. To follow binary 

delivery and have total control of the application process startup we cheat the execution 

system. The problem of process tracking in such scenarios can be broken in two: 

• Follow the application binary; 

• Control the process startup entry point. 

In submissions using Condor tools or even Globus globusrun submission commands, it 

is possible to specify which files should be delivered and which application is the 

execution entry point. In cases of ‘mpirun’ use, the user can not specify the parameters. 

In such scenarios, the process tracking should fake the binary delivery mechanism and 

the application startup to get the monitoring tool binary transmitted to selected 

machines and to get the AC program started as a first application. 

To get the AC program delivered together with the application process binary, we 

merge both binaries, the AC program, the application program and all configuration 

data needed for the monitoring process. This process is called Binary Packaging and, as 

a result, we have a single executable file containing: 

• Glue program: a process that knows how to unpack the programs and libraries; 

• AC program: our dynamic monitoring module which controls the application; 

• DMTLib: our dynamic linked library which is loaded into application process 

space to help process instrumentation and event trace collection; 

• DyninstAPI Libraries: optional libraries that can be used in case the target 

execution machines do not have DyninstAPI installed. 

That binary packaging process can be done by the developer or even by the application 

users before the execution as a preparation step for execution or a post compilation step. 

That packs all required files into one using the structure presented in Figure 42. Using 

this approach, the AC program manages to follow the application program on any 

machine selected for execution over the Grid. 

For controlling the application startup entry point, we need to change the application 

startup process. The packaging process puts the Glue program as the first program in the 

composed binary. By that composition, at runtime, the first executed code is the one that 
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is loaded on memory. The key idea is to have the Glue program as an independent 

program which should care about the application startup process. 

 

 

Figure 42 – Binary packaging structure. 

 

 

Figure 43 – Binary Packaging information block 
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files, the Glue program locates at the end of its execution some information included in 

the packaging process. This information block, called a “Glue record”, contains the 

number of packaged files, and for each file, an information block containing the name, 

offset and size of the packaged file as presented in Figure 43. This information is 

included at the end of the binary in an inverse order to allow easy location of each 

information block. 
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After the file extraction, the Glue code tries to detect if the machine has DyninstAPI 

installed by checking the environment variables and trying to load the DyninstAPI 

runtime library. If it cannot find the libraries or the library load fails, and the binary 

packaging has the DyninstAPI binaries included, the Glue program reconfigures the 

environment variables and tries to load the library again. If it succeeds, the Glue 

program starts the AC program by passing the name of the extracted application 

program and the received command line parameters. If the Glue program cannot start 

DyninstAPI, the instrumentation of the process is not possible on the running machine, 

so, the application process is started using the command line parameters and the 

instrumentation of the whole application will became partial. In a partial 

instrumentation, some processes do not generate monitoring information. The Glue 

program acts as a wrapper process to an AC execution configured to process startup 

using the runtime properties of target system. 

In cases where we have a machine which supports dynamic instrumentation, when AC 

executes, it starts the application as a controlled process using the DyninstAPI library 

services and starts the monitoring process described above. 

Using the Binary Packaging approach, our tool has total control of the application 

execution. It enables applications for monitoring in scenarios in which application 

program submission for execution cannot be detailed as scheduler submission scripts 

such as a Condor submission script or globusrun RSL files. Generally, in scheduler 

submission scripts such as in Condor submission scripts and RSL files, the user can 

specify which binaries should be transferred to the CN before execution. In that 

scenario, the packaging is not necessary because the user can configure the script to 

send all required files to the CN and configure the script to have the AC program as the 

startup program. 

4.3.3 Monitoring Topology 

The capability of running wide applications is a well known Grid goal. With resource 

sharing, new computational challenges can be addressed by the available resources. The 

application should scale in order to cover these challenges. On the other hand, the 

system communication configuration is not homogeneous. Grid systems may have 

multiple networks interconnected by different technologies and different characteristics 

of latency and bandwidth. Some networks are dedicated; others are shared and chaotic 
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such as the Internet. Grid systems generally are geographically distributed and, due to 

available interconnection network communications, can easily become the application 

bottleneck. Some example scenarios can be found in [71, 72]. The network throughput 

determines the amount of data that some sites can produce. In scenarios with network 

congestion, different topology can take advantage of network its utilization within the 

application mapping to avoid congestion hostpots. 

Nevertheless, developers construct applications communications by clustering processes 

that have communication within domains with better network services. One strategy is 

to maximize the data locality in order to minimize the communication. If the 

communication is necessary, the processes should be mapped on CEs with good 

interconnection network properties. The same strategy may be used in monitoring tools. 

In order to handle the problem of trace event data transmission, monitoring/tuning tools 

should be able to reconfigure the logic communication topology. Each machine that has 

an application process job with instrumentation that generates a stream of event trace 

data during job execution. If the monitoring process is used for a postmortem analysis, 

for example, the event data can be stored on machines until the execution end. That 

allows, for example, the possibility of good compression of the produced data and it is 

the solution that has the best lower bandwidth requirements. 

In cases of online utilization of the produced event trace data, the monitoring tool 

should transfer the event data stream to a front end tool or other online analysis tool. 

The event data stream may be configured by the user to be merged online and written on 

a stable Grid storage service. The event trace data can be analyzed as a soft real time 

system. The monitoring client should have specific time limits which determine if an 

event is useful or not. The worst case is the reception of events on the application 

execution end. The best case is determined by the network latency between the client 

and the monitored application process. 

Both ACs and Analyzer components of GMATE are capable of input and output Event 

Channels. The user can configure different topologies and the tunlet have control to 

establish new channels and close old ones within an application tuning session. 
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Event Routing 

The event information data is small compared to other structure types such as an IP 

packet structure. One very simple event trace containing timestamp values and event 

identification fits on 16 bytes. If the event contains more than 4 function parameters of 

integer types, it fits on 28 bytes. In our architecture, we support events of different sizes 

and the events may be generated by different sensors. Figure 44 presents our complete 

event structure representation. The header used for routing have two integers (64 bits). 

The event header consists of one sensor identification (16 bits), a packet size (32 bits) 

and event identification (16 bits). The event structure may have unlimited data items 

which follows the event header and it is coded and decoded by sensor components. The 

monitoring tool uses this binary representation form of events in transmission to cover 

the lower bandwidth requirements in comparison with text-based transmissions. 

 

 

Figure 44 – Event structure representation. 

 

If the monitoring tool sends the event at the exact time of the generation, each network 

packet will contain only one event. In that case, the transmission consumes more 

bandwidth due to the relation between the event data and network address information. 

On TCP/IP networks, the packet header that handles IP and TCP addressing data is at 

least 32 bytes. On 28 bytes event traces, 32 bytes of header corresponds to 

approximately 79% of overhead per packet. To overcome that problem, monitoring 

tools should relax the real-time properties and aggregate events when it is possible in 

order to utilize the network Maximum Transfer Unit (MTU). On networks with a MTU 

of 1500 bytes such as the Ethernet, the cost of sending a 32 bytes event trace is the same 
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as sending 46 events of 32 bytes each. A TCP protocol uses the Nagle’s algorithm to 

handle this problem. The time limit in Nagle’s algorithm is 200ms [82]. If the 

monitoring client support more than that time limit, more events could be grouped in 

one transmission packet. 

 

 

Figure 45 – Execution scenario which requires different gathering topology. 

 

The total time from the event generation and its storage or utilization depends on the 

communication path used in the transmission. In order to have the benefits of 

heterogeneous network topologies, the monitoring tool may be configured to transmit 

the event data stream by a path different from the path used by common network 

routing. Figure 45 presents a scenario where the monitoring process should route events 

to the faster channel. The user located on site B submits an application for execution on 

sites A, B and C. If that application is instrumented to online performance analysis, the 

event stream generated from sites A and D will use common network routing 

mechanisms and should get only 3.5Mb of network bandwidth (2MB from site A plus 

1.5MB from site D). That topology is called the direct topology. An indirect topology 

could be constructed to have the benefit of the high interconnection network between 

sites B and C. The idea is to merge the generated event stream from sites A and D 

within the C generated event data stream. That strategy allows the monitoring process to 

aggregate more events per packet, which lowers the overheads of single event 

transmissions and allows users to take advantage of Grid network heterogeneity. The 
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routing information is based on configuration information. That configuration may be 

static, by configuration file or dynamic, commanded by a tunlet. 

The proposed architecture allows for the construction of any topology of data gathering. 

Any Application Controller is capable of event data routing and can be configured to 

establish event stream connections and route its events through those connections. This 

topology allows event ordering inside the Application Controller which reduces 

processing time from the monitoring client. Indeed, those topologies can increase the 

total latency for event data transmission because event trace data should pass to more 

than one hop. Although the influence of such collateral effects should be a trade off 

among network utilization and total transmission time. 

Scalability Issues 

In Grid environments, there are many different network communication architectures. 

The event trace data path from generation to the analysis of the monitoring client has 

many steps. Those steps influence total overhead costs and determine system scalability. 

In a Grid environment, the event trace data passes from a local machine, a local cluster, 

or other machines, depending on the selected topology, and reaches the user workstation 

or some storage service. In first step, SMP machines can execute more than one 

application process job. In the presented architecture, each machine should have only 

one AC controlling the instrumentation and event data collection. The data transmission 

among processes may be done by using domain or TCP/IP sockets, shared memory or 

message queues. From these mechanisms, shared memory requires inter process 

synchronization, and message queues have a performance lower than domain sockets 

[83]. In some experiments using IPC mechanisms on UNIX systems, domain sockets 

have bandwidth values approximately 96.57% higher than TCP/IP sockets on stream 

transmission. Figure 46 presents the values from a Pentium IV 2.8 MHz machine. 

The use of domain sockets provides better event trace collection bandwidths. In a local 

cluster, machines from the same cluster can have the benefits of merging the event trace 

data stream generated by each machine into one before sending them to lower networks. 

That helps solve event routing issues presented in the previous section. In the case of 

Massive Parallel Processor (MPP) machines, the use of tree topologies inside the 

machine can help to overcome network hotspot problems in network interfaces. This 

technique is presented in recent version of the Paradyn tool in order to provide 
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scalability by using a Tree Based Overlay Network (TBON) topology [84]. Paradyn 

also reduces the event amount in each node by event values summarization. This is 

possible because the monitoring client generally need aggregation functions over the 

event values. 

 

 

Figure 46 – Local event gathering strategy comparison. 

 

4.3.4 Smart Event Gathering 

Application programs need to be instrumented in order to generate event trace data. In 

dynamic instrumentation, this is done by changing binary codes and inserting calls to 

code sequences. In DyninstAPI terminology, the places where these modifications can 

be inserted are called execution points. A simple instrumentation capable of measuring 

a function execution time can be achieved by inserting the instrumentation in the 

function entry point to record the current timestamp value and inserting the 

instrumentation in the function exit point to calculate the difference between the 

recorded value and the current timestamp value. DyninstAPI allows such program 

binary patching programming capabilities.  The overhead of the introduced code is 

proportional to its execution in relation to the original program code execution. In that 

sense, instrumentation of very small and greatly used functions may have high 

overheads and event tracing is not recommended in such situations [85]. 

Event tracing over processes consists of the execution of the code instrumented in a 

binary program and the transmission of the collected data to a monitoring tool program. 

In our architecture the instrumentation consists of a sequence of function calls that 
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record the program’s state such as the parameters of functions or variables and sends the 

event trace data through domain sockets to the AC process. In such architectures, the 

overheads can be divided into the overhead of the instrumentation of runtime data 

collection and the overhead of data sending to the AC process. The overhead of event 

transmission depends on socket buffer sizes and the amount of data transmitted.  

In our architecture, to lower the need for data transmission, we propose a more 

sophisticated component called sensors to be inserted at points inside the application 

process. The idea is to reduce and postpone the data transmission as much as possible 

by doing some simple logic and arithmetic operations inside the process space. 

Nevertheless, that kind of improvement affects the monitoring use of the generated 

event data trace because the received events can contain more information than simple 

trace data associated to a point of execution. The sensor concept is not new. The 

Autopilot tool [76, 77] uses this concept to collect data and preprocess data before 

sending it to its clients. We propose a more sophisticated use of sensors by inserting 

some codes to provide smart event gathering. 

InstallPoints 

Once we know what should be measured, the other parameter to consider is where it 

should be measured. That also applies to the tuning part. The changes we make in 

application binary should be located in program execution and somehow synchronized. 

Similar to the Sensor concept, we encapsulate the logic of locating such points in 

program execution as InstallPoint. 

The current prototype of GMATE implements the following InstallPoint types for 

placing Sensors and Actuators: 

• Function Entry/Exit: locates execution address of functions by querying 

DyninstAPI using a pattern rule and generates install points on the entry or 

exit of first found points. 

• Multi-Function Entry/Exit: same as the above, but installs the Sensor or 

Actuator at the entry or exit of all found functions. 

• Binary Location: corresponds to an execution address in a program loaded 

binary. These points may be probed by a debugger tool such as GDB. 
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• File and Line Number Location Entry/Exit: an InstallPoint using the name of 

a source code file and a line number. Can be installed before the execution of 

the line or after its execution. Needs to use debug symbols. 

All the presented InstallPoints are built over the capabilities of DyninstAPI for binary 

code patching. 

Simple Sensors 

To lower instrumentation overheads resulting from event data transmission, some event 

consolidation should be done inside the process space. Simple consolidations such as 

sum, average and differences do not represent much computation overhead and can save 

some transmission operations. Sensors are software components that can be installed 

inside running processes at one or more points and have the logic to decide what to 

collect and when to generate the event data transmission. 

 

 

Figure 47 –Diagram for sensor concepts. 

 

The simplest sensor is a software component that is activated at the installed points. On 

activation, the instrumentation placed by the installation process collects the running 

process information and sends the data through domain sockets to the AC process. 

These can be used by traditional event tracing. Sensors can be installed at any 

InstallPoint. In our architecture, an event consists of a data record that can be generated 

in one or more InstallPoints. Figure 47 presents a concept diagram associating sensors, 

install points and events. The idea is to use a same sensor to generate the same events 
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from different functions. That can be achieved by installing the sensor at different install 

points. Event identification is how the sensor binds to different installation points. 

The concept of an event allows the sensors to identify different installation points and 

allows sensors to handle more than one tem of event information. At runtime, the event 

generation is represented by the instrumentation code used to call the sensors. Each 

event may contain information about program execution such as parameters of function 

or variables. Sensor components handle all the information required for event collection 

on installation points within user applications. Figure 48 presents a pseudo code of a 

sensor that handles multiple events installed on more than one installation point.  

 

Sensor Installation 

Execution of function DMTLib_addSensor(SensorConfig) 

For each Event Mapped InstallPoint ip on Sensor s 

 Get binary location usin Installation Point ip for Event e 

 For each Installation Point 

  Instrument call DMTLib_sensorReset(s.sensor ID, e.event ID) 

  For each Event Data Property from e 

   Instrument call DMTLib_setProperty(s.sensor ID, measurementValue) 

  Loop For 

  Instrument call DMTLib_sensorTrigger (s.sensor ID, e.event ID) 

 Loop For 

Loop For 

Figure 48 – Pseudo code of a Sensor instrumentation process. 

  

Function Timer Sensors 

Most event tracing is used to measure function execution times by computing the 

difference from function exit time minus function entry time. That calculation generally 

is done by the monitoring client. By bringing that computation to sensors, we save time 

on event trace generation because we can generate one event trace instead of two. That 

is called “Function Time Sensors” in our architecture. 
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Function Timer Sensors are sensors that recognize two specific events: region entry and 

region exit identified by installation points. Each event can be configured to sample 

values from parameters of function and variables and store it in the sensor. When the 

instrumentation triggers a region exit event, all the collection of stored event data are 

sent into the Event Channels. That allows, for example, to timer a complex code region 

in different slices and generates only one event trace. 

Other Sensors Types 

By including the collection of logic inside the process space, it makes it possible that 

there are other ways of overhead reduction using more elaborated sensors. In that sense, 

sensors can be classified by the source of trace generation:  

• Trace data generated by event: this is the case of function time sensors where the 

trace is generated after the function end event. In those sensors, the transmission of 

the trace event data is deterministic and identified by a mapped installation point. 

• Trace data generated by trigger condition: in this case with sensors, the event 

generation is not deterministic and depends on the collected data and internal sensor 

logic. The sensor may use a trigger condition to control the generation or the trace 

event data. In such situations, the trace is generated in cases where a condition is 

evaluated to true. 

• No trace data generation: the idea of these sensors is to provide information to be 

used by other sensors. In our architecture these sensors are called ‘state sensors’.  

Our architecture proposes some example sensors for both trace data generation types: 

• Function Average Sensors: this is a ‘trace data generated by event type’. The 

instrumentation is used to produce the average of a number of function executions. 

For example, a performance model can include a parameter as the mean of 

execution time of send and receive operations. In that scenario, this kind of sensor 

can be useful by recording fixed circular list of timestamp differences and 

generating events in a different frequency than a function time sensor. It can be 

configured to record a fixed amount of executions or time period threshold and to 

generate the trace data with the moving average execution a fixed number of 
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execution occurrences. The event generation can be disabled for use as ‘state 

sensors’. For example, a sensor could generate the moving average of the last 16 

send operation durations. 

• Jitter Sensors: this sensor type has the logic needed for calculating the difference 

between the different timestamps of different install points. That can help users in 

measuring program iterations or sequences of function calls. It can operate as trace 

data generated by events trigged on a configured number of samples collected or as 

‘state sensors’.  

• Threshold Sensor: this is a trace data generated by trigger condition sensor type. 

The idea is that the collected event data items should be sent as event trace data only 

when the value measured is below or above some threshold value. It can operate in 

‘lower than’ or ‘greater than’ mode. The value evaluated in the install points can be 

read from variables, parameters of functions or other sensors using the inter-sensor 

communication protocol. 

By using sensor communication, an Analyzer can configure sophisticated trace data 

event collection configurations. Sensor values can feed other sensors and the event data 

transmission can be dramatically reduced. Complex state machines (composed by many 

interconnected sensors) can be built using the trigger event subscription and sensor 

communication operation. 

The idea is that the event data is generated only when it is really strictly necessary. The 

client of the monitoring, the Analyzer in our architecture, may use the provided sensor 

components to restrict the generation of event trace data. The sensor logic can build 

inside process spaces as a part of the logic that would be performed in the monitoring 

client. By using elaborated sensor types, much of the logic of the monitoring tool client 

may be included in the process space, reducing the communication between the 

monitoring engine and the tool which uses it. However, there will be a tradeoff between 

processing event data and data transmission overheads. In Grid environments where 

network bandwidth can easily become the application execution bottleneck, that 

strategy will have more importance. 
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4.4 Grid Performance Analysis 

The monitoring interface provides all event trace data that can be used to sense 

application behavior. Once we understand application behavior we can choose which 

performance indexes should be evaluated as objective functions and as parameters 

having an impact on such functions. To support such capabilities, GMATE inherits the 

concept from MATE, presented in section 4.2.3, and adds new features to help the 

tuning not generate application performance problems. The major characteristics are: 

• The Analyzer is written in pure Java; 

• The tunlets are compiled and loaded dynamically; 

• The instrumentation installs Sensors and Actuators in application binary are in 

places specified by InstallPoint components; 

• All communication between the Analyzer and AC is done using the Grid 

middleware; 

• Asynchronous tuning as follows: 

o The event trace reception has its own thread; 

o The tunlet callback is multi-threaded; 

o The tunlet callback uses a different thread to the event trace reception; 

o The instrumentations are non-blocking operations; 

o The modifications on process binary are non-blocking operations. 

• Have support for event routing; 

• Have support for declarative Sensors, Actuator and InstallPoints; 

• Independence of a message passing library; 

• The DMLib is replaced by the DMTLib that also handles the tuning part; 

• The event trace and action data are exchanged between a DMTLib dynamic 

library and the Application Controller; 

• The tunlet API was extended to support callbacks in response to actions 

executed in an application program; 

• Support for event ordering per application process and global issue; 

• Provide statistics for event callback execution time for tunlet performance 

evaluation; 

• Include in container statistical packages that facilitate tunlet development; 
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• The actuators change the process on the fly and do not require a process to stop; 

• Enhanced InstallPoint types such as source files and the line-based and binary 

address-based; 

• Smart monitoring with sensors to lower event trace generation 

 

 

Figure 49 – Internals of the Dynamic Monitoring Library (DMTLib) and its iteration with the 
InstallPoints instrumented by DyninstAPI and the other GMATE components. 

 

Figure 49 presents the internals of the DMTLib in relation to the DyninstAPI and the 

Application Controller. The library is a placeholder for the sensors and actuators 

installed in program binary. The program is required to pause only when sensors and 

actuators are installed. All the monitoring and changes are performed without the 

overheads caused by program pause. 

When initialized, the DMTLib starts a thread that is responsible for the collection of 

Action parameters required for Actuator preparation. The detailed Actuator internals 

will be presented in section 4.5. All the communication between the DMTLib and the 

outside world are done through the AC. 

Figure 50 presents an internal view of the Application Controller (AC) component. The 

AC is connected to the DMTLib using Domain Sockets and to other components by 

Event and Management Channels. The AC has the capability to install Sensors and 

Actuators using the DyninstAPI and the DMTLib functions as detailed in sections 4.3 

and 4.5. 
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Figure 50 – Internals of the Application Controller (AC) and its iteration with DyninstAPI and other 
GMATE components. 

 

All generated trace data are transmitted using Event Channels and can be used for 

routing, using troughs other than AC, analysis and proxy. The management channels are 

used for proxy, routing and tuning. The Action parameters are transmitted over the 

management channels from an Analyzer to the AC and later to the DMTLib. 

 

 

Figure 51 – Internals of the Analyzer and its iteration with the ACs and other GMATE components. 

 

Figure 51 presents an internal view of the Analyzer component. As with the AC, the 

Analyzer supports Event and Management Channels. It uses the Management Channel 
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InstallPoints. When an AC connects to a Management Channel on the Analyzer, it 

corresponds to an Endpoint connection in the Analyzer model. The Analyzer maintains 

a list of connected Endpoints6, registers application processes and creates Actuators and 

Sensors. 

When a process is located, the AC is registered on the Analyzer and initiates the 

commands required by the installed tunlets. The analysis is done inside the tunlet. That 

is done by following some heuristic targeting performance improvements. These 

heuristics can range from simple index functions to data mining procedures, decision 

trees and stochastic methods such as simulation or complex analytical analysis. 

4.4.1 Tunlet Architecture 

 

 

Figure 52 – Tunlet Interface. 

 

The tunlet are any class write in Java that implements the interface presented on Figure 

52. The interface allows the Analyzer to notify the tunlet about process, endpoint and 

event management. Each application process is represented by an instance of object 

Task. The endpoints are any Analyzer or AC that receives Event Data Channels or 

Management Channels. That interface allows, for example, for notifications when the 

Analyzer receives some connection from an AC or when an AC receives a connection 

                                                 

6 We name endpoint any component that may generate or receive Management and Event Data Channels 

in our architecture. 

<<Interface>>
Tunlet

+getVersion(): String
+Initialize(container: TunletContainer, args: String[]): void
+finalize(): void
+taskRegister(task: Task): boolean
+taskStop(task: Task): boolean
+endpointConnect(local: Endpoint, endpoint: Endpoint): boolean
+endpointDisconnect(local: Endpoint, endpoint: Endpoint): boolean
+handleEvent(task: Task, eventDataSet: EventDataSet): boolean
+handleActionFired(task: Task, status: Actuator.Action.FireStatus): boolean
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from other AC, in case of event routing scenarios. The TunletContainer is an interface 

that allows the tunlet to interact with the Analyzer.  

 

Within the presented methods, the tunlet may interact with the Task, requesting Sensor 

and Actuator installation, query process state, variables, available instrumentation 

points and query binary composition. The frequently called methods and the 

‘handleEvent’ and the ‘handleActionFired’ that are called in response from some sensor 

event trigger or some actuator action fired on some application process respectively. 

The helper classes/interfaces implemented by the Analyzer are: 

• TunletContainer Services 
o It maintains the SystemModel instance. 
o It maintains the CausalControl instance per tunlet. 

• SystemModel Services 
o It maintains the list of Sensors, Actuators and InstallPoints. 
o It maintains the list of EventInstall (where relates events from Sensors to 

InstallPoints) and ActionInstall (where relates actions from Actuators to 
InstallPoints). 

o It maintains the list of running Tunlets and registered Tasks. 
o It maintains the configurations of the engine. 

• CausalControl Services 
o Configures the local and global event filter. 

• Task Services 
o Sensor event install, enable, disable and remove. 
o Actuator action install, enable, disable, remove and fire. 
o Process start, stop and terminate. 
o Binary structure. 

• Sensor.EventDataSet Services 
o It maintains a list of Sensor.Event.EventData instances. 

• Sensor.Event.EventData Services 
o It maintains the measurement values collected in application process. 
o It knows when the event trace occurred. 

• Actuator.Action.FireStatus Services 
o It knows the status of the change action. It allows, for example, for error 

detection. 

The CausalControl is a mechanism that filters the events a tunlet receives based on 

event metadata configuration. Each event may have two causal filters, one local and one 
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global. A causal filter is a simple an integer. The CausalControl maintains for each 

process a local causal filter and one global causal filter. If the value configured on the 

event is greater than the actual value of the CausalContol, the event is queue until the 

CausalControl updates its values and the event configuration satisfies the filter. It allows 

specifying in declaration form, that the tunlet receives only the events it is prepared to 

deal with. 

4.5 Grid Tuning 

The main distinction between computational Grids and cluster computing is the high 

level of heterogeneity in networks and processors. In addition, these systems are 

generally geographically spaced and their components distributed among different 

administration domains. As covered in monitoring session, the problem of security 

needs due to multiple administrative domains should be left to Grid Middleware. 

As with monitoring, the tuning module uses communication channels to perform 

application changes as a result of performance model evaluation. When applying MATE 

concepts to Computational Grids, we should deal with communication restrictions that 

occur with communications to remote sites. The tuning process can use the same 

concepts applied to monitoring to lower the intrusion in application execution due to 

execution blocking. Those execution blocking occurs when the tuning is synchronized 

to the application execution in the event trace generation or in the application changing 

process. 

Another important aspect in application tuning in Computational Grids is that changes 

are performed in different conceptual layers. For example, the tuning of a number of 

workers in cluster computing consists of application modification, while the same 

changes in Computational Grids may require the addition to that interaction of 

collective layers such as meta-schedulers and/or resource broker services. Any 

additional resource should be obtained by the iteration with those collective services. 

In fact, the original implementation of MATE has a tight integration with PVM process 

controls in order to deal with process creation and management. Same concepts were 

applied to the Grid, although that problem was broken down in two parts: First, we 

needed to find where the application processes starts its execution. Second, if an 

application supports changes to a number of processes, we considered how to grow or 
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shrink parallel virtual machines. The first part was covered by monitoring requirements. 

The second part was covered by tuning processes. 

The main aspects involved in the tuning process are where, how and when to allow 

changes in applications. That classification allows us to trace a correlation between 

MATE concepts in cluster computing and their appliance to Grids. The ‘where’ aspect 

consists of the issue of which element receives the change actions. The change in the 

number of workers in an application may require interface with meta-schedulers and/or 

resource brokers in combination with application binary modifications. The ‘how’ 

aspect resides in what functionality is required to interface with elements identified by 

the ‘where’ aspect.  In a case of cluster computing, we had used runtime binary 

modifications such as changes in variables’ values and function replacements. In Grids, 

we need additional services such as petitions to collective services as a collection of 

group metrics abstractions using MDS [9] or NWS [46]. The ‘when’ aspect consists of 

the synchronization required to perform the changes. Some applications may only 

support variable changes at some time in its execution. Those changes require being 

synchronized among different application processes and being in synchronization with 

some service requisition. 

In fact, an execution of a parallel application in a Grid can be seen through different 

prisms as in the case of clusters: software modularity, communication/administrative 

domains, and isolation abstractions. By “software modularity” we mean the 

classification proposed in [14] and illustrated by Figure 53. The idea is that if we 

propose dynamic changes in common parts such as the Framework and Library code we 

may benefit all applications that use these software modules, while modifications 

applied to application codes benefit only the application. Changes in an Operating 

System Kernel is also considered, but changes at that level are generally considered as 

system tuning, which are out of the scope of this thesis work. 

Within Computational Grids we may divide tuning processes as based on 

communication and/or administrative domains, as illustrated by Figure 54, and isolation 

layers, as illustrated by an ‘Hourglass model’ presented in Figure 2. There are changes 

that may be performed in distributed system abstractions such as interface with 

collective services. There were some changes that may be done in Virtual Organization 

abstractions such as economic costs or limits regarding VO polices. 
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Figure 53 – Software modularity abstraction from [14]. 

 

At the Organization level, we may have resources usage police which may also have 

economic issues. In cases of CE and CH abstractions, we should have the same 

concepts as cluster computing. In addition, we should have iteration with Fabric 

services such as batch schedulers. In CH and node cores, we have the application 

process instances that should receive binary modifications considering the software 

modularity abstractions. 

 

 

Figure 54 – Communication/Administrative domains abstractions. 

 

In order to facilitate the tuning process, we need an abstraction that isolates different 

modifications from different layers throughout an interface. For that direction, we 
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borrow the concept of software Actuators presented in [76] and adapted to MATE 

concepts. The idea is to have a component that can be ‘plugged’ in different places 

covering the ‘where’ concept and hide some functionality logic to handle the ‘how’ 

concept and identify conditions for the synchronization required by the ‘when’ concept. 

4.5.1 Smart Tuning Actions 

Tuning actions consist in the appliance of changes which affect application execution 

behavior. This process could be analyzed as a piece of code which is based on an 

internal state interacting with some element which corresponds to the performance of 

the change. In cluster computing implementation of MATE [14], the modifications were 

performed by the Application Controller (AC) in response to Analyzer requests. That 

implementation uses DynInstAPI breakpoints to stop applications at the synchronization 

points and performs the desired change when the execution reaches that point. 

One interesting behavior in changes performed by dynamic tuning is that applications 

are constantly evaluated during execution. In some senses, the modifications are 

generally performed at same points using different state data. For example, the tuning of 

a number of workers generally consists of a variable value change or a function call 

execution using different parameters. By perform smart tuning, we mean to install in 

just one instrumentation operation a piece of software that makes the application 

capable to change its behavior by receiving some action instruction from an AC. 

We have found some benefits using that approach. First, the instrumentation is done just 

once for each Actuator object instance, which reduces process stops and the overhead of 

tuning. Second, the modified binary, after instrumentation, can be executed without 

needing to be attached to an AC. That has special benefits for applications which 

frequently use signals. When processes receive signals and they are attached to another 

process, the parent process receives the signal and has the responsibility of continuing 

child processes. That generates a lot of intrusion into application processes that make 

intensive use of signals while also being controlled by DyninstAPI. We found also that 

domain sockets are the communication scheme that has less overhead in action 

reception.  

The difference between tuning processes and monitoring concerns which thread 

executes the operation. In a case of monitoring, trace data is transmitted using 
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application threads, while tuning requires a different thread to wait for change requests, 

inside application process. We, in that case, are assuming that the system has threading 

support. 

The philosophy of tuning has the same principles of monitoring. Due to communication 

costs, tuning processes should be implemented taking into account the low overhead in 

process execution. At that point, part of the logic required to change application 

configurations in order to tune may be encapsulated in components inside application 

processes.  

 

 

Figure 55 – Actuators concept. 

 

Simple Actuators 

An Actuator is an element of software that may perform one or more actions. These 

actions represent the knowledge component needed to execute the change. These 

actions may be installed in one or more InstallPoints. Take, for example, the action of 

changing an integer variable value on some function entry. In that case, the action is an 

integer that represents a new value and the InstallPoint is the function entry. Figure 55 

presents a diagram correlating those concepts. 

Basically, after an actuator is installed, it waits for a command from an AC containing 

some action value collection. When an actuator receives the action state, it becomes 

‘armed’. When an application passes on some install point related to an action, the 

Actuator ‘fires’ an action which performs the change. In fact, actuator components work 
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on an internal state machine that interacts with an AC. Figure 56 presents the internal 

Actuator state machine. When an Actuator is installed, the initial state is Active. When 

an AC sends a change request, the required data is stored inside an Actuator component 

and its internal state become Armed. When a program execution reaches some 

InstallPoint, the Actuator is triggered and the change is performed. 

 

 

Figure 56 – Actuators internal state machine. 

 

By using the runtime scheme illustrated in Figure 56, the change does not request 

program stop as with MATE implementations and maintains the same synchronization 

properties. For example, if we install an Actuator for changing the value of one variable, 

when the Analyzer request the value to change, it commands the AC to send the new 

value using domain sockets to the application process. Inside the application process, 

our architecture has a thread waiting for such commands, called the ‘upstream thread’. 

When the ‘upstream thread’ receives the new variable value, it arms the Actuator with 

such value. When the program passes in an InstallPoint where the Actuator is installed, 

the variable value is changed automatically by the Actuator. 

In some situations, Actuators may be configured always to become ‘Armed’. That 

means it is able to perform its logic all times when triggered. That functionality is useful 

for some Actuators, as explained in following sections. 
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Actuator Installation 

Execution of function DMTLib_addActuator(ActuactorConfig) 

For each Action Mapped Installation Point on actuator c 

 Get Installation Points for Action a 

 For each Installation Point ip 

  Instrument call DMTLib_actuactorReset (c.actuactor ID, a.action ID) 

  For each property from Action a 

   Get pointer ptr to value to be changed. 

   Instrument call DMTLib_setProperty (c.actuactor ID, a.action ID, ptr) 

  Loop For 

  Instrument call DMTLib_actuactorTrigger (c.actuactor ID, a.action ID) 

 Loop For 

Loop For 

Figure 57 – Pseudo code of an instrumentation process of a change value Actuator. 

 

Figure 57 presents the pseudo-code of the Actuator installation with the capability of 

variable and parameter change. When the application execution reaches these 

instrumented function calls, the Actuator internal code may change the values passed by 

reference if it is in ‘armed’ state. 

Value Change Actuators 

Generally, application tuning is done by configuration change. That configuration 

generally consists of variable values that an application program uses to change its 

behavior during execution. When an Actuator is installed into a program space, the 

Action has its items associated with the references of variables. When an Actuator is 

armed, it stores the new variable values in a temporal buffer and replaces the old values 

when an Actuator is triggered. 
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Actuator Installation 

Execution of function DMTLib_addActuator(ActuactorConfig) 

For each Action Mapped Installation Point on actuator c 

 Get Installation Points for Action a 

 For each Installation Point ip 

  Instrument call DMTLib_actuactorReset (c.actuactor ID, a.action ID) 

  For each property from Action a 

   Create a variable var on process heap. 

   Get the reference ref of var. 

   Instrument call DMTLib_setProperty (c.actuactor ID, a.action ID, ref) 

  Loop For 

  Create a variable callFunction on process heap. 

  Get the reference refCF to callFuntion. 

  Instrument call DMTLib_getCallAction (c.actuactor ID, a.action ID, refCF) 

  Instrument ‘if (callFunction!=0) call a àfunctionName using all allocated vars’ 

  Instrument call DMTLib_actuactorTrigger (c.actuactor ID, a.action ID) 

 Loop For 

Loop For 

Figure 58 – Pseudo code of an instrumentation process of a function call Actuator. 

 

Function Execution Actuators 

Sometimes, the modification of program configurations should be done by function 

calls. One example is the configuration of the buffer size of sockets. That can only be 

done by a system call requesting a change of socket buffer size. For that situation we 

build an Actuator that represents a function. The Action property items, or parameters, 

are mapped to the function arguments using memory allocated in process heap. 

The configured function is called when an Actuator is triggered by an install point and it 

is in ‘armed’ state. That is controlled an allocated variable in heap space. The 

instrumentation detail for such Actuator instrumentation is presented on Figure 58.  
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Other Actuator Types 

Value Map Actuators: consist of an Actuator that has auto-armed actions that serve to 

change the values of variables or parameters. That can be used, for example, to generate 

different process mapping to MPI executions. At program startup, the tuning tool may 

install one actuator of that type to swap some process ranks. That may be useful for 

placing the master processor of a Master-Worker application in any rank in a 

transparent manner. The installation of this actuator type is the same of the value change 

actuators. 

Web Service Actuator: consists of an Actuator that may be used to perform a web 

service call. That is useful in cases of changing the number of processors of an 

application which can be done by interacting with collective layers using web service 

calls. Using the Globus middleware, for example, we can request more resources using 

a web service call. 

4.5.2 Tuning in different layers 

Another problem when tuning applications in computational grids is to find out which 

application parts are addressed to Grid Middleware. When a parallel application 

executes on a Computational Grid, a number of processes may be a requirement but is a 

runtime value that is controlled by a meta-scheduler. As a consequence, the application 

may not use more machines unless as meta-schedulers for new ones. 

When we talk about changing the number of workers in a Master-Worker application, 

the changes must be done at many levels. The tool should, at a Compute Host 

abstraction, change the process binary and, at a Compute Element and/or Collective 

Layer, request more machines for a system. 

In some senses, we may classify the changes in the distinct abstraction layers presented 

in Computational Grids. If changes grow or shrink an application’s set of resources, it 

should interact with Collective services, if not only Fabric changes are sufficient. 
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Chapter 5  
Experimental Validation 

5.1 Introduction 

In Chapter 2 we explained the properties that characterize a computational Grid and the 

implications for parallel executions within that environment. We had shown that after 

the application starts its execution, it has to deal with a multi-cluster environment. In the 

same chapter, we presented some active state of the art tools used to generate 

performance data for analysis. We use some ideas in our architecture detailed in chapter 

four and for the application of dynamic tuning in Grids we proposed the model detailed 

in Chapter 3. In the same chapter, we presented simulated results for the analytical 

model. This chapter presents the validation of the performance model detailed in 

chapter three and its evaluation in a controlled enterprise Grid environment testbed. 

The main characteristics of a representative computational Grid testbed are a collection 

of computer nodes grouped in clusters interconnected using a network with different 

properties to an intra-cluster network. That should represent distinct CE’s distributed 

among different geographic locations characterizing network heterogeneity. These 

clusters should have machines with different processors and memory characteristics to 

ensure CE heterogeneity. 

Our main goal in this chapter is to highlight some case scenarios with real application 

tuning using our model and architecture. That should provide a comprehensive set of 

examples for its applicability using the provided ideas and techniques. We present some 
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cases already exercised in Chapter 3 using simulations to illustrate real world scenarios. 

The evaluation should cover applications with different compute/communication 

characteristics. As we state, those applications should allow different grain sizes change 

during execution: the provided workload should sample distinct examples of ratios from 

different strategies for grain size partition. 

Our tuning model and architecture should help Master-Worker applications execute 

over a Grid Test-bed to adapt to system heterogeneity. From that, the first parameters 

for the experiments are intra- and inter-cluster network latency, bandwidth and 

processor speed, architecture and memory. Another important parameter is the mapping 

of these resources to the application. Different application executions should get 

different system configurations and a different process to parallel machine mapping. 

From the parallel machine view, we have the parameters’ initial number of workers and 

grain size selection. 

From the provided parameters, the parallel machine mapping, initial number of workers 

and initial grain size selection are evaluated by means of different factors. The 

executions should be ranked using total execution time and processor efficiency. Due to 

the current limitation of the available implementation of messages passing from 

Computational Grids, we cannot increase the parallel machine size using dynamic 

process spawn. Indeed, that characteristic should be available soon and does not affect 

the provided experiments as proof of the concept.  

Our model requires the parallel application to be developed using the Master-Worker 

paradigm and supports dynamic grain size change during its execution. To facilitate 

application coding with these properties, we developed a template to abstract the 

communication logic and help the application work out when it should change the grain 

size and how it should be done. We use some examples of applications developed using 

this template as the experiment’s workload. 

5.2 Master-Worker Tuning on Grids 

In following sections we detail how we facilitate the development of applications with 

runtime grain size change support. To apply the model presented in chapter three, there 

are some requirements. The application should have a stable average task size in its 

properties of time to compute and time to transfer input data from master to workers and 
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output from workers back to the master. We analyzed the one port master model. As 

input and output communication from a master to workers shares the same port 

(considering full duplex communications), we serialized the communications. Serialized 

communications within Master-Worker programming model results in lower startup and 

finalization times, as described in chapter three. 

5.2.1 Framework Overview 

To abstract the Master-Worker paradigm we developed a Generic Master-Worker 

Application Template (GMWAT) which consists of a set of C++ classes created to hide 

communication logic from the application. Using that template, the developer should 

implement a simple API to create tasks, compute tasks and write results. In addition to 

that, we added the API to split tasks and merged results to allow grain size change. 

When the template asks the application to split a task, it expects to have different 

communication requirements from the resulting tasks and the original task. The detailed 

framework implementation is provided in Appendix B. 

 

 

Figure 59 – Benchmark of communications among different nodes in the constructed Grid testbed using 
the Intel Pallas MPI Benchmark [86]. 

 

5.2.2 System Description 

The enterprise Grid testbed consist of a set of 52 compute hosts spread over four 

computer elements represented by clusters with different network and processor 
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characteristics. Figure 59 presents the different network throughput for intra-cluster 

communications (LAN) and inter cluster (WAN), and the following Table 4 presents the 

machine characteristic as processor architecture, memory specifications and operating 

system versions. To facilitate the identification of different multi-cluster configurations 

we labeled the clusters as I, H, D and P. 

 

Table 4 – System characteristics for each clusters used to the experimental validation. 

id frontend N Processor,  Memory and Cache Network Bogomips 

I aogrdini 6 Intel(R) Pentium(R) 4 CPU 2.80GHz, 

512MB RAM, 512Kb L2 cache 

100Mb Fast 

Ethernet 

±5550 

H aohyper 8 AMD Athlon(tm) 64 X2 Dual Core 

Processor 3800+ (2GHz), 2Gb RAM, 

512Kb L2 cache 

Gigabit 

Ethernet 

±4000 

D aoclsd 8 Intel(R) Pentium(R) 4 CPU 3.00GHz, 

1Gb RAM, 1024Kb L2 cache 

Gigabit 

Ethernet 

±6010 

P aoclsp 32 Intel(R) Pentium(R) 4 CPU 3.00GHz, 

1Gb RAM 1024K L2 cache 

Gigabit 

Ethernet 

±6010 

 

5.2.3 Compute/Communication Dependency Analysis 

Our model states that if there exists data reutilization among different tasks, we can 

change the compute/communication ratio by selecting different grain size alternatives in 

a stateless Master-Worker execution. As we needed lower variance in task execution 

times (i.e., the compute should not be data dependent), we need to be able to divide a 

task load in a uniform way. For example, a matrix multiplication problem can use 

kernels as BLAS implementations to avoid cache influence in task load division. Figure 

60 presents different task load divisions for matrix multiplication using the GNU 

Scientific Library (GSL) and the Automatic Tuned Linear Algebra System (ATLAS) 

implementations of BLAS API. As we can see, different grain sizes provide an almost 

linear compute time. 
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Figure 60 – Ratio of different grain size division using GSL and ATLAS BLAS implementations. 

 

We found that using the strategy task division at runtime facilitates the implementation 

of grain size change support in parallel application development. If we have data reuse 

among these task divisions, different network and processor speeds may characterize 

certain grain sizes as a compute- or communication-bound application. 

As presented in Chapter 3, the parallel programming paradigms help developers to 

divide a load among processors. In that process, we do not require that the grain size 

selection follows certain functions (i.e., making task computation time be function of 

grain size). Our model only requires that application support increases and decreases a 

compute/communication ratio as a function of a numeric value named as grain size. 

Different divisions may compose different computations and communications as a 

function of grain value. 

In a steady state the pipeline composed by task transmission, execution and result 

transmission limits the number of workers. We expect that the grain size increase has 

different impacts on task and/or result transmissions from the impact of task execution. 

We consider that tasks are composed of data chunks. We may have, for example, the 

following scenarios of data reutilization: 

• Task division shares a data chunk. This scenario could be applied in forest fire 

simulations where a task can be represented as a map and a set of different 

simulation configurations. A sub task shares the full map from parent task but has a 

subset of the simulation configuration. As a result, we may have different 

simulations combined in one map. The master role in such applications may 
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recombine the maps from results obtained from the sub tasks in the expected result 

of the parent task or may assign this work in other phases to workers. We name that 

division strategy as Fixed Shared Data Chunk (FSDC). Another application that 

may be parallelized using the same heuristic is heat propagation simulation. Each 

task reuses the border elements from other tasks for computation as detailed in 

section 5.3.1.  

• Task load is the product of chunks. In this scenario we classify the matrix 

multiplication parallelization using row and column set division. A row set 

participates in all tasks for each column set to generate the result matrix. We detail 

such implementation in section 5.3.2. Another example is the NBody simulation in 

which a group of bodies should be reused among tasks. That implementation is 

detailed in section 5.3.3. We name this strategy as Product Data Chunk (PDC), 

where computation grows exponentially from smaller to coarse grain tasks. We also 

found that the popular implementation of a protein alignment search tool, BLAST, 

has the same properties. The parallel version has same query data reused with 

different database fragments [87]. In such cases, the task load is the product of query 

subdivision and database subdivision.  

In sequence, we present the analysis of grain size tuning in some example applications 

with Fixed Shared Data Chunk and Product Data Chunk division strategies executed in 

the detailed Grid Testbed. We assume that the master process mapping is a batch 

scheduler attribution which we will not control. 

5.3 Application Case Studies 

5.3.1 Synthetic Dynamic Master-Worker 

The following analysis is performed on a synthetic master-worker application that 

mimics both Fixed Shared Data Chunk (FSDC) and Product Data Chunk (PDC) 

division strategies. The number of different scenarios of multi-cluster configuration we 

may construct is large, so we present limited cases, where a master process is mapped 

onto a higher speed processor/network cluster (P) and slower speed processor/network 

cluster (I). 
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The FSDC load type consists of a number of tasks to be executed in a number of 

configured iterations. Each task is composed by a number of data chunks. The data are 

generated using a pattern which allows the worker to validate whether the data is 

transmitted correctly. Each task can be decomposed by the application into two tasks 

containing the first data chunk and splitting the other data chunks into two. The 

compute interval for each task is calculated using the product of the chunks that 

compose the task. 

The Testbed described has Compute Hosts (CH) with a private IP address. The 

communication between machines from different clusters requires that the used MPI 

implementation supports that kind of infrastructure. The follow executions use the 

GridMPI that supports the IMPI Standard for interoperability among MPI executions to 

form a single parallel machine. In addition to that, the GridMPI implementations 

provide messages relays to proxy messages passing between private networks as a 

message passing proxy, as described in section 2.3. 

The following experiments assume that we have assigned a multi-cluster by a resource 

broker. The application maps the MPI rank using the sequence of clusters. The startup 

process of the MPI parallel virtual machine consists of the following steps that are 

explained in detail in section 2.3: 

1. Start the IMPI-server and get the connection contact information; 

2. For each cluster with private address 

a. Start IMPI-relay with the IMPI-server connection contact information 

and get the IMPI-relay connection contact information. In Globus 

toolkit-based implementations, this process is started with the fork 

type in GRAM job submission;  

b. Start the MPI processes using the ‘mpirun’ command using the IMPI-

relay connection contact information. 

Each process group started in step (2) contacts the IMPI-relay in each cluster and 

provides the information about the local processes. The IMPI-relay contacts the IMPI-

server and exchanges local information with the other processes participating in the 

execution. After that, all processes are capable of communicating with each other, using 

the IMPI-relay as necessary. That allows for executions using the Internet, for example, 
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using a configured TCP/IP port for inter-cluster communications. From the application 

perspective, the processes show no differences between them, and all are identified as a 

numeric rank in a MPI_COMM_WORLD communicator. 

Fixed Shared Data Chunk (FSDC) 

 

 

Figure 61 – Two iteration execution of synthetic Master-Worker where the master processor is mapped on 
cluster I. The phases A, B and C are startup, steady and finalization, respectively. 

 

 

Figure 62 – Two iteration of synthetic Master-Worker where the master processor is mapped on cluster P. 
The phases A, B and C are startup, steady and finalization, respectively. 

 

Figure 61 and Figure 63 present the execution of two iterations of FSDC data reuse with 

maximum grain size selection for clusters I and P. Note that due to higher network 
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speed properties in cluster P in Figure 62, the startup and finalization phases (A and C) 

are shorter than Figure 61. 

As the limitation of processing is that the master is blocked by communications to slow 

workers, we can analyze the Master to Worker task communication times. Figure 63 

provides a histogram of these communication times where we can get a clear 

differentiation between local and remote communications. 

 

 

Figure 63 – Histogram presenting the tasks send times from Master to Workers. 

 

In the tuned executions, as we control the environment, the ‘mpirun’ startup process 

executes the Application Controller (AC) component of GMATE. The AC connects to 

the Analyzer and parses the application process binary, loads the Dynamic Monitoring 

and Tuning Library (DMTLib) inside the process memory space and initializes the data 

structures to manage the actuators and sensors installed. After the binary parse, the AC 

registers the process execution in the Analyzer using the configured management and 

event channels. In the Analyzer container, the process registration locates which tunlet 

is responsible for its tuning process. If it is the first process to register, the tunlet is 

initialized and receives the process registration event. 

Since we are working with the same binary for all process, we installed all the required 

sensors to gather the measurements needed for the tuning process and command the 

application to continue its execution. The tunlet instance repeats that procedure for all 

application processes registrations. When the application executes, the sensors send 

collected event data to the Analyzer that passes it concurrently to the tunlet. Depending 
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on the Analyzer location, events from workers may arrive sooner than events from the 

master. We use the causal order to evaluate if event data should be processed or should 

wait for a preceding event. We leave that responsibility up to the tunlet since the 

Analyzer does not have semantic information to provide event ordering. 

 

 

Figure 64 – Comparison between execution with and without tuning grain size, considering the master 
mapped on cluster P. 

 

The first event received in the application processes is the configuration of the template 

instrumented with a simple sensor installed in the execution of function ‘user_config’. 

We collect from that event trace the application process role assigned by the template, 

the number of work units per iteration and the number of iteration from the problem 

size. When the tunlet receives that information from the master process the tunlet side 

creates the master related data structures. 

The decrease of concurrent busy processors in the middle of a steady phase (B) in 

Figure 62 is a result of a master blocked in its communications due to slower inter-

cluster communication. 

Figure 64 presents 28% of total execution time reduction. In the first iteration, it reduces 

by 24% and the following by about 28%. The tunlet was configured to start with the 

smallest grain size and balance to get the best grain size. Note that this is different from 

the model proposed in [66]: within the first iteration we have gains. 
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5.3.2 Matrix-Multiplication Application 

The Matrix-Multiplication problem has a different compute/communication function of 

grain size.  Suppose, for example, that we have to multiply two matrices as presented in 

Figure 65. We can, for example, have only one task where we transmit the two matrices 

and receive the matrix result. We can call that the maximum grain size that the problem 

supports and this is one task containing the complete problem. 

 

 

Figure 65 – Graphical representation of grain size change in the parallelization version of matrix 
multiplication problem. Each task can be decomposed into smaller ones with data reuse among tasks. 

 

Suppose that we use a finer strategy. We can choose to divide each task into finer ones 

using a strategy of alternate dimension division. In the example presented in Figure 65, 

a task with grain size gi = 0 (maximum grain size) can generate two tasks of grain size 

gi = 1, and these two tasks of grain size gi = 2 can be decomposed into four tasks of gi 

= 3, and so on. That strategy allows that we may change the grain size of the tasks sent 

to workers by decomposing coarse grains. 

When executing the Master-Worker application within the scenario detailed in section 

5.2.2 we may have different process mapping, considering the different localization of 

the master process. Figure 66 presents the impact of the master process mapping given 

the same resource set. 
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Figure 66 – Comparison of same problem size and parallel machine configuration considering different 
Master-Worker processes to node mapping. 

 

Note that the application becomes communication-bound in the executions where the 

master process is mapped in cluster I because it is the cluster with less network 

performance. We monitored all machines and ensured that the application had no 

memory swap use which could cause such execution time variations. 

5.3.3 N-Body Application 

The parallelization of n-body is done by load division. The most time-consuming 

operation in an n-body problem is the calculation of distances between bodies in space. 

Taking that in account, let it be a task to be processed composed of the permutation of 

block divisions of total body counts, called segments. Each segment is present in the 

same amount of tasks generated by permutation. See a complete example from a set of 

12 bodies divided in 3 segments of 4 bodies each on Figure 67. Note that the operation 

among bodies from same segment is fragmented in the permutations. Using such data 

partition schedule we have uniform input and output task size and number of operations 

performed in task computation. 

To have a uniform time among task executions, the calculation of distances from a 

block to itself should be divided into permutation participations. If d is number of 

segments, the number of generated permutations are (d^2-d)/2. Each segment 

participates in d-1 tasks, so the distance between bodies of the same segment should be 

divided equally among these d-1 tasks in which this segment participates. 

1.00 10.00 100.00 1000.00 10000.00 100000.00

Cluster I

Cluster H

Cluster P

Cluster D

M
as

te
r 

Pr
oc

es
s 

M
ap

pi
ng

Cluster I Cluster H Cluster P Cluster D

Execution Time (seconds) 52735.17 1331.14 595.87 656.80

Execution Time by Master Process Mapping



Chapter 5: Experimental Validation 

133 

 

 

Figure 67 – Graphical representation considering grain size in N-Body problem with uniform task load 
and input/output data size. 

 

Take, for other example, the following instance: a set of bodies divided into d=4 

segments {A,B,C,D}. The generated tasks should be {(A,B), (A,C), (A,D), (B,C), (B,D), 

(C,D)}. The task (A,B) should calculate the distances between the bodies from segment 

A to segment B and one third of the calculations for distances from bodies from 

segment A to itself and the same from bodies from segment B. This strategy divided the 

amount of operations between tasks to nearly equal. 

5.4 Architecture Validation 

When centralizing the analysis of collected events, the machine where the Analyzer 

executes receives all events from the Application Controllers. That may be a problem if 

the Analyzer is mapped to a machine with low bandwidth and high message latency 

from these Application Controllers. In following experiments we analyze the 

performance of the monitoring and tuning phases. 

5.4.1 Sensors Overhead Analysis 

The tuning process requires the monitoring of application behavior using sensors to 

acquire the runtime metrics and parameters. This data is transmitted back to the 
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Analyzer through Event Channels, as described in section 4.3.2. The path of the data 

from the collection to processing is: sampled by binary instrumentation, transmission to 

the AC via Domain Sockets, transmission to the Analyzer through Globus XIO or 

socket communications and delivered to the tunlet. 

When the produced sampling rate is higher than any step in that path, we introduce an 

overhead in application execution. That overhead is higher when the analyzer receives 

the communication over a slow WAN link. The goal of this experiment is to verify, 

given LAN and WAN networks, how great is the overhead of event collection using the 

Sensors. 

 

void pfunc(int period) { 

 usleep(period); 

} 
 

(...) 
 

t1 = sampleTime(); 

for(i=0;i<count;i++) 

 pfunc(period); 

t2 = sampleTime(); 

Figure 68 – Source code from the instrumented program. 

 

The load is generated by a simple program that calls a function named ‘pfunc’ a 

thousand times and exits. That function has just an ‘usleep’ call as presented in Figure 

68. The idea is to have a different frequency of event generation. The load is 

characterized by the parameter ‘period’ which represents the value used in the ‘usleep’ 

function call. We expect that, if the given generation rate is higher than the network 

transmission, the total program execution time should be higher than the program 

without instrumentation. We use clusters I and D detailed in section 5.2.2. 

We created a simple tunlet that does nothing with the collected data and a sensor 

declaration with two events installed in the entry and exit of the program code. We used 
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the following sensor/actuator xml model file presented in Figure 69 and the model from 

the Timer Sensor is presented in Figure 70. 

 

<?xml version="1.0" encoding="ISO-8859-1" 
standalone="no"?> 

<GMATEModel> 

<installPoints> 

 <installPoint id="1"  
  localRule="pfunc" pointType="functionEntry"/> 

 <installPoint id="2"  
  localRule="pfunc" pointType="functionExit"/> 

</installPoints> 

<sensors> 

 <sensor id="1001" type="simpleSensor"> 

  <event id="1" logInfo="pfunc" /> 

  <event id="2" logInfo="pfunc" /> 

 </sensor> 

</sensors> 

<eventInstalls> 

 <eventInstall sensorId="1001" eventId="1"  
  installPointId="1" installPattern="." /> 

 <eventInstall sensorId="1001" eventId="2"  
  installPointId="2" installPattern="." /> 

</eventInstalls> 

<actuators /> 

<actionInstalls /> 

<tunlets> 

 <tunlet type="file">SimpleSensorProfile.java</tunlet> 

</tunlets> 

<startup> 

 <managementChannel mode="listen" port="41007"/> 

 <eventChannel mode="listen" port="41008"/> 

</startup> 

</GMATEModel> 

Figure 69 – Model for simple sensor profile experiment. 
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Figure 71 presents the overhead of the Simple Sensor monitoring with the Analyzer 

placed in the ‘I’ cluster and the program in the ‘D’ cluster. The execution where the 

Analyzer is placed in same cluster gives the mean execution with and without 

instrumentation which are statistically equal (mean values ranged by standard deviation 

overlaps). 

 

<sensor id="1001" type="timerSensor"> 

 <event id="1" logInfo="pfunc" /> 

 <event id="2" logInfo="pfunc" trigger="yes" /> 

</sensor> 

Figure 70 – Specification of the Timer Sensor from Simple Sensor. 

 

 

Figure 71 – Overhead of monitoring using Simple Sensors to time a function. 
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Chapter 6  
Conclusions and Future Work 
This chapter presents the findings and conclusions obtained from our work for each 

problem statement and our proposed contributions. The chapter also highlights the 

possible open lines that can be pursued as research topics on dynamic and automatic 

tuning of applications and heterogeneous systems. 

6.1 Conclusions 

With the emerging of Grid Computing, the use of HPC came closer to large numbers of 

users distributed around the world. That facilitates collaboration among organizations 

within research projects, providing shared resources and higher common computational 

capabilities. These resources include clusters or workstations, MPP systems, and 

supercomputers located in many university departments or industry organizations 

interconnected by the Internet or private networks. The Grid concept abstracts these 

resources as computational elements which can be used by applications to solve 

complex and increasing problems that demand more computational power than that 

available within local resources as single clusters. 

Indeed, the dynamic behavior and heterogeneity characteristics of the Grid make 

application tuning difficult due to the lack of system information. Some properties are 

hard to predict, such as network bandwidth or the topology of the resource set that will 

be assigned to an application execution. The dynamic behavior of Grid environments 

reinforces the need for dynamic tuning tools since the user has less control over the 
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application target execution hosts. The heterogeneous character of Grid systems can 

generate different performance problems from those found in the same execution in 

controlled environment such as clusters. The number of parameters can influence the 

execution time increase and most of them cannot be controlled, such as available 

Internet bandwidth and latency (inter-cluster communications over shared networks). 

This thesis presented contributions to the applicability problems for automatic dynamic 

performance tuning in parallel/distributed applications in computational Grids. We 

expect this research to provide technical and conceptual solutions that help the support 

of dynamic tuning in systems with higher levels of heterogeneity, such as 

Computational Grids. The first problem encountered was how to deal with system 

transparency without replacing or reinventing the system services. In advance, we 

noticed that the network heterogeneity of Grid systems boosted the overhead results 

from the monitoring and tuning phases for automatic tuning. Many Grid systems use the 

Internet as an inter-sites communication backbone. The Internet is well known as a 

shared environment where we do not have control over the resources used. 

Another interesting aspect is how application development was changed with the use of 

these systems. To achieve parallelism, users used different mechanisms such as 

functional decomposition in services, data decomposition in parametric executions, 

scientific workflows, wide area job execution pipelines and wide application parallelism 

using message passing. Each of them has benefits and drawbacks: we choose to work 

with wide area application parallelism due to the performance analysis needs of such 

applications. It is difficult to measure and analyze shared resources located in different 

administrative domains and geographically distributed. 

We chose the Master-Worker programming paradigm and analyzed the impact of the 

uses of more than one virtual communication channel and communication managers to 

hide network heterogeneity of application execution considering these environments.  

During application behavior analysis, we found that applications may have benefits in 

the reduction of execution time if it could deal with dynamic selection of different grain 

sizes. In the literature, the granularity was seen as a choice of application/algorithm 

design and it is fixed at the development time. After that, an application has some fixed 

compute to communication ratios which limits its scalability in systems with different 

characteristics.  
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To get better compute to communication ratios, we can play with two parameters, the 

compute time and the communication time. There is nothing to be gained in increasing 

the compute time because that would increase the total application execution time. 

Indeed, the communication time, if it is overlapped with the compute time, could give 

the possibility of exploring a different communication volume. We state that certain 

types of applications, when parallelized using the Master-Worker paradigm, generate 

data reuse among different tasks. That changes the total data communication volume 

required for distributing the load considering different grain sizes. The variation of that 

communication volume, when overlapped with compute, affects the total execution 

time. The grain division strategy may suit a different resource set topology assigned to 

the application. 

We also had to adapt the architecture used in automatic tuning to overcome the intrusion 

into application execution and possible bottlenecks resulting from tuning applications in 

wide area network (WAN) executions. We found that using decoupled processes for 

collecting, analyzing and tuning could reduce the overhead impact in the application 

processes while maintaining the benefits of the application adaptation to system 

characteristics. We break many synchronization issues of the tuning process in order to 

expect architecture scalability with low overheads. 

With these previous problems and findings we can divide the contribution into more 

details and results in following sections. 

6.1.1 Process Location 

The main idea behind a Grid system is transparency. The user should launch her 

application and the system uses its requirements to find a place to execute its processes. 

The user shall not have direct control over those mechanisms because the resources 

exposed by the system are in continuous change. Different executions of an application 

generally receive different sets of resources based on decisions that are taken by 

different software layers, such as a meta-scheduler.  

We presented two approaches for process location within computational Grids that can 

be used by an automatic tuning environment tool: one that uses the Grid information 

services which require administrative privileges and another that uses user level access. 

We found that the information systems provided in current implementation middleware 
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could slow down the application process startup. The information propagation among 

the system may generate inconsistent global system views from the location process. 

Indeed, it is the only solution that works in environments where the CH does not have 

network access to outside world. Within the used level approach, the application 

processes startup is guided by the Application Controllers which call back the Analyzer 

establishing the management and event channels required for the automatic tuning 

process. The ideas and results of that architecture were published in: 

 G. Costa, A. Morajko, T. Margalef, E., “Process Tracking for Dynamic Tuning 

Applications on the Grid”, Journal of Computer Science & Technology (2007), 

vol. 7, no. 1. 

6.1.2 Security Polices 

The most predominant characteristic of Grid Computing is the different administrative 

domains. The process execution should follow strict different local and organization 

policies. That includes which TCP ports are open, the sequence of communication 

establishments, the communication privacy identification and authorization [19].  

We assume that the processes required to perform the application instrumentation and 

tuning should share the same security infrastructure as the application. That includes in 

the proxy PKI certifications the application exports on execution. These certificates 

allow us to identify and to authorize communications among processes to services and 

processes from different CEs and CHs. The implementation details and ideas are also 

published with the process location results. 

6.1.3 Lower Communication Intrusion  

Different from MATE implementation, GMATE uses an asynchronous mode form in 

communication between analyzer and application controllers. That reduces the total 

time of data transmission and possible overheads due to communication blocking. Since 

grid environments are geographically distributed environments, communication is a 

critical issue that can significantly affect application performance.  

We assume that the conventional event monitoring process generates too much raw 

performance data. With limited available bandwidth to perform online collection, we 

choose to move part of the analysis to where each process executes. The idea is to pre-
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process and filter the data as much as possible by doing some analysis and aggregation 

at the moment that the performance data is collected. Instead of inspecting the execution 

behavior with event collection, we created a component that handles some simple 

processing mechanism inside the application process in order to allow performance 

event data preprocessing. We called that “smart sensors”. With a smart sensor concept, 

we lowered the total number of messages required to gather performance data used to 

feed the performance model analysis. 

Another contribution concerns how the tuning actions are performed. Instead of 

stopping application processes from acting over their state variables and/or functions 

such as MATE, we chose to instrument trigged controlled components called Actuators 

to control these variables and call functions whenever necessary. That reduces the time 

we needed to change process parameters, thus expecting better performance 

improvements where we lower the intrusion from the tuning process.  

With the concept of smart Sensors and Actuators we do not need too much 

synchronization between the Analyzer and the Application Controller because we do 

not stop the application from collecting performance data and perform tuning actions. 

That lowers the instrumentation phase with the possibility of a batch installation of 

Sensors and Actuators and not generating signals to processes to stop their execution in 

case of some variable change or some function execution in response to a performance 

model implemented inside a tunlet instance. That reduces the overhead to less than 

0.5% on GMATE compared with 2% to 5% of overhead generated by MATE. 

6.1.4 Middleware Integration  

We detail a strategy of middleware integration that allows the tool to use system 

services in order to help the tuning process. That was the first initiative to move MATE 

concepts to build a new tool called GMATE. We used the Globus XIO communication 

layer provided by the Globus Middleware to ensure firewall passing and security policy 

conformance. The communication messages among application controllers and analyzer 

were routed in different and independent channels. The management and Actuator 

activation messages are transmitted in management channels and the measurements 

generated by the Sensors are transmitted in event channels. The AC can be integrated to 

the Globus container using a proxy component which exposes AC managed commands 

as web services. Within that interface, the Analyzer may request the creation of required 
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management and event channels. The details of process location and tool integration in 

the Globus Toolkit middleware were published on: 

 G. Costa, A. Morajko, T. Margalef, E., “Automatic Tuning in Computational 

Grids”, Applied Parallel Computing. State of the Art in Scientific Computing, 

Lecture Notes in Computer Science, vol. 4699/2008, pp. 381-389, ISBN 978-3-

540-75754-2, Umeå, Sweden, Jun. 18-21, 2006 

6.1.5 Performance Models  

We proposed a performance model that allows for the tuning of grain size within 

applications over heterogeneous resources found in multi-cluster executions within Grid 

systems. The model is based on a balance of the compute – communication ratio of 

application load division in tasks in order to use all provided resources with minimal 

startup and finalization time on master-worker executions. The analytical heuristic 

model and exhaustive simulation results were published in: 

 G. Costa, J. Jorba, A. Morajko, T. Margalef, E. Luque, “Performance models 

for dynamic tuning of parallel applications on Computational Grids”, IEEE 

International Conference on Cluster Computing, vol., no., pp.376-385, Sept. 29 

2008-Oct. 1 2008, ISBN 978-1-4244-2639-3. Tsukuba, Japan, Sept. 29 -Oct. 1, 

2008. 

We use the benefits of the load balance provided by the Master-Worker executions 

considering that the available workers can be grouped in different communication 

domains. The analysis of application execution within such scenarios shows that we can 

decompose in parallel Master-Workers overlapped sharing of the master and its 

communication capabilities.  

We designed an application template to help with application development using the 

paradigm of multiple communication channels and independent task distribution among 

available master communication channels. We included the necessary hooks for 

dynamic binary instrumentation and we shielded the concurrent parameter changes from 

outside processes with the necessary synchronization mechanisms. The experiments 

with different multi threaded MPI implementations show that we can expect compute to 

communication overlap and task received communication to result in send 

communication overlap. 
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The proposed models were implemented in a tunlet capable of instrumenting the 

application template to create communication channels, assign workers to 

communication channels, change grain size and shutdown worker processes. We used 

that tunlet to adapt the applications developed with the application template to execute 

using four different clusters with different processor and network characteristics, 

lowering application execution time and shutting down the workers that the master was 

not capable of using, which raised the measured efficiency in resource use. 

6.2 Open Lines 

Due the dynamic characteristic of Grid computing, applications need to adapt 

themselves to different system configurations over time. This can be driven by tools that 

have knowledge of the properties of the system and about the application. Those tools 

can dynamically monitor the application and the system and select actions that can be 

made online in order to get performance improvements.  

Due to network influence on the monitoring overheads, the analysis process called the 

Analyzer may have different configurations. It can be done in a centralized, hierarchical 

and complete distributed approach. In the centralized approach, the Analyzer process 

responsible for collecting the information and doing the online analysis is placed close 

to the resources in order to minimize network bandwidth influence. The hierarchical 

approach can be used to reduce the necessity of data transmission among ‘far’ 

monitored resources.  

The idea is to have the local Analyzers placed ‘close’ to analyzed resources in order to 

preprocess and reduce the performance data produced by those resources. In response to 

that, local Analyzers generate abstract events representing collected process data and 

send it to a central analysis process. This case can reduce dramatically the network 

requirements needed in communications. In such schemes, local Analyzers transmit to 

central sites only small event abstractions required to compute global model states. In 

the complete distributed approach, each Analyzer instance cooperates with others using 

abstract events which represent the performance data of the controlled resources. For 

example, in scenarios where we could have an SPMD application running among many 

clusters, we may have one Analyzer in each cluster tuning grain size and load 

distribution parameters. Following the SPMD heuristic, this Analyzer should only 
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inform communication partners about local cluster states and the global application 

model should have partial updates with that information in a distributed shared view. 

We can use a consensus to ensure view consistency. 

The current analyzer implementation is developed in Java which can be adapted easily 

to allow a tunlet migration capability. We can, for example, have a scenario in which a 

tunlet acts like a mobile agent and the Analyzer as an agency. In such scenarios, the 

tunlet may decide to migrate to a different tunlet container expecting to lower event 

collection and provide a faster response time for system changes. 

Different approaches of the Analyzer process distribution may require different models 

which can be broken into partial models to be distributed among different Analyzers. 

We expect that some performance models can be evaluated and tuning suggestions may 

be applied inside process spaces, by the sensor model, some performance model tuning 

suggestions can be applied on cluster level, by local Analyzers, and other model tuning 

suggestions can be applied at a Grid level or, in Grid terminology, Collective layer. The 

idea is to minimize event transmission among different levels of analysis lowering the 

intrusion overhead as much as possible. 

Other improvements that could be useful would be to have soft programmable sensors 

and actuators. The idea is the tuning tool could complete customized sensor and 

actuator behavior through a script language. That script language could directly program 

the sensor and actuator code using DyninstAPI binary programming capabilities [48]. In 

such scenarios, tools could program sensors and actuators logic cores inside process 

spaces in order to monitor and change process behavior based on measurements taken 

during the process execution. This could allow for the creation of tuning scenarios 

completely inside process spaces, or in-process automatic tuning. 

Concerning the topology aspects of data gathering, the monitoring process can use 

information about Service Level Agreement (SLA) contracts to control the pace of the 

event data stream generation. By means of those contracts, events can be packaged in 

compressed information frames, and could lower the network requirements of event 

data transmission. 

Some interesting complementary tools that help monitoring and analysis in Grid 

environments could be event storage services. Different from current Grid storage 
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services, these services could handle a decentralized and synchronized stable storage for 

event data. In a postmortem analysis, users could query those storages for the events 

they are interested in and receive ordered multiplexed event data. That could allow for 

analysis of wide applications such complex Grid scientific workflows. 

6.2.1 Application Parallelism Support 

One recognized problem regarding parallel application development is the complexity 

of the performance engineering. The application developers are generally field-specific 

specialists, not high performance computer specialists. When they involve performance 

specialists, the application and its embedded algorithms are generally coded and 

running in a prototype implementation which should be analyzed in order to obtain 

performance improvements.  The problem we see in such processes is the analysis of 

source code for potential parallelisms is much harder than at a conceptual level. When 

an algorithm is developed, its conceptual problem is mapped in data and function 

structures. Let us take the n-body parallelization strategy used in section 5.3.3. Without 

breaking down the analysis of the forces of each body in a composition of single steps 

(calculus of the force influence for the other bodies over the body under analysis), it was 

not possible to generate different grain sizes with uniform load division and data 

division among tasks. We acknowledge that there are many different algorithms for the 

n-body problem considering SPMD approaches, but we advocate the use of simple load 

balance mechanisms as master-worker or/and pipeline strategies to deal with complex 

system configuration which involve a hetereogeneous network and processor. 

There are many initiatives to declare the parallelism semantic during application 

development. These semantic facilitates prototype applications with the use of 

Application Templates [60], language preprocessing directives [88-90], automatic 

parallel code generation [91] and different languages semantics [92, 93] where 

developers have helped with problem parallelization decomposition. Indeed, we are far 

away from semantics that work well with the high degree difference in the systems the 

applications should run within. That problem grows when the number of cores increase 

on many-core systems with many memory cache strategies and group core 

specializations. Different approaches for these parallel application development 

semantics have as a common goal how to help developers specify the application in a 

way such that potential parallelism can be exploited. We can classify the ideas in 
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functional based and data based parallelism semantics, but there are no semantics of 

how to specify the load division, considering for example, the parallelization 

Task/Channel methodology presented by Foster. If the developer can specify in 

semantic terms the units used to generate application grains we may have programs 

capable of adapting themselves over these complex system architectures with the tool 

support to tune performance. 

As with the problem of mapping, the problem of task grouping is that its complexity is 

also NP complete. The trends are that we have more elements in system architecture, 

and, without application composition malleability, its adaptation within large systems 

will be even harder. Within Grids, application developers experience some of the 

solution when breaking applications in workflows with a thousand job tasks. These job 

tasks are scheduled independently and, by having the benefit of High Throughput 

Computing, we lower an application’s total execution time.  

We see a promising research field in bringing these asynchronous task processing 

queues, represented by CE’s schedulers, to application task’s 

composition/decomposition, guided by the queues semantics, in HPC services provided 

by the different systems. The use of queue theory in the development of parallel 

applications allows for the construction of asynchronous out of order schemes for task 

execution. The message passing API provides some facilities that can be used to queue 

identification (message tags), what is missing is the semantic definition for processors 

that consume those queues and the semantics for processors to queue routing 

mechanisms. 

With the task queues consumed by processors and the capability of task splitting and 

merging semantics explicated by the application developers, we could have the 

possibility or better performance prediction, system adaptability, and application state 

definition that could help dependability, and give easier load balance in heterogeneous 

architectures. We should note, indeed, that programming applications using such 

paradigms may require a mind-shift, of the sort that is hard to achieve nowadays. The 

standards that survive are the most used and, in some cases, not the ones with better 

characteristics/results. 
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6.2.2 Data Type and Domain Semantic Definition 

When we try to develop applications with different grain sizes and get the process of 

working with those grain sizes set up in an independently manner, we did not find 

support in programming languages. The mechanisms provided by a type definition are 

static and without a type to type conversion process. It is common knowledge among 

developers that a different data memory layout produces different performance indexes.  

Most of the difference between the serial and parallel codes of NAS kernels is the 

composition and decomposition of data types used to perform inter-process 

communications and better memory layouts for intensive computes. That is a trade off 

between simplicity and overheads. It is hard to get lower overheads in message passing 

considering the complex types composed of a high number or non contiguous memory 

segments. We found that, if we have a programming interface or language semantics to 

specify how data types are composed, and how to identify instances of its compositions, 

we could have systems with message passing implementations that may balance the 

network load through caching known data. 

Consider, for example, that we could have a data type definition semantic that allows 

specifications in which different instances from some variables share common data. The 

message passing could reduce the amount of data needed to be transferred, by 

acknowledging the existence of the shared part within message composition. From the 

application developer perspective, all codes required to pack and unpack those variable 

in messages to be transmitted would be simplified. The semantics definition could be 

added to the standard message passing its benefits to facilitate application development. 

A more complex semantic could be found in type composition. Imagine a scenario 

where we have three processors where two processors send messages that are assembled 

in a complex message received by a third one. If we have some mechanisms for data 

type definition which allow that the third process received a composed type, we could 

simplify the application development to data domain engineering. The lesser code could 

reduce error incidence and the message dependencies specification could help, or hide, 

the problem of causal dependency among messages during application development. 

We may say that, having explicitly support for message dependency, we could have 

lower application synchronization points. With less synchronization requirements, we 

have less load unbalance. 
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6.2.3 Multi-Core Issues 

With new many-core systems, the application development semantics using shared 

memory and distributed shared memory receive revived attention. One problem in using 

these semantics in programming is to detect locality at runtime. When two or more 

processes have their load centered over shared variables, we have serious performance 

problems. For example, if two programs update different variables within the same 

cache line, each update instruction invalidates the other process cache. To overcome 

that, developers use some synchronization steps to reduce process to process locality 

interference, creating working regions. The problem is to balance these region sizes, 

when the application executes over machines with different architectures. In some 

scenarios, the processes should shrink or expand their locality by regions using different 

region sizes in order to balance the load among the available cores, lowering execution 

time. 

If applications could have hooks where they could be used to guide the regions’ 

shrinkage and expansion, the multi-threading programming could have more benefits 

than the dynamic tuning. The parallel execution environment could detect how well 

these regions block the execution threads, how well the jump prediction and cache hit 

statistics are and play with the region size to get better application adaptation to the 

execution environment. In certain ways, the region sizes could be the grain size options 

within shared memory systems.  

 We should not forget to mention that the multi-core system can be analyzed as a cluster 

on a chip, having the same performance problems and tuning possibilities and benefits 

as the same solutions proposed for NOWs and Multi-Cluster studies. Roughly, 

machines are cores, heterogeneous in some scenarios, interconnected by a network 

(Network On a Chip – NOC), heterogeneous in other scenarios.  We can, for example, 

analyze a cluster of multi-core processors as a muti-cluster system, which can have the 

benefits of channel selection, grain composition/decomposition, channel based load 

distribution analysis and compute/communication overlap. 

6.2.4 Moving to Cloud Computing 

Grid technologies were the state-of-the-art model of systems for the last ten years. 

Nowadays, the Grid research products are used in production environments most in 
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government and academic areas. Indeed, application development could use an 

economic model based on commerce requirements. The lack of these economy indexed 

performance models could be seen in different industry initiative to sell on demand 

computing. Each seller has his service characteristics, most uses virtual machines and 

network use to compose products for users. These companies sell these products as 

Cloud Computing. The idea is that the client may buy virtual machines per hour of use 

and network bandwidth. When uses HPC applications and such systems, we could 

maximize the cost benefit of application execution, reducing its execution time, wide 

area network and adapt application execution within a multiple of time segments. 

Imagine the following scenario. A user has an HPC application to execute on a Cloud 

Computing system at minimal cost possible. The cost of application execution is 

function of the number of virtual machines that it uses and the execution time and the 

network bandwidth exchange if those machines are located in different sites. Suppose 

that the virtual machine cost is sold per hour of use, without hour fragmentation. That 

allows us, for example in case of dynamic tuning, to tune the application execution time 

using different grain size in order to fit the machine utilization and execution time to 

multiple of one hour to get maximum cost efficiency. If the application, for example 

executes for ten hours and five minutes with ten machines have less cost if it executes 

for eleven hours and nine machines. 

Our dynamic tuning environment GMATE could be used to interact to the Cloud system 

using some economic based tunlet that drives the activation and deactivation of virtual 

machines within an application execution exploring the performance and economic 

factor. It could be analyzed if a remote cluster of virtual machines cloud be activated 

considering the cost per task/results communications and its impact in total application 

execution time and cost. The uses of dynamic tuning have most benefits on those cases 

where runtime system conditions are the parameter that drives the application 

performance behavior. 
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Appendix 

A. ClusterSim – a Multi-Cluster Simulator 

 

 

Figure 72 – Queue system used to simulate the ClusterSim Cluster Simulator 

 

Once we found out how a Master-Worker application behaves on some sample scenario, 

we choose to build an approximation of such system in a discrete event simulator. The 
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implementation is done over the SMPL library and has events for three queue types 

basically. The internal load structure and the internal behavior were built to mimic the 

GMWAT application template. 

The three queue types are, Network Input, Network Output and Workers. The SMPL 

provides an API to represent queues called facilities. Each facility may have one or 

more servers. All facilities used have one server. The item that is queued is called client 

on SMPL semantic. For each conceptual queues presented on Figure 72, we create three 

distinct events: 

• Arrival – when a client arrives on queue. 

• Request – when a client probes for server occupation. 

• Release – when a client exist from queue. 

The implemented event and its semantics are: 

• EVT_WORK_GENERATION – controls the moment where the master 

schedules the work. 

• EVT_NET_OUT_ARRIVAL – Work arrival on queue Network Output. 

• EVT_NET_OUT_REQUEST – Server probe for queue Network Output.  

• EVT_NET_OUT_RELEASE – Work transmitted using queue Network Output.  

• EVT_NET_IN_ARRIVAL – Work arrival on queue Network Input.  

• EVT_NET_IN_REQUEST – Server probe for queue Network Input. 

• EVT_NET_IN_RELEASE – Work transmitted using queue Network Input. 

• EVT_WORKER_PROC_ARRIVAL – Arrival of a work to be processor on 

some worker identified by client. 

• EVT_WORKER_PROC_REQUEST – Server probe for work to be processed. 

• EVT_WORKER_PROC_RELEASE – Work processed on worker identified by 

client. 

• EVT_WORKER_QUEUE_RELEASE – latency displaced from 

EVT_NET_IN_ARRIVAL to mimic the framework code. 

• EVT_STARTUP_END – used to graph MW phases. 

• EVT_FINALIZATION_START – used to graph MW phases. 

• EVT_FINALIZATION_PRE_START – used to graph MW phases. 
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• EVT_DT_EVENT_RECEIVED – event to identify that a dynamic tuning event 

trace is received by tuning tool. 

• EVT_DT_ACTION_RECEIVED – event to identify that a dynamic tuning 

action change is received by the application such as grain size change. 

• EVT_DT_INIT_LOOP – initiates the tuning process. 

• EVT_ACTIVATE_WORKER – event to ask for worker activation. 

• EVT_DEACTIVATE_WORKER – event to ask for worker deactivation. 

 

 

Figure 73 – Screenshot for ClusterSim front end that enables the configuration of multiple grain sizes and 
the multiplicity of composition/decomposition. 

 

Figure 73 presents the GUI that facilitates the configuration of different data reuse 

scenarios and task composition and decomposition. The execution of SMPL engine 

code generates the events of task execution that are used to plot the screen presented by 

Figure 74. By such screen is possible to debug what task is assigned to what worker and 

how the task composition/decomposition works. The idea is not to debug large number 
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of workers but to identify on given different configurations how the task assignation and 

grain composition and decomposition affect the application. 

 

 

Figure 74 – Output of events from ClusterSim plotted using gnuplot. The numbers in the bars are the task 
numbers. The blue bars are sends and the green bars are receives. The orange bars are processing events 
from workers. 

 

The other view that allows a quick view of the application parallelism degree is the busy 

view presented on Figure 75. In such view we can analyzes the real use of the assigned 

workers. The execution from Figure 74 and Figure 75 are related to the same problem. 

The application has assigned six workers but uses only five. 

Figure 76 presents the view of the workers, the network topology and the link 

properties. From that is possible to configure LAN and WAN parameters and also 

network contexts. Network contexts allows for configurations where a node access a 

WAN link over a NAT, for example. In such case consumes the WAN link using the 

LAN link. 
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Figure 75 – Presents the amount of workers busy by time in application execution. 

 

 

Figure 76 – GUI for complex topology configuration. 
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B. GMWAT – a Hierarchical Master/Worker Application 

Template with Support for Dynamic Grain Size Selection 

When we thought about working with change in application compute to communication 

ratio, we take a parallel of o Master-Worker matrix multiplication program to identify 

what characteristics could be generalized in order to facilitate the development of 

application with such characteristics. First we choose the Master-Worker paradigm. The 

implementation should have uniform tasks sizes in computation and communication. 

The common characteristic that makes an application to change the compute to 

communication ratio is the data reuse among the generated tasks.  

We search for available implementation like Skeletons, AppLeS and Quiron but none of 

them provides the requirements to be used for dynamic tuning of number of workers 

and grain size. The AppLeS does not fix the size of communication. The Skeletons does 

not allow for working with more than one input and output data sizes for tasks. And the 

Quiron have static structures for the parallel machine topology and data problem 

mapping. 

To facilitate the development of parallel applications suitable for dynamic tuning of 

grain size and number of workers in computational Grids we decide to create an 

application template that can be easily used to fix application behavior to such 

characteristics. The main requirements are: 

• Tasks should have a strong type and uniform. 

• Task should be composed by data segments or chunks. 

• Task can be decomposed to change grain size. 

• Should support the following process roles: 

• Master 

• Submaster 

• Worker 

• Communication Manager 

• Can add and remove workers. 

• Support of iterative applications. 

• Can change the grain size within or between iteration. 
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To separate the computation from communication we use two classes 

ComputeProcessor and MPIHandle. The ComputeProcessor manage the task 

generation, processing and routing, and the MPIHandle handles the asynchronous 

transmission from a ComputeProcessor and other processors. The Figure 77 presents 

the iteration between the ComputeProcessor and MPIHandler instances. These classes 

follow the singleton pattern on application process. The interface between the two 

classes follows the queue semantics with the methods ‘give’, ‘notifyInput’, 

‘notifyOutput’ and ‘report’ send. 

 

 

Figure 77 – Sequence diagram of the API exposed for communication between the classes MPIHandler 
and ComputeProcessor. It also presents relevant template function that can be used to measure time spent 
in the communication process. 

 

The ComputeProcessor class is an abstract meta-class placeholder for more elaborate 

processors. The implemented specialization and its responsibilities are: 

• Master – loads problem data from disk and schedule the tasks to other 

processors. It controls the number of iterations, the grain size and the amount 

of work for each iteration. 

•  SubMaster – waits tasks from some processor and schedule the load from 

those tasks to other processes. It is capable of break tasks to schedule finer 

grains to other processors. 

• Communication Manager – just acts as a proxy among two processes A and 

B. If the task received is from A, it is forwared to B, and if it is from B, it is 

forwarded to A. 

Compute Processor MPI Handler

give(rank, comm)

notifyOutput(rank, comm)

MPI Handler Compute Processor

Assyncronous MPI Send/Recv notifyInput(rank, comm)

report(rank, comm) give(rank, comm)
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• Worker – waits tasks from a processor, execute its load and returns the result 

task. 

Figure 78 presents the relationship among these processes roles. The MasterProcess, 

WorkerProcess and CommunicationManager extend the ComputeProcessor. The 

SubMaster extends the MasterProcessor and Workerprocessor. 

 

 

Figure 78 – Class diagram presenting the internal concepts of the process roles inside the framework. 

 

The MasterProcessors groups the workers in clusters7. The master schedules the tasks 

independently for each cluster. Each cluster has its grain size, a number of workers and 

parallel input and output threads for sending and receiving tasks using the MPIHandler 

interface. 

The MPIHandler internally is composed of Channels. Channels are threads classes from 

input and output data using the MPI library. We use the capability of message tags to 

differ messages from different channels. For example, if the master has two clusters, the 

MPI library can have two sends in parallel to two different processes, one from each 

cluster. 
                                                 

7 Here the cluster word refers to a set of workers with same properties. For example, to group workers 

that shares a network link. 

mpiHandler
rank

Compute Processor

workers
Master Processor

masterRank
Worker Processor

fromRank
toRank

Communication Manager

This class is implemented virtually inside MasterProcessorSubMaster Processor
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The tasks are the basic unit that a ComputeProcessor needs for processing. The task 

inside the template is implemented by class Work. Each work has a WorkIndex 

information which contains the grain size gi and the work sequence number wn. The 

load of a Work is represented by the class WorkData. WorkData instances from same gi 

are composed by fixed instances of DataChunks. Figure 79 presents these concepts and 

the cardinality of those compositions. 

 

 

Figure 79 – Class diagram presenting the internal concepts of the load inside the framework. 

 

The structure of WorkData in DataChunks allows for memory saving when we have 

reuse. If a DataChunk is used in many WorkData instances, there is no need of data 

redundancy inside some process. Note that we follow the concept of stateless worker. 

The DataChunk allows labeling. That may be use for DataChunk caching within 

processors. 

The template interacts with non-template code or user code by a simple C API. The API 

is used for input data reading and output data write initialization and finalization, 

iteration management, task creation, composition, decomposition and processing and 

grain size management. 

When the template code starts, it queries the user code about the problem load 

parameters in terms of number of work units by iteration and the number of iterations. It 

also query how the task composition/decomposition. 

The Figure 80 presents a sequence diagram of a complete execution where the master 

sends a task and receives its results. The template code probes how the application 

count
chunks

WorkData
size
data

DataChunkchunks
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supports the different grain size by calling the function ‘user_canBreakDown’ for the 

range of grain size values. 

 

 

Figure 80 – Sequence diagram presenting the iteration among Master and Worker processes including the 
sequence of user function calling. 

 

The template code accepts configuration parameters form which is possible to specify 

the following directives: 

• Intial Grain Size – what grain size the clusters will work on. 

• Base Grain Size – minimal grain size the master reads and writes. 

• Clusters – the configuration topology as presented in Figure 81. 

Template CodeUser Code

user_canBreakDown()

user_canBreakDown()
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user_buildWorkData()

user_readWorkData()

user_writeWorkData()Consumes Workload

Detect Application 
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user_finalize()
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user_iteration_end
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user_config()

user_buildWorkData()

user_processWorkData()

user_finalize()

user_iteration_start()

user_iteration_end()

user_config()
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MPI Comm
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• Channels – the configuration of different channels for overlapped 

communications among different processors. 

 

 

Figure 81 – It presents a multi-cluster configuration within a parallel machine with 8 processes. 

 

An example of multi-cluster complex configuration is presented on Figure 81. Such 

configuration only requires an input parameter that indicates the roles for the processes. 

For this example, if the parameter ‘--gmat-clusters’ receives the value ‘0_1-3,3.4_5-7” 

the template executes using the topology presented on Figure 81. 
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