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ABSTRACT. Approximate Quickselect, a simple modification of the wellknown
Quickselect algorithm for selection, can be used to efficiently find an element with
rankk in a given range[i..j], out ofn given elements. We study basic cost measures
of Approximate Quickselect by computing exact and asymptotic results for the ex-
pected number of passes, comparisons and data moves during the execution of this
algorithm.

The key element appearing in the analysis of Approximate Quickselect is a trivari-
ate recurrence that we solve in full generality. The generalsolution of the recurrence
proves to be very useful, as it allows us to tackle several related problems, besides the
analysis that originally motivated us.

In particular, we have been able to carry out a precise analysis of the expected
number of moves of theith element when selecting thejth smallest element with
standard Quickselect, where we are able to give both exact and asymptotic results.

Moreover, we can apply our general results to obtain exact and asymptotic results
for several parameters in binary search trees, namely the expected number of common
ancestors of the nodes with ranki andj, the expected size of the subtree rooted at the
least common ancestor of the nodes with ranki and j, and the expected distance
between the nodes of ranksi andj.

1. INTRODUCTION

Quickselect, also called Hoare’s FIND algorithm, is a very flexible and easy to im-
plement recursive algorithm to find the element of given rankk (i. e., thekth smallest
element) in a given data arrayA[1..n] of lengthn. The Quickselect algorithm uses
partitioning of the array into two subarrays around a pivot element, as in the popular
Quicksort, also by C. A. R. Hoare [4, 5].
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The behavior of fundamental quantities like the number of comparisons between
data elements and the number of passes (recursive calls of the algorithm) in Quickse-
lect has been extensively studied, see, for instance [3, 7, 9, 13] and references therein.
These quantities have also been studied for many variants ofthe standard algorithm,
for example, for the median-of-three partitioning scheme [8]. In the present work
we consider a variant of Quickselect, that we have dubbed Approximate Quickselect,
which receives as input the data array and arange[i..j]. Its goal is to find an element
whose rank falls in the given range. The analysis of Approximate Quickselect poses
several quite natural questions related to the Quickselectalgorithm that do not seem to
have been treated up to now.

Approximate Quickselect (AQS, for short) is useful when we are not necessarily
interested in an exact order statistic, but some order statistic within a range[i..j] of
ranks. For example, instead of finding the exact median we could be content with
an element whose rank is, say, between0.48n and0.52n. This “relaxation” of the
Quickselect algorithm will lead, depending on the range[i..j], to a reduction of the
number of passes and of the number of comparisons between elements in the array
during the execution, and thus will lead to a faster execution time. We compute the
exact average number of passes and the exact average number of comparisons between
elements when executing AQS and as a consequence we can give results quantifying
the average amount of savings compared to standard Quickselect. The description of
the algorithm and the analysis of the expected behavior of its fundamental performance
characteristics form the core of Section2.

The analysis of Approximate Quickselect involves the solution of trivariate recur-
rences which we have been able to solve in full generality. The result (Theorem2)
that we obtain in Subsection2.3turns out be very useful in the analysis of other inter-
esting parameters, including the number of moves of a particular element during the
execution of the standard Quickselect algorithm and the total number of moves made
during the execution of Approximate Quickselect. In particular, we give exact results
for the average number of moves of the element with ranki made while selecting the
jth smallest element out ofn, and also for the average total number of moves dur-
ing the execution of the Approximate Quickselect algorithm, when finding an element
with rankk ∈ [i..j] out ofn (Section3).

These parameters give a further insight into the functionality of the Quickselect al-
gorithms and moreover, since moves of elements correspond to variable assignments in
the algorithm, these quantities appear when measuring the total cost of the Quickselect
algorithms.

We also want to mention here two recent related studies, one about the number of
moves of particular elements in the Quicksort sorting algorithm [16] and the other on
the total number of moves in Quickselect, but for a randomly chosen rank [12].

The close connection between Quickselect and random binarysearch trees surfaces
also in this paper, like in many previous works of the area (see, for instance [15]).
We establish in Section4 the relation between Approximate Quickselect and several
parameters in random binary search trees that involve two given nodes. We study the
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average number of common ancestors of the nodes with ranksi andj, the average size
of the subtree rooted at the least common ancestor of the nodes with ranksi andj, and
the average distance (number of edges) from the node of ranki to the node of rank
j. Despite these results can be obtained (and have been obtained) by other means, we
show that all of them follow from direct application of Theorem 2. This is a further
example of the generality and usefulness of this tool, whichqualifies as one of the
important contributions of this paper.

We shall insist here that in this paper we restrict our analysis to the expected value
of the quantities considered. However, apart from the studyof the number of moves
of a particular element in Quickselect, where dependenciesbetween the quantities
appearing in the recursive description occur (see Section3), our analysis could, at
least in principle, be extended to higher moments, most notably to the second moment
and thus to the variance, although the computational effortwould be considerable (see,
for instance [7]).

We conclude this section with a few remarks concerning notations used in this paper.
We use Iverson’s bracket notation[[Q]] for a statementQ: [[Q]] = 1 if Q is true and
[[Q]] = 0 otherwise [2]. The harmonic numbers are always denoted byHn :=

∑n
k=1

1
k
,

for a positive integern. Moreover, the random variable1E always denotes the indicator
function of the eventE, which gives the value1 whenE occurs and gives the value
0 otherwise. Throughout this paper we use for all quantities considered a calligraphic
letter asP, C, etc. to denote random variables, whereas the corresponding ordinary
letters denote their expectations, e. g.,P = E (P).

2. APPROXIMATE QUICKSELECT

2.1. The algorithm. We begin with a description of the standard Quickselect algo-
rithm for selection. The call QUICKSELECT(A, j, l, r) will find the (j − l + 1)th
smallest element amongst all elements in the arrayA[l..r], with 1 ≤ l ≤ j ≤ r ≤ n.
After executing this algorithm, it holds thatA[j] stores the element of the desired rank
j − l + 1 in A[l..r]; in particular, the initial call QUICKSELECT(A, j, 1, n) will bring
the jth smallest element ofA[1..n] to A[j]. Moreover, the algorithm rearranges the
contents of the array in such a way that it holds thatA[m] ≤ A[j], for all l ≤ m < j,
andA[j] ≤ A[m], for all j < m ≤ r.

If r ≤ l, the subarray contains at most one element, and the problem is trivially
solved, sinceA[l] must contain the sought element. Whenl < r, we perform a parti-
tioning phase, in which one of the elements in the array is chosen as apivot element.
By comparing this pivot elementpv with all remaining elements in the array and in-
terchanging elements, the pivot element will be brought to its correct position in the
array, sayA[k], such that all elements in the arrayA[l..k − 1] are smaller than or equal
to pv = A[k] and all elements in the arrayA[k + 1..r] are larger than or equal topv.
The partitioning algorithm is given in full detail in Subsection 3.1, when we analyze
the number of moves carried out by Quickselect and Approximate Quickselect. For
the time being, it is enough to note that the partitioning algorithm will make exactly
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n−1 comparisons between the pivot and the remaining elements inthe array, and that,
for an array that contains a random permutation ofn elements, the two subarrays that
we obtain after partitioning are random permutations too.

After the partitioning phase, three cases can occur:(1) if j = k we know then that
pv = A[k] = A[j] is the(j − l + 1)th smallest element inA[l..r] and the algorithm
terminates,(2) if j < k we know that the required element is contained in the left
subarray and we proceed by searching for the(j − l + 1)th smallest element in the
arrayA[l..k − 1] with a recursive call of Quickselect, and(3) if j > k we know that
the required element is contained in the right subarray and we proceed by searching
for the(j − k)th smallest element in the arrayA[k + 1..r], again with a recursive call
of Quickselect. The algorithm is detailed as Algorithm1.

Algorithm 1 The Quickselect algorithm

Require: arrayA[l..r], integerj with l ≤ j ≤ r
Ensure: Returnsj, A[j] is the(j − l + 1)th smallest element in the arrayA[l..r]

procedure QUICKSELECT(A, j, l, r)
if r ≤ l then return l
end if
PARTITION(A, l, r, k)
⊲ ∀m : (l ≤ m < k) ⇒ A[m] ≤ A[k], and∀m : (k < m ≤ r) ⇒ A[k] ≤ A[m]

if j < k then return QUICKSELECT(A, j, l, k − 1)
else if j > k then return QUICKSELECT(A, j, k + 1, r)
else return k
end if

end procedure

Two simple modifications of the Quickselect algorithm allowus to solve the problem
of approximate selection. Approximate Quickselect is given the arrayA, the lower and
upper indicesl andr that delimit the subarray that contains the elements of interest,
and the valuesi andj that specify a range of ranks. The call AQS(A, i, j, l, r) returns
a valuek such that the element atA[k] has a rank betweeni − l + 1 andj − l + 1
amongst all elements in the arrayA[l..r], for 1 ≤ l ≤ i ≤ j ≤ r ≤ n. A call
to AQS(A, i, j, 1, n) returns a valuek such thatA[k] has a rankk ∈ [i..j] among
the elements inA[1..n]. Like in Quickselect, it also holds thatA[m] ≤ A[k], for all
l ≤ m < k, and thatA[k] ≤ A[m], for all k < m ≤ r.

Compared to the standard Quickselect algorithm we need onlyto make the following
two modifications. First, we stop ifj − i ≥ r− l, since the subarray contains elements
whose ranks are betweeni and j and any of them will do. The other modification
comes after the partitioning phase, that is, after the pivotelementpv is brought to its
correct positionA[k] in the array, with all elements in the arrayA[l..k − 1] smaller
than or equal topv = A[k] and all elements in the arrayA[k + 1..r] larger than or
equal topv. We have three cases:(1) if i ≤ k ≤ j the pivot has a rank in the range
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[i− l + 1..j − l + 1] and we can returnk and terminate the algorithm,(2) if j < k we
know that each element of interest is contained in the left subarray and we continue
with the selection of an element with a rank betweeni− l+1 andj− l+1 in the array
A[l..k − 1] by making a recursive call of Approximate Quickselect onA[i..k − 1], and
(3) if i > k we know that each element of interest is contained in the right subarray
and we recursively proceed looking for an element with a rankbetweeni−k andj−k
in the arrayA[k + 1..r]. An implementation of this algorithm is given as Algorithm2.

Algorithm 2 The Approximate Quickselect algorithm

Require: Array A[l..r], integersi andj with l ≤ i ≤ j ≤ r
Ensure: Returnsk, with i ≤ k ≤ j, A[k] has rank betweeni − l + 1 andj − l + 1 in

the arrayA[l..r]

procedure AQS(A, i, j, l, r)
if r − l ≤ j − i then return l
end if
PARTITION(A, l, r, k)
⊲ ∀m : (l ≤ m < k) ⇒ A[m] ≤ A[k], and∀m : (k < m ≤ r) ⇒ A[k] ≤ A[m]

if j < k then return AQS(A, i, j, l, k − 1)
else if i > k then return AQS(A, i, j, k + 1, r)
else return k
end if

end procedure

2.2. The number of passes. We start our analysis of Approximate Quickselect with
the average behavior of the random variablePn,i,j which counts the number of passes,
i. e., (recursive) calls, of the algorithm AQS until an element with a rank betweeni
andj is found in an arrayA[1..n]. Here, and for the rest of the paper, we assume that
the array contains a random permutation ofn distinct elements.

Theorem 1. The expected number of passesPn,i,j = E (Pn,i,j) of the algorithm Ap-
proximate Quickselect until an element with a rank betweeni and j is found in an
array ofn elements is

Pn,i,j = Hj + Hn−i+1 − 2Hj−i+1 + 1, for 1 ≤ i ≤ j ≤ n

=
(
log j + log(n − i + 1) − 2 log(j − i + 1) + 1

)
·
(
1 + O

( 1

log n

))
.

The asymptotic estimate given holds uniformly for1 ≤ i ≤ j ≤ n andn → ∞. When
i = j the formula yields the well known average number of passes ofQuickselect (see,
for instance,[15]):

Pn,j,j = Hj + Hn−j+1 − 1, for 1 ≤ j ≤ n.
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In order to show this theorem we start with a recursive description ofPn,i,j. Since
we assume that the input is a random permutation of sizen we get that the probability
that the pivot elementpv = A[1] is thekth smallest element in the array is1/n for
all k, 1 ≤ k ≤ n. After the partitioning phase the left subarrayA[1..k − 1] and the
right subarrayA[k + 1..n] contain random permutations of lengthsk − 1 andn − k,
respectively. Ifi ≤ k ≤ j the algorithm terminates and we only have to count the
original call to AQS. Ifk < i we proceed with a recursive call of AQS for the right
subarray and ifk > j we proceed with a recursive call of AQS for the left subarray.In
these latter cases we have to add the number of calls of AQS occurring therein to the
original call.

These considerations immediately lead to the following proposition.

Proposition 1. The random variablePn,i,j satisfies the following distributional recur-
rence:

Pn,i,j
(d)
= 1 + 1Un<i · Pn−Un,i−Un,j−Un

+ 1Un>j · P̃Un−1,i,j, for 1 ≤ i ≤ j ≤ n,

andPn,i,j = 0, if i < 1 or j < i or j > n, where the rankUn of the pivot element is
uniformly distributed on{1, 2, . . . , n} and independent of(Pn,i,j)n,i,j and(P̃n,i,j)n,i,j,
which are independent copies of each other.

Proposition1 immediately leads to the following recurrence for the expectation
Pn,i,j of the number of passes:

Pn,i,j = 1 +
1

n

i−1∑

k=1

Pn−k,i−k,j−k +
1

n

n∑

k=j+1

Pk−1,i,j, for 1 ≤ i ≤ j ≤ n, (1)

andPn,i,j = 0, if i < 1 or j < i or j > n.
It is not difficult to show by induction that the closed form for Pn,i,j given in Theo-

rem1 is indeed the solution of the recurrence above. However, we will take a detour
in the next subsection, where we will investigate the general solution of trivariate re-
currences whose shape is that of (1), but with a generic non-recursive costTn,i,j. The
solution of (1) will be then a by-product of the main result in the next subsection (The-
orem2). For that, we will need only to setTn,i,j = 1 and apply the theorem.

The rewards of this general analysis will be manifest soon afterwards, when we use
Theorem2 to obtain the expected number of comparisons of ApproximateQuickselect
(Subsection2.4), later in Section3 when we analyze the number of moves of particular
elements made by Quickselect and the total number of moves made by Approximate
Quickselect, and finally, in Section4 when we investigate several parameters of ran-
dom binary search trees.
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2.3. Solving a trivariate recurrence. We consider the following recurrence for num-
bersXn,i,j, which appears in our studies of the Quickselect and Approximate Quicks-
elect algorithms, and later for binary search trees:

Xn,i,j =
1

n

i−1∑

k=1

Xn−k,i−k,j−k +
1

n

n∑

k=j+1

Xk−1,i,j + Tn,i,j, for 1 ≤ i ≤ j ≤ n. (2)

Furthermore we defineXn,i,j = 0, if i < 0 or j < i or n < j. For the “toll function”
Tn,i,j we also defineTn,i,j = 0, if i < 0 or j < i or n < j. We remark that (2) is a
generalization of the “ordinary Quickselect recurrence” which appears when studying
the moments of the number of comparisons and passes of Quickselect to select thejth
smallest element in an array of sizen. Indeed, the ordinary Quickselect recurrence is
the special instance of (2) wherei = j. The ordinary Quickselect recurrence was first
studied by Knuth [9]; an exact solution for arbitrary toll functions has been given by
Kuba in [11].

To treat recurrence (2) we introduce the following trivariate generating functions:

X(z, u1, u2) :=
∑

i≥1

∑

j≥i

∑

n≥j

Xn,i,jz
nui

1u
j
2,

T (z, u1, u2) :=
∑

i≥1

∑

j≥i

∑

n≥j

Tn,i,jz
nui

1u
j
2.

Multiplying (2) by nzn−1ui
1u

j
2 and summing up for all valuesi ≥ 1, j ≥ i, and

n ≥ j leads, after straightforward computations, to the following differential equation
for the generating functionX(z, u1, u2):

∂

∂z
X(z, u1, u2) =

(
1

1 − z
+

u1u2

1 − zu1u2

)
X(z, u1, u2) +

∂

∂z
T (z, u1, u2),

with initial conditionX(0, u1, u2) = 0.
The solution of this first order linear differential equation, which can be obtained by

standard techniques, is:

X(z, u1, u2) =
1

(1 − z)(1 − zu1u2)

∫ z

0

(1 − t)(1 − u1u2t)
( ∂

∂t
T (t, u1, u2)

)
dt. (3)

The numbersXn,i,j can then be obtained by extracting coefficients from the solu-
tion (3). By taking into account thatTn,i,j = [znui

1u
j
2]T (z, u1, u2) = 0, if i < 0 or

j < i or n < j, we get then, for1 ≤ i ≤ j ≤ n:

Xn,i,j = [znui
1u

j
2]X(z, u1, u2)

=

i∑

ℓ=0

[zn−ℓui−ℓ
1 uj−ℓ

2 ]
1

1 − z

∫ z

0

(1 − t)(1 − u1u2t)
( ∂

∂t
T (t, u1, u2)

)
dt

=
i∑

ℓ=0

n−ℓ∑

k=j−ℓ

[zkui−ℓ
1 uj−ℓ

2 ]

∫ z

0

(1 − t)(1 − u1u2t)
( ∂

∂t
T (t, u1, u2)

)
dt
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=
i∑

ℓ=0

n−ℓ∑

k=j−ℓ

1

k
[zk−1ui−ℓ

1 uj−ℓ
2 ](1 − z)(1 − u1u2z)

∂

∂z
T (z, u1, u2)

=

i∑

ℓ=0

n−ℓ∑

k=j−ℓ

1

k

(
kTk,i−ℓ,j−ℓ − (k − 1)Tk−1,i−ℓ,j−ℓ − (k − 1)Tk−1,i−ℓ−1,j−ℓ−1

+ (k − 2)Tk−2,i−ℓ−1,j−ℓ−1

)
.

The expression can be simplified easily by straightforward manipulations, thus

Xn,i,j =
i∑

ℓ=1

n−i+ℓ∑

k=j−i+ℓ

[
kTk,ℓ,j−i+ℓ − (k − 1)Tk−1,ℓ,j−i+ℓ

k

− (k − 1)Tk−1,ℓ−1,j−i+ℓ−1 − (k − 2)Tk−2,ℓ−1,j−i+ℓ−1

k

]

=

i∑

ℓ=1

n−i+ℓ∑

k=j−i+ℓ

kTk,ℓ,j−i+ℓ − (k − 1)Tk−1,ℓ,j−i+ℓ

k

−
i−1∑

ℓ=1

n−i+ℓ+1∑

k=j−i+ℓ+1

(k − 1)Tk−1,ℓ,j−i+ℓ − (k − 2)Tk−2,ℓ,j−i+ℓ

k

=
i∑

ℓ=1

n−i+ℓ∑

k=j−i+ℓ

kTk,ℓ,j−i+ℓ − (k − 1)Tk−1,ℓ,j−i+ℓ

k

−
i−1∑

ℓ=1

n−i+ℓ∑

k=j−i+ℓ

kTk,ℓ,j−i+ℓ − (k − 1)Tk−1,ℓ,j−i+ℓ

k + 1

=
i−1∑

ℓ=1

n−i+ℓ∑

k=j−i+ℓ

kTk,ℓ,j−i+ℓ − (k − 1)Tk−1,ℓ,j−i+ℓ

k(k + 1)
+

n∑

k=j

kTk,i,j − (k − 1)Tk−1,i,j

k
.

Further simplifications yield

Xn,i,j =
i−1∑

ℓ=1

n−i+ℓ∑

k=j−i+ℓ

kTk,ℓ,j−i+ℓ

k(k + 1)
−

i−1∑

ℓ=1

n−i+ℓ−1∑

k=j−i+ℓ

kTk,ℓ,j−i+ℓ

(k + 1)(k + 2)
+

n∑

k=j

kTk,i,j

k
−

n−1∑

k=j

kTk,i,j

k + 1

=
i−1∑

ℓ=1

n−i+ℓ−1∑

k=j−i+ℓ

2Tk,ℓ,j−i+ℓ

(k + 1)(k + 2)
+

i−1∑

ℓ=1

Tn−i+ℓ,ℓ,j−i+ℓ

n − i + ℓ + 1
+

n−1∑

k=j

Tk,i,j

k + 1
+ Tn,i,j.

We collect our results in the following theorem.
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Theorem 2. Let the sequence of numbersXn,i,j, for 1 ≤ i ≤ j ≤ n, be defined by the
following recurrence:

Xn,i,j =
1

n

i−1∑

k=1

Xn−k,i−k,j−k +
1

n

n∑

k=j+1

Xk−1,i,j + Tn,i,j,

with Tn,i,j, 1 ≤ i ≤ j ≤ n, an arbitrary sequence, such thatTn,i,j = 0 if i < 1, j < i
or n < j.

ThenXn,i,j, for 1 ≤ i ≤ j ≤ n, is given by the explicit formula

Xn,i,j =

i−1∑

ℓ=1

n−i+ℓ−1∑

k=j−i+ℓ

2Tk,ℓ,j−i+ℓ

(k + 1)(k + 2)
+

i−1∑

ℓ=1

Tn−i+ℓ,ℓ,j−i+ℓ

n − i + ℓ + 1
+

n−1∑

k=j

Tk,i,j

k + 1
+ Tn,i,j.

We remark that settingi = j above gives an exact solution of the generic Quickselect
recurrence. The solution thus obtained is slightly different from the one given in [11]
and it is stated in the following corollary.

Corollary 1. Let the sequence of numbersXn,j, for 1 ≤ j ≤ n, be defined by the
following recurrence:

Xn,j =
1

n

j−1∑

k=1

Xn−k,j−k +
1

n

n∑

k=j+1

Xk−1,j + Tn,j, (4)

with Tn,j, 1 ≤ j ≤ n, an arbitrary sequence such thatTn,j = 0 if j < 1 or n < j.
ThenXn,j, for 1 ≤ j ≤ n, is given by the explicit formula

Xn,j =

j−1∑

ℓ=1

n−j+ℓ−1∑

k=ℓ

2Tk,ℓ

(k + 1)(k + 2)
+

j−1∑

ℓ=1

Tn−j+ℓ,ℓ,

n − j + ℓ + 1
+

n−1∑

k=j

Tk,j

k + 1
+ Tn,j .

Recurrence (1) studied in Subsection2.2 is the instance of recurrence (2) for the
particular toll functionTn,i,j = 1, 1 ≤ i ≤ j ≤ n. We can then obtain the exact
solution of (1) applying Theorem2, which gives after easy summations:

Pn,i,j =
i−1∑

ℓ=1

n−i+ℓ−1∑

k=j−i+ℓ

2

(k + 1)(k + 2)
+

i−1∑

ℓ=1

1

n − i + ℓ + 1
+

n−1∑

k=j

1

k + 1
+ 1

=

i−1∑

ℓ=1

n−i+ℓ−1∑

k=j−i+ℓ

2
( 1

k + 1
− 1

k + 2

)
+ Hn − Hn−i+1 + Hn − Hj + 1

=

i−1∑

ℓ=1

2
( 1

j − i + ℓ + 1
− 1

n − i + ℓ + 1

)
+ 2Hn − Hn−i+1 − Hj + 1

= Hj + Hn−i+1 − 2Hj−i+1 + 1, for 1 ≤ i ≤ j ≤ n.

This proves Theorem1.
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2.4. The number of comparisons. Next we study the average behavior of the random
variableCn,i,j, with 1 ≤ i ≤ j ≤ n, which counts the number of comparisons in the
partitioning phase between elements in the array and the pivot element, when executing
the algorithm Approximate Quickselect until an element with a rank betweeni andj
is found in the arrayA[1..n].

Theorem 3. The expected number of element comparisonsCn,i,j = E (Cn,i,j) made
while executing the algorithm Approximate Quickselect until an element with a rank
betweeni andj is found in an array of sizen is:

Cn,i,j = 2(n + 1)Hn + 2(j − i + 4)Hj−i+1 − 2(j + 2)Hj

− 2(n− i+ 3)Hn−i+1 + 2n − j + i − 2

∼
(
2n log n+2(j− i+ 1) log(j − i + 1)−2j log j−2(n − i + 1) log(n− i+ 1)

+ 2n − j + i
)
·
(
1 + O

( log n

n

))
, for 1 ≤ i ≤ j ≤ n

The asymptotic equivalent holds uniformly for1 ≤ i ≤ j ≤ n andn → ∞.
Settingi = j above, we obtain the average number of comparisons to selectthejth

smallest element out ofn [9]:

Cn,j,j = 2
(
(n + 1)Hn + n + 3− (j + 2)Hj − (n − j + 3)Hn−j+1

)
, for 1 ≤ j ≤ n.

The proof of this theorem is fully analogous to that of Theorem 1 in Subsection2.2.
First we obtain a distributional recurrence forCn,i,j, which has the same structure as
the one given in Proposition1. Here, we only have to take into account that during the
partitioning phase and independent of the actual rank of thepivot, we perform exactly
n − 1 comparisons between the pivot element and the other elements in the array.

Proposition 2. The random variableCn,i,j satisfies the following distributional recur-
rence:

Cn,i,j
(d)
= n − 1 + 1Un<i · Cn−Un,i−Un,j−Un

+ 1Un>j · C̃Un−1,i,j, for 1 ≤ i ≤ j ≤ n,

andCn,i,j = 0, if i < 1 or j < i or j > n, where the rankUn of the pivot element is
uniformly distributed on{1, 2, . . . , n} and independent of(Cn,i,j)n,i,j and (C̃n,i,j)n,i,j,
which are independent copies of each other.

Proposition2 gives then the following recurrence for the expectationCn,i,j of the
number of comparisons:

Cn,i,j = n − 1 +
1

n

i−1∑

k=1

Cn−k,i−k,j−k +
1

n

n∑

k=j+1

Ck−1,i,j, for 1 ≤ i ≤ j ≤ n, (5)

andCn,i,j = 0, if i < 1 or j < i or j > n.
This recurrence is exactly the recurrence studied in Subsection 2.3for the particular

toll functionTn,i,j = n−1, for 1 ≤ i ≤ j ≤ n. Applying Theorem2 easily leads then,
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for 1 ≤ i ≤ j ≤ n, to an exact formula forCn,i,j and proves Theorem3:

Cn,i,j =

i−1∑

ℓ=1

n−i+ℓ−1∑

k=j−i+ℓ

2(k − 1)

(k + 1)(k + 2)
+

i−1∑

ℓ=1

n − i + ℓ − 1

n − i + ℓ + 1
+

n−1∑

k=j

k − 1

k + 1
+ n − 1

=
i−1∑

ℓ=1

n−i+ℓ−1∑

k=j−i+ℓ

(
− 4

k + 1
+

6

k + 2

)
+

i−1∑

ℓ=1

(
1 − 2

n − i + ℓ + 1

)

+
n−1∑

k=j

(
1 − 2

k + 1

)
+ n − 1

=

(
i−1∑

ℓ=1

(
−4(Hn−i+ℓ − Hj−i+ℓ) + 6(Hn−i+ℓ+1 − Hj−i+ℓ+1)

))

+ i − 1 − 2(Hn − Hn−i+1) + n − j − 2(Hn − Hj) + n − 1

= 2(n + 1)Hn + 2(j − i + 4)Hj−i+1 − 2(j + 2)Hj − 2(n − i + 3)Hn−i+1

+ 2n − j + i − 2.

To obtain the final result we just used the basic summation formula
n−1∑

k=1

Hk = n
(
Hn − 1

)
. (6)

2.5. Savings and grand averages. Given any measure of performanceXn,i,j of Ap-
proximate Quickselect when looking for an element whose rank falls in the range[i..j],
out ofn elements, it is quite obvious that

Xn,i,j ≤ Xn,k,k,

for anyk ∈ [i..j]. In other words, no matter what measure we consider, Approximate
Quickselect will never perform worse than Quickselect whenthe sought rankk belongs
to the range[i..j] given as input to Approximate Quickselect. The inequality above of
course carries over expectations, thusXn,i,j ≤ Xn,k,k for k ∈ [i..j].

It makes sense then to introduce the difference

∆Xn,i,d = Xn,i,i − Xn,i−d,i+d, d < i < n + 1 − d, 0 ≤ d ≤ ⌊(n − 1)/2⌋
which measures the savings of Approximate Quickselect overQuickselect when look-
ing for theith smallest element and Approximate Quickselect is given a range of size
2d + 1 aroundi. As we shall see, in some cases,∆Xn,i,d does not depend (or its main
order term does not depend) oni, so using the “size”d of the range to express the sav-
ings yielded by Approximate Quickselect turns out to be a relevant choice. Obtaining
both explicit and asymptotic formulaæ for∆Pn,i,d and∆Cn,i,d is straightforward from
the explicit expressions given by Theorems1 and3, and the well-known asymptotic
expansion of the harmonic numbers

Hn = log n + γ + O(n−1),

with γ ≈ 0.577215 . . . denoting the Euler-Mascheroni constant.
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Another interesting set of quantities that we study in this section (and on those forth-
coming) are the grand averages. We fix a size2d+1 for the range given to Approximate
Quickselect and then average over all possiblei, i. e., we are interested in the expected
value ofXn,i−d,i+d wheni is uniformly distributed in[d + 1..n − d]. Such quantities
are often calledgrand averages[13, 17]. Thus,

Xn,d =
1

n − 2d

∑

d<i≤n−d

Xn,i−d,i+d, 0 ≤ d ≤ ⌊(n − 1)/2⌋.

Notice thatXn,0 is the expected value for quickselect with random rank.
As before, we will also be interested in the “grand average savings”

∆Xn,d = Xn,0 − Xn,d, 0 ≤ d ≤ ⌊(n − 1)/2⌋.
In the case of passes and comparisons, explicit and asymptotic expressions for the

grand averages and the average savings follow easily from the explicit formulæ avail-
able for these measures of cost.

Corollary 2. Let ∆Pn,i,d = Pn,i,i − Pn,i−d,i+d, that is, the average number of passes
saved if we use Approximate Quickselect with range[i−d..i+d] instead of Quickselect
with ranki, for d < i < n + 1 − d and0 ≤ d ≤ ⌊(n − 1)/2⌋. Then

∆Pn,i,d = (Hi − Hi+d) + (Hn+1−i − Hn+1−i+d) + 2H2d+1 − 2

∼ 2 log d + Θ(1).

The asymptotic estimate holds uniformly for alld andi, whenn → ∞.

Corollary 3. Let

P n,d =
1

n − 2d

∑

d<i<n+1−d

Pn,i−d,i+d, 0 ≤ ⌊(n − 1)/2⌋,

that is,P n,d is the average number of passes made by Approximate Quickselect for a
range of size2d + 1 centered around a rank chosen uniformly at random. Then

P n,d = 2
n + 1

n − 2d
(Hn − H2d+1) − 1 +

2

n − 2d

∼
{

2 log(n/d) + O(1), if 0 < d = o(n),
2

1−2δ
log(1/2δ) − 1 + O(1/n), if d = δ · n + o(n), with 0 < δ < 1/2.

The first asymptotic estimate holds uniformly for alld = o(n), whenn → ∞. Fur-
thermore, the grand average of the savings is, for0 < d ≤ ⌊(n − 1)/2⌋,

∆P n,d = P n,0 − P n,d ∼ 2 log d + O(1).

Corollary 4. Let∆Cn,i,d = Cn,i,i − Cn,i−d,i+d, that is, the average number of element
comparisons that we save if we use Approximate Quickselect with range[i − d..i + d]
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instead of Quickselect with ranki, for d < i < n + 1 − d and0 ≤ d ≤ ⌊(n − 1)/2⌋.
Then

∆Cn,i,d = 8−2(i + 2)Hi−2(n − i + 3)Hn+1−i−2(2d + 4)H2d+1+2(i + d + 2)Hi+d

+ 2(n − i + 3 + d)Hn+1+d−i + 2d

∼
{

4d log
(

n
d

)
+ Θ(d), if 0 < d = o(n),

2c(α, δ)n − 8 log n + O(1), if d = δ · n + o(n), with 0 < δ < 1/2,

where

c(α, δ) = δ + (1 − α + δ) log(1 − α + δ) + (α + δ) log(α + δ)

− α log α − (1 − α) log(1 − α) − 2δ log(2δ).

The first asymptotic estimate holds uniformly for alld = o(n) andn → ∞. The second
asymptotic estimate holds uniformly fori = αn + o(n) andn → ∞.

Corollary 5. Let

Cn,d =
1

n − 2d

∑

d<i<n+1−d

Cn,i−d,i+d, 0 ≤ d ≤ ⌊(n − 1)/2⌋,

that is,Cn,d is the average number of comparisons made by Approximate Quickselect
for a range of size2d + 1 centered around a rank chosen uniformly at random. Then

Cn,d = 3n − 4(d + 2)(n + 1)

n − 2d
(Hn − H2d+1) + 5 − 4(d + 2)

n − 2d

∼
{

3n − 4(d + 2) log
(

n
d

)
+ Θ(d), if 0 < d = o(n),(

3 + 4δ log(2δ)
1−2δ

)
n + Θ(1), if d = δ · n + o(n), with 0 < δ < 1/2.

The first asymptotic estimate holds uniformly for alld = o(n), whenn → ∞. Fur-
thermore, the grand average of the savings is

∆Cn,d = Cn,0−Cn,d ∼
{

4d log(n/d) + Θ(d), if 0 < d = o(n),
4δ log(1/2δ)

1−2δ
n−8 log n+Θ(1), if d=δ · n+o(n), 0<δ<1/2.

3. MOVES IN QUICKSELECT AND APPROXIMATE QUICKSELECT

We start with the definition of the quantities in our study of moves of elements in
the standard Quickselect and Approximate Quickselect algorithms.

The random variableMn,i,j, with 1 ≤ i, j ≤ n, counts the number of moves of
the element with ranki, i. e., assignments appearing in line8, line 13 or 17 where the
right-hand side contains theith element, in the partition procedure PARTITION when
executing the algorithm Quickselect to find an element with rankj in an arrayA[1..n].

The random variableVn,i,j, with 1 ≤ i ≤ j ≤ n, counts the total number of moves,
i. e., assignments appearing in line8, line 13 or 17), of array elements in the partition
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procedure PARTITION when executing the algorithm AQS to find the element with
rankk ∈ [i..j] in an arrayA[1..n].

We conclude this introduction by stating the following well-known randomness
preservation property (see, e.g., [10]) of the partition algorithm PARTITION as de-
scribed in Subsection3.1(we remark that this property also holds for other commonly
used partition procedures). When starting with a random permutation of distinct val-
uesal < al+1 < · · · < ar as input dataA[l..r] for the partition algorithm PARTI-
TION(A, l, r, k) it holds that after executing this procedure the left subarrayA[l..k−1]
is itself a random permutation ofal < al+1 < · · · < ak−1, and the right subarray
A[k + 1..r] is itself a random permutation ofak+1 < ak+2 < · · · < ar.

This randomness preservation property allows a recursive description of the param-
eters studied in this paper and is thus heavily used in the analysis carried out in what
follows.

3.1. The Partition procedure. There are several standard implementations of the
partitioning phase used in practice for the algorithm Quickselect (and, of course, also
for Quicksort). We state in Algorithm3 as procedure PARTITION one particular imple-
mentation, which we assume to be used in Quickselect and all its variants introduced
above. However, we want to point out that other standard implementations lead for
the quantities studied to the same or only slightly different results. After executing
PARTITION (A, l, r, k) a pivot elementpv is brought to its correct positionpv = A[k]
in the array, such that all elements in the arrayA[l..k − 1] are smaller than or equal to
pv and all elements in the arrayA[k + 1..r] are larger than or equal topv.

To do this the procedure starts by choosing as pivot elementpv the first element
A[l] in the arrayA[l..r], which is stored. Then, by using two pointersa andb that are
initialized bya = l andb = r, the array is scanned in an alternating way from right and
from left, where each element is compared with the pivot elementpv. When scanning
from right we search for the first elementA[b], which is smaller than or equal topv;
this element is then stored at positionA[a] and one continues with scanning from left.
When scanning from left we search for the first elementA[a], which is larger than or
equal topv; this element is then stored at positionA[b] and one continues with scanning
from right. The scan stops ifa = b, i. e., if the two pointersa andb meet each other.
Then it remains to store the pivot elementpv at its correct placeA[a] in the array and
return this final location of the pivot element.

3.2. The number of moves of particular elements in Quickselect. We study here
the average behavior of the random variableMn,i,j, with 1 ≤ i, j ≤ n, which counts
the number of moves, i. e., assignmentsA[.] := ai of the element with ranki in the
partition procedure PARTITION when executing the algorithm Quickselect to find the
element with rankj in an array of sizen. The following theorem provides an exact
formula for the expectationMn,i,j := E (Mn,i,j).

Theorem 4. The expected number of movesMn,i,j = E (Mn,i,j) of the element with
rank i during the execution the algorithm Quickselect to find the element with rankj
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Algorithm 3 The PARTITION procedure

Require: Array A[l..r]
Ensure: ∀m : (l ≤ m < k) ⇒ A[m] ≤ A[k], and∀m : (k < m ≤ r) ⇒ A[k] ≤

A[m]

1: procedure PARTITION(A, l, r, k)
2: if l > r then return ⊲ Nothing will be done
3: end if
4: a := l; b := r; pv := A[a]
5: while a < b do
6: while A[b] > pv do b := b − 1 ⊲ Scan from right
7: end while
8: A[a] := A[b]
9: a := a + 1

10: if a < b then
11: while A[a] < pv do a := a + 1 ⊲ Scan from left
12: end while
13: A[b] := A[a]
14: b := b − 1
15: end if
16: end while
17: A[a] := pv
18: k := a ⊲ Task finished
19: end procedure

in an array of sizen, is

Mn,i,j =
1

3
Hn +

1

6
Hj +

1

6
Hn−i+1 −

2

3
Hj−i+1 +

1

2
− (i − 1)2

3n
+

(i − 1)(i − 2)

3(n − 1)

− (i + 2)(i − 1)

6j
+

(i − 1)(i − 2)

6(j − 1)
+

1

j − i + 1
, for 1 ≤ i < j ≤ n,

Mn,i,j =
1

3
Hn +

1

6
Hi +

1

6
Hn−j+1 −

2

3
Hi−j+1 −

(i − 1)2

3n
+

(i − 1)(i − 2)

3(n − 1)

− (i − j)(i − j − 3)

6(n − j + 1)
+

(i − j)(i − j − 1)

6(n − j)
+

1

3i
+

2

3(i − j + 1)
,

for 1 ≤ j < i ≤ n,

Mn,j,j =
1

3
Hn +

1

6
Hj +

1

6
Hn−j+1 +

1

6
− (j − 1)2

3n
+

(j − 1)(j − 2)

3(n − 1)
+

1

3j

+
1

12
· [[j = 1]] − 1

12
· [[j = n]], for 1 ≤ j ≤ n andn ≥ 2,

M1,1,1 = 1.
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To show this theorem we start with a recursive description ofMn,i,j, which is ob-
tained by considering a call of Quickselect for an arrayA[1..n]. We assume now that
the pivot elementpv = A[1] is thekth smallest element in the array; since our input
data are forming a random permutation of lengthn it holds that the probability that the
pivot element has rankk is 1/n, for 1 ≤ k ≤ n.

Now we study whether the element with ranki will be moved, i. e., an assignment
A[·] := . . . where the right-hand side contains the element with ranki is performed,
during the execution of the partition procedure PARTITION. We have to distinguish
three cases:(1) if k = i then the element with ranki (in this case this is the pivot
element) will always be moved,(2) if k < i the element with ranki will be moved
only if it is located in the subarrayA[2..k]; the probability that this happens is thus
k−1
n−1

, and(3) if k > i the element with ranki will be moved only if it is located in the
subarrayA[k..n]; the probability that this happens is thenn−k+1

n−1
. After the partitioning

phase the left subarrayA[1..k− 1] and the right subarrayA[k +1..n] are each forming
a random permutation of lengthsk − 1 andn − k, respectively.

Next we observe that if the pivot element has a rank betweeni andj, i. e., depending
on the order of the considered elements eitheri ≤ k ≤ j or j ≤ k ≤ i, the final number
of moves of the element with ranki during the execution of Quickselect is already
reached. This holds since then either the Quickselect algorithm terminates (k = j) or
it continues executing in a subarray that does not contain the element with ranki. Only
if k < i ≤ j or k < j ≤ i we proceed with a recursive call of Quickselect for the right
subarray, and ifk > j ≥ i ork > i ≥ j we proceed with a recursive call of Quickselect
for the left subarray. In these latter cases we have to add thenumber of moves of the
element with ranki during the execution of Quickselect occurring therein.

These considerations immediately lead to the following proposition.

Proposition 3. The random variableMn,i,j satisfies, for1 ≤ i, j ≤ n, the following
distributional recurrence:

Mn,i,j
(d)
= 1Un<i · Mn−Un,i−Un,j−Un

+ 1Un>j · M̃Un−1,i,j + Tn,i,Un
, for 1≤ i≤ j≤ n,

Mn,i,j
(d)
= 1Un<j · Mn−Un,i−Un,j−Un

+ 1Un>i · M̃Un−1,i,j + Tn,i,Un
, for 1≤ j < i≤ n,

andMn,i,j = 0, if min(i, j) < 1 or max(i, j) > n. The rankUn of the pivot el-
ement is uniformly distributed on{1, 2, . . . , n} and independent of(Mn,i,j)n,i,j and
(M̃n,i,j)n,i,j, which are independent copies of each other.

Here the random variableTn,i,k is the indicator function of the event that the element
with ranki is moved during the execution of the partition procedurePARTITION for a
randomly chosen permutation of lengthn leading to a pivot element of rankk. It holds
then, for1 ≤ i, k ≤ n: P {Tn,i,k = 1} =





k−1
n−1

, k < i,
n−k+1

n−1
, k > i,

1, k = i,

andP {Tn,i,k = 0} = 1 − P {Tn,i,k = 1}.
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We remark here that in the distributional recurrence given as Proposition3 the ran-
dom variablesTn,i,k andMn−k,i−k,j−k (and alsoTn,i,k andM̃k−1,i,j) aredependentas
can be checked easily for concrete examples (e. g., forn = 3 andi = j = 1). Thus
Proposition3 will only allow to treat the expectationMn,i,j of the number of moves,
whereas a study of higher moments would require a more refineddescription ofMn,i,j.

However, Proposition3 immediately leads to a recurrence for the expected value
Mn,i,j. It is here advantageous to distinguish between the casesi < j, i = j andi > j.

We start with the casei < j, where we obtain, for1 ≤ i < j ≤ n:

Mn,i,j =
1

n

i−1∑

k=1

Mn−k,i−k,j−k +
1

n

n∑

k=j+1

Mk−1,i,j +
1

n

n∑

k=1

E (Tn,i,k)

=
1

n

i−1∑

k=1

Mn−k,i−k,j−k +
1

n

n∑

k=j+1

Mk−1,i,j

+
1

n

(
1 +

i−1∑

k=1

k − 1

n − 1
+

n∑

k=i+1

n − k + 1

n − 1

)

=
1

n

i−1∑

k=1

Mn−k,i−k,j−k

+
1

n

n∑

k=j+1

Mk−1,i,j +
(i − 1)(i − 2)

2n(n − 1)
+

(n − i)(n − i + 1)

2n(n − 1)
+

1

n
.

To get an exact solution ofMn,i,j we can thus apply Theorem2 for the particular toll
function

Tn,i,j =
(i − 1)(i − 2)

2n(n − 1)
+

(n − i)(n − i + 1)

2n(n − 1)
+

1

n
, 1 ≤ i < j ≤ n.

We omit here the computations leading to the exact formula ofMn,i,j, 1 ≤ i < j ≤ n,
given in Theorem4, since nothing more is required than basic summation formulæ.

For the casei = j we obtain, for1 ≤ j ≤ n:

Mn,j,j =
1

n

j−1∑

k=1

Mn−k,j−k,j−k +
1

n

n∑

k=j+1

Mk−1,j,j +
1

n

n∑

k=1

E (Tn,j,k)

=
1

n

i−1∑

k=1

Mn−k,j−k,j−k +
1

n

n∑

k=j+1

Mk−1,j,j

+

{
(j−1)(j−2)
2n(n−1)

+ (n−j)(n−j+1)
2n(n−1)

+ 1
n
, for n ≥ 2,

1, for n = 1.
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Thus, an exact solution ofMn,j,j can be obtained by introducingM ′
n,j := Mn,j,j and

applying Corollary1 for the particular toll function

Tn,j :=

{
(j−1)(j−2)
2n(n−1)

+ (n−j)(n−j+1)
2n(n−1)

+ 1
n
, for 1 ≤ j ≤ n andn ≥ 2,

1, for j = n = 1.

After carrying out the computations occurring, which are omitted here, we obtain the
exact formula ofMn,j,j, 1 ≤ j ≤ n, given in Theorem4.

Finally we consider the casei > j, where we obtain, for1 ≤ j < i ≤ n:

Mn,i,j =
1

n

j−1∑

k=1

Mn−k,i−k,j−k +
1

n

n∑

k=i+1

Mk−1,i,j +
1

n

n∑

k=1

E (Tn,i,k)

=
1

n

j−1∑

k=1

Mn−k,i−k,j−k

+
1

n

n∑

k=i+1

Mk−1,i,j +
(i − 1)(i − 2)

2n(n − 1)
+

(n − i)(n − i + 1)

2n(n − 1)
+

1

n
.

When introducingM ′
n,i,j := Mn,j,i this recurrence can be written as follows, with

1 ≤ i < j ≤ n:

M ′
n,i,j =

1

n

i−1∑

k=1

M ′
n−k,i−k,j−k +

1

n

n∑

k=j+1

M ′
k−1,i,j

+
(j − 1)(j − 2)

2n(n − 1)
+

(n − j)(n − j + 1)

2n(n − 1)
+

1

n
.

An exact solution ofM ′
n,i,j, 1 ≤ i < j ≤ n, can be obtained by applying Theorem2

for the particular toll function

Tn,i,j =
(j − 1)(j − 2)

2n(n − 1)
+

(n − j)(n − j + 1)

2n(n − 1)
+

1

n
, 1 ≤ i < j ≤ n.

After back substitution we thus obtain an exact solution ofMn,i,j, with 1 ≤ j < i ≤ n,
which is given in Theorem4. Again the straightforward computations are omitted.

Last but not least, we can obtain asymptotic equivalents with little effort.

Corollary 6. The expected number of movesMn,i,j = E (Mn,i,j) of the element with
rank i when executing the algorithm Quickselect to find the elementwith rankj in an
array of sizen has the following asymptotic equivalents, which hold forn → ∞ and
uniformly for the given range ofi andj:

Mn,i,j =
(1

3
log n +

1

6
log j +

1

6
log(n − i + 1) − 2

3
log(j − i + 1) +

1

2
+

i2

3n2
− i

3n

+
i2

6j2
− 2i

3j

)
·
(
1 + O

( 1

log n

))
, 1 ≤ i < j ≤ n,
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Mn,i,j =
(1

3
log n +

1

6
log i +

1

6
log(n − j + 1) − 2

3
log(i − j + 1) +

i2

3n2
− i

3n

+
(i − j)2

6(n − j + 1)2
+

i − j

3(n − j + 1)

)
·
(
1 + O

( 1

log n

))
, 1 ≤ j < i ≤ n,

Mn,j,j =
(1

3
log n +

1

6
log j +

1

6
log(n − j + 1)

)
·
(
1 + O

( 1

log n

))
, 1 ≤ j ≤ n.

In particular, we get the following important estimates when j = βn + o(n), 0 <
β < 1:

Mn,i,j ∼
1

6
log β +

1

6
log(1 − α) − 2

3
log(β − α) +

α2

6β2
− 2α

3β
+

1

2
− α

3
+

α2

3
,

for i = αn + o(n), and0 < α < β < 1,

Mn,i,j ∼
1

6
log α+

1

6
log(1− β)−2

3
log(α− β)+

(1 − α)2

6(1 − β)2
−2(1 − α)

3(1 − β)
+

1

2
−α

3
+

α2

3
,

for i = αn + o(n), and0 < β < α < 1,

Mn,i,j ∼
2

3
(1 − κ) log n,

for j − i ∼ Knκ, with 0 < κ < 1 andK 6= 0,

Mn,i,j ∼
2

3
log n, for j − i = O((log n)κ) for someκ > 0.

3.3. The total number of moves in Approximate Quickselect. Now we study the
average behavior of the random variableVn,i,j, with 1 ≤ i ≤ j ≤ n, which counts the
total number of moves, i. e., assignmentsA[·] := ∗ of array elements, in the partition
procedure PARTITION when executing the algorithm AQS to find the element with
rankk ∈ [i..j] in an arrayA[1..n].

Theorem 5. The expected total number of movesVn,i,j = E (Vn,i,j) of array elements
in the partition procedurePARTITION when executing the algorithmAQS to find the
element with rankk ∈ [i..j] in an arrayA[1..n] filled with a random permutation of
lengthn, for 1 ≤ i ≤ j ≤ n, is given by the following exact formula:

Vn,i,j =
2

3
(n + 1)Hn − 1

6
(4j + 1)Hj −

1

6
(4n − 4i + 5)Hn−i+1 +

2n

3

+
1

3
(2j − 2i + 1)Hj−i+1 −

j

3
+

i

3
+

1

2
, for 1 ≤ i < j ≤ n,

Vn,j,j =
2

3
(n + 1)Hn − 1

6
(4j + 1)Hj −

1

6
(4n − 4j + 5)Hn−j+1 +

2n

3

+
7

9
− 1

36
[[j = 1 ∨ j = n]], for 1 ≤ j ≤ n andn ≥ 2,

V1,1,1 = 1.

Asymptotically, fori = αn + o(n) andj − i = δn + o(n),
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Vn,i,j ∼
n

3

(
2δ log δ − 2(1 − α) log(1 − α)

− 2(α + δ) log(α + δ) + 2 − δ
)
, 0 < δ < 1 − α.

We derive this theorem from a recursive description ofVn,i,j, which is again obtained
by considering a call of AQS for an arrayA[1..n]. We assume that the pivot element
pv = A[1] is thekth smallest element in the array; the probability that this happens is
1/n, for 1 ≤ k ≤ n.

Now we want to count the total number of moves, i. e., an assignmentA[.] :=
∗ (appearing in line8, line 13 or 17), of array elements in the partition procedure
PARTITION. We distinguish between two cases:

(1) if k = 1 then there is exactly one move during the partitioning phase, namely
the assignment of the pivot element in line17,

(2) if k ≥ 2 then there may occur the following two situations:
• ElementA[k] has a rank in the range1..(k − 1) and exactlyℓ elements

with a rank in the range1..(k − 1) are located in the subarrayA[k..n]. It
follows then that exactlyℓ−1 elements with a rank in the range(k+1)..n
are located in the subarrayA[2..k − 1]. In this situation we obtain then
that exactly2ℓ, i. e., ℓ (line 8) + ℓ − 1 (line 13) + 1 (line 17), moves are
carried out during the partitioning phase. By elementary combinatorial
considerations we get the following probability that this event occurs:

1

(n − 1)!

(
k − 2

ℓ − 1

)(
n − k

ℓ − 1

)
(k − 1)!(n − k)! =

(
k−2
ℓ−1

)(
n−k
ℓ−1

)
(

n−1
k−1

) , for 1 ≤ ℓ ≤ k − 1.

• ElementA[k] has a rank in the range(k + 1)..n and exactlyℓ elements
with a rank in the range1..(k − 1) are located in the subarrayA[k + 1..n].
It follows then that exactlyℓ elements with a rank in the range(k + 1)..n
are located in the subarrayA[2..k]. In this situation we obtain then that
exactly2ℓ + 1, i. e.,ℓ (line 8) + ℓ (line 13) + 1 (line17), moves are carried
out during the partitioning phase. This gives the followingprobability that
this event occurs:

1

(n − 1)!

(
k − 2

ℓ − 1

)(
n − k

ℓ

)
(k − 1)!(n − k)! =

(
k−2
ℓ−1

)(
n−k

ℓ

)
(

n−1
k−1

) , for 1 ≤ ℓ ≤ k − 1.

Of course, after the partitioning phase the left subarrayA[1..k − 1] and the right
subarrayA[k + 1..n] are each forming a random permutation of lengthsk − 1 and
n− k, respectively. But as can be shown easily (permuting the elements with a rank in
the range1..(k−1) and of the elements with a rank in the range(k+1)..n, respectively,
in the input data array leads to easy-describable permutations of the elements in the
subarraysA[1..k − 1] andA[k + 1..n] after the partitioning phase) even more is true.
Namely, if we consider only those permutations, such that the number of moves in the
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procedure PARTITION is exactlyℓ̃, with an arbitrarỹℓ, then it also holds that after the
partitioning phase the left subarrayA[1..k − 1] and the right subarrayA[k + 1..n] are
each forming a random permutation of lengthsk − 1 andn − k, respectively.

Thus the number of moves during the partitioning phase is independent of the num-
ber of moves, which are made during a recursive call of AQS forthe right subarray
A[k + 1..n] (if k < i) or the left subarrayA[1..k − 1] (if k > j) and that have to be
added to get the total number of moves. This independence property appearing in the
distributional recurrence stated in the following proposition would allow also to study
higher moments ofVn,i,j or could be a starting point for considerations concerning the
limiting distributional behavior ofVn,i,j (see, e.g., [3, 6] for limiting distribution results
studying the parameter “number of comparisons” in Quickselect).

Proposition 4. The random variableVn,i,j satisfies, for1 ≤ i ≤ j ≤ n, the following
distributional recurrence:

Vn,i,j
(d)
= 1Un<i · Vn−Un,i−Un,j−Un

+ 1Un>j · M̃Un−1,i,j + Tn,Un
, for 1 ≤ i ≤ j ≤ n,

and Vn,i,j = 0, if i < 1, j < i or j > n, where the sequences(Un)n, (Tn,k)n,k,
(Vn,i,j)n,i,j and (M̃n,i,j)n,j of random variables are independent. HereVn,i,j and
M̃n,i,j are independent copies of each other, whereasUn is uniformly distributed on
{1, 2, . . . , n}. FurthermoreTn,k is, for 1 ≤ k ≤ n, distributed as follows:P {Tn,1 = 1} = 1,P {Tn,k = 2ℓ} =

(
k−2
ℓ−1

)(
n−k
ℓ−1

)
(

n−1
k−1

) , for k ≥ 2 and1 ≤ ℓ ≤ k − 1,P {Tn,k = 2ℓ + 1} =

(
k−2
ℓ−1

)(
n−k

ℓ

)
(

n−1
k−1

) , for k ≥ 2 and1 ≤ ℓ ≤ k − 1.

Proposition4 immediately gives the following recurrence for the expectation Vn,i,j

of the total number of moves:

Vn,i,j =
1

n

i−1∑

k=1

Vn−k,i−k,j−k +
1

n

n∑

k=j+1

Vk−1,i,j +
1

n

n∑

k=1

E (Tn,k) , for 1 ≤ i ≤ j ≤ n,

(7)
andVn,i,j = 0, if i < 1, j < i or j > n.

It holds thatE (Tn,1) = 1, whereas fork ≥ 2 we obtain:E (Tn,k) =
1(

n−1
k−1

)
k−1∑

ℓ=1

(
k − 2

ℓ − 1

)(
n − k

ℓ − 1

)
2ℓ +

1(
n−1
k−1

)
k−1∑

ℓ=1

(
k − 2

ℓ − 1

)(
n − k

ℓ

)
(2ℓ + 1)

=
(n − k + 1)(2k − 1) − 1

n − 1
,
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where we used the Chu-Vandermonde identity (see, e. g., [2]). Easy computations give
then

1

n

n∑

k=1

E (Tn,k) =

{
n
3

+ 5
6
, for n ≥ 2,

1, for n = 1.

Thus (7) can be written as follows:

Vn,i,j =
1

n

i−1∑

k=1

Vn−k,i−k,j−k +
1

n

n∑

k=j+1

Vk−1,i,j + Tn,i,j, for 1 ≤ i ≤ j ≤ n, (8)

with T1,1,1 = 1 andTn,i,j = n
3

+ 5
6
, for 1 ≤ i ≤ j ≤ n andn ≥ 2.

An exact solution of this recurrence can be obtained by simply applying Theorem2,
which shows Theorem5; the straightforward computations are omitted here.

We remark here that settingi = j leads to results concerning the total number of
moves in standard Quickselect, e. g.,Vn,j,j is the random variable that counts the total
number of moves made by Quickselect when selecting thejth smallest element out of
n.

As we have done for passes and comparisons, we can compare thesavings of Ap-
proximate Quickselect relative to Quickselect. The following corollaries provide the
exact and asymptotic formulæ for the savings and the grand average.

Corollary 7. Let ∆Vn,i,d = Vn,i,i − Vn,i−d,i+d, that is, the average number of data
moves that we save if we use Approximate Quickselect with range[i−d..i+d] instead
of Quickselect with ranki, for d < i < n + 1 − d and0 ≤ d ≤ ⌊(n − 1)/2⌋. Then

∆Vn,i,d =
1

6
(4i + 1)(Hi+d − Hi) +

1

6
(4n − 4i + 5)(Hn+1+d−i − Hn+1−i)

+
2d

3
(Hi+d + Hn+1+d−i + 1 − 2H2d+1) +

5

8
[[d > 0]]

∼
{

4
3
d log

(
n
d

)
+ Θ(d), if 0 < d = o(n),

2
3
c(α, δ)n − 8 log n + O(1), if d = δ · n + o(n), with 0 < δ < 1/2,

where

c(α, δ) = δ + (1 − α + δ) log(1 − α + δ) + (α + δ) log(α + δ)

− α log α − (1 − α) log(1 − α) − 2δ log(2δ).

The first asymptotic estimate holds uniformly for alld = o(n) andn → ∞. The second
asymptotic estimate holds uniformly fori = αn + o(n) andn → ∞.

Observe that for any validi andd, ∆Vn,i,d ∼ 1
3
∆Cn,i,d; actually,Vn,i,j ∼ 1

3
Cn,i,j +

7
6
Pn,i,j + O(1).
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Corollary 8. Let

V n,d =
1

n − 2d

∑

d<i<n+1−d

Vn,i−d,i+d, 0 ≤ ⌊(n − 1)/2⌋,

that is,V n,d is the average total number of moves made by Approximate Quickselect
for a range of size2d + 1 centered around a rank chosen uniformly at random. Then

V n,d = n − (4d + 1)(n + 1)

3(n − 2d)

(
Hn − H2d+1

)
+

1

2
− 4d + 1

3(n − 2d)
, for d ≥ 1,

V n,0 = n − n + 1

3n
Hn +

7

9
− 1

18n
, for n ≥ 2,

V 1,0 = 1.

Moreover, it holds

V n,d ∼
{

n − (4d+1)
3

log
(

n
d

)
+ Θ(d) if 0 < d = o(n),(

1 + 4δ log(2δ)
3(1−2δ)

)
n + Θ(1), if d = δ · n + o(n), with 0 < δ < 1/2.

The first asymptotic estimate holds uniformly for alld = o(n), whenn → ∞. Fur-
thermore, the grand average of the savings is

∆V n,d =V n,0−V n,d ∼
{

4d
3

log(n/d) + Θ(d), if 0 < d = o(n),
4δ log(1/2δ)

3(1−2δ)
n− 1

3
log n+Θ(1), if d=δ · n+o(n), 0<δ<1/2.

4. SOME PARAMETERS IN BINARY SEARCH TREES

Binary search trees are binary trees generated by successively inserting elements
into an originally empty tree via a simple recursive algorithm (see for instance [18]).
If elementx has to be inserted into an empty tree one creates a new node containing
x. If elementx has to be inserted into a non-empty tree one has to comparex with the
elementk of the root: ifx < k thenx will be inserted into the left subtree, whereas if
x ≥ k thenx will be inserted into the right subtree.

For the average-case analysis of the quantities consideredfor binary search trees we
also always use the “random permutation model”, i. e., we assume that alln! permu-
tations of a sequence of distinct valuesa1 < a2 < · · · < an are chosen with equal
probability as input data to generate a binary search tree ofsizen.

We define now the three parameters for random binary search trees we will consider
in this paper.

The random variableAn,i,j, with 1 ≤ i ≤ j ≤ n, counts the number of common
ancestors (in a rooted treeB a nodev is an ancestor of nodew if v is lying on the
unique path from the root ofB to w) of the nodes with ranki andj in a random binary
search tree of sizen.

The random variableSn,i,j, with 1 ≤ i ≤ j ≤ n, counts the size of the subtree
rooted at the least common ancestor of the nodes with ranki andj in a random binary
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FIGURE 1. An example of the parametersAn,i,j, Sn,i,j andDn,i,j.

search tree of sizen (i. e., the size of the smallest subtree containing the nodeswith
ranki andj).

Finally, the random variableDn,i,j, with 1 ≤ i ≤ j ≤ n, is thedistance(number of
edges) in the unique path from theith node to thejth node in a random BST of sizen.

An example of a binary search tree together with the quantities considered in this
paper is given as Figure1. The binary search tree depicted is of size16 and was
generated by inserting the elements[15, 5, 10, 16, 8, 2, 13, 12, 1, 14, 6, 4, 7, 9, 3, 11], in
that order. The nodesi = 8 andj = 12 haveA16,8,12 = 3 common ancestors (nodes
15, 5, and10). The size of the subtree rooted at the least common ancestorof nodes
i = 8 andj = 12 (which is node10) is S16,8,12 = 9. The distance between the two
nodes isD16,8,12 = 3.

BothAn,i,j andDn,i,j have received attention in the literature [17, 19, 1]. The cor-
responding results in the following subsections are thus alternative derivations, using
Theorem2, of the formulæ that were already known. Other authors have also in-
vestigated the number of common ancestors and the distance between two randomly
chosen nodes in a random binary search tree [14]. The results given here (Subsec-
tion 4.2) about the size of the subtree rooted at the least common ancestor of two given
nodes are new, to the best of our knowledge.

4.1. Common ancestors. We consider now the random variableAn,i,j, with 1 ≤ i ≤
j ≤ n, which counts the number of common ancestors of the nodes with ranki andj
in a random binary search tree of sizen.

We find that the distribution ofAn,i,j has been dealt with already in Section2.

Theorem 6. The random variableAn,i,j and the number of passes made by Approx-
imate QuickselectPn,i,j, which has been defined in Subsection2.2, are equally dis-
tributed, i. e.,

An,i,j
(d)
= Pn,i,j.
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Therefore, the expected number of common ancestorsAn,i,j = E (An,i,j) of the nodes
with ranki andj in a random binary search tree of sizen is, for 1 ≤ i ≤ j ≤ n, given
by the following exact and asymptotic formula (which uniformly holds for1 ≤ i ≤
j ≤ n andn → ∞):

An,i,j = Hj + Hn−i+1 − 2Hj−i+1 + 1

=
(
log n + log(n − i + 1)

− 2 log(j − i + 1) + 1
)
·
(
1 + O

( 1

log n

))
.

This can be shown easily, where we use a recursive description of An,i,j, which is
obtained via the decomposition of a binary search tree of sizen ≥ 1 into the root node
and its left and right subtree. Assuming the random permutation model we get that
with probability1/n the root node has rankk, for all 1 ≤ k ≤ n. In any case the root
node is a common ancestor of the nodes with ranki andj. If i ≤ k ≤ j then there are
no further common ancestors, since the nodes with ranki andj are lying in different
subtrees of the root. Only ifk < i or k > j the nodes with ranki andj are lying in the
same subtree and one has to add the common ancestors contained in the left subtree
(k > j) or the right subtree (k < i), respectively.

We get then the following proposition.

Proposition 5. The random variableAn,i,j satisfies, for1 ≤ i ≤ j ≤ n, the following
distributional recurrence:

An,i,j
(d)
= 1 + 1Un<i · An−Un,i−Un,j−Un

+ 1Un>j · ÃUn−1,i,j, for 1 ≤ i ≤ j ≤ n,

andAn,i,j = 0, if i < 1 or j < i or j > n, whereUn is uniformly distributed on
{1, 2, . . . , n} and independent of(An,i,j)n,i,j and (Ãn,i,j)n,i,j, which are independent
copies of each other.

Since it follows from the proposition above and Proposition1 thatAn,i,j andPn,i,j

satisfy the same distributional recurrence, the first part of Theorem6 follows. The
remaining part is an immediate consequence of Theorem1.

4.2. The size of the subtree rooted at the least common ancestor. Now we study
the random variableSn,i,j, with 1 ≤ i ≤ j ≤ n, which counts the size of the subtree
rooted at the least common ancestor of the nodes with ranki andj in a random binary
search tree of sizen.

We show the following theorem concerning an exact formula for the expectation

Sn,i,j := E (Sn,i,j) .

Theorem 7. The expected sizeSn,i,j = E (Sn,i,j) of the subtree rooted at the least
common ancestor of the nodes with ranki andj in a random binary search tree of size
n, for 1 ≤ i ≤ j ≤ n, is given by the following exact and asymptotic formulæ (which
holds uniformly for1 ≤ i ≤ j ≤ n andn → ∞):

Sn,i,j = (j − i + 1)
(
Hj + Hn−i+1 − 2Hj−i+1 + 1

)
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= (j − i + 1)
(
log j + log(n− i+ 1)−2 log(j− i+ 1) + 1

)
·
(
1 + O

( 1

log n

))
.

To show this theorem we start with a recursive description ofSn,i,j, which follows
easily from the decomposition of a binary search tree of sizen ≥ 1 into the root node
and its left and right subtree. We only have to take into account that if the root node
has rankk, with i ≤ j ≤ k, then the least common ancestor of the nodes with ranki
andj is the root itself and thus the size of the subtree is the sizen of the whole tree,
whereas ifk < i or k > j the least common ancestor of the nodes with ranki andj is
contained in the right subtree or the left subtree, respectively, and one has to consider
them. This immediately leads to the following proposition.

Proposition 6. The random variableSn,i,j satisfies, for1 ≤ i ≤ j ≤ n, the following
distributional recurrence:

Sn,i,j
(d)
= 1Un<i · Sn−Un,i−Un,j−Un

+ 1Un>j · S̃Un−1,i,j + n · 1i≤Un≤j , for 1 ≤ i ≤ j ≤ n,

and Sn,i,j = 0, if i < 1 or j < i or j > n, whereUn is uniformly distributed on
{1, 2, . . . , n} and independent of(Sn,i,j)n,i,j and (S̃n,i,j)n,i,j, which are independent
copies of each other.

Proposition6 leads then to the following recurrence for the expectationSn,i,j:

Sn,i,j =
1

n

i−1∑

k=1

Sn−k,i−k,j−k +
1

n

n∑

k=j+1

Sk−1,i,j + n · 1

n

j∑

k=i

1

=
1

n

i−1∑

k=1

Sn−k,i−k,j−k +
1

n

n∑

k=j+1

Sk−1,i,j + j − i + 1, for 1 ≤ i ≤ j ≤ n, (9)

andSn,i,j = 0, if i < 1 or j < i or j > n.
An exact solution ofSn,i,j, 1 ≤ i < j ≤ n, can be obtained by applying Theorem2

for the particular toll functionTn,i,j = j − i + 1, for 1 ≤ i ≤ j ≤ n. Straightforward
computations lead then to the exact formula given in Theorem7. The asymptotic result
for Sn,i,j given there follows immediately from Theorem6, since it holds

Sn,i,j = (j − i + 1)An,i,j. (10)

We want to remark that indeed the connection between the expectationsSn,i,j andAn,i,j

could also be shown via combinatorial arguments, but we omitthem here.

4.3. Distance. Finally, we consider the parameterDn,i,j. As in previous subsections,
let us begin with the main result, which gives the expected value ofDn,i,j.

Theorem 8. The expected distanceDn,i,j = E (Dn,i,j) from the node with ranki to
the node with rankj in a random binary search tree of sizen, for 1 ≤ i ≤ j ≤ n,
is given by the following exact and asymptotic formula (which holds uniformly for
1 ≤ i ≤ j ≤ n andn → ∞):

Dn,i,j = 4Hj−i+1 − (Hj − Hi) − (Hn+1−i − Hn+1−j) − 2
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=
(
4 log(j + 1 − i) − (log j − log i)

− (log(n + 1 − i) − log(n + 1 − j)) − 2
)
·
(
1 + O

( 1

log n

))
.

To prove the theorem, we will first deduce the distributionalrecurrence thatDn,i,j

satisfies. If both nodesi andj lie on the same subtree, the value ofDn,i,j is defined
recursively inside that subtree. But when the root is occupied by thekth element, with
i ≤ k ≤ j, then the distance is given by the sum of the depth ofi in a random BST
of sizek − 1 plus the depth ofj (actually the(j − k)th element) in a random BST of
sizen − k plus 2. SinceAn,i,i is the depth of theith node in a random BST of sizen
plus 1, we have the next Proposition.

Proposition 7. The random variableDn,i,j satisfies, for1 ≤ i ≤ j ≤ n, the following
distributional recurrence:

Dn,i,j
(d)
= 1Un<i · Dn−Un,i−Un,j−Un

+ 1Un>j · D̃Un−1,i,j

+ 1i≤Un≤j ·
(
AUn−1,i,i + Ãn−Un,j−Un,j−Un

)
, for 1 ≤ i ≤ j ≤ n,

and Dn,i,j = 0, if i < 1 or j < i or j > n, whereUn is uniformly distributed
on {1, 2, . . . , n} and independent of(Dn,i,j)n,i,j, (D̃n,i,j)n,i,j, (An,i,j)n,i,j, (Ãn,i,j)n,i,j,
which are independent of each other. Also, theD’s andD̃’s are identically distributed,
and theA’s andÃ’s are also identically distributed.

Standard manipulation of the distributional recurrence above yields the following
recurrence for the expectationsDn,i,j:

Dn,i,j =
1

n

i−1∑

k=1

Dn−k,i−k,j−k +
1

n

n∑

k=j+1

Dk−1,i,j +
1

n

j∑

k=i

(Ak−1,i,i + An−k,j−k,j−k)

=
1

n

i−1∑

k=1

Dn−k,i−k,j−k +
1

n

n∑

k=j+1

Dk−1,i,j

+
j − i + 1

n
(Hi + Hn+1−j + 2Hj−i+1 − 4) , for 1 ≤ i ≤ j ≤ n, (11)

andDn,i,j = 0, if i < 1 or j < i or j > n.
The last step is to use Theorem2 with the toll functionTn,i,j = (j − i + 1)(Hi +

Hn+1−j +2Hj−i+1−4)/n to obtain the closed form forDn,i,j given in Theorem8. It is
worth mentioning that this result may be obtained in a more direct manner by noticing
that

Dn,i,j
(d)
= Pn,i,i + Pn,j,j + 2 − 2Pn,i,j.
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5. FINAL REMARKS

The results in the paper are witnesses to the power of generating functions as tools
for the solution of many recurrences, in particular, divide-and-conquer recurrences
such as those arising in the analysis of Quicksort and Quickselect.

The explicit solution of the general trivariate recurrencefor Xn,i,j (Theorem2) has
allowed us to obtain exact formulæ for the expected value of several parameters in
random binary search like common ancestors of two given nodes, size of the subtree
rooted at the least commom ancestor of two given nodes, or thedistance between two
given nodes. These quantities had received some attention in past literature, and here
our machinery has provided an alternative way to derive the corresponding formulæ.
Theorem2 is also fundamental in the analysis of the number of moves in which a
particular elementi gets involved during the execution of Quickselect to selectthejth
smallest element out ofn.

But the main application of Theorem2 is the analysis of the basic performance fea-
tures (passes, comparisons, data moves) in Approximate Quickselect, a simple vari-
ation of Quickselect in which we look for an element of rankk, for somek falling
in a given range[i..j]. Approximate Quickselect is of independent interest. In many
practical settings an approximation to the trueith order statistic (equivalent, element
of ranki) can be enough for most purposes, e. g., any element whose rank lies between
n(1/2− ǫ) andn(1/2+ ǫ) might be as useful as the true median of the given array. We
have also provided detailed comparisons between the performance measures of Ap-
proximate Quickselect and the corresponding performance measures of Quickselect,
in terms of the sized of the range given as input to Approximate Quickselect, showing
that Approximate Quickselect yields substantial savings over Quickselect. A careful
choice ofd can provide both improved performance and a reasonable approximation
to the order statistic of interest, e. g., we can find an element whose rank isn/2 ±√

n
and save up toΘ(

√
n log n) comparisons and data moves, or find an element of rank

αn(1 ± δ), for someδ > 0 and save a linear number of comparisons and data moves.
Using other techniques not presented in this paper, we have also been able to ana-

lyze Approximate Multiple Quickselect, the obvious extension of Approximate Quick-
select to the problem of multiple selection. We have preliminary results on the average
number of passes and comparisons of Approximate Multiple Quickselect, and we are
currently working in the computation of grand averages and in the comparison of Ap-
proximate Multiple Quickselect with Multiple Quickselect.
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