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Abstract. We consider a nonlinear cyclin content structured model of a cell
population divided into proliferative and quiescent cells. We show, for partic-
ular values of the parameters, existence of solutions that do not depend on the
cyclin content. We make numerical simulations for the general case obtaining,
for some values of the parameters convergence to the steady state but also
oscillations of the population for others.

1. Introduction

The study of cell populations by means of structured models can be traced
back to the works of Von Foerster [14] and later on of Bell and Anderson [8].
Since then, many researchers have contributed to this field (see for instance [13],
[4] , [5], [2]). Cell structured population models with proliferating and quiescent
compartments have also been extensively studied (see for instance [12], [17], [11]).

In [6] and [7] a nonlinear cell population model for both, tumoral and healthy
tissue is introduced in which cells are structured with respect to age and with
respect to the content of a group of proteins called cyclin and CDK (cyclin de-
pendent kinases) which plays an important role in the regulation of the cell cycle
(see [15]). Cells are divided into two categories: proliferating cells which grow
and divide, giving birth at the end of the cycle to new cells, or else transit to
the quiescent compartment, and quiescent cells which do not age, nor divide nor
change their cyclin content. They may either go back to the proliferating com-
partment or stay in the quiescent one. Under suitable hypotheses, the authors
prove exponential growth of the solutions in the tumoral case and boundedness of
the solutions in the case of healthy tissue. In the second case they show numerical
evidence of convergence to a nontrivial equilibrium in all the cases they study. A
similar cell population model structured with respect to a certain protein content
is analyzed in [10].

In [9] we considered the age independent version of the model considered in [6]
and [7], that is, the following first order nonlinear partial differential equations
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system with nonlocal terms structured only with respect to the cyclin content
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∂
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Γ(x)p(x, t)
)

= −
[

L(x) + F (x) + d1

]

p(x, t)

+G(N(t))q(x, t) + 2

∫ xM

x

F (y)

y
p(y, t)dy,

∂

∂t
q(x, t) = L(x)p(x, t) −

[

G(N(t)) + d2

]

q(x, t)

(1)

where p(x, t) and q(x, t) are the density of proliferating and quiescent cells
(respectively) at time t with respect to the cyclin content x (see Section 2 for
a full description of the model). We proved the existence and uniqueness of a
steady state for this model in the case of healthy tissue.

In the present paper we are interested in the asymptotic behavior of the time
dependent solutions. We start by, in Section 3, proving the existence, for some
values of the parameters, of solutions of System (1) that do not depend on the
cyclin content and hence satisfy an ordinary differential equations system. We
analyze the complete asymptotic behavior of this ordinary differential equations
system showing that the unique nontrivial steady state (when it exists) is asymp-
totically stable under some conditions and unstable when the reverse conditions
hold. The instability appears through a Hopf bifurcation which leads to the ex-
istence of stable self-sustained oscillations of the populations. In Section 4 we
use a numerical scheme to illustrate the possible asymptotic behaviors of System
(1). We obtain, depending on the values of the parameters, existence of stable
and unstable equilibria as well as stable limit cycles. The numerical scheme is
based on a discretization of System (1) by means of a time invariant grid, called
the natural grid (see [3], [16], [1]) which is obtained by an explicit integration of
the characteristic equation.

The approximate solution is computed by means of a predictor-corrector
method which numerically integrates the system along the characteristics. It
also involves the numerical computations of integrals corresponding to the non
local term in the first equation in System (1). In contrast to [3], where the non-
local term just occurs in the boundary condition, we have to approximate the
integral value at any point of the grid. To avoid algorithmic complication we use
a trapezoidal quadrature rule (of second order accuracy). This explains the use of
a second order Runge-Kutta method and not a higher order one. The presence of
this non local term in System (1), modeling unequal cell division, is also the main
difference with respect to the model in [1] from the point of view of numerical
requirements.

Finally, in the Appendix we have performed two tests for the numerical scheme,
the first one comparing the numerical solution to an exact solution for a simplified
version of System (1) without non local terms, and the second one comparing the
numerical solutions of System (1) in the case of x-independent solutions with the
solutions of the corresponding ordinary differential system.
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2. The model

We consider the following first order nonlinear (nonlocal) partial differential
equations system
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where p(x, t) and q(x, t) are the density of proliferating and quiescent cells
(respectively) at time t with respect to the content of cyclin x ∈ (0, xM). Cells leave
the proliferating stage because of apoptosis (programmed cell death) that is as-
sumed to occur at a rate d1, because of cell division with rate F (x) or because of
transition to the quiescent stage that occurs according to a “leak” function L(x).

We denote the total weighted population by

N(t) = N(p(x, t), q(x, t)) :=

∫ xM

0

φ(x)p(x, t) + ψ(x)q(x, t)dx

where φ and ψ are positive bounded functions. Cells can leave the quiescent
stage because of apoptosis, that is assumed to occur at a rate d2 or because of
transition back to the proliferating stage that is assumed to occur according to
a “recruitment” function G which is assumed to be a smooth strictly decreasing
function of the total weighted population, satisfying G(0) > 0 and that G tends
to 0 when N goes to infinity (case of healthy tissue).

We assume that G, L and F are bounded, positive and continuous functions

and that F (x)
x

has a finite positive limit when x goes to 0 (implying in particular
F (0) = 0). Γ(x) represents the evolution speed of cyclin content with respect
to time. We assume that Γ ∈ C2[0, xM ], Γ(0) = Γ(xM ) = 0, Γ(x) > 0 for all
x ∈ (0, xM) and the lateral derivatives satisfy Γ′(0) > 0, Γ′(xM) < 0.

3. x-independent solutions

In this section we look for solutions of System (2) that do not depend on
the cyclin content x, that is, solutions of the form (p(t), q(t)). From the second
equation in (2) we obtain that, in order to have solutions that are independent
of x we must impose that the leak function is constant, that is, we must assume
L(x) = L0 > 0. From the first equation in (2) we then have that an x-independent
solution (p(t), q(t)) of (2) must satisfy the equality

ṗ(t) + Γ′(x)p(t) = −(L0 + F (x) + d1)p(t) + 2p(t)

∫ xM

x

F (y)

y
dy +G(N(t))q(t),
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or, equivalently

ṗ(t) = −(L0 + F (x) + Γ′(x) + d1 − 2

∫ xM

x

F (y)

y
dy)p(t) +G(N(t))q(t),

which implies that

L0 + F (x) + Γ′(x) + d1 − 2

∫ xM

x

F (y)

y
dy (3)

should be constant. Deriving, we have that the equality

F ′(x) + Γ′′(x) + 2
F (x)

x
= 0 (4)

must hold. Solving (4) and using that limx→0
F (x)

x
=: b <∞ we have that

F (x) = −
1

x2

∫ x

0

s2Γ′′(s)ds. (5)

Substituting (5) in (3) and avaluating at x = xM we have that

L0 + F (x) + Γ′(x) + d1 − 2

∫ xM

x

F (y)

y
dy = L0 + d1 − A

with

A =
1

x2
M

∫ xM

0

s2Γ′′(s)ds− Γ′(xM). (6)

Notice that, integrating the above equation on the interval (0, xM) we also get
A = 1

xM

∫ xM

0
F (x)dx.

So, System (2) has x-independent solutions (p(t), q(t)) if L(x) is a constant L0

and (5) holds. Conversely, if the same conditions hold and (p(t), q(t)) satisfis the
ordinary differential equations system

{

ṗ = (A− L0 − d1)p+G(N(t))q,

q̇ = L0p− (d2 +G(N(t))q,
(7)

where N := N(p, q) = p
∫ xM

0
φ(x)dx + q

∫ xM

0
ψ(x)dx =: k1p + k2q with k1, k2

positive real numbers and A given by (6), then (p(t), q(t)) is an x-independent
solution of System (2).

3.1. Equilibria. Let us now study the existence of equilibria of System (7)
(which will imply the existence of x-independent equilibria of System (2) un-
der the conditions above).

Proposition 1. System (7) has a unique non trivial equilibrium solution if and
only if the inequalities

A

d1 + L0

< 1 <
A

d1 + L0
d2

d2+G(0)

(8)

hold.
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Proof. A non trivial equilibrium solution (p̂, q̂) of System (7) satisfies:

0 = (A− L0 − d1)p̂+G(N̂)q̂

0 = L0p̂−
(

G(N̂) + d2

)

q̂

that is, p̂ = G(N̂)q̂
L0+d1−A

=

(

d2+G(N̂)
)

q̂

L0
, where N̂ = k1p̂+ k2q̂.

Since q̂ 6= 0 this is equivalent to

G(N̂) =
(L0 + d1 − A)d2

A− d1

. (9)

Since G is an strictly decreasing function that tends to zero then N tends to
infinity, there will be a unique solution, N̂ of (9) (and therefore a unique nontrivial
equilibrium point) if and only if

0 <
(L0 + d1 −A)d2

A− d1
< G(0).

And easy computation shows that the previous inequalities are equivalent
to (8). �

Remark 1. If we think of system (7) as a model for the dynamics of a population
with two groups of individuals where A denotes the per capita birth rate of the
first group, d1 and d2 the mortality rates and L0 and G(N) the transition rates
between the two groups, then the inequalities (8) can be interpreted using the
concept of the expected number of offspring of an individual in its lifespan R0

assuming a constant value of the “interaction” variable N . Indeed, let us compute
R0 for this model.

Let X be a random variable denoting the number of offspring in the lifespan of
an individual and Z be a random variable taking the value 0 if an individual taken
at random does not go to the quiescent stage, 1 if it goes once to the quiescent
stage and returns back to the proliferating one, and so on. Note that Z = 0
is the event that an exponentially distributed random variable with expected
value 1

L0
takes a value larger than another independent exponentially distributed

random variable with expected value 1
d1

and therefore P (Z = 0) = d1

d1+L0
. In

the same way we obtain that P (Z = 1) = L0

d1+L0

G(N)
d2+G(N)

d1

d1+L0
, P (Z = 2) =

(

L0

d1+L0

G(N)
d2+G(N)

)2 d1

d1+L0
, . . . , P (Z = k) =

(

P (Z=1)
P (Z=0)

)k
P (Z = 0).
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Then

R0(N) = E(X) =
∞
∑

k=0

E(X|Z = k)P (Z = k)

= E(X|Z = 0)P (Z = 0)
∞
∑

k=0

(

P (Z = 1)

P (Z = 0)

)k

=
A

d1

(

d1

d1 + L0

) ∞
∑

k=0

(

L0

d1 + L0

G(N)

d2 +G(N)

)k

=

(

A

d1 + L0

)(

1

1 − L0G(N)
(d1+L0)(d2+G(N))

)

=
A

d1 + L0
d2

d2+G(N)

where we have used that E(X|Z = k) = E(X|Z = 0) = A
d1

since System (7)

assumes that the second group of individuals do not reproduce, 1
d1

is the expected
lifetime of a reproducing individual and A the per capita and time unit fertility.

The inequalities (8) in Proposition 1 correspond to assuming R0(0) > 1 and
R0(∞) < 1 (recall that G(∞) = 0).

3.2. Asymptotic behavior.

Proposition 2. Let us assume that A

d1+L0
d2

d2+G(0)

≤ 1. Then the trivial equilibrium

is a global attractor of System (7).

Proof. First notice that if A ≤ d1 then (p + q). ≤ 0 and the claim follows. Now
let us assume A > d1 and notice that by hypothesis L0 + d1 −A > 0.

By the implicit function theorem, the isoclines of System (7) define functions
p = F1(q) and p = F2(q) respectively through the relations

p =
G(N(p, q))q

L0 + d1 − A
and p =

(

d2 +G(N(p, q))
)

q

L0

. (10)

We obviously have F1(0)=F2(0)=0. Moreover, for all positive q we have that
F1(q) < F2(q). Indeed, since A

d1+L0
d2

d2+G(0)

≤ 1 or, equivalently (L0 + d1 − A)d2 −

G(0)(A− d1) ≥ 0, G is strictly decreasing and A > d1 we have

(L0 + d1 −A)d2 −G(N)(A− d1) > 0

for all N > 0.
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Let us now assume that there exists a positive q̂ such that p̂2 := F2(q̂) ≤ F1(q̂) =:
p̂1. We will have

p̂2 =

(

d2 +G(N(p̂2, q̂))
)

q̂

L0

≤ p̂1 =
G(N(p̂1, q̂))q̂

L0 + d1 − A
.

Hence

(L0 + d1 − A)d2 −G(N(p̂2, q̂))(A− d1) ≤ L0(G(N(p̂1, q̂)) −G(N(p̂2, q̂))) ≤ 0

since p̂2 ≤ p̂1, N is increasing as function of p and G is decreasing; a contradiction.
Now notice that for any q0, the regions {(p, q) : q ≤ q0 and p ≤ F2(q)} are
positively invariant and that any trajectory eventually enters some of them since
limq→∞ F2(q) = ∞ and ṗ(t) < 0 if p(t) > F2(q(t)). These bounded regions cannot
contain periodic orbits due to the direction of the vectorial field on the isocline
lines. The statement about asymptotic behavior follows from the Bendixson
Poincaré theorem. �

Proposition 3. Let us assume that A
d1+L0

≥ 1. Then all the trajectories of

System (7) are unbounded.

Proof. Under this hypothesis only the isocline of horizontal vectorial field remains
in the open first quadrant. The direction of the vectorial field in the first quadrant
gives the statement. �

Remark 2. As before, the results can be interpreted in terms of R0. The as-
sumption in Proposition 2 is that R0 < 1 in ideal conditions (zero population
number) ensuring extinction. The assumption in Proposition 3 is that R0 > 1
in starvation conditions (infinite population number) giving rise to unbounded
population.

The two previous propositions give us the behavior of System (7) when there
is not nontrivial steady state. Under the hypotheses of Proposition 1, System (7)
has a unique non trivial steady state that can be written

(p̂, q̂) =

(

N̂d2

(A− d1)k2 + d2k1

,
N̂(A− d1)

(A− d1)k2 + d2k1

)

where N̂ is the unique solution of G(N̂) = (L0+d1−A)d2

A−d1
. Indeed, using (10) and

(9) we have p̂ = d2

A−d1
q̂ and so N̂ = k1p̂ + k2q̂ = (k1

d2

A−d1
+ k2)q̂ which clearly

implies the claim.

Theorem 3.1. Under the hypotheses of Proposition 1 the unique non trivial
steady state (p̂, q̂) of System (7) is (locally) asymptotically stable whenever
(

A − d1 − L0 − d2 − G(N̂) + q̂G′(N̂)(k1 − k2)
)

< 0 and it is unstable if the
reverse strict inequality holds. In particular it is asymptotically stable if k1 ≥ k2.
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Proof. The Jacobian matrix of System (7) at the steady state is given by

J(p̂, q̂) =

(

A− d1 − L0 + k1G
′(N̂)q̂ q̂k2G

′(N̂) +G(N̂)

L0 − q̂k1G
′(N̂) −q̂k2G

′(N̂) − (d2 +G(N̂)).

)

Denoting by λ1 and λ2 the two eigenvalues of J(p̂, q̂) and using (9) we have that

λ1λ2 = q̂G′(N̂)
(

k2(d1 − A) − k1d2

)

.

Under the hypotheses of Proposition 1 which imply A > d1 and since G′(N̂) < 0
we then always have that λ1λ2 > 0. On the other hand

λ1 + λ2 = A− d1 − L0 − d2 −G(N̂) + q̂G′(N̂)(k1 − k2),

giving the first statement. Assuming k1 ≥ k2 we obtain using (8), that λ1+λ2 < 0
which gives the second statement. �

Since the previous theorem reduces the study of the stability of the non triv-
ial steady state to the study of the sign of the trace of the Jacobian matrix,
in the following we choose particular forms of the function G and find reason-
able values of the parameters that make the trace negative and so give instability.

Let us take G(N) = G(0)e−cN and assume k2 > k1. Then using that G(N̂) =
(L0+d1−A)d2

A−d1
, q̂ = N̂(A−d1)

(A−d1)k2+d2k1
and denoting by A1 := A− d1 we have

λ1 + λ2 = A1−L0−d2−
(L0 − A1)d2

A1

+
N̂A1

A1k2 + d2k1

(

− c
(L0 − A1)d2

A1

)

(k1 − k2)

= A1−L0−d2−
(L0 − A1)d2

A1
−

ln

(

G(0)
(L0−A1)d2

A1

)

A1

A1k2 + d2k1

(

(L0 −A1)d2

A1

)

(k1 − k2)

We can see then that λ1 + λ2 < 0 is equivalent to

ln(G(0)) < ln
((L0 − A1)d2

A1

)

+
A1

d2
+ L0

L0−A1

k − 1
(k +

d2

A1
)

=: H(k, L0, A1, d2)

(11)

where we have denoted by k = k2

k1
(assuming k1 > 0). Then, a necessary and

sufficient condition for the eigenvalues to have negative real part is

G(0) < eH(k,L0,A1,d2). (12)

Whenever G(0) = eH(k,L0,A1,d2) we will have purely imaginary eigenvalues. Con-
sidering H as a function of A1 and d2 it can be seen that the infimum value of
H is

lim
A1→0

H(k, L0, A1, A1) = ln(L0) + 2
(k + 1

k − 1

)

. (13)
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Indeed, let us consider, for fixed k and L0, the function

h(u, v) = ln v + ln u+

(

1

u
+
L0

v

)

k + u

k − 1

defined on R
2+ and notice H(k, L0, A1, d2) = h( d2

A1
, L0 −A1). Then we will have

inf
{(A1,d2)∈R2+:A1<L0}

H(k, L0, A1, d2) = inf
{(A1,d2)∈R2+:A1<L0}

h(
d2

A1

, L0 − A1)

= inf
{(u,v)∈R2+ :v<L0}

h(u, v)

= h(1, L0) = lnL0 + 2
k + 1

k − 1
,

where the last but one equality is proven as follows. The function h is of class
C1 on R := {(u, v) ∈ R

2+ : v < L0} with limit equal to infinity at any point
of the two coordinate axes as well as when u tends to infinity, with no critical
points in R since ∂h

∂v
(u, v) = 1

v2 (v − L0
k+u
k−1

) < 0 for v < L0 and such that has a
(unique) minimum point on the remaining part of the boundary of R (v = L0,

i.e., A1 = 0) at u = 1 (d2 = A1) since ∂h
∂u

(u, L0) = (u+k)(u−1)
(k−1)u2 .

From (12) and (13) we have that, in particular, a sufficient condition for stabil-
ity is

G(0) < L0e
2
(

k+1
k−1

)

.

Moreover, if A1 = d2 and they are small enough, then the reverse inequality
gives instability. We use this to find moderate values of the parameters that lead
to instability of the steady state giving rise to a limit cycle as can be seen in
Figure 1. The case k1 = 0 can be analyzed in the same way.

Figure 1. Illustration with k = 6, A1 = d2 = 0.1, L0 =
0.2, G(0) = 7.5. Notice G(0) = 7.5 > eH(6,0.2,0.1,0.1) = 6.67 .
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In a similar way, taking G(N) = G(0)
1+Nn (which is the nonlinearity considered

in [6] and [7]) we can find values of the parameters that also lead to instability
of the steady state going to a limit cycle as can be seen in Figure 2.

Figure 2. Illustration with k = 4, n = 4, A1 = 0.1, d2 = 0.12,
L0 = 0.5, G(0) = 6.5.

4. Numerical simulation

We now go back to the full problem (2) and describe a numerical scheme
and the numerical results obtained by using it. In particular we emphasize the
asymptotic behavior of x-dependent solutions, showing the existence of stable
and unstable equilibria, as well as stable limit cycles, depending on the different
values of the parameters. To begin with, following the lines of [3], we build up
the so-called natural grid, i.e. a grid such that, in the case of a single equation,
which is the situation in

[3], consists of a set of points {(xi, tj) : −1 ≤ i ≤ n + 1, 0 ≤ j ≤ m} in such
a way that (xi−1, tj−1) and (xi, tj) belong to the same characteristic line. Notice
that (2) is a system of two first order partial differential equations and conse-
quently, it has two families of (base) characteristic lines. This fact in general
would complicate the build up of a natural grid, which should be such that the
points of the grid are intersection points of characteristics of the two families.
Fortunately, the equations in (2) are autonomous and moreover, the characteris-
tics of the second one are straight vertical lines in the plane (x, t). This allows
to extend the procedure of [3] to our case, and we shall obtain a rectangular
grid (with edges parallel to the coordinate axes) with uniform time step size and
nonuniform x step size. On the other hand, since Γ vanishes at both ends of
the interval (0, xM), x = 0 and x = xM will be characteristic lines (for both
equations) whereas the other characteristics (of the first equation) will not cross
the ends of the interval.
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Let us call Ψ(t; s, x) the solution of the initial value problem for the characteristic
equation

z′(t) = Γ(z(t)), z(s) = x,

and let us also define Φ(t, x) = Ψ(t; 0, x). Unlike [3] we assume that this equa-
tion can be solved explicitly and so we have the exact solution. Indeed, our
computations are all based in taking xM = 1 and Γ(x) = x(1 − x). We begin
by choosing an arbitrary (small) positive number x0 and compute T such that
Φ(T, x0) = 1− x0. Then we take n = [T max(Γ)/x0] + 1 (here [ ] stands for the
integer part), the time step size h = T/n, a natural number m ≥ n and the grid
defined by:

G = {(xi, tj) : tj = jh, j = 0, ..., m, xi = Φ(ti, x0), i = 0, ..., n, x−1 = 0, xn+1 = 1}.

and notice that

xi = Φ(ti, x0) = Φ(h,Φ(ti−1, x0)) = Φ(h, xi−1)

and so xi − xi−1 ≤ max(Γ)h ≤ x0. Hence, the size of the x steps is bounded
by x0.
We will use this grid to compute an approximate solution of the initial value
problem for (2), with initial conditions p(x, t) = p0(x) and q(x, t) = q0(x).

Now we explain how to compute the approximate solution at time tj given
an approximate solution till time tj−1. Let us assume that we already have an
approximate solution up to time step j − 1 (for some j ≥ 1) given by the values
(pj−1

i , qj−1
i ), at the points (xi, tj−1), i = −1, ..., n + 1, taking into account that

p0
i = p0(xi), q0

i = q0(xi), and let us assume that (p(x, t), q(x, t)) is an exact

solution to (2) such that p(xi, tj−1) = pj−1
i and q(xi, tj−1) = qj−1

i . Let us also call

S(x, t) = 2
∫ 1

x

F (y)
y
p(y, t)dy and N(t) :=

∫ 1

0
φ(x)p(x, t) + ψ(x)q(x, t)dx.

Now we define, for i = 1, ..., n, Pi(t) = p(Ψ(t; tj−1, xi−1), t) and, for i =
−1, ..., n+ 1, Qi(t) = q(xi, t). We also define f(x, p, q, S,N) := −[Γ′(x) + L(x) +
F (x) + d1]p + G(N)q + S and g(x, p, q, N) := L(x)p − (G(N) + d2)q. We will
have, for i = 1, . . . , n, the following ordinary differential equations

dPi

dt
(t) = pt(Ψ(t; tj−1, xi−1), t) + px(Ψ(t; tj−1, xi−1), t)Ψt(t; tj−1, xi−1)

= pt(Ψ(t; tj−1, xi−1), t) + Γ(Ψ(t; tj−1, xi−1))px(Ψ(t; tj−1, xi−1), t)

= f
(

Ψ(t; tj−1, xi−1), Pi(t), q(Ψ(t; tj−1, xi−1), t),

S(Ψ(t; tj−1, xi−1), t), N(t)
)

,

Pi(tj−1) = p(xi−1, tj−1) = pj−1
i−1 ,
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and, for i = −1, ..., n + 1,

dQi

dt
(t) = g(xi, p(xi, t), q(xi, t), N(t)),

Qi(tj−1) = q(xi, tj−1) = qj−1
i .

Notice that the boundary values of P have to be treated specially, and in fact,
the following holds for P−1(t) = p(0, t):

dP−1

dt
(t) = f(0, P−1(t), q(0, t), S(0, t), N(t)), P−1(tj−1) = pj−1

−1 ,

and the following for Pn+1(t) = p(1, t):

dPn+1

dt
(t) = f(1, Pn+1(t), q(1, t), 0, N(t)), Pn+1(tj−1) = pj−1

n+1.

So the next time step approximate solution, i.e., the values of the pair (pj
i , q

j
i ) =

(p(xi, tj), q(xi, tj)), i = −1, ..., n + 1, except pj
0, can be approximately computed

as the approximate values of (Pi(tj), Qi(tj)) by means of a (single step applica-
tion of an) explicit two stages Runge-Kutta method as the Heun’s method or
predictor-corrector method. Of course, the computation of the values of f and
g involve quadratures (the values of N(tj−1) and of S(xi, tj−1)) which are simply

approximated by the trapezoidal rule. The value of pj
0 is obtained by interpo-

lation using pj
−1 and pj

1 since there is no previously computed value of p on the
characteristic line through (x0, tj).

Going to some details, the numerical scheme works as follows. Let us first use
the initial conditions to set p0

i = p0(xi), q
0
i = q0(xi), i = −1, ..., n + 1. Then,

assuming we know pj−1
i and qj−1

i for i = −1, ..., n+1 and some j ≥ 1, we compute
the approximate solution for the next time step j in two steps. For the first one,
let us set, using the trapezoidal rule,

N j−1 =

n
∑

i=−1

(φ(xi)p
j−1
i + ψ(xi)q

j−1
i + φ(xi+1)p

j−1
i+1 + ψ(xi+1)q

j−1
i+1 )

xi+1 − xi

2
,

Sj−1
n+1 = 0, and,

Sj−1
i = 2

n
∑

k=i

(
F (xk)p

j−1
k

xk

+
F (xk+1)p

j−1
k+1

xk+1
)
xk+1 − xk

2

for i = −1, ..., n (here F (x
−1)

x
−1

means limx→0+
F (x)

x
). Then we compute

kj
p,−1 = f(x−1, p

j−1
−1 , q

j−1
−1 , S

j−1
−1 , N

j−1),

kj
p,i = f(xi−1, p

j−1
i−1 , q

j−1
i−1 , S

j−1
i−1 , N

j−1) i = 1, . . . , n,

kj
p,n+1 = f(xn+1, p

j−1
n+1, q

j−1
n+1, S

j−1
n+1, N

j−1),

and kj
q,i = g(xi, p

j−1
i , qj−1

i , N j−1) for i = −1, ..., n+ 1.
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Then we define the “predicted” values for p and q as

p∗j−1 = pj−1
−1 + hkj

p,−1,

p∗ji = pj−1
i−1 + hkj

p,i i = 1, ..., n,

p∗jn+1 = pj−1
n+1 + hkj

p,n+1

and q∗ji = qj−1
i + hkj

q,i i = −1, ..., n + 1. As we have already said, the value of

p∗j0 is obtained by interpolation. Namely, p∗j0 = p∗j−1(1 −
x0

x1
) + p∗j1

x0

x1
.

For the second step, almost as above, we set

N∗j =

n
∑

i=−1

(φ(xi)p
∗j
i + ψ(xi)q

∗j
i + φ(xi+1)p

∗j
i+1 + ψ(xi+1)q

∗j
i+1)

xi+1 − xi

2
,

S∗j
n+1 = 0, and,

S∗j
i = 2

n
∑

k=i

(
F (xk)p

∗j
k

xk

+
F (xk+1)p

∗j
k+1

xk+1
)
xk+1 − xk

2

for i = −1, ..., n (with the same meaning as above of F (x
−1)

x
−1

).

Analogously as above we now compute,

k∗jp,i = f(xi, p
∗j
i , q

∗j
i , S

∗j
i , N

∗j)

for i = −1, ..., n+ 1 except i = 0, and

k∗jq,i = g(xi, p
∗j
i , q

∗j
i , N

∗j) i = −1, ..., n+ 1.

Finally we take the following “predicted-corrected” values for p and q,

pj
−1 = pj−1

−1 +
h

2
(kj

p,−1 + k∗jp,−1),

pj
i = pj−1

i−1 +
h

2
(kj

p,i + k∗jp,i) i = 1, . . . , n,

pj
n+1 = pj−1

n+1 +
h

2
(kj

p,n+1 + k∗jp,n+1)

and qj
i = qj−1

i + h
2
(kj

q,i + k∗jq,i) i = −1, ..., n + 1,

and, again by interpolation, pj
0 = pj

−1(1 − x0

x1
) + pj

1
x0

x1
.

We have performed some tests of validity of the numerical scheme which are
developed in the appendix. The first one consists in the comparison between
the approximate solution given by the method and the exact solution to a local
partial differential system with the same main part (i.e., the part containing the
partial derivatives) as System (2). In the second one we compare the approximate
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solution given by the method in the case when there are x-independent solutions,
i.e., when L(x) ≡ L0, F (x) = 2x

3
(since (5) with Γ(s) = s(1 − s)), and the initial

conditions are x-independent with the “exact” solution of System (7).

Applying the numerical scheme to System (2) we observe different kind of be-
havior depending on the parameter values that we show in Figures 3,4 and 5.

Note that in order to attain a particular final time (different and not an integer
multiple of T defined at the beginning of the section) we have modified slightly
the construction of the natural grid.
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Figure 3. Illustration for oscillation behavior with numerical pa-
rameters x0 = 0.02, Tf = 80, n = 98, m = 980, h = 0.0816 and
with the model parameters L(x) = 0.4 − x

4
, F (x) = 0.9x, d1 =

0.2333, d2 = 0.12, G(x) = 8
1+x5 , φ(x) ≡ 1, ψ(x) ≡ 5 and p(x, 0) =

1 − x, q(x, 0) = 1 − x2.

5. Appendix

The first test that we have performed compares the approximate solution given
by the method and the exact solution of the following system

{

∂
∂t
u(x, t) + ∂

∂x

(

x(1 − x)u(x, t)
)

= u(x, t) + v(x, t),

∂
∂t
v(x, t) = −v(x, t),

(14)

for t > 0 and x ∈ [0, 1], supplemented by initial conditions of the form u(x, 0) =
u0(x) and v(x, 0) = v0(x). System (14) can be obviously reduced to a single p.d.e.
of the form

∂

∂t
u(x, t) + x(1 − x)

∂

∂x
u(x, t) = 2xu(x, t) + v0(x)e−t, u(x, 0) = u0(x).
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Figure 4. Illustration for convergence to equilibria behavior with
x0 = 0.02, Tf = 55, n = 98, m = 980, h = 0.056 and with the pa-
rameters L(x) = 0.4 − x

4
, F (x) = 0.6x, d1 = 0.1, d2 = 0.15, G(x) =

5
1+x2 , φ(x) ≡ 1, ψ(x) ≡ 3 and p(x, 0) = 1 − x, q(x, 0) = 1 − x2.
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Figure 5. Illustration for extinction behavior with x0 =
0.02, Tf = 10, n = 100, m = 125, h = 0.08 and with the parameters
L(x) = 0.4 − x

4
, F (x) = x, d1 = 0.7, d2 = 1, G(x) = 5

1+x2 , φ(x) ≡

1, ψ(x) ≡ 5 and p(x, 0) = 1 − x, q(x, 0) = 1 − x2.

Assuming that u0 and v0 are C1 functions, the method of characteristics yields
an explicit solution of the above problem in the form

u(x, t) =

[

etΦ(−t, x)

x

]2

u0(Φ(−t, x)) +
xe−t

(1 − x)3
[F (x) − F (Φ(−t, x))],

s ∈ (0, 1), t ∈ R,
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where Φ(t, x) is given, as above, by the solution of the initial value problem

z′(t) = Γ(z(t)), z(0) = x,

and F is a primitive of the function ( 1
y
−1)2v0(y). This can be checked by means

of a straightforward but tedious computation. Obviously, v(x, t) = v0(x)e−t.

The numerical scheme for this system has to be adapted somehow and of
course it turns to be simpler. In particular, we simply have f(x, u, v) = 2xu+ v,
g(x, u, v) = −v.

Table 1 shows the comparative results when one chooses u0(x) = 1 − x2 and
v0(x) = x2. The column “error” (relative error in L1 norm) is evaluated as

∫ 1

0
(|ua(x, t) − u(x, t)|dx+

∫ 1

0
|va(x, t) − v(x, t)|dx

∫ 1

0
(|u(x, t)| + |v(x, t)|)dx

,

where the subscript “a” refers to “approximate”. Here we consider Tf = 1.

Table 1.

x0 n h m CPU time in seconds error

0.02 117 0.0666 15 - 1.5 · 10−3

0.015 168 0.05 20 0.5 8.7 · 10−4

0.01 230 0.04 25 1 5.5 · 10−4

0.005 530 0.02 50 4.7 1.4 · 10−4

0.002 1612 0.0077 130 42 2.1 · 10−5

0.001 3519 0.00392 255 228 5.6 · 10−6

The second test that we have performed compares the approximate solution
given by the numerical method with the solution of the ordinary differential
System (7) for values of the parameters that give x-independent solutions and
convergence to the steady state. The parameters used are L(x) = 0.4, F (x) =
2x
3
, φ(x) = 1, ψ(x) = 3, d1 = 0.1333, d2 = 0.15, G(N) = 5

1+N2 and the initial

conditions p(x, 0) = 1 and q(x, 0) = 0.7. The results are shown in Table 2.

In Table 3 the parameters have been chosen like in Figure 2 in such a way that
we compare approximate solutions given by the method and solutions to Sys-
tem (7) in the case of oscillations. The parameters used are L(x) = 0.5, F (x) =
2x
3
, φ(x) = 1, ψ(x) = 4, d1 = 0.2333, d2 = 0.12, G(N) = 6.5

1+N4 and the initial con-
ditions p(x, 0) = 0.25 and q(x, 0) = 0.45.
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Table 2.

Tf x0 n h m CPU time in seconds error

1 0.1 22 0.2 5 < 0.1 5 · 10−5

0.05 59 0.1 10 < 0.1 1.3 · 10−5

0.01 230 0.04 25 2.5 2 · 10−6

0.002 1612 0.0077 130 99 5 · 10−8

10 0.1 12 0.333 30 0.2 1.7 · 10−5

0.05 30 0.2 50 1 5.8 · 10−5

0.01 234 0.0385 260 18 2.1 · 10−6

0.002 1554 0.00772 1295 1000 1 · 10−7

50 0.1 11 0.4545 110 1 8.9 · 10−9

0.05 30 0.1666 300 5 1.3 · 10−9

Table 3.

Tf x0 n h m CPU time in seconds error

1 0.1 22 0.2 5 < 0.1 5.6 · 10−4

0.01 230 0.04 25 4 2.4 · 10−5

0.002 1612 0.0077 130 122 1.7 · 10−6

10 0.1 12 0.333 30 < 1 2.6 · 10−3

0.01 234 0.0385 260 37 4 · 10−5

50 0.1 11 0.4545 110 1 0.02

0.05 30 0.1666 300 7 3.3 · 10−3
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