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Abstract. We present a new a-priori estimate for discrete coagulation-
fragmentation systems with size-dependent diffusion within a bounded, regular
domain confined by homogeneous Neumann boundary conditions. Following
from a duality argument, this a-priori estimate provides a global L2 bound
on the mass density and was previously used, for instance, in the context of
reaction-diffusion equations.

In this paper we demonstrate two lines of applications for such an estimate:
On the one hand, it enables to simplify parts of the known existence the-
ory and allows to show existence of solutions for generalised models involving
collision-induced, quadratic fragmentation terms for which the previous exis-
tence theory seems difficult to apply. On the other hand and most prominently,
it proves mass conservation (and thus the absence of gelation) for almost all
the coagulation coefficients for which mass conservation is known to hold true
in the space homogeneous case.

1. Introduction

We consider the time evolution of a physical system where a set of particles
can aggregate into groups of two or more, called clusters, and where these clus-
ters can diffuse in space with a diffusion constant which depends on their size.
If we represent space by an open bounded set Ω ⊆ RN with regular boundary,
the initial-boundary problem for the concentrations ci = ci(t, x) ≥ 0 of clusters
with integer size i ≥ 1 at position x ∈ Ω and time t ≥ 0 is given by the dis-
crete coagulation-fragmentation system of equations with spatial diffusion and
homogeneous Neumann boundary conditions :

∂tci − di∆xci = Qi + Fi for x ∈ Ω, t ≥ 0, i ∈ N∗,(1a)

∇xci · n = 0 for x ∈ ∂Ω, t ≥ 0, i ∈ N∗,(1b)

ci(0, x) = c0
i (x) for x ∈ Ω, i ∈ N∗,(1c)
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where n = n(x) represents a unit normal vector at a point x ∈ ∂Ω, di is the
diffusion constant for clusters of size i, and

Qi ≡ Qi[c] := Q+
i −Q−i :=

1

2

i−1∑
j=1

ai−j,j ci−j cj −
∞∑
j=1

ai,j ci cj,

Fi ≡ Fi[c] := F+
i − F−i :=

∞∑
j=1

Bi+j βi+j,i ci+j −Bi ci.

(2)

The parameters Bi, βi,j and ai,j, for integers i, j ≥ 0, represent the total rate Bi

of fragmentation of clusters of size i, the average number βi,j of clusters of size
j produced due to fragmentation of a cluster of size i, and the coagulation rate
ai,j of clusters of size i with clusters of size j. We refer to these parameters as
the coefficients of the system of equations. They represents rates, so they are
always nonnegative; single particles do not fragment further, and mass should be
conserved when a cluster fragments into smaller pieces, so one always imposes

ai,j = aj,i ≥ 0, βi,j ≥ 0, (i, j ∈ N∗),(3a)

B1 = 0, Bi ≥ 0, (i ∈ N∗),(3b)

i =
i−1∑
j=1

j βi,j, (i ∈ N, i ≥ 2).(3c)

In fact, the last condition (3c) implies the conservation of the total mass∫
Ω

∑∞
i=1 i ci dx, which becomes obvious from the following formal fundamental

identity or weak formulation of the coagulation and fragmentation operators:
Consider a sequence of nonnegative numbers {ci}, and define Qi, Fi as in eqs. (2),
then, for any sequence of numbers ϕi,

∞∑
i=1

ϕiQi =
1

2

∞∑
i=1

∞∑
j=1

ai,j ci cj (ϕi+j − ϕi − ϕj),

∞∑
i=1

ϕi Fi = −
∞∑
i=2

Bici

(
ϕi −

i−1∑
j=1

βi,jϕj

)
.

(4)

As a (still formal) consequence for solutions {ci} of (1) – (2), one can calculate
the time derivative of the integral of the moment

∑
ϕici to obtain

(5)
d

dt

∫
Ω

∞∑
i=1

ϕici =

∫
Ω

∞∑
i=1

ϕi(Qi + Fi),

since the integral of the diffusion part vanishes due to the homogeneous Neumann
boundary condition. By choosing ϕi := i above and thanks to (3c), we have
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i=1 i Qi =

∑∞
i=1 i Fi = 0, and the total mass is formally conserved :

(6) ‖ρ(t, ·)‖L1 =

∫
Ω

∞∑
i=1

ici(t, x) dx =

∫
Ω

∞∑
i=1

ic0
i (x) dx =

∥∥ρ0
∥∥
L1 (t ≥ 0).

Our main aim in this work is to provide some new bounds on the regularity
of weak solutions for system (1) – ((2)) by means of techniques developed in the
context of reaction-diffusion equations [9, 16, 17], and to give three applications
to those bounds, the main one proving rigorously (for almost all the coefficients
where this is true in the homogeneous case) mass conservation (6) and thus
the absence of gelation, a well-known phenomenon in coagulation-fragmentation
models [11, 10], where the formal conservation of mass is violated as clusters of
infinite size are formed.

In this paper we will work with the global weak solutions constructed in [15]
under the assumption

(7) lim
j→+∞

ai,j
j

= lim
j→+∞

Bi+j βi+j,i
i+ j

= 0, (for fixed i ≥ 1),

which were later extended in [20] to the case of Ω = RN . The notion of solution
is the following, which we take from [15]:

Definition 1.1. A global weak solution c = {ci}i≥1 to (1) – (2) is a sequence of
functions ci : [0,+∞)× Ω→ [0,+∞) such that for each T > 0,

ci ∈ C([0, T ];L1(Ω)), i ≥ 1,(8)
∞∑
j=1

ai,jcicj ∈ L1([0, T ]× Ω),(9)

sup
t≥0

∫
Ω

[ ∞∑
i=1

ici(t, x)

]
dx ≤

∫
Ω

[ ∞∑
i=1

ic0
i (x)

]
dx,(10)

and for each i ≥ 1, ci is a mild solution to the i-th equation in (1a), that is,

(11) ci(t) = ediA1tc0
i +

∫ t

0

ediA1(t−s)Qi[c(s)] ds, t ≥ 0,

where Qi[c] is defined in by (2), A1 denotes the closure in L1(Ω) of the unbounded
linear operator A of L2(Ω) defined by

(12) D(A) := {w ∈ H2(Ω) | ∇w · n = 0 on ∂Ω}, Aw = ∆w,

and ediA1t is the C0-semigroup generated by diA1 in L1(Ω).

The existence result of [15] reads:

Theorem 1.2 (LM02). Assume hypotheses (3) and (7) on the coagulation and
fragmentation coefficients. Assume also that

di > 0 for all i ≥ 1,
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and that the non-negative initial datum has finite mass:

c0
i ≥ 0 on Ω and

∫
Ω

∞∑
i=1

i c0
i < +∞.

Then, there exists a global weak solution to the initial-boundary problem (1) – (2)
in the sense of Definition 1.1.

Under the extra assumptions on the diffusion constants and the initial data

0 < inf
i
{di} =: d, D := sup

i
{di} < +∞,(13)

∞∑
i=1

ic0
i ∈ L2(Ω),(14)

we are in fact able to prove the following L2 bound on the mass density ρ(t, x) :=∑∞
i=1 i ci(t, x): Denoting by ΩT the cylinder [0, T ]× Ω, we have the

Proposition 1.3. Assume that (3), (7), (13) and (14) hold. Then, for all T > 0
the mass ρ of a weak solution to system (1) – (2) (given by Theorem 1.2) lies in
L2(ΩT ) and the following estimate holds:

(15) ‖ρ‖L2(ΩT ) ≤
(

1 +
supi{di}
infi{di}

)
T ‖ρ(0, ·)‖L2(Ω).

Remark 1.4. Note that the assumption (7) is only included in Proposition 1.3
in order to ensure the existence of a weak solution via Theorem 1.2. Without
assumption (7) the bound (15) would still hold for smooth solutions of a truncated
version of system (1) – (2) uniformly with respect to the truncation. See [15] for
the details of such a truncation.

In addition to Proposition 1.3, we give a new proof of an L1 bound of the
various coagulation and fragmentation terms:

Proposition 1.5. We still assume that (3), (7), (13) and (14) hold. Then,
for all T > 0 and i ∈ N∗ all the terms Q+

i , Q−i , F+
i and F−i associated to a

weak solution to system (1)–(2) (given by Theorem 1.2) lie in L1(ΩT ) with a
bound, which depends in an explicit way on the coagulation and fragmentation
coefficients, the diffusion coefficients, and the initial data c0

i .

Remark 1.6. The fact that the terms Q+
i , Q−i , F+

i and F−i associated to a weak
solution are in L1(ΩT ) is included in the definition of weak solution; the main
content of Proposition 1.5 is the explicit dependence of the bounds on the co-
efficients and initial data, which can be used to obtain uniform estimates for
approximated solutions as we show for instance in section 3. For details on the
explicit L1 bounds we refer to the proof of Proposition 1.5 in section 2.
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Remark 1.7. The L1 bounds on Q+
i , Q−i , F+

i and F−i require the assumption (7)
only to ensure existence. They would hold at the formal level (that is, for smooth
solutions of a truncated system) under the less stringent assumption

(16) Ki := sup
j∈N

Bi+j βi+j,i
i+ j

< +∞ (i ∈ N∗).

Note that the above L1 bound also holds when assumptions (3), (7) are replaced
by the assumptions of Theorem 1.2 in [15], but the proof is then much more
difficult as it requires an induction on i which can be removed under our extra
assumptions.

In section 3, as a first application of the bounds obtained in Propositions 1.3
and 1.5, we give a very simple proof of existence of weak solutions to (1)–(2) in
dimension N = 1 (that is, the result of Theorem 1.2 in dimension 1) under the
additional assumptions (3) and (7).

Our main application of the Propositions 1.3 and 1.5 is however related to
the problem of conservation of mass (6), which holds rigorously for solutions
to a truncated system (see e.g [15]). Nevertheless, it is an important issue in
coagulation-fragmentation theory whether (6) holds for weak solutions of system
(1) – (2) itself, or if (6) is replaced by an inequality stating that mass in non-
increasing in time. If at some time t, the identity (6) does not hold any more,
we say that gelation occurs, which means from a physical point of view that a
macroscopic object has been created.

Our main result in Section 4 shows basically that (under the assumptions (3)
and (7)) gelation does not occur when the coagulation coefficients ai,j are at most
linear and, moreover, slightly sublinear far off the diagonal i = j. More precisely,
we prove mass conservation under the following condition on the coefficients ai,j:

Hypothesis 1.8. There is some bounded function θ : [1,+∞) → (0,+∞) such
that θ(x)→ 0 when x→ +∞ and

(17) ai,j ≤ (i+ j) θ(j/i) for all j ≥ i.

(Or equivalently, by symmetry,

ai,j ≤ (i+ j) θ(max{j/i, i/j}) for all i, j ≥ 1.)

Theorem 1.9. Assume that (3), (7), (13), and (14) hold. Also, assume Hy-
pothesis 1.8. Then, the weak solution to the system (1) given by Theorem 1.2
has a superlinear moment which is bounded on bounded time intervals; this is,
there is some increasing function C = C(T ) > 0, and some increasing sequence
of positive numbers {ψi}i≥1 with

(18) lim
i→∞

ψi → +∞
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such that for all T > 0,

(19)

∫
Ω

∞∑
i=1

i ψici ≤ C(T ) for all t ∈ [0, T ).

As a consequence, under these conditions all weak solutions of (1) conserve mass:

(20)

∫
Ω

ρ0(x) dx =

∫
Ω

ρ(t, x) dx for all t ≥ 0.

Remark 1.10 (Admissible coagulation coefficients). Let us comment on Hypoth-
esis 1.8. First note that Hypothesis (1.8) includes coefficients of the form

ai,j ≤ Cst (iα jβ + iβ jα)

for any α, β > 0 such that α + β ≤ 1 (take θ(x) = x−ε for ε > 0 small enough).
It is also satisfied when

ai,j ≤ Cst

(
i

φ(i)
+

j

φ(j)

)
,

where φ is any positive strictly increasing function (for x big enough), which goes
to infinity at infinity such that x 7→ x

φ(x)
is also increasing (take θ(λ) = φ(λ)−1/2).

All the examples φ(x) = log(1 + x), φ(x) = log(1 + x) ◦ log(1 + x), . . . , φ(x) =
log(1 + x) ◦ · · · ◦ log(1 + x))) satisfying this condition. Likewise, the condition
holds also when

aij < Cst

(
i
R(log j)

log i
+ j

R(log i)

log j

)
for some function R such that R(x)/x→ 0 when x→ +∞.

Before introducing a generalised coagulation-fragmentation model and thus, a
third application of the Propositions 1.3 and 1.5, let us briefly review previous re-
sults on existence theory and mass conservation for the coagulation-fragmentation
system (1). With some further restrictions on the coefficients as compared to
[15], existence of solutions by means of L∞ bounds on the ci has been proven in
[3, 7, 13, 18, 19]. A different technique was used in [1] to prove that equation (1)
is well posed, locally in time, and globally in time when the space dimension N
is one, always assuming that the coagulation and fragmentation coefficients are
bounded.

In a recent work [14], Hammond and Rezakhanlou considered equation (1)
without fragmentation, and gave L∞ bounds on moments of the solution (and
as a consequence, L∞ bounds on the ci). This implies uniqueness and mass
conservation for some coagulation coefficients that grow at most linearly as well
as an alternative proof of the existence of L∞ solutions by a-priori bounds on
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the ci; for instance, if Ω = RN and diffusion coefficients di are nonincreasing and
satisfying (13) and if moreover

∞∑
i=1

i c0
i ∈ L∞(RN),

∞∑
i=1

i2 c0
i ∈ L1(RN), ai,j ≤ C (i+ j)

for some C > 0 and all i, j ≥ 1, then they show that mass is conserved for all
weak solutions of eq. (1) without fragmentation. See [14, Theorems 1.3 and 1.4]
and [14, Corollary 1.1] for more details.

In the spatially homogeneous case, mass conservation is known for general
data with finite mass and coagulation coefficients including the critical linear
case ai,j ≤ Cst(i+ j) (see, for instance, [2, 5]).

We finally give a third application of the Propositions 1.3 and 1.5. As men-
tioned already in the Remarks 1.4 and 1.7, Propositions 1.3 and 1.5 (despite true
without restrictions on the coagulation coefficients ai,j for smooth approximating
solutions) do not really improve the theory of existence of weak solutions for the
usual models of coagulation-fragmentation like (1) as the full assumption (7) are
needed in passing to the limit in the approximating solutions. At best they help
provide simpler proofs in particular cases, as done in section 3.

On the other hand, Propositions 1.3 and 1.5 are well suited for the existence
theory of more exotic models, for instance, when fragmentation occurs due to
binary collisions between clusters. Then, the break-up terms are quadratic, being
proportional to the concentration of the two clusters which collide. This leads
to coagulation-fragmentation models where all terms in the right hand side are
quadratic.

More precisely, we consider that clusters of size k and l collide with a rate
bk,l ≥ 0, leading to fragmentation. As a consequence, clusters of size i < max{k, l}
are produced, in average, at a rate βi,k,l ≥ 0 in such a way that the mass is
conserved (that is,

∑
i<max{k,l} i βi,k,l = k+ l). This leads to the following system

(for t ∈ R+, x ∈ Ω a bounded regular open subset of RN):

(21) ∂tci − di ∆xci =
1

2

∑
k+l=i

ak,l ck cl −
∞∑
k=1

ai,k ci ck

+
1

2

∞∑
k,l=1

∑
i<max{k,l}

bk,l ck cl βi,k,l −
∞∑
k=1

bi,k ci ck (i ∈ N∗),

together with the initial and boundary conditions (1b), (1c). For this model, the
set of assumptions (3) is replaced by
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ai,j = aj,i ≥ 0, (i, j ∈ N∗),(22a)

βi,k,l = βi,l,k ≥ 0, (i, k, l ∈ N∗, i < max{k, l}),(22b)

bi,k = bk,i ≥ 0, b1,1 = 0, (i, k ∈ N∗, i < k),(22c) ∑
i<max{k,l}

i βi,k,l = k + l, (k, l ∈ N∗).(22d)

Because of the quadratic character of the fragmentation terms, the inductive
method for the proof of existence devised by Laurençot-Mischler [15] seems dif-
ficult to adapt in this case. The method presented in our first application can
however be adapted, provided that the dimension is N = 1 and that the following
assumptions are made on the coefficients:

Hypothesis 1.11. Assume (22), and suppose that the diffusion coefficients are
uniformly bounded above and below (eq. (13)) and that the initial mass lies in
L2(Ω) (eq. (14)). In place of (7) we assume further that

lim
l→∞

ak,l
l

= 0, lim
l→∞

bk,l
l

= 0, (k, l ∈ N∗),(23)

lim
l→∞

sup
k

{
bk,l
kl

βi,k,l

}
= 0. (i, k, l ∈ N∗),(24)

We define a solution to (21) along the same lines as in Definition 1.1:

Definition 1.12. A global weak solution c = {ci}i≥1 to (21), the boundary condi-
tion (1b) and the initial data (1c) is a sequence of functions
ci : [0,+∞)× Ω→ [0,+∞) such that for each T > 0,

(25) ci ∈ C([0, T ];L1(Ω)), i ≥ 1,

the four terms on the r.h.s. of (21) are in L1([0, T ]× Ω),

(26) sup
t≥0

∫
Ω

[ ∞∑
i=1

ici(t, x)

]
dx ≤

∫
Ω

[ ∞∑
i=1

ic0
i (x)

]
dx,

and for each i ≥ 1, ci is a mild solution to the i-th equation in (21), that is,

ci(t) = ediA1tc0
i +

∫ t

0

ediA1(t−s)Zi[c(s)] ds, t ≥ 0,

where Zi[c] represents the right hand side of (21) and A1, ediA1t are the same as
in Definition 1.1.

We are now able to prove the following theorem:
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Theorem 1.13. Under Hypothesis 1.11 on the coefficients and initial data of the
equation, and in dimension N = 1, there exists a global weak solution to eq. (21)
satisfying

(ci)i∈N∗ ∈ C([0, T ], L1(Ω)) ∩ L3−ε(ΩT ) (for all T > 0, ε > 0),

for which the four terms appearing in the right hand side of (21) lie in L1(ΩT ).

Remark 1.14. The method of proof unfortunately does not seem to provide exis-
tence in dimensions N ≥ 2. Dimension N = 2 looks in fact critical as it doesn’t
allow a-priori a bootstrap in the heat equation with right hand side in L1. A pos-
sible line of proof could follow [12] in the context of reaction-diffusion equations.
In higher dimensions N ≥ 3, assuming additionally a detailed balance relation
between coagulation and fragmentation, an entropy based duality method as in
[9] could be used to define global weak L2 solutions (see also [16]).

Our paper is built in the following way: Section 2 is devoted to the proof of
Propositions 1.3 and 1.5. Then Sections 3, 4, and 5 are each devoted to one of
the three applications. In particular, Theorem 1.9 is proven in Section 4 first
in a particular case (with a very short proof), and then in complete generality.
Theorem 1.13 is proven in Section 5. Finally, an Appendix is devoted to the proof
of a Lemma of duality due to M. Pierre and D. Schmitt (cf. [17]), which is the
key to Proposition 1.3.

2. A new a priori estimate

The solutions given in [15] are constructed by approximating the system (1)–
(2) by a truncated system (the procedure consists in setting the coagulation and
fragmentation coefficients to zero beyond a given finite size, and a smoothing the
initial data) for which very regular solutions exist. Then, uniform estimates for
the solutions of this approximate system are proven. Finally, it is shown that
these solutions have a subsequence which converges to a solution to the original
system. In the proofs below it must be understood that the bounds are obtained
for the truncated system (in a uniform way) and then transfered to the weak
solution by a passage to the limit: the fact that this transfer can be done (in
the case of the total mass) without replacing the equality by an inequality is the
heart of our second application.

We begin with the

Proof of Proposition 1.3. Using the fact that

∂tρ−∆(Mρ) = 0, inf
i∈N∗
{di} ≤M(t, x) :=

∑∞
i=1 di i ci∑∞
i=1 i ci

≤ sup
i∈N∗
{di},
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we can deduce thanks to a Lemma of duality ([9, Appendix]) that ρ ∈ L2(ΩT ),
and more precisely that

‖ρ‖L2(ΩT ) ≤
(

1 +
supi{di}
infi{di}

)
T ‖ρ(0, ·)‖L2(Ω),

for all T > 0. For the sake of completeness, the Lemma is recalled with its proof
in the Appendix (Lemma 6.2). �

We now turn to the

Proof of Proposition 1.5. For F−i , it is clear that

F−i ≤ Bi ρ ∈ L2([0, T ]× Ω) ⊆ L1([0, T ]× Ω),

thanks to Proposition 1.3. For F+
i we use eq. (16) to write

(27) F+
i ≤

∞∑
j=1

(
Bi+j βi+j,i
i+ j

)
(i+ j) ci+j ≤ Ki

∞∑
j=1

(i+ j) ci+j ≤ Ki ρ,

which is again in L2([0, T ]× Ω), and hence in L1([0, T ]× Ω).
For the coagulation terms, we have, since each ci is less than ρ,

(28) Q+
i ≤

1

4

i−1∑
j=1

ai−j,j
(
c2
i−j + c2

j

)
≤ 1

2
ρ2

(
i−1∑
j=1

ai−j,j

)
,

which is in L1([0, T ] × Ω) as ρ2 is, and the sum only has a finite number of
terms. Finally, for Q−i we use the fact that Q+

i and F+
i are already known to be

integrable: Thus, from eq. (1) integrated over [0, T ]× Ω,∫
Ω

ci(T, x) dx+

∫ T

0

∫
Ω

Q−i (t, x) dx dt

≤
∫

Ω

c0
i (x) dx+

∫ T

0

∫
Ω

Q+
i (t, x) dx dt+

∫ T

0

∫
Ω

F+
i (t, x) dx dt.

This proves our result. �

3. First application: a simplified proof of existence of solutions
in dimension 1

We begin this section with the following corollary of Proposition 1.5, in the
particular case of dimension N = 1.

Lemma 3.1. Assume that the dimension N = 1, and that (3), (13), (14) and
(16) hold. Then, for all T ≥ 0, i ∈ N∗ the concentrations ci ∈ L∞([0, T ] × Ω)
(where ci are smooth solutions of a truncated version of (1) – (2), the L∞ norm
being independent of the truncation).
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Proof of Lemma 3.1. We carry out a bootstrap regularity argument. Thanks to
Proposition 1.5, we know that (for all i ∈ N∗)

(∂t − di∆) ci ∈ L1([0, T ]× Ω).

Using for example the results in [8], this implies that for any δ > 0,

(29) ci ∈ L3−δ([0, T ]× Ω) (i ∈ N∗).
Now, eq. (29) shows that Q+

i is actually more regular: from (the first inequality
in) (28),

(30) Q+
i ∈ L

3
2
− δ

2 ([0, T ]× Ω) for all δ > 0, i ∈ N∗.
In addition, we already knew from eq. (27) that (for all i ∈ N∗)
(31) F+

i ∈ L2([0, T ]× Ω),

[for which we do not need to assume that the space dimension N is 1]. Conse-
quently, omitting the negative terms (for all i ∈ N∗, δ > 0), we can find hi such
that

(∂t − di∆) ci ≤ hi ∈ L
3
2
− δ

2 ([0, T ]× Ω).

As the ci are positive, this implies that

ci ∈ Lp([0, T ]× Ω) for all 1 < p < +∞, i ∈ N∗.
Again from (28),

Q+
i ∈ Lp([0, T ]× Ω) for all 1 < p < +∞, i ∈ N∗.

From this and (31), we can find hi such that

(∂t − di∆) ci ≤ hi ∈ L2([0, T ]× Ω),

which implies in turn that ci ∈ L∞([0, T ]× Ω) (for all i ∈ N∗). �

We now have the possibility to give a short proof of Theorem 1.2 in dimension
1 (and under the extra assumptions (13), (14)). Recall that a proof for any
dimension can be found in [15].

Short proof of Theorem 1.2 in 1D under the assumptions (13) and (14).
Consider a sequence cMi of (regular) solutions to a truncated version of sys-
tem (1) – (2). Thanks to Proposition 3.1, we know that for each i ∈ N∗,
supM

∥∥cMi ∥∥L∞(ΩT )
< +∞. Then (for each i ∈ N∗) there is a subsequence of

the (cMi )M∈N (which we still denote by (cMi )M∈N), and a function ci ∈ L∞(ΩT ),
such that

(32) cMi
∗
⇀ ci weak-∗ in L∞(ΩT ).

Using Proposition 1.5, we also see that (for any fixed i ∈ N∗), the L1(ΩT ) norms

of C+,M
i , C−,Mi , F+,M

i , F−,Mi (the coagulation and fragmentation terms associated
to {cMi }) are bounded independently of M . Using eq. (1a) and the properties
of the heat equation, one sees that for each i ∈ N∗, the sequence {cMi } lies in a
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strongly compact subset of L1(ΩT ). Hence, by renaming our subsequence again,
we may assume that

(33) cMi → ci in L1(ΩT ) strong , for all i ∈ N∗.

In order to prove that {ci} is indeed a solution to eq. (1) – (2), let us prove that

all terms F+,M
i , F−,Mi , C+,M

i , C−,Mi converge to the corresponding expressions for
ci, which we denote by F+

i , F−i , C+
i , C−i , as usual.

(1) Positive fragmentation term: for each fixed i, the sum

F+,M
i =

∞∑
j=1

Bi+j βi+j,i c
M
i+j

converges to F+
i in L1(ΩT ) because the tails of the sum converge to 0

uniformly in M (this is due to hypothesis (7)):∫ T

0

∫
Ω

∣∣∣∣∑
j

Bi+j βi+j,i(c
M
i+j − ci+j)

∣∣∣∣ dxdt ≤2

(
sup
j≥J0

∣∣∣∣Bi+j βi+j,i
i+ j

∣∣∣∣) ρ

+ sup
j≤J0

‖cMi+j − ci+j‖L1(ΩT ).

(2) The negative fragmentation term is just a multiple of cMi , so the conver-
gence in L1(ΩT ) is given by (33).

(3) For each fixed i, the positive coagulation term is a finite sum of terms of
the form ai,jc

M
i c

M
j . Thanks to (32) and (33), this converges to ai,jcicj in

L1(ΩT ).
(4) The negative coagulation term is

Q−,Mi = cMi

∞∑
j=1

ai,j c
M
j .

Since cMi converges to ci weak-∗ in L∞(ΩT ), it is enough to prove that∑∞
j=1 ai,j c

M
j converges to

∑∞
j=1 ai,j cj strongly in L1(ΩT ). Observing that∫ T

0

∫
Ω

∣∣∣∣∑
j

ai,j(c
M
j − cj)

∣∣∣∣ dxdt ≤ 2

(
sup
j≥J0

∣∣∣∣ai,jj
∣∣∣∣) ρ+ sup

j≤J0

‖cMj − cj‖L1(ΩT ),

we see thanks to (7) and (33) that this convergence indeed holds. �

4. Second application: mass conservation

We begin this section with a very short proof of Theorem 1.9 in a particular
case in order to show how estimate (15) works. More precisely, we consider the
pure coagulation case with ai,j =

√
i j and Bi = 0 (no fragmentation), and with

initial data satisfy additionally
∑∞

i=0 i log i ci(0, x) dx < +∞ (which is sightly
more stringent than only assuming finite initial mass).
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Then, using the weak formulation (4) with ϕi = log(i) (and remembering that
log(1 + x) ≤ Cst

√
x)

d

dt

∫
Ω

∞∑
i=1

i log i ci dx =

∫
Ω

∞∑
i=1

∞∑
j=1

√
ij ci cj

(
i log(1 +

j

i
) + j log(1 +

i

j
)

)
dx

≤ 2

∫
Ω

∞∑
i=1

∞∑
j=1

i j ci cj dx ≤ 2

∫
Ω

ρ(t, x)2 dx.(34)

As a consequence, we have for all T > 0∫
Ω

∞∑
i=0

i log i ci(T, x) dx ≤
∫

Ω

∞∑
i=0

i log i ci(0, x) dx+ 2

∫ T

0

∫
Ω

ρ(t, x)2 dxdt,

which ensures the propagation of the moment
∫ ∑∞

i=0 i log i ci(·, x)dx, and there-
fore give a rigorous proof of conservation of the mass for weak solutions of the
system: no gelation occurs.

Our general result is obtained through a refinement of this argument under
Hypothesis (1.8). Before giving the proof of Theorem 1.9 we need two technical
lemmas, which will substitute the intermediate step in (34).

Lemma 4.1. Let {µi}i≥1 and {νi}i≥1 be sequences of positive numbers such that
{µi} is bounded,

∞∑
i=1

µi = +∞ and lim
i→+∞

νi = +∞.

Then we can find a sequence {ξi}i≥1 of nonnegative numbers such that

∞∑
i=1

ξi = +∞,

ξi ≤ µi and ψi :=
i∑

j=1

ξj ≤ νi for all i ≥ 1.

Proof. We may assume that νi is nondecreasing, for otherwise we can consider
ν̃i := infj≥i{νj} instead of νi. Then, in order to find ξi it is enough to define
recursively ξ0 := 0 and, for i ≥ 1,

ξi :=

{
µi if µi +

∑i−1
j=0 ξj ≤ νi,

0 otherwise.

By construction, ξi ≤ µi for all i ≥ 1, and also
∑i

j=1 ξj ≤ νi for i ≥ 1, as we are

assuming {νi} nondecreasing.
To see that {ξi} cannot be summable, suppose otherwise that

∑∞
i=1 ξj = S <

+∞. Take a bound M > 0 of {µi}, and choose an integer k such that νi ≥ S+M
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for all i ≥ k. Then, by definition,

ξi = µi for all i ≥ k,

which implies that {ξi} is not summable, as {µi} is not, and gives a
contradiction. �

Lemma 4.2. Assume (17). There is a nondecreasing sequence of positive num-
bers {ψi}i≥1 such that ψi → +∞ when i→ +∞, and

(35) ai,j(ψi+j − ψi) ≤ Cj for all i, j ≥ 1,

for some constant C > 0.
In addition, given any sequence of positive numbers λi with limi→+∞ λi = +∞,

we can choose ψi so that ψi ≤ λi for all i.

Proof. First, we may assume that the function θ given in Hypothesis 1.8 is non-
increasing on [1,+∞), as we can always take θ̃(x) := supy≥x θ(y) instead.

We choose a sequence of nonnegative numbers {ξi} by applying Lemma 4.1
with

µi :=
1

(1 + i) log(1 + i)
,(36)

νi := min

{
λi,

1

θ(
√
i/2)

,

}
.(37)

Note that the conditions in Lemma 4.1 are met: the sequence in the right hand
side of (36) is not summable, and the right hand side of (37) goes to +∞ with i.

If we define ψi :=
∑i

j=1 ξj, then the following is given by Lemma 4.1:

ξi ≤
1

(1 + i) log(1 + i)
, ψi ≤

1

θ(
√
i/2)

, ψi ≤ λi, i ≥ 1,

lim
i→+∞

ψi = +∞.

These conditions essentially say that ψi grows slower than log log(i), slower than

θ(
√
i/2)−1, and slower than λi, yet still diverges as i→ +∞.

We can now prove (35) to hold for these {ψi} by distinguishing three cases:
1. For any i, j ≥ 1, as log(1 + k) ≥ 1/2 for all k ≥ 1,

ψi+j − ψi =

i+j∑
k=i+1

ξk ≤ 2

i+j∑
k=i+1

1

1 + k
≤ 2 log(i+ j + 1)− 2 log(i+ 1) ≤ 2j

i
.

Then, in case j ≤ i we use the fact that θ(x) ≤ Cθ for some constant Cθ > 0 and
all x > 0 and have

ai,j(ψi+j − ψi) ≤ 2Cθ(i+ j)
j

i
≤ 4Cθ j, for j ≤ i.
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2. Secondly, for j ≤ i2,

ψi+j − ψi ≤
2i2∑

k=i+1

ξk ≤
2i2∑

k=i+1

1

(k + 1) log(k + 1)

≤ log log(2i2 + 1)− log log(i+ 1) ≤ log
2 log(

√
3i)

log(i+ 1)
≤ C1,

for some number C1 > 0. Thus,

ai,j(ψi+j − ψi) ≤ C1Cθ(i+ j) ≤ 2C1Cθj, for j ≤ i2.

3. Finally, for j > i,

ψi+j − ψi ≤ ψi+j =

i+j∑
k=1

ξk ≤
1

θ(
√

(i+ j)/2)
≤ 1

θ(
√
j)
.

and as θ is nonincreasing on [1,+∞) (we may assume this; see the beginning of
this proof), we have for all j > i2

ai,j(ψi+j − ψi) ≤ (i+ j)θ(j/i)
1

θ(
√
j)
≤ (i+ j)θ(

√
j)

1

θ(
√
j)

= i+ j ≤ 2j.

Together, these three cases show (35) for all i, j ≥ 1. �

Now we are ready to finish the proof of our result on mass conservation:

Proof of Theorem 1.9. As remarked above (cf. beginning of section 2), we will
prove the estimate (19) for a regular solution to an approximating system, with
a constant C(T ) that does not depend on the regularisation. Then, passing to
the limit, the result is true for a weak solution thus constructed.

We consider a solution to an approximating system on [0,+∞), which we still
denote by {ci}i≥1. Then, by a version of the de la Vallée-Poussin’s Lemma,
(see, for instance, Proposition 9.1.1 in [4] or also proof of Lemma 7 in [6]), there
exists a nondecreasing sequence of positive numbers {λi}i≥1 (independent of the
regularisation of the initial data) which diverges as i→ +∞, and such that

(38)

∫
Ω

∞∑
i=1

i λic
0
i dx < +∞.

If we define ri :=
∫

Ω
ic0
i , note that this is just the claim that one can find λi as

above with
∑

i λiri < +∞.

Taking {ψi} as given by Lemma 4.2, such that ψi ≤ λi for all i ≥ 1, we have
thus

∫
Ω

∑∞
i=1 i ψi c

0
i (x) dx < +∞. Then, as integrating over Ω makes the diffusion

term vanishes due to the no-flux boundary conditions, we estimate

(39)
d

dt

∫
Ω

∞∑
i=1

i ψici dx ≤
1

2

∫
Ω

∞∑
i,j=1

ai,jcicj((i+ j)ψi+j − i ψi − j ψj) dx,
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where we used that the contribution of the fragmentation term is nonpositive, as
can be seen from (4) with ϕi ≡ i ψi, and the fact that

i−1∑
j=1

βi,j jψj ≤ ψi

i−1∑
j=1

βi,j j = i ψi,

as ψi is nondecreasing and (3c) holds. Continuing from (39), by the symmetry of
the ai,j, and using the inequality (35) from Lemma 4.2, we have

(40)
d

dt

∫
Ω

∞∑
i=1

i ψi ci dx ≤
∫

Ω

∞∑
i,j=1

ai,j ci cji (ψi+j − ψi) dx ≤ C

∫
Ω

ρ2 dx.

Thus, Proposition 1.3 showing ρ ∈ L2(ΩT ) proves that
∫

Ω

∑∞
i=1 i ψi ci dx is

bounded on bounded time intervals. Mass conservation is a direct consequence
of this. �

Remark 4.3 (Absence of gelation via tightness). It is interesting to sketch an
alternative proof showing conservation of mass via a tightness argument and
without establishing superlinear moments. By introducing the superlinear test
sequence iφk(i) with φk(i) = log i

log k
1i<k + 1i≥k for all k ∈ N∗, we use the weak

formulation (4) to see (as above) that the fragmentation part is nonnegative for
superlinear test sequences, and use the symmetry of the ai,j to reduce summation
over the indices i ≥ j ∈ N∗, which leads (similarly to the first estimate in (40))
to the estimate

d

dt

∫
Ω

∞∑
i=1

ci iφk(i) dx ≤
∫

Ω

∞∑
i≥j

∞∑
j=1

ai,j[ici][cj]

(
log(1 + j

i
)

log(k)
Ii<k

+
j

i

(
log(1 + i

j
)

log(k)
Ii+j<k +

log(k
j
)

log(k)
Ij<k≤i+j

))
dx.

For the first term, we use log(1 + j/i) ≤ j/i. Moreover, for the second term we
distinguish further the areas where i/j ≤ log(k) and i/j > log(k). When i/j ≤
log(k), we estimate 1 + i/j = 1 + i/j ≤ 1 + log(k) and k/j ≤ 1 + i/j ≤ 1 + log(k),
respectively. On the other hand, when i/j > log(k), both the second and the
third term are bounded by one. Altogether, we get thanks to Hypothesis (1.8),
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i.e.
ai,j
i
≤ Cst θ(i/j) for i ≤ j:

d

dt

∫
Ω

∞∑
i=1

ci iφk(i) dx ≤
(

1

log(k)
+

log(1 + log k)

log(k)

)
sup

i≥j∈N∗

{ai,j
i

}∫
Ω

ρ2 dx

+

∫
Ω

∞∑
i≥j

∞∑
j=1

[ici][jcj]
ai,j
i

Ii/j>log(k);j<k dx

≤ Cst

(
log(1 + log k)

log(k)
+ sup

i/j≥log(k)

θ

(
i

j

))∫
Ω

ρ2 dx

and the right hand side tends to zero as k → ∞. Hence, using Proposition 1.3
and integrating over a time interval [0, T ], we get the tightness of the sequence∫

Ω

∑n
i=1 ci i dx which ensures that the mass is indeed conserved, and no gelation

occurs.

5. Third Application: Fragmentation due to collisions in
dimension 1

Proof of Theorem 1.13. We introduce (cMi )M a sequence of smooth solutions for
a truncated version of eq. (21). We first observe that Proposition 1.3 still holds
thanks to the duality estimate, that is ρ :=

∑
i i ci ∈ L2(ΩT ) for all T > 0.

Estimate (28), in which only the coagulation kernel appears, also holds. More-
over, thanks to (22d),∑

k,l

∑
max{k,l}>i

bk,l ck cl βikl ≤ Csti
∑
k

∑
l

(k + l) ck cl ≤ Csti ρ
2 ∈ L1(ΩT ).

The loss terms
∞∑
k=1

ai,k ci ck,
∞∑
k=1

bi,k ci ck

lie then in L1(ΩT ) by integration of the equation on [0, T ]× Ω.

Using now eq. (21), we see that (for all i ∈ N∗) ∂tcMi − di∂xxc
M
i belongs to

a bounded subset of L1(ΩT ). As a consequence, cni belongs (for all i ∈ N∗)
to a compact subset of L3−ε([0, T ]× Ω) for all T > 0 and ε > 0. We denote (for
all i ∈ N∗) by ci a limit (in L3−ε([0, T ]×Ω) strong) of a subsequence of (cMi )M∈N
(still denoted by (cMi )M∈N).

We now pass to the limit in all terms of the r.h.s. of eq. (21). The first term
can easily be dealt with, since it consists of a finite sum. Then, we pass to the
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limit in the second term:∫ T

0

∫
Ω

∣∣∣∣ ∞∑
k=1

ai,k c
n
i c

n
k −

∞∑
k=1

ai,k ci ck

∣∣∣∣ dxdt
≤
∫ T

0

∫
Ω

∣∣∣∣ K∑
k=1

ai,k c
n
i c

n
k −

K∑
k=1

ai,k ci ck

∣∣∣∣ dxdt+ 2 ‖ρ‖2
L2 sup

k>K

{ai,k
k

}
.

The second part of this expression is small when K is large enough thanks to
assumption (23), (24), while the first part tends to 0 for all given K.

The fourth term of the r.h.s. of eq. (21) can be treated exactly in the same
way. We now turn to the third term:∫ T

0

∫
Ω

∣∣∣∣ ∞∑
k,l=1

∑
i<max{k,l}

bk,l c
n
k c

n
l βi,k,l −

∞∑
k,l=1

∑
i<max{k,l}

bk,l ck cl βi,k,l

∣∣∣∣ dxdt
≤
∫ T

0

∫
Ω

∣∣∣∣ K∑
k,l=1

k≤K,l≤K∑
i<max{k,l}

bk,l c
n
k c

n
l βi,k,l −

K∑
k,l=1

k≤K,l≤K∑
i<max{k,l}

bk,l ck cl βi,k,l

∣∣∣∣ dxdt
+ 4 ‖ρ‖2

L2 sup
l≥K

sup
k∈N

{
bk,l
kl

βi,k,l

}
.

Once again, the second term is small when K is large enough thanks to as-
sumption (23), (24), while the first term tends to 0 for all given K. �
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6. Appendix: A duality lemma

We recall here results from e.g. [17, 9]. We start with the

Lemma 6.1. Assume that z : ΩT → [0,+∞) satisfies

∂tz +M∆z = −H on Ω,

∇z · n = 0 on ∂Ω,(41)

z(T, x) = 0 on Ω,
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where H ∈ L2(ΩT ), and d1 ≥M ≥ d0 > 0. Then,

(42) ‖z0‖2 ≤
(

1 +
d1

d0

)
T ‖H‖L2(ΩT ) .

Proof of Lemma 6.1. Calculating the time derivative of
∫

Ω
|∇z|2, or alternatively

multiplying eq. (41) by ∆z and integrating on Ω, we obtain

−1

2

d

dt

∫
Ω

|∇z|2 dx+

∫
Ω

M(∆z)2 dx =

∫
Ω

−H∆z dx,

where the boundary condition on z was used. Integrating on [0, T ] and taking
into account that z(T, x) = 0,

1

2

∫
Ω

|∇z0|2 dx+

∫
ΩT

M(∆z)2 dxdt =

∫
ΩT

H∆z dxdt

≤ ‖H‖L2(ΩT ) ‖∆z‖L2(ΩT ) .(43)

Using that M ≥ d0 we see that
∫

ΩT
M(∆z)2 ≥ d0 ‖∆z‖2

L2(ΩT ), so (43) implies

d0 ‖∆z‖L2(ΩT ) ≤ ‖H‖L2(ΩT ) .

From this and (41) we have

‖∂tz‖L2(ΩT ) ≤ ‖M∆z‖L2(ΩT ) + ‖H‖L2(ΩT )

≤ d1 ‖∆z‖L2(ΩT ) + ‖H‖L2(ΩT ) ≤
(

1 +
d1

d0

)
‖H‖L2(ΩT ) .

Finally,

‖z0‖L2(Ω) ≤
∫ T

0

‖∂szs‖L2(Ω) ds ≤
(

1 +
d1

d0

)
T ‖H‖L2(ΩT ) . �

Lemma 6.2. Assume that ρ : ΩT → [0,+∞) and satisfies

∂tρ−∆(Mρ) ≤ 0 on Ω,(44)

∇(ρM) · n = 0 on ∂Ω,

where M : ΩT → R is a function which satisfies d1 ≥ M ≥ d0 > 0 for some
numbers d1, d0. Then,

‖ρ‖L2(ΩT ) ≤
(

1 +
d1

d0

)
T ‖ρ0‖2 .

Proof of Lemma 6.2. Consider the dual problem (41) – (42) for an arbitrary func-
tion H ∈ L2(ΩT ), with H ≥ 0. Then, z ≥ 0, and integrating by parts in eq. (41),
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one finds that∫
ΩT

ρH dxdt = −
∫

ΩT

ρ(∂tz +M∆z) dxdt

=

∫
ΩT

z(∂tρ−∆(ρM)) dxdt+

∫
Ω

ρ0z0 dxdt ≤
∫

Ω

ρ0z0 dxdt,

where we have used eq. (44), eq. (42) and the boundary conditions on ρM and
z. Hence, for any nonnegative function H ∈ L2(ΩT ),∫

ΩT

ρH dxdt ≤ ‖ρ0‖2 ‖z0‖2 ,

and thanks to Lemma 6.1,∫
ΩT

ρH dxdt ≤ (1 + d1/d0)T ‖ρ0‖2 ‖H‖L2(ΩT ) .

Remembering that ρ ≥ 0, we obtain by duality:

‖ρ‖L2(ΩT ) ≤ (1 + d1/d0)T ‖ρ0‖2 .

This proves the lemma. �
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