
Abstract

In this note we define a machine that generates nests. The basic relations commonly attributed
to linguistic expressions in configurational syntactic models as well as the device of chains pos-
tulated in current transformational grammar to represent distance relations can be naturally derived
from the assumption that the combinatorial syntactic procedure is a nesting machine. Accordingly,
the core of the transformational generative syntactic theory of language can be solidly constructed
on the basis of nests, in the same terms as the general theory of order, an important method-
ological step that provides a rigorization of Chomsky’s minimalist intuition that the simplest way
to generate hierarchically organized linguistic expressions is by postulating a combinatorial oper-
ation called Merge, which can be internal or external. Importantly, there is reason to think that
nests are a useful representative tool in other domains besides language where either some recur-
sive algorithm or evolutionary process is at work, which suggests the unifying force of the math-
ematical abstraction this note is based on.

Key words: nest, theory of order, dominance, domain, constituency, chain (of copies), rigoriza-
tion.
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1. Introduction

The intuitive development of an incipient theory is a necessary step in any ratio-
nal enterprise. However, when the theory grows and its degree of complexity increas-
es, the lack of internal rigor can render the theory impracticable and lead it to unde-
sirable situations such as the introduction of redundant or unnecessary principles that
jeopardize the credibility of the intellectual construct. Therefore, the rigorization of
the core notions and the derivation of the main conclusions has the virtue of ensur-
ing internal consistency and providing a healthy backbone that not only sustains
the theory, but also leads it towards further developments.

The main objective of this note is to provide a rigorous definition of the basic
syntactic algorithm and derive the basic syntactic relations from a minimal col-
lection of general assumptions.

Section 2 proposes a rigorized model for the core syntactic theory. Section 3
exposes our view about the abstract character of the algorithm of structure creation
defined in section 2 as well as the place it deserves in the study of language and
justifies our technical choices concerning the direction of derivations and the for-
mulation of distance relations. Section 4 briefly summarizes the main conclusion
of this work by stressing the unifying force of nests, the mathematical concept on
which our proposal is based.

2. The nesting machine

In this section we define an abstract machine that generates hierarchically struc-
tured expressions. The basic units that this machine manipulates are given by an
alphabet, which we define as a finite set of singletons. The outcome of this machine
is a nest, i.e., a set whose elements are sets linearly ordered by inclusion. A com-
putation by the nesting machine may comprise a sole derivational space (2.1) or
multiple derivational spaces (2.2), in which case the outcome of a particular deriva-
tional space Di feeds a different derivational space Dj. If the syntactic algorithm is
assumed to be a nesting machine, the common syntactic relations can be readily
defined with no need to introduce any idiosyncratic grammatical element. More
precisely, not only the linear order among the terminals of an expression can be
properly defined on the basis of Kuratowski’s (1921) general set-theoretical defi-
nition of order, as advanced in Fortuny (2008), but also the constituency relation-
ship, the dominance relationship and the concepts of domain and chain.

2.1. Simple nesting

Given an alphabet, viewed as a finite set of singletons, A = {{a}, {b}, …, {z}}, we
define a machine that works as follows. At the first step, s0, this machine gener-
ates the set M0, which is an element of A. At the following step s1, it generates a
new set, M1, by forming the union of M0 and a member of A. At step sn, we gen-
erate the set Mn, which is the union of Mn-1 and an element of A. When an arbi-
trary element of A, namely {k}, comes into the computation at the step si, its ele-

100 CatJL 8, 2009 Jordi Fortuny Andreu; Bernat Corominas Murtra

CatJourLing 8 001-189:CatJL  11/1/10  13:19  Página 100



ment, k, becomes an occurrence ki. This can be summarized through the recur-
sive operation: 

M0 = {a0}
Mn+1 = {kn+1} ∪ Mn

where n is unboundedly large1. The outcome of the machine is the family2: 

N = {M0,…, Mn+1}. 

N is a nest, i.e., a family of sets linearly ordered by the inclusion relation3: 

M0 ⊂ M1 ⊂ M2 ⊂ … ⊂ Mn+1

A family F of sets is a nest of a set S iff the elements of F are subsets of S and
they are linearly ordered by inclusion. A family F of sets is saturated as to the prop-
erty of being a nest of S iff F is a nest and it is not a proper subset of a nest of S. For
instance, F1 = {{g1}, {g1, g2},…,{g1, g2,…, gn-1}, {g1, g2, …, gn-1, gn}} is satu-
rated as to the property of being a nest of P = {g1, g2,.., gn-1, gn}, but not F2 = {{g1},
{g1, g2},…, {g1, g2,…, gn-1}}, which is a subset of F1. As proved by Kuratowski
(1921), F linearly orders S iff F is saturated as to being a nest of S, and thus F1
(but not F2) is a linear order of P.4

Observe that P is the union of F1, noted as ∪F1, the set whose elements are
all the elements of the elements of F1. Thus, we shall simply say that the linear
ordering by inclusion we find among the elements of an outcome N of the nesting
machine induces a linear ordering of ∪N, the set of occurrences of the elements
of the relevant alphabet.
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1. That n lacks an upper bound does not mean that n must be infinite. That there is no fixed length for
a nesting computation is consistent with the claim that a given nesting computation must always be
finite (or that the cardinality of a nest generated by the nesting machine must always be finite).
We refer the interested reader to Partee et alii (1990: 69-70) for the distinction between the terms
‘unbounded’ and ‘infinite’.

2. We shall adopt the term ‘family’ to refer to sets whose elements are all sets. For the sake of rep-
resentational clarity, upper case bold letters A, B, C, … shall designate families, upper case non-
bold letters A, B, C,… sets (families or not), and lower case letters a, b, c, … objects (without
specifying whether they are primitive elements or sets). The membership relation (‘∈’) holds
between a set and its elements or members. For instance, it is said that a and {b} are elements or
members of or belong to the set {a, {b}}, but {a} or b are not. The inclusion relation (‘⊆’) holds
between a set and its subsets. P is said to be included in Q iff all the elements of P are elements of
Q. An asymmetric inclusion relation is called a proper inclusion relation (‘⊂’). Thus, {a} and
{{b}} are both (properly) included in {a, {b}}, and in fact they do not belong to this set. Note that
{a, b} both belongs to and is included in {a, b, {a, b}}. Whereas inclusion is a transitive relation,
membership is not.

3. A relation R is a linear order iff it is antisymmetric, transitive and total. 
4. Kuratowski used the expression “classe de sous-ensembles décroissants (ou croissants)” to refer

to a set whose elements are sets linearly ordered by inclusion. Here and elsewhere we use the term
‘nest’ to refer to this type of set. Other terms found in the literature are ‘tower’ and ‘chain’ (Kelley
1955: 32).
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We define the constituent Ck (0 ≤ k ≤ n+1) in a nest N as the outcome of the
computation at a particular step sk, Ck = {M0, M1, …, Mk}. Note that (a) Ck is a
family of sets linearly ordered by inclusion, M0 ⊂ M1 ⊂ M2 ⊂ … ⊂ Mk, that (b)
Ck ⊆ N and that (c) the Cs in N are linearly ordered by inclusion. When k = 0, the
constituent C0 is a trivial nest, with only one element.

Given a nest N, Mk ∈ N dominates b, noted as DOM(Mk, b), iff:

(b ∈ N ∧ b ⊂ Mk) ∨ (b ∈ Mk). 

Mk immediately dominates b in N iff DOM(Mk, b) and ¬∃(F ∈ N): [DOM(Mk,
F) ∧ DOM(F, b)]. We observe that DOM is a linear order in any nest N. 

The nesting machine itself ensures the existence of an Mk that is the largest ele-
ment in DOM. Given a nest N, Mk (Mk ∈ N) is the largest element in the domi-
nance relation iff it dominates any b, b being either a member of N or a member
of any Mj.

5 Given a nest X, we shall refer to the largest element of X as larg(X).
Consistently, the largest element of a constituent Ck is larg(Ck) = Mk = ∪Ck. 

We shall say, along with Chomsky (2001, 2008), that X is externally merged
to Y when X is selected from the alphabet and internally merged to Y when it is
selected from “the domain of” Y. Therefore, we allow the nesting machine to per-
form at a stage si the operation X ∪ Y when X is an element of the alphabet but
also when X belongs to “the domain of” Y. Observe that the set Y to which X is
merged at si is Mi-1. Generally, given the set Γ of all constituents in a given deriva-
tion, we define the domain of Mj as the set Δ(Mj):

Δ(Mj) = {x: [(x ∈ Γ ) ∧ DOM(Mj, larg(x))] ∨ (x ∈ M j)}.

x becomes an occurrence xj when it is externally merged at sj and a copy xj/i when
it is internally merged at si>j. A chain CH(xj) can be defined as a linear order of
the copies of an occurrence xj, CH(xj) = {{xj/k, …, xj}, { …, xj}, {xj}}. We shall
call xj the copy tail of CH(xj), xj/k the copy head and any xj/n(j<n<k) an intermediate
copy. Note that multiple copies are identified by virtue of the subindex referring
to the derivational stage where the occurrence X is introduced in the derivation (‘j’)
and distinguished with respect to each other by virtue of the subindexical suffix
referring to the derivational stage where they are subsequently merged (‘/i’). If the
generation of a nest N involves internal merging, ∪N is a set of occurrences and
copies of the selected elements of the alphabet. 

Therefore, the notions of order, constituent, dominance, domain and chain can
be naturally defined on the basis of the same mathematical structure, which rein-
forces the concept of nest as a fundamental unifying entity of structural relations (see
sections 3.2 and 3.3 for illustration). 
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5. This requirement resembles the Single Root Condition defined on tree structures.

The Single Root Condition (Partee et alii 1990: 441)
‘In every well-formed constituent structure tree there is exactly one node that dominates every
node’
Note, though, that this statement does not consider dominance from nodes to terminals. 
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2.2. Complex nesting

We want to allow the nesting machine to perform X ∪ Y, when X is a set Mj gen-
erated by the nesting machine at sj and Y a singleton whose element is not a prim-
itive element but a nest.

To enable our machine to perform such operations, we need to define several
derivational spaces, which we shall label as D1, D2, ..., Dn. For the sake of clarity,
the union operation between two sets performed in the derivational space Dj at the
step sk will be labeled as Mk

j. Every derivational space involves a machine like the
one defined in the above section, except that at a given step si, the nesting machine
can accept as input Mi-1

k and {a} not only when {a} belongs to the alphabet but
also when a is an outcome of a derivation performed in a parallel space. When {a}
has been merged at the step sk in the derivational space Dj it becomes ak

j; N[i]k
j is the

outcome of Di merged at sk in Dj. Once Di generates Ni, Di is automatically removed,
which means that Ni cannot grow anymore although this does not imply that the
nesting machine lacks the power of internally merging Y from Ni to Mk

j when Di
feeds Dk. 

The following two conditions are required:

a) Let |D|Sj be the number of opened derivational spaces at the step sj. Then, there
exists a finite constant μ such that: 

∀(Sj) (|D|Sj < μ). 

There are strong reasons to take this condition for granted. Firstly, it implies
that the memory of the machine is finite, which is a reasonable assumption.
Secondly, if we want to decide whether or not a given object is the outcome of
a computation performed by the machine, the condition avoids the halting prob-
lem.6

b) At the last step of a given computation, only one derivational space Dj can
remain opened. 
This implies that all derivational spaces used in the computation generated their
outcomes as inputs for other derivational spaces (see Figure 1). 
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6. If the number of derivational spaces was unbounded, there would exist the possibility that the algo-
rithm responsible for deciding whether a given object belongs to the set of the outcomes of a
machine would never halt. We refer the reader to Chaitin (1977), Davis (1958) and Hermes (1965)
for a compact and broad presentation of the problems associated to computability theory.
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We observe that the outcome that we obtain if we stop the computation at a
certain step sk in a given derivational space Di is a constituent, the constituent Ck

i.
Some constituents of the complex derivation given in Figure 1 are C1

1 = {a1
1},

Ck+1
1 = {{a1

1}, {a1
1, ...}, {a1

1, ..., ck
1}, {a1

1, ..., ck
1, N2}} and Cm

3 = N3.
It is necessary to define the notions of dominance and domain not only with

respect to a sole derivational space (see 2.1), but also with respect to a complex
nesting computation. 

Let D1, …, Dn be all the derivational spaces used in a computation. We now
form: (i) the set Σ of all the outcomes N1,..., Nn generated respectively in the deriva-
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Figure 1. A picture of the application of the nesting algorithm over an arbitrary alphabet
enabling complex nesting. In this example, three derivational spaces have been used and we
assume that μ < 3, i.e., at most two derivational spaces can be opened at the same time.
Observe that, at the last step, only one derivational space is opened.
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tional spaces D1,…, Dn, (ii) the set M of all the elements of all N1,.., Nn, namely, the
union of Σ, and (iii) the set Φ of all the elements of all the elements of all N1,..,
Nn, or more simply, the union of all Max(N i).

Σ = {N1, ..., Nn}
M = ∪i≤n N i
Φ = ∪i≤n Max(N i)

Thus, (∀b) (b ∈ M ∪ Φ), DOM(Mj
k, b) iff: 

a) [(b ⊂ Mj
k) ∨ (b ∈ Mj

k)] ∨
b) [∃(n < ∞) ∃({X1, …, Xn}): ((∀i≤ n) (Xi ∈ M ∪ Σ) ∧ (b ∈ X1 ≠ Mj

k)) ∧ (X1 ∈ X2
∈ … ∈ Xn ∈ Mj

k)]7

Consider for clarity how our definition applies to the computation represent-
ed in Figure 1. Condition (a) is no more than the definition of dominance given
for simple nesting in section 2.1 though relativized to a particular derivational space
Dk, as the superindex ‘k’ of Mj

k indicates. By virtue of condition (a), Mk+n
1 = {a1

1,
..., ck

1, N2, ..., ek+n
1} dominates, for instance, ek+n

1, and Mk
1 = {a1

1, ..., ck
1}, since

(ek+n
1∈ M ∪ Φ) ∧ (ek+n

1∈ Mk+n
1) and (Mk

1∈ M ∪ Φ) ∧ (Mk
1 ⊂ Mk+n

1). 
Let us consider an example in order to understand condition (b). We observe

that n is the number of different derivational spaces involved in the derivation from
b to Mj

k. Does Mm
3 dominate Mk

2? Note that Mk
2 = {b1

2, ..., ck
2} belongs to N2 =

{{b1
2}, {b1

2, ...}, {b1
2, ..., ck

2}} and N2 belongs, for instance, to Mk+1
1, which in

turn belongs to N1; finally we observe that N1 belongs to Mm
3 = {dk+1

3, ..., fk+n
3,

N1, ..., gm
3}. Thus there exists a sequence X1, X2, X3 (being X1 = N2, X2 = Mk+1

1,
X3 = N1 and X4 = Mm

3). We can conclude that ∃({X1 X2, X3}): (Xi ∈ M ∪ Σ) ∧ (Mk
2

∈ X1 ≠ Mm
3) ∧ ( X1 ∈ X2 ∈ X3 ∈ Mm

3). The same reasoning applies to the elements
of Φ if we find an appropiate sequence of Xs. 

Note that DOM in a complex nesting computation is not a linear order, since it
does not satisfy the totality condition; for instance, in the derivation depicted in
Figure 1, neither DOM(Mk

2, Mk
1) nor DOM(Mk

1, Mk
2).

Finally, we define the domain of an Mk
j, i.e., of the set created by the union-

formation application k of the derivational space Dj. We only need to elaborate the
definition of domain given in section 2.1 for simple nesting by relativizing the set
Γ of constituents to Di (as indicated by subindexation -Γi) and by appealing to the
subset of elements of Φ dominated by Mk

j, instead of simply Mk.

Δ(Mk
j) = {x: [(∃i≤ n): (x ∈ Γi) ∧ DOM(Mk

j, Max(x))] ∨ [(x ∈ Φ) ∧ DOM(Mk
j, x)]}.
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7. This definition of DOM in a complex nesting computation is precisely the transitive closure (Gross
& Yellen 1998: 371) of the relation DOM defined in the previous section. 
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3. Remarks and reflections

3.1. The nesting machine as an abstract entity

We have defined a mathematical entity and we have studied some of its properties.
The above developed formalism is intended to be a consistent mathematical apparatus
supporting the current generative transformational framework. As any abstract the-
oretical background, it is not reasonable to ask about the ‘reality’ of the operations
and objects defined. For example, although the algorithm runs through a time step indi-
cator, such time step is only given for operational purposes and does not imply -in our
field of study- any temporal evolution. What is reasonable to ask is whether from
the defined mathematical framework we can derive the core properties that we observe
in the studied object. This is a common procedure in other scientific domains, like the-
oretical physics. As a paradigmatic example, we can take Quantum Mechanics, con-
structed on the basis of solely six axioms. Specifically, the theory is based on Hilbert
spaces and the theory of abstract operators associated to it (Peskin et al. 1995). One
of the most fundamental operators is the creation operator which creates a particle
in a given state, which could be compared with the algorithm we have defined to
create nests. Indeed, let |F0>

8 be the vacuum state, the state of a system where there
is no particle. The application of the creation operator, a† (k), creates a particle of
momentum k in this system. Thus, we can construct |F1(k)> as

|F1(k)> =  a†(k) |F0>

Similarly, we can construct a state with n+1 particles by applying recursively
a† (k) n+1 times:9

|F1(k)> =  a† (k) |F0(k)>
|Fn+1(k)> =  a† (k) |Fn(k)>

Obviously, we cannot ask whether or not such operator exists in the real world,
but its abstract existence is necessary to construct the whole theory of Quantum
Mechanics. This is just an analogy to emphasize that the nesting machine is a math-
ematical entity that is not intended to describe any neuronal or material process.
A different question is how the underlying computational power can emerge from
the growing of computing assemblies, like the brain. 

3.2. On the direction of derivations

Given the alphabet A = {{John}, {Mary}, {kisses}}, the nesting machine could
proceed as follows:
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8. A quantum state is completely defined by a vector of a Hilbert space, and the standard notation is
|ψ>. This vector encodes all the physically relevant information of such state. In our case, we
noted |Fn(k)> as the state with n particles with momenta equal to k.

9. In this illustration we neglect the normalization form in order to avoid certain mathematical tech-
nicalities that are not relevant to our concerns).

CatJourLing 8 001-189:CatJL  11/1/10  13:19  Página 106



s1 = {John}
s2 = {John, kisses}
s3 = {John, kisses, Mary},

thereby generating the outcome N, a set saturated as to the property of being a nest
of {John, kisses, Mary}: 

N = {{John}, {John, kisses}, {John, kisses, Mary}}.

We ask whether N is the representation lying under the expression (i) ‘John kiss-
es Mary’ or under the expression (ii) ‘Mary kisses John’. If N underlies (i), then the
nesting machine is a top-down procedure and N is read as a precedence relation by
the Articulary-Perceptual system. If N underlies (ii), then the nesting machine is a
bottom-up procedure and N is read as a successor relation by the Articulary-Perceptual
system. We observe that, if N lies under (i), we predict that the subject and the verb
form a constituent to the exclusion of the object, whereas if N lies under (ii), we
predict that the object forms a constituent with the verb to the exclusion of the sub-
ject. Since the latter prediction, and not the former, is in accordance with standard
constituency considerations, we conclude that the nesting machine is a bottom-up pro-
cedure and that its outcome is read as a successor relation.

We want to observe that it is possible to generate nests by means of a top-down
procedure where smaller sets are generated from larger sets that yields the expect-
ed constituency. Such a procedure resorts not to recursive union formation but to
recursive complementary subset formation.  

Given a finite set A of terminal elements, the machine takes A as an initial sym-
bol at s0 and yields M0, the complementary subset of Ø; thus M0 = A. At s1 the
machine generates M1, a complementary subset of a singleton subset of M0. At Sn,
we generate Mn, the complementary subset of a singleton in Mn-1. Recall that, in
section 2.1, multiple occurrences of the same type are distinguished with regard
to the derivational step where they are merged, but they are not distinguished as
elements of the alphabet. In order to ensure that a syntactic derivation based on
the splitting mechanism under consideration can make use of multiple occurrences
of a lexical item, it is mandatory to assume that A can have multiple occurrences a1,
a2, …, ak of a lexical item a as elements, as well as multiple occurrences a, b, …,
n of different lexical items. 

Given an initial symbol A = {a1, a2, …, ak, b, …, n}, with |A| unbounded, the
splitting algorithm can be expressed through the recursive operation:

M0  = A
M1= M0 - B0
Mn+1 = Mn  - Bn 

where B0 ⊂ M0, …, Bn ⊂ Mn and n ≤ |A|. If B0,…, Bn are singletons, then we are in
a situation equivalent to that described in section 2.1, simple nesting:

N = {M0, ..., Mn+1}. 
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To generate nests saturated with respect to an initial symbol A (i.e, to consider
we reach the end of the derivation), we need to split A until we obtain a singleton,
which implies that we performed |A| splittings. Thus the saturated nest will be:

N = {M0,…, M|A|}. 

However, there is no reason to forbid the nesting machine to perform X – Y
when |Y| > 1. Accordingly, a complex nesting computation involving multiple
spaces equivalent to that defined in section 2.2 is required. If sk in Dj forms the
complementary subset of a non-singleton subset B of Mk-1

j
, then B becomes the ini-

tial symbol of a new derivational space Di. As in section 2.2, all D is a machine
that generates nests, the number of opened derivational spaces at a stage must be
finite in order to avoid the halting problem, and only one D remains opened at the
last step of a computation.

Whereas union formation can generate chains of multiple copies of an occur-
rence without further complications (section 2.1), it is unclear how subset com-
plementary formation could generate a chain without postulating a particular syn-
tactic operation for it. For this reason, we formulate the nesting machine as a
(bottom-up) union formation algorithm.10

3.3. Chains

Consider the following two English sentences, the indicated syntactic derivations
D1, D2, their outcomes N1, N2, and the indicated constituency.

‘John visited Peter’ ‘Who did you visit?’
A1 = {{John}, {visited}, {Peter}} A2 = {{who}, {did}, {you}, {visit}}

D1 D2
s1 = {Peter} s1 = {visit}
s2 = {visited, Peter} s2 = {visit, you}
s3 = {John, visited, Peter} s3 = {visit, you, did}

s4 = {visit, you, did, who}

N1 = {{John, visited, Peter}, N2 = {{who, did, you, visit}, {did, you,
{visited, Peter},{Peter}} visit}, {you, visit}, {visit}}.

C1 = {{Peter}} C1 = {{visit}}
C2 = {{visited, Peter}, {Peter}} C2 = {{you, visit}, {visit}}
C3 = {{John, visited, Peter}, C3 = {{did, you, visit}, {you, visit,

{visited, Peter}, {visit}}
{Peter}} C4 = {{who, did, you, visit}, {did, you, 

visit}, {you, visit}, {{visit}}
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10. Cfr. Zwart (this volume) for a tentative exploration of top-down and layered derivations that argues
against internal merge applications.  
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If both N1 and N2 were useful representations for the two sentences under dis-
cussion, the nesting machine would be an algorithm responsible for linearly order-
ing occurrences, but would not suffice to provide an accurate configurational basis
for semantic relations. Crucially, whereas the noun ‘Peter’ can be argued to be
characteristically identified as the patient of the verb ‘visited’ in C2, there is no
way to warrant in configurational terms that ‘who’ is identified as the patient of
‘visit’ in N2: there is no constituent in N2 that can be characteristically identified
as the minimal context where a nominal category x becomes a patient of a verb. 

With the objective of providing the syntactic means of representing multiple
semantic features of an occurrence in configurational terms, we have defined the
nesting machine in such a way that it generates chains of multiple copies of an
occurrence (section 2.1), thereby adopting the standard view in minimalist syntax
that an occurrence acquires multiple semantic features because it has been merged
and subsequently remerged at multiple syntactic positions. For the sake of explic-
itness, we indicate the derivation D2’ for the expression ‘who did you visit?’, its
outcome N2’ and the generated chain CH(who1) that comprises the multiple copies
of the occurrence ‘who1’. We also indicate the constituent C2 where ‘whoi’ is char-
acteristically identified as an object and the constituent C5 where it is characteris-
tically identified as a wh-phrase. 

D2’
s1 = {who1}
s2 = {visit, who1}
s3 = {you, visit, who1}
s4 = {did, you, visit, who1}
s5 = {who1, did, you, visit, who1/5}

N2’ = {{who1/5, did, you, visit, who1}, {did, you, visit, who1}, {you, visit,
who1}, {visit, who1}, {who1}}

CH(who1) = {{who1}, {who1, who1/5}}

C2 = {{visit, who1}, {who1}}
C5 = N2’

Observe that ‘who1’ belongs to Δ(M4), since ‘who1’ ∈ M4. Therefore, ‘who1’ can
be selected from Δ(M4) and be internally merged to M4, thereby forming M5.

Chain formation also plays a crucial role in constructing a theory of word order
variation along the course initiated by Kayne (1994). If we express Kayne’s X’-
theoretic framework in terms of our set-theoretical approach, we shall say that x
is interpreted as the complement of a head h iff there exists a constituent Cj = {{xi},
{xi, h}} and that y is interpreted as the specifier of h iff there is a constituent Ck =
{{xi}, {xi, h}, {xi, h, y}} and y is not a head.11 If, for instance, the complement x turns
out to precede h in an utterance, this is because a further constituent Cl = {{xi},
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11. The definition and review of the notion of head (and projection) are beyond the scope of this note. 
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{xi, h}}, {xi, h, …}, {xi, h, …, xi/l}} has been generated by internal merge, and the
most deeply nested copy xi of the chain CH(xi) = {{xi}, {xi, xi/l}} is not pronounced;
similarly, if the specifier y turns out to follow h this is attributed to h being internally
merged in a position less deeply nested than y.12

We emphasize, adapting Chomsky’s (2001: 9, note 29) view, that the virtue of
allowing the nesting machine to perform internal merge is a matter of applicabil-
ity and of conceptual necessity: it is a matter of applicability because it is a sim-
ple analytical tool that is constructively used to capture the property of ‘displace-
ment’, which seems ubiquitous in natural languages, and a matter of conceptual
necessity because only by stipulation could the nesting machine be banned to per-
form X ∪ Y at si when X is Mi-1 and Y belongs to Δ(Mi-1), a stipulation that would
seem unmotivated, given our current understanding of the syntactic patterns of nat-
ural languages.

4. Conclusion

In this note we have been concerned with the theory of syntax. More particularly,
we have been concerned with a set-theoretical definition of an algorithm that gen-
erates hierarchically structured expressions that can potentially support grammat-
ical systems of a formidable generative power. However, the object we observe,
built up on the basis of the nesting machine, has to satisfy constraints belonging
to multiple domains such as (a) learnability, (b) material embedding and evolution
of the computing assembly, (c) interpretability and (d) mathematical information the-
ory. We thus emphasize the truism that the theory of order we have rigorously
defined is no more than a component of a general theory of language.

We have constructed our theory of hierarchical expressions on the basis of the
concept of nest, thereby applying Kuratowski’s general theory of order. We have
shown that, by properly exploring the features of nested structures, several core
syntactic properties can be rigorously derived. The concept of nest is indeed a pow-
erful abstract entity postulated in different domains, like Theoretical Biology
(Bascompte et al. 2003), Statistical Physics (Dorogovtsev et al. 2006, Corominas
Murtra et al. 2008) or Genetics (Rodriguez Caso et al. 2005, Corominas Murtra
et al. 2007). Therefore, nestedness does not only play a crucial role in our specif-
ic domain (where we have defined the notions of constituent, dominance, domain
and chain on the basis of the same mathematical object), but it is also a useful
abstraction that seems to shed light in understanding several natural phenomena
where either a recursive algorithm or an evolutionary process is at work.
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12. Observe that the nesting machine allows multiple specifiers of a head and does not require the
stipulation of abstract functional heads to host a category in a derived position, thereby differing from
Kayne’s (1994) Linear Correspondence Axiom.

CatJourLing 8 001-189:CatJL  11/1/10  13:19  Página 110



References

Bascompte, Jordi, Pedro Jordano, Carlos J. Melián & Jens M. Olesen (2003). “The
nested assembly of plant-animal mutualistic networks”. Proceedings of the National
Academy of Science USA 100: 9.383-9.387.

Chaitin, Gregory J. (1977). “Algorithmic Information Theory”. IBM Journal of Research
and Development 21: 350-359. 

Chomsky, Noam (2001). “Beyond explanatory adequacy”. MIT Occasional Working
Papers in Linguistics 20: 1-18. Cambridge, Mass.: The MIT Press. 

Chomsky, Noam (2008). “On phases”. In Freidin, Robert, Carlos P. Otero and Maria
Luisa Zubizarreta (eds.), Foundational Issues in Linguistic Theory, 133-166.
Cambridge: MIT Press.

Corominas-Murtra, Bernat, José F. F. Mendes & Ricard V. Solé (2007). “Nested
Subgraphs of Complex Networks”. Santa Fe Institute Working Papers. 07-12-050. 

Corominas-Murtra, Bernat, Sergi Valverde, Carlos Rodríguez-Caso & Ricard V. Solé
(2008). “K-scaffold subgraphs in complex networks”. Europhysics Letters 77,
18004.

Davis, Martin (1958). Computability and Unsolvability. New York: McGraw-Hill. 
Dorogovtsev, S. N., A. V. Goltsev, J. F. F. Mendes (2006). “K-core organization of com-

plex networks”. Physical Review Letters 96, 040601.
Fortuny, Jordi (2008). The emergence of order in syntax. Amsterdam/Philadelphia:

John Benjamins Publishing Company. 
Gross, Jay & Yellen, Jonathan L. (1999). Graph Theory and its applications. Boca

Raton, Fl.: CRC Press.
Hermes, Hans (1965). Enumerability, Decidability, Computability. New York: Springer.  
Kayne, Richard S. (1994). The antisymmetry of syntax. Cambridge, Mass.: The MIT

Press.
Kelley, John L. (1955). General Topology. Springer-Verlag.
Kuratowski, Casimir (1921). “Sur la notion de l’ordre dans la théorie des ensembles”.

Fundamenta Mathematicae 2: 161-171.
Partee, Barbara, Alice ter Meulen & Robert E. Wall (1990). Mathematical Methods in

Linguistics. Dordrecht/Boston/London: Kluwer Academic Publishers. 
Peskin, Michael E. & Daniel V. Shroeder (1995). An Introduction to Quantum Field

Theory (Frontiers in Physics). New York: HarperCollins Publishers.
Rodriguez-Caso, Carlos, Miguel A. Medina & Ricard V. Solé (2005). “Topology, tin-

kering and evolution of the human transcription factor network”. FEBS Journal
272 (23): 6423-6434. 

Zwart, Jan-Wouter (this volume). “Prospects for Top-Down Derivation”.

Formal Considerations on the Generation of Hierarchically Structured Expressions CatJL 8, 2009  111

CatJourLing 8 001-189:CatJL  11/1/10  13:19  Página 111


	Some Formal Considerations on the Generationof Hierarchically Structured Expressions
	Abstract

	Table of Contents
	1. Introduction
	2. The nesting machine
	2.1. Simple nesting
	2.2. Complex nesting
	Figure 1. A picture of the application of the nesting algorithm over an arbitrary alphabetenabling complex nesting


	3. Remarks and reflections
	3.1. The nesting machine as an abstract entity
	3.2. On the direction of derivations
	3.3. Chains

	4. Conclusion
	References




