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STABILIZATION IN H∞

R
(D)

Brett D. Wick

Abstract

It is shown that for H∞

R
(D) functions f1 and f2 with

inf
z∈D

(|f1(z)| + |f2(z)|) ≥ δ > 0

and f1 being positive on the real zeros of f2, then there exists
H∞

R
(D) functions g2 and g1, g−1

1
with norm controlled by a con-

stant depending only on δ and

g1f1 + g2f2 = 1 ∀ z ∈ D.

These results are connected to the computation of the stable rank
of the algebra H∞

R
(D) and to results in Control Theory.
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Notation

:= equal by definition;

C complex plane;

Re z real part of z ∈ C;

Im z imaginary part of z ∈ C;

D the unit disc, D := {z ∈ C : |z| < 1};
C+ the upper half-plane, C+ := {z ∈ C : Im z > 0};
T the unit circle, T := ∂D;

R the real line, R := ∂C+;

H∞ the algebra of all bounded analytic functions on either C+

(H∞(C+)) or D (H∞(D));

H∞
R

the algebra of all bounded analytic functions with real Fourier
coefficients on either C+ (H∞

R
(C+)) or D (H∞

R
(D));

0. Introduction and main results

The stable rank of a ring (also called the Bass stable rank) was intro-
duced by H. Bass in [1] to assist in computations of algebraic K-Theory.
We recall the definition of the stable rank.

Let A be an algebra with a unit e. An n-tuple a ∈ An is called
unimodular if there exists an n-tuple b ∈ An such that

∑n
j=1 ajbj = e.

An n-tuple a is called stable or reducible if there exists an (n−1)-tuple x
such that the (n−1)-tuple (a1+x1an, . . . , an−1+xn−1an) is unimodular.
The stable rank (also called bsr(A) in the literature) of the algebra A is
the least integer n such that every unimodular (n+1)-tuple is reducible.

The stable rank is a purely algebraic concept but can be combined
with analysis when studying commutative Banach algebras of functions.
In this context, the stable rank is related to the zero sets of ideals,
and the spectrum of the Banach algebra. The stable rank for different
algebras of analytic functions have been considered by many authors.
The computation of the stable rank of the disc algebra A(D) was shown
to be one by Jones, Marshall and Wolff [7]. The computation was done
for sub-algebras of the disk algebra A(D) by Corach-Suárez [4], and
Rupp [10].

For the Banach algebra H∞(D), the classification of its unimodular
elements and its stable rank are well understood. Carleson’s Corona
Theorem, see [3], can be phrased as an n-tuple (f1, . . . , fn) ∈ H∞(D)n
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is unimodular if and only if it satisfies the Corona condition,

inf
z∈D

(|f1(z)| + · · · + |fn(z)|) = δ > 0.

The stable rank of H∞(D) was computed by S. Treil and is one of the
motivations for this paper. Treil’s result is the following theorem:

Theorem 0.1 (S. Treil, [12]). Let f1, f2 ∈ H∞(D) be such that
infz∈D(|f1(z)|+ |f2(z)|) = δ > 0. Then there exists g1, g2, g

−1
1 ∈ H∞(D)

with ‖g1‖∞, ‖g2‖∞ and ‖g−1
1 ‖∞ controlled by C(δ), a constant only de-

pending on δ, and

1 = f1(z)g1(z) + f2(z)g2(z) ∀ z ∈ D.

It is immediately apparent that Theorem 0.1 implies the stable rank
of H∞(D) is one. Questions about the stable rank of some sub-algebras
of H∞(D) have been studied by Mortini [8].

It is possible to phrase Treil’s result [12] in the language of Control
Theory. In this language, the result can be viewed as saying that it
is possible to stabilize (in the sense given above) a linear system (the
Corona data, viewed as a rational function) via a stable (analytic) con-
troller. But, in applications of Control Theory, the linear systems and
transfer functions have real coefficients, so in this context Treil’s result
is physically meaningless. From the point of view of Control Theory, it
is important to know if results like Theorem 0.1 hold, but for a more
physically meaningful algebra, and serves as the main motivation for this
paper. This paper is interested in questions related to the stable rank
of a natural sub-algebra of H∞(D), the real Banach algebra H∞

R
(D). In

particular, does some variant of Theorem 0.1 hold for this algebra?
First, recall that H∞

R
(D) is the subset of H∞(D) with the additional

property that the Fourier coefficients of an element of H∞
R

(D) must be
real. This property can be captured by the following symmetry condi-
tion:

f(z) = f(z) ∀ z ∈ D.

When we translate between D and C+ this condition takes the following
form,

f(z) = f(−z) ∀ z ∈ C+.

This condition is implying that the functions in H∞
R

(D) possess a sym-
metry that is not present for general H∞(D) functions.

Carleson’s Corona result is inherited by the algebra H∞
R

(D). More
precisely, it is an immediate application of the usual Corona Theo-
rem and the symmetry properties of H∞

R
(D) to show that an n-tuple
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(f1, . . . , fn) ∈ H∞
R

(D)n is unimodular if and only if it satisfies the Corona
condition,

inf
z∈D

(|f1(z)| + · · · + |fn(z)|) = δ > 0.

Indeed, one direction is immediate, and in the other direction, if we know
that

inf
z∈D

(|f1(z)| + · · · + |fn(z)|) = δ > 0,

then we can find a solution (g1, . . . , gn) ∈ H∞(D)n. We then symmetrize
the gj via the operation

g̃j(z) :=
gj(z) + gj(z)

2
.

The g̃j ∈ H∞
R

(D) and will then be the H∞
R

(D) Corona solution we are
seeking.

This leads to the main question considered in this paper. Is Theo-
rem 0.1 true for the algebra H∞

R
(D)? Namely, given Corona data f1

and f2 in H∞
R

(D), is there a solution g1 and g2 to the Corona problem
with g1 invertible in H∞

R
(D)? This can also be phrased as attempting

to show that the stable rank of H∞
R

(D) is one.
It is easy to see that there is an additional necessary condition. Sup-

pose that Theorem 0.1 were true for H∞
R

functions, then we shall see
that the real zeros of f1 and f2 must intertwine correctly. Indeed, let λ1

and λ2 be real zeros of f2. Then we have

f1(λ1)g1(λ1) = 1

f1(λ2)g1(λ2) = 1.

Now f1(λ1) and f1(λ2) must have the same sign at these zeros. If this
were not true, then without loss of generality, suppose that f1(λ1) >
0 > f1(λ2). Then g1(λ1) > 0 > g1(λ2). By continuity there will exist
a point λ12, between λ1 and λ2, with g1(λ12) = 0. But this contradicts
the fact that g−1

1 ∈ H∞
R

(D). So f1 must have the same sign at real zeros
of f2. Abusing notation slightly, we will say that f1 is positive on the
real zeros of f2, if f1 has the same sign at all real zeros of f2.

This is also an intertwining condition of the zeros of f1 and f2. More
precisely, the function f1 is positive on the real zeros of f2 if, and only if,
between every real zero of f2 there must be an even number of real zeros
of f1. In Control Theory, this condition is called the parity interlacing
property and appears in conditions for the stabilization of a linear system.

The main result of this paper is the following theorem.
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Theorem 0.2. Suppose that f1, f2 ∈ H∞
R

(D), ‖f1‖∞, ‖f2‖∞ ≤ 1, f1 is
positive on the real zeros of f2 and

inf
z∈D

(|f1(z)| + |f2(z)|) = δ > 0.

Then there exists g1, g
−1
1 , g2 ∈ H∞

R
(D) with ‖g1‖∞, ‖g2‖∞, ‖g−1

1 ‖∞ ≤
C(δ) and

f1(z)g1(z) + f2(z)g2(z) = 1 ∀ z ∈ D.

The reasoning leading to this theorem in turn implies that the stable
rank of H∞

R
(D) is at least two because the additional condition of f1

being positive on the real zeros of f2 is necessary to find Corona solutions
with one of them invertible.

We remark that these results transfer immediately to analogous state-
ments H∞

R
(C+) via the standard conformal mapping between C+ and D.

Throughout the paper, the adjective real symmetric is used to indicate
that the function in question satisfies the symmetry condition

f(z) = f(z) ∀ z ∈ D or f(z) = f(−z) ∀ z ∈ C+

which will be clear from the context. We also will work with either
the upper half-plane or the disc, and will transfer the problem to either
domain, depending upon where the problem is easiest to work with.

Acknowledgements. The author would like to thank S. Treil for sug-
gesting this problem to him, the many useful discussions that we had
about the problem, and the insightful comments he made on an early
draft of this paper. The author would also like to thank the referee for
several useful remarks about the paper.

1. Idea of the proof

The method of proof is inspired by Treil’s proof in [12], but must be
suitably modified. A key component of the modifications is to exploit the
symmetry properties of H∞

R
(D) functions. Additionally, it is important

to include the condition about f1 being positive on the real zeros of f2

in an appropriate way.
It is straightforward to demonstrate that it is enough to prove The-

orem 0.2 only in the case of real symmetric rational functions whose
zeros satisfy the additional condition about intertwining zeros. While
not immediately clear, it is also true that one can show that it is suffi-
cient to prove Theorem 0.2 in the case of real symmetric finite Blaschke
products possessing this condition as well. This can be seen from the
appropriate modifications of the original proof by Carleson and the proof
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by Treil [12]. Thus, we specialize to the situation where we have real
symmetric simple Blaschke products with the intertwining zero property.

To prove Theorem 0.2 we begin by solving an interpolation problem.
Suppose that f1 and f2 are real symmetric finite simple Blaschke prod-
ucts, which satisfy the condition that f1 is positive on the real zeros of f2

and
inf

z∈C+

(|f1(z)| + |f2(z)|) = δ > 0.

Note that the function f1(z) satisfies |f1(z)| ≥ δ
2 on the set {z ∈ C+ :

|f2(z)| < δ
2}. Further, observe that each component of this set is simply

connected. With this in hand, we now use the following proposition.
Because of these properties, since f1 is positive on the real zeros of f2

and the Corona condition holds there is a well defined branch of log f1

with respect to the symmetric set {z ∈ C+ : |f2(z)| < δ
2} that can be

chosen with the additional property that log f1(z) = log f1(−z).

Proposition 1.1. Suppose that f1 and f2 are real symmetric finite sim-
ple Blaschke products which satisfies the condition that f1 is positive on
the real zeros of f2 and

inf
z∈C+

(|f1(z) + |f2(z)|) = δ > 0.

On the set {z : |f2(z)| < δ
2} if log f1 is a bounded analytic real symmetric

function, then there exists a function h ∈ H∞
R

(C+) such that

log f1(z) = h(z) for all z in the zero set of f2

and ‖h‖∞ ≤ C(δ).

The proof of Proposition 1.1 is a variation of a standard result found
first in [3] and further explained in [5]. But we must incorporate the
condition about the zeros in an appropriate manner. To do this we use
results from [13]. The condition that f1 is positive on the real zeros of f2

implies that log f1 is well defined on the set where f2 is small. Thus, it
is possible to solve the above interpolation problem, namely, finding the
function h which takes the values of log f1. One then need only choose
a function with minimal norm. This is accomplished by mimicking the
proof found in [3] or [5] using Carleson’s Lemma constructing Carleson
contours about the zeros of the Blaschke product f2.

Since f1 is rational, we have a bounded branch of the logarithm log f1

on the set {z : |f2| < δ
2}. Additionally, we have f1 is positive on the real

zeros of f2 so we apply Proposition 1.1 to f1 and f2. This gives rise to
a function h ∈ H∞

R
(C+) with ‖h‖∞ ≤ C‖ log f1‖∞, and

eh(z) = f1(z) for all z in the zero set of f2.
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The function eh is invertible in H∞
R

(C+) and there is a function G ∈
H∞

R
(C+) with eh = f1 + f2G.

This is almost enough to conclude the proof of the theorem. If log f1

were bounded on {z ∈ C+ : |f2(z)| < δ
2} by a constant only depending

on δ and not on the degrees of f1 and f2, we would be done. However,
this is not generally true, so we need a method to overcome this difficulty.
To do this we will find an analytic function κ that is real symmetric and
will “correct” the function f1.

To find the correcting function, we will prove the following proposi-
tions.

Proposition 1.2. Let p, q ∈ H∞
R

(C+) be finite simple real symmetric
Blaschke products with infz∈C+

(|p(z)| + |q(z)|) = δ > 0. Then there
exists an analytic function κ with the following properties:

(i) |Re κ(z)| ≤ C(δ) ∀ z ∈ C+;

(ii) |log p(z) − κ(z)| ≤ C(δ) for all z in {z ∈ C+ : |q(z)| < δ′} for
some 0 < δ′ ≤ δ and an appropriate branch of log p on the set
{z ∈ C+ : |q(z)| < δ′};

(iii) κ(z) = κ(−z) ∀ z ∈ C+.

To find κ we will construct an auxiliary function V .

Proposition 1.3. Let p, q ∈ H∞
R

(C+) be finite simple real symmetric
Blaschke products with infz∈C+

(|p(z)| + |q(z)|) = δ > 0. Then there
exists a function V with the following properties:

(i) |Re V (z)| ≤ C(δ) ∀ z ∈ C+;

(ii) |log p(z) − V (z)| ≤ C(δ) for all z in {z ∈ C+ : |q(z)| < δ′} for
some 0 < δ′ ≤ δ and an appropriate branch of log p on the set
{z ∈ C+ : |q(z)| < δ′};

(iii) V (z) = V (−z) ∀ z ∈ C+;

(iv) some conditions to guarantee the existence of a bounded solution v
on the entire upper half-plane C+ of the equation ∂̄v = ∂̄V , in
particular:
(a) |∆V (z)| Im z dx dy is a Carleson measure with intensity C(δ);

(b) |∂V (z)| dx dy is a Carleson measure with intensity C(δ);

(c) |∆V (z)| ≤ C(δ)
(Im z)2 ∀ z ∈ C+.

Proposition 1.3 immediately implies Proposition 1.2. To see this, once
we have constructed V , set κ = V −v. Trivially, we have that κ is analytic
because the ∂̄-derivatives of V and v agree. In Section 2 we show that
it is possible to force the solution v to also possess the property v(z) =
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v(−z), so κ will have the symmetry property. Condition (i) on κ then
follows from the corresponding condition on V and the boundedness of
the solution v (condition (iv) above). Finally, we have

|log p − κ| = |log p − V + v| ≤ |log p − V | + |v|.

So, the boundedness of v and condition (ii) on V imply the corresponding
condition on κ. We will prove Proposition 1.3 in Sections 3 and 4.

Now, consider the function e−κf1. Conditions (i) and (iii) of Propo-
sition 1.2 imply that eκ ∈ H∞

R
(C+). Condition (ii) implies that e−κf1

has a bounded branch of logarithm on {z ∈ C+ : |f2(z)| < δ′}. Ap-
plying Proposition 1.1 and the argument that followed, we obtain eh =
f1e

−κ+f2G1 with h, G1 ∈ H∞
R

(C+) with ‖h‖∞ ≤ C(δ). Set g2 := G1e
−h

and g1 := e−(κ+h). Then we have that g1, g2, g
−1
1 ∈ H∞

R
(C+) such that

‖g1‖∞, ‖g2‖∞, ‖g−1
1 ‖∞ is controlled by C(δ) and

f1(z)g1(z) + f2(z)g2(z) = 1 ∀ z ∈ C+.

This argument then shows that to prove Theorem 0.2, we need to
establish Proposition 1.3.

2. Construction of bounded solutions to the ∂̄-equation
with H∞

R
(D) data

As is well known, solutions to the ∂̄-equation on the disc are intimately
connected with solutions to the Corona Problem because of connections
between ∂̄-equations and Carleson measures. We now recall the defi-
nition of Carleson measures. Let I be an interval in R and form the
Carleson square Q = Q(I) over I,

Q(I) := {z ∈ C+ : Re z ∈ I, Im z ≤ |I|}.

Then we say a non-negative measure µ in the upper half-plane C+ is a
Carleson measure if

sup
I

µ(Q(I))

|I| := K < ∞,

with the supremum taken over all intervals I in R. The constant K
will be called the intensity of the Carleson measure. It is immediate to
transfer these notions to the disc D.

We have the following well known theorem, which can be found in [12].
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Theorem 2.1. Let V be a C2 function on the unit disc D which is
continuous up to the boundary T. Suppose that

(1) |∂̄V (z)| dx dy is a Carleson measure with intensity K1;

(2) |∆V (z)|(1 − |z|2) dx dy is a Carleson measure with intensity K2;

(3) |∆V (z)| ≤ K3

(1−|z|2)2 .

Then the equation

∂̄v = ∂̄V

has a bounded solution v on all of D (not only the boundary T) with

|v(z)| ≤ C(K1, K2, K3) ∀ z ∈ D.

Now we want to show that if the function V has the property that

V (z) = V (z) for all z ∈ D, then this property is inherited by the solu-
tion v. This leads to the following theorem.

Theorem 2.2. Let V be a C2 function on the unit disc D which is
continuous up to the boundary T. Suppose that

(1) V (z) = V (z) for all z ∈ D;

(2) |∂̄V (z)| dx dy is a Carleson measure with intensity K1;

(3) |∆V (z)|(1 − |z|2) dx dy is a Carleson measure with intensity K2;

(4) |∆V (z) ≤ K3

(1−|z|2)2 .

Then the equation

∂̄v = ∂̄V

has a bounded solution v on all of D (not only the boundary T) with

|v(z)| ≤ C(K1, K2, K3) and v(z) = v(z) ∀ z ∈ D.

Proof of Theorem 2.2: We first apply Theorem 2.1 to find a solution v
which is bounded on all of D. Then we replace it with the following
function

ṽ(z) :=
v(z) + v(z)

2
.

Note that we have ṽ(z) = ṽ(z) and that ‖ṽ‖H∞(D) ≤ ‖v‖H∞(D) ≤
C(K1, K2, K3). We only need that ∂̄ṽ = ∂̄V for all z ∈ D. But, this
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follows from direct application of the chain rule. Indeed,

∂̄V (z) =
1

2
(∂̄(V )(z) + ∂̄(V )(z))

=
1

2
(∂̄(V )(z) + ∂̄(V (z)))

=
1

2
(∂̄(v)(z) + ∂̄(v(z)))

= ∂̄ṽ(z).

Using the conformal equivalence between D and C+, it is possible to
translate the above theorem, leading to the following.

Theorem 2.3. Let V be a C2 function on the upper half-plane C+ which
is continuous up to the boundary R and at the point z = ∞. Suppose
further that

(1) V (z) = V (−z) for all z ∈ C+;

(2) |∂̄V (z)| dx dy is a Carleson measure with intensity K1;

(3) |∆V (z)| Im z dx dy is a Carleson measure with intensity K2;

(4) |∆V (z)| ≤ K3

(Im z)2 .

Then the equation
∂̄v = ∂̄V

has a bounded solution v on all of C+ (not only the boundary R) with

|v(z)| ≤ C(K1, K2, K3) and v(z) = v(−z) ∀ z ∈ C+.

These theorems will be used to find H∞
R

(D) solutions to certain
∂̄-equations.

3. Main construction

Recall that it only remains to prove Proposition 1.3.

Proposition 1.3. Let p, q ∈ H∞
R

(C+) be finite simple real symmetric
Blaschke products with infz∈C+

(|p(z)| + |q(z)|) = δ > 0. Then there
exists a function V with the following properties:

(i) |Re V (z)| ≤ C(δ) ∀ z ∈ C+;

(ii) |log p(z) − V (z)| ≤ C(δ) for all z in {z ∈ C+ : |q(z)| < δ′} for
some 0 < δ′ ≤ δ and an appropriate branch of log p on the set
{z ∈ C+ : |q(z) < δ′};

(iii) V (z) = V (−z) ∀ z ∈ C+;
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(iv) some conditions to guarantee the existence of a bounded solution v
on the entire upper half-plane C+ of the equation ∂̄v = ∂̄V , in
particular:
(a) |∆V (z)| Im z dx dy is a Carleson measure with intensity C(δ);

(b) |∂V (z)| dx dy is a Carleson measure with intensity C(δ);

(c) |∆V (z)| ≤ C(δ)
(Im z)2 ∀ z ∈ C+.

The construction of V is inspired by the construction given by S. Treil
in [12], however we need to appropriately modify it to take advantage
of the symmetry that H∞

R
(D) functions possess. The main approach to

this proposition is the construction of a Carleson contour. We use the
modification developed by Bourgain in [2] and exploited by Treil in [12].
We further modify the method to force symmetry into the Carleson
regions, which is possible since we are working with the algebra H∞

R
(C+).

This is an essential point in the argument.
We let ba(z) denote the elementary Blaschke factor in H∞(C+) with

zero at a ∈ C+, i.e., ba(z) := z−a
z−a

. The following lemmas will be of use.

Lemma 3.1. Let B =
∏

a∈σ ba be a finite Blaschke product with simple
zeros. Suppose that for a given z ∈ C+ and γ > 0 we have

|ba(z)| ≥ γ ∀ a ∈ σ.

Then
∑

a∈σ

2 Im z Im a

|z − a|2 ≤ log
1

|B(z)| ≤
1

γ

∑

a∈σ

2 Im z Im a

|z − a|2 .

We include the proof of this lemma.

Proof:

log |B(z)| =
1

2
log(|B(z)|2)

=
1

2

∑

a∈σ

log(|ba(z)|2)

=
1

2

∑

a∈σ

log

(

1 − 4 Im z Im a

|z − a|2
)

.

The proof is then finished by observing that − t
γ
≤ log(1 − t) ≤ −t for

0 ≤ t ≤ 1 − γ.

The next lemma will be used to construct the Carleson regions ap-
propriately adapted to our functions.
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Lemma 3.2. Let B be a finite Blaschke product with simple zeros with
σ denoting its zero set. Let Q = Q(I) be a square with the base I and
suppose that there is a point z0 in the top half of Q with |B(z0)| ≥
ǫ > 0. Then, given M < ∞, there exists a collection of disjoint closed
subinterval {Ik} of I with the following properties:

(i)
∑ |Ik| ≤ 20 log 1

ǫ
M−1|I|;

(ii)
∑

a∈σ∩Q(3Ik) Im a ≥ M |Ik| ∀ k;

(iii) If z ∈ Q \∪kQ(Ik), then
∑

a∈σ
Im z Im a
|z−a|2 ≤ C(M + log 1

ǫ
) with C an

absolute constant;

(iv) The measure µ :=
∑

a∈σ∩Q\∪kQ(Ik) Im a δa is a Carleson measure

with intensity at most 5M .

The proof of this lemma is a stopping time argument. See [2] for
a version of this lemma or Treil [12] for the version indicated above.
Since the functions we have possess additional symmetry, we will apply
the above lemmas to “half” of our function. This is a key difference
between the result found in [12]. With these lemmas, we now construct
generations of closed intervals and regions in the following manner. First,
note that for functions in H∞

R
(C+) we have the following symmetry

property

f(z) = f(−z) ∀ z ∈ C+.

Recall that a function is real symmetric if it satisfies this symmetry
condition. Note that this symmetry is interchanging the left and right
halves of C+. What is important in our case is that for finite Blaschke
products with this symmetry property, a point a is a zero if and only if
−a is a zero. We will use this symmetry in the selection of generations
of intervals. Let

σR := {a ∈ σ : Re a ≥ 0} σL := {a ∈ σ : Re a < 0}.

This splits the zero set σ into its left and right halves. Choose an interval
such that the real part of all zeros of the function are contained in this
interval. Since we are working with H∞

R
(D) functions, then the zeros

will be symmetric and it will be possible to choose a symmetric interval,
i.e. I = (−L, L) for some L. Now, take a square Q = Q(I) where
(I = [0, L)), which contains the zero set σR and we have |p(z0)| ≥ δ for
some point z0 in the top half of Q and |p(z)| ≥ δ for all z /∈ Q(I)∪Q(−I).
One should observe that a rectangle is all that is required to contain the
zeros of the function.
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Choose M = M(δ) > 2 · 100 log 1
δ
. We apply the discussion from

the previous paragraph and Lemma 3.2 with the choice M , ǫ = δ and
B = p and Q = Q(I) ⊃ σR. We thus obtain a sequence of disjoint closed
sub-intervals of I, {Ik}, such that:

(i)
∑ |Ik| ≤ 1

2·5 |I|;
(ii)

∑

a∈σ∩Q(3Ik) Im a ≥ 2 · 100 log 1
δ
|Ik| ∀ k;

(iii) If z ∈ Q \ ∪kQ(Ik), then
∑

a∈σ
Im z Im a
|z−a|2 ≤ C log 1

δ
with C an abso-

lute constant;

(iv) The measure µ :=
∑

a∈σ∩Q\∪kQ(Ik) Im a δa is a Carleson measure

with intensity at most 5M ≥ 250 log 1
δ
.

Given this collection of intervals, we now form a new collection of
intervals in the following manner. It is here that we exploit the symmetry
of H∞

R
(C+) functions. This is a point in the proof where the construction

of Treil must be modified, and the symmetry allows this. Set K1 :=
{Ik,−Ik} = {I ′k}. Then these intervals are closed disjoint sub-intervals
(after a possible union of two of them) of an interval of the form (−L, L).
These intervals also possess the property that I ′k,−I ′k ∈ K1 (again there

could be the possibility that I ′k = −I ′k for some k). Set Q̃ := Q(I) ∪
Q(−I). Furthermore, they have the property that:

(i)
∑ |I ′k| ≤ 1

5 |I|;
(ii)

∑

a∈σ∩Q(3I′

k
) Im a ≥ 2 · 100 log 1

δ
|I ′k| ∀ k;

(iii) If z ∈ Q̃ \ ∪kQ(I ′k), then
∑

a∈σ
Im z Im a
|z−a|2 ≤ C log 1

δ
with C an abso-

lute constant;

(iv) The measure µ :=
∑

a∈σ∩Q̃\∪kQ(I′

k
) Im a δa is a Carleson measure

with intensity at most 10M ≥ 500 log 1
δ
.

This is a straightforward application of the symmetry that H∞
R

func-
tions possess. We indicate some of this now. Since property (i) holds for
the collection {Ik}, by disjointness and symmetry it will hold for {−Ik}
and hence for K1. Property (ii) also holds by symmetry. Since K1 =
{I ′k} = {Ik,−Ik}, and we know that property (ii) holds for the collec-
tion {Ik} by reflection in the y-axis and the symmetry of the zero set of
H∞

R
functions, property (ii) holds for {−Ik} as well. Property (iii) and

property (iv) also follow immediately by the symmetry of H∞
R

functions.
Note that for any interval J ∈ K1, we have |p(z)| < δ for any z in the

top half of Q(J). This follows by Lemma 3.1 and the above construction.
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We have

log
1

|p(z)| ≥
∑

a∈σ

2 Ima Im z

|z − a|2 ≥
∑

a∈σ∩Q(3J)

2 Ima Im z

|z − a|2 .

But, for z in the top half of Q(J) and z ∈ Q(3J), we have Im z ≥ |J|
2

and |z − a| ≤ 2
√

2|J |. So by the construction of the intervals in K1 and
the properties that they possess, we have

log
1

|p(z)| ≥
∑

a∈σ∩Q(3J)

1

8|J | Im a ≥ 1

8
M > log

1

δ
.

We iterate the above construction of construct generations of intervals
and corresponding Carleson regions. Fix an interval J ∈ K1 and let D(J)
be the maximal dyadic sub-intervals J ′ ⊂ J such that the top half of
each Q(J ′) contains a point z0 where |p(z0)| > δ. Note that, by the
symmetry of the function p, we will obtain a symmetric selection of
intervals. Since p is a finite Blaschke product, then D(J) is finite as
well. Moreover,

J =
⋃

J′∈D(J)

J ′.

For each J ∈ K1, we set U(J) := clos
(

Q(J) \ ∪J′∈D(J)Q(J ′)
)

and we
set R1 := {U(J) : J ∈ K1}. The set R1 is the first generation of
Carleson regions. We should note that by symmetry, since J,−J ∈ K1,
then U(J) and U(−J) are symmetric with respect to reflection in the
imaginary axis. Also, it is easy to see that the sets D(J) and D(−J) will
be symmetric in this manner as well.

For each J ′ ∈ D(J) with J ∈ K1, we apply the above construction to
obtain a second generation of intervals K2. Note that we only need to
perform the construction for half the intervals; the other half is obtained
by symmetry, i.e., reflection in the imaginary axis. For each J ∈ K2, we
form U(J) and R2 := {U(J) : J ∈ K2}.

Finally, we define U := ∪j≥1 ∪J∈Kj
U(J). We also set σ1 = σ \ U.

Since we have preserved symmetry throughout the construction, we will
have the property that J,−J ∈ Kj . Also, U(J) and U(−J) will be
symmetric with respect to reflection in the imaginary axis. This implies
that the set σ1 will also be symmetric, i.e., a ∈ σ1 if and only if −a ∈ σ1.
Additionally, by construction, we have the property that if z ∈ U then
|p(z)| ≤ δ.
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Letting l∂U denote the arc length on the boundary of ∂U of the re-
gion U, and letting δa denote the unit mass at the point a, the following
result is straightforward.

Proposition 3.3. Let U and σ1 be as above. Then

(i) The measure l∂U is a Carleson measure with intensity at most C =
C(δ, M) = C(δ);

(ii) The measure
∑

a∈σ1
Im a δa is a Carleson measure with intensity

at most C = C(δ, M) (which in our case is C(δ) by the selection
of M).

Using the regions U and σ1, we will construct the function V . The
function V is constructed as a finite sum of summands of two types, with
each type having two sub-types. Here again, the construction of Treil
must be appropriately modified. This is necessary because we need to
make sure that the function V possesses the symmetry property V (z) =

V (−z) for all z ∈ C+.

3.1. Summands of the first type. In this subsection, we do the con-
struction of the summands corresponding to the zeros in σ1. Recall that
ba(z) := z−a

z−a
is the simple Blaschke factor with zero at the point a ∈ C+.

One immediately observes that ba ∈ H∞
R

(C+) if and only if a = −a. We

also comment that ba(−z) = b−a(z). This can be applied to a product
of terms, and one sees bab−a ∈ H∞

R
(C+). These will be the elementary

building blocks used.
We now make the distinction of when the point a is “close” or “far”

from the the imaginary axis. We thus further split the points in σ1

into the classes for which |Re a| ≤ δ
2 Im a and |Re a| > δ

2 Im a. We first

deal with the case where |Re a| > δ
2 Im a, i.e., when the zeros are “far”

from the the imaginary axis. Let Da denote the disc with center at the
point a of radius δ

2 Im a, and let Ta = ∂Da. Let Ia be the vertical slit
which connects the circle Ta with the real axis at the point Re a, i.e.,

Ia =

{

z ∈ C+ : Re z = Re a, 0 ≤ Im z ≤
(

1 − δ

2

)

Im a

}

.

By construction, we have that the symmetric point −a ∈ σ1. We also
construct the corresponding disc D−a and T−a and the corresponding
slit I−a. Note that in the “far” case the discs Da and D−a are disjoint.
The above construction is explained in Figure 1.
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R

iR

a−a

I
−a

Ia

TaT
−a

Figure 1

Then we have that |bab−a| ≤ δ on the set Da ∪D−a and |bab−a| ≥ δ2

36
on the compliment in C+. We then define a function ϕ : C+ \ (Ta ∪ Ia ∪
T−a ∪ I−a) in the following manner

ϕ(z) :=

{

0 : z ∈ Da ∪ D−a

log(bab−a) : otherwise
.

Here we use the principal branch of the logarithm. Since the term
bab−a ∈ H∞

R
(C+), we have that ϕ is real symmetric on the set C+ \

(Ta ∪ Ia ∪ T−a ∪ I−a). We change ϕ in the δ
100 Im a-neighborhood of

Ta ∪ Ia ∪ T−a ∪ I−a to obtain a smooth function Va on C+ such that

(i) |∂̄Va(z)| ≤ C(δ)
Im a

;

(ii) |∆Va(z)| ≤ C(δ)
(Im a)2 ;

(iii) Va(z) = ϕ(z) if dist(z, Ta ∪ Ia ∪ T−a ∪ I−a) > δ
100 Im a;

(iv) Va(z) = Va(−z).

The function Va is obtained by the convolution of ϕ with a smooth
kernel possessing the symmetry property. Properties (i) and (ii) follow
from well known estimates for H∞ functions. Property (iii) and (iv)
are a simple construction and verification that, if you convolve with a
function that possesses the real symmetry property then the function Va

will possess this property as well. The construction of the mollifying
function is straightforward.

The construction in the case when a ∈ σ1 is close to the imaginary
axis is similar. Recall that in this situation, we are supposing that
|Rea| ≤ δ

2 Im a. In this situation, if we used the above construction the
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two circles would intersect, so instead we take one circle about the two
points. The construction is almost identical then. We let Da,−a denote

the disc with center Im ai and radius δ
2 Im a. Since |Re a| ≤ δ

2 Im a,
Da,−a contains the points a and −a. We let Ta,−a := ∂Da,−a denote
the boundary of the circle. We let Ia,−a denote the vertical slit which
connects the boundary Ta,−a with the real line. Namely, Ia,−a = {z ∈
C+ : Re z = 0, 0 ≤ Im z ≤ (1 − δ

2 ) Im a}. The construction is explained
in Figure 2.

R

a−a

Ta,−a

Ia,−a

Figure 2

Then we will have that |bab−a| ≤ δ on Da,−a and |bab−a| ≥ δ
6 for

points in the compliment. We then define ϕ in the following manner,

ϕ(z) :=

{

0 : z ∈ Da,−a

log(bab−a) : otherwise
.

We again smooth ϕ to find our function V . Namely, we change ϕ in
a δ

100 Im a neighborhood of Ta,−a ∪ Ia,−a to obtain a smooth function
on C+ such that:

(i) |∂̄Va(z)| ≤ C(δ)
Im a

;

(ii) |∆Va(z)| ≤ C(δ)
(Im a)2 ;

(iii) Va(z) = ϕ(z) if dist(z, Ta,−a ∪ Ia,−a) > δ
100 Im a;

(iv) Va(z) = Va(−z).

This concludes this case.
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3.2. Summands of the second type. The construction of these sum-
mands is slightly more involved. Let R be a connected component of U.
Let

Rδ :=

{

z ∈ C+ : inf
a∈R

|ba(z)| <
δ

100

}

.

Set BR :=
∏

a∈σ∩R ba. By Lemma 3.2 for any z ∈ ∂R we have

∑

a∈σ∩R

Im a Im z

|z − a|2 ≤ C

(

M + log
1

δ

)

.

It is straightforward to demonstrate that for any z ∈ ∂Rδ, we have an
identical estimate only with a larger constant. So, by Lemma 3.1 we have
|BR(z)| ≥ ǫ = ǫ(δ), which by the maximum modulus principle holds for
all z /∈ ∂Rδ.

Recall that we used the symmetry of H∞
R

functions in the construction
of the Carleson regions. By construction we have that if R is a connected
component of U, then so is −R. We again have two sub-cases, which
distinguish proximity to the imaginary axis.

If R = −R, then BR ∈ H∞
R

. So we define

ϕ(z) :=

{

0 : z ∈ Rδ

log(BR) : C+ \ Rδ

,

for an appropriate branch of the logarithm. To be precise, we will split
the set C+ \ Rδ into connected domains, and then define ϕ in each
such domain as an appropriate branch of logarithm. The function ϕ
will be real symmetric, and we again smooth ϕ by convolving with an
appropriate real symmetric function. This takes care of the “close” case.

If R 6= −R, then BR is not in H∞
R

, but BRB−R is. We define

ϕ(z) :=

{

0 : z ∈ Rδ ∪−Rδ

log(BRB−R) : C+ \ (Rδ ∪−Rδ)
,

for some branch of the logarithm. We also split the set C+ \ (Rδ ∪−Rδ)
into connected components and technically define ϕ as an appropriate
branch of logarithm on each such component. Again, the function ϕ is
real symmetric. We arrive at a smooth function by convolving ϕ with
an appropriate real symmetric function. In either the “close” or “far”
case, we let VR be the mollification of the function ϕ constructed using
information from the region R.

The splitting is obtained in a similar manner to what appears in Treil’s
construction. We recall the splitting that is used in [12]. Each compo-
nent R is a union of Carleson regions U . Each region was constructed
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as

U = clos



Q(I) \
⋃

J∈D(I)

Q(J)





where D(I) was a family of dyadic subintervals of I with I = ∪J∈D(I)J .
For each such dyadic sub-interval J with center c at the point c, we draw
a vertical interval (slit) [c, c+ i|J |]. In addition to these vertical slits, we
also need Γ-slits. To construct the Γ-slits, consider a vertical sub-interval
of ∂R which is maximal with respect to inclusion. Let I = [a+ ib, a+ ic],
a ∈ R, c > b > 0. For any integer k, k ≥ 1, we do nothing if c2−k−2 ≤ b.
If c2−k−2 > b we draw in C+ \R a horizontal interval of length 2 ·2−k−1

with the endpoint a + ic2−k. Then we draw the vertical interval which
connects the other endpoint to the real axis. Note that we can do this
construction for one region R and then symmetry will deal with the
corresponding region.

We need the following proposition from Treil’s paper.

Proposition 3.4. All slits (vertical and Γ-slits) corresponding to a com-
ponent R are disjoint and the origin of each slit is the only point of
its intersection with the component of R. Moreover, if we consider for
each slit S of altitude d, its δ

100–neighborhood (usual, not hyperbolic) Sδ,
all Sδ are also disjoint.

The proof of this proposition is a direct repeat of what appears in
Treil’s work [12], so we omit it. We simply remark that we have forced
additional symmetry upon our Carleson regions so that we can arrive at
functions with certain symmetry properties.

The slits constructed divide ∂R (or, equivalently, the boundary ∂Rδ

of Rδ) into arcs with hyperbolic length bounded by some constant, de-
pending only on an absolute constant. Next, recall that for H∞ functions

we have |f ′(z)| ≤ ‖f‖∞

Im z
, and since (log B)′ = B′

B
, we will have

|log B(z) − log B(ξ)| ≤ C = C(δ)

for any z, ξ ∈ ∂Rδ. The slits split the set C+ \ (Rδ ∪−Rδ) (or C+ \ Rδ

in the case R = −R) into connected components. We then define, in
each such domain E, the function ϕ as a branch of log B for which
0 ≤ Im log B(z) ≤ C(δ) if z ∈ closE ∪∂Rδ. The jumps of ϕ on the slits,
and on the boundary Rδ, are bounded by a constant depending only
on δ. Let Γδ denote the hyperbolic δ

100–neighborhood of ∂Rδ, i.e.,

Γδ :=

{

z ∈ C+ : inf
a∈∂Rδ

|ba(z)| <
δ

100

}

.
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Also, for a slit S of altitude d let Sδ be its δ
100 -neighborhood (usual not

hyperbolic) of S, i.e.,

Sδ :=

{

z ∈ C+ : dist(z, S) <
δ

100

}

.

Because of the trivial estimate |f ′(z)| ≤ ‖f‖∞

Im z
for f ∈ H∞(C+), and

since ϕ′ = (log B)′, if z ∈ Γδ we have

|ϕ′(z)| ≤ C(δ)

Im z
for z ∈ Γδ \ ∂Rδ.

Since the Blaschke product B = BRB−R has no zeros is C+\(R∪−R), it
is analytic on the set C\(R∪−R) (the bar denotes complex conjugation),
and therefore,

|B′(z)| ≤ C

dist(z,R∪−R)
.

Hence, for any slit S we have

|ϕ′(z)| ≤ C(δ)

d
for z ∈ Sδ \ S.

These estimates and the boundedness of the jumps of ϕ allow one to
change the function ϕ on the set Γδ ∪ ⋃S∈S Sδ, where S denotes the
collection of all slits for the component R, to obtain a function VR

satisfying

VR = ϕ(z) ∀ z /∈ Γδ ∪
(

⋃

S∈S

Sδ

)

,

|V ′
R(z)| ≤ C(δ)

Im z
, |∆VR(z)| ≤ C(δ)

(Im z)2
∀ z ∈ Γδ,

|V ′
R(z)| ≤ C(δ)

d
, |∆VR(z)| ≤ C(δ)

d2
∀ z ∈ Sδ.

The function VR will be smooth by taking the convolution of ϕ with an
appropriate smooth kernel.

The function V is then defined as the sum of all summands of the
first kind and all summands of the second kind, i.e.,

V =
∑

a∈σ1

Va +
∑

R∈R

VR

where R is the set of all connected components of U. By construction,
V will be real symmetric. Therefore, it only remains to show that V sat-
isfies the required conditions (i), (ii) and (iv) from Section 1.
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4. Verification of the properties of the function V

With V now constructed, we need only show that it possesses all
the required properties. First, we need an auxiliary definition and some
propositions. These lemmas and propositions are taken from Treil’s pa-
per [12]. We omit the proofs.

Let S be a slit corresponding to a component R. A common point
of S and ∂R will be called an origin of S. For a slit corresponding to a
point a ∈ σ1, we shall call the origin of S simply the point a.

The following lemma is a straightforward application of Proposi-
tion 3.3.

Lemma 4.1. Let A denote the set of origins of all the slits constructed
above. Then the measure

∑

a∈A Im a δa is a Carleson measure with in-
tensity at most C = C(δ).

Let S be a slit constructed above, and let d = d(S) be its altitude. An
integer k will be called the rank of S and denoted rk(S) if 2k ≤ d < 2k+1.
Of course the rank of a slit can be negative.

Lemma 4.2. For a given z ∈ C+ and k ∈ Z the number of slits of
rank k for which z ∈ Sδ is at most C = C(δ).

Lemma 4.3. For a given z ∈ C+, there exists at most C = C(δ) com-
ponents R ∈ R such that the hyperbolic δ

100 -neighborhood ΓR
δ of ∂Rδ

contains the point z.

Following Treil’s notation for a ∈ σ1, we constructed circles Ta (or
a circle Ta,−a) about the point a, −a with Ta having a radius δ

2 Im a.

We let T δ
a (T δ

a,−a) be its δ
100 Im a neighborhood. We have the following

proposition.

Lemma 4.4. For a given z ∈ C+ there exist at most C = C(δ) points a ∈
σ1 such that z ∈ T δ

a (or T δ
a,−a when appropriate).

To show that the function V satisfies the inequality, we will use a
result due to Treil [11].

Lemma 4.5. Let 0 < ǫ < 1. Let Θn (n ∈ N) be inner functions and
suppose γn is a “semi-Carleson contour” for Θn, i.e., γn = ∂Vn, where
Vn is an open set Vn ⊃ {z : |Θn(z)| < ǫ}. Moreover, the measure lγn

(arclength on γn) is a Carleson measure with intensity at most C, with
C independent of n. Suppose that the measure

∑

n lγn is a Carleson
measure with intensity at most C1. Then

∑

n∈N

(

1 − |Θn(z)|2
)

≤ KC1, ∀ z ∈ C+, where K = K(ǫ, C1).
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This lemma is applied to the family of functions made from the union
of the following two families.

{BRB−R : R ∈ R, R 6= −R} ∪ {BR : R ∈ R, R = −R}
{

bab−a : a ∈ σ1, |Re a| >
δ

2
Im a

}

∪
{

bab−a : a ∈ σ1, |Re a| ≤ Im a
δ

2

}

.

For the case of the BRB−R, we take for the semi-Carleson contour the
boundary ∂Rδ ∪ −∂Rδ. In the case BR we simply take ∂Rδ. For
the other cases, we take either Ta ∪ T−a or Ta,−a. The assumption
of Lemma 4.5 follows from Proposition 3.3. Therefore, we have
∑

R∈R

R6=−R

(1 − |BRB−R|2) +
∑

R∈R

R=−R

(1 − |BR|2)

+
∑

a∈σ1

|Re a|> δ
2

Im a

(1 − |ba(z)b−a(z)|2)

+
∑

a∈σ1

|Re a|≤ δ
2

Im a

(1 − |ba(z)b−a(z)|2) ≤ C = C(δ).

But, by the construction of V in Section 3, we have that

|Re VR(z)| ≤ min

{

log
1

δ′
, log |BR|−1

}

|Re Va(z)| ≤ min

{

log
1

δ′
, log |ba(z)b−a(z)|−1

}

for some constant 0 < δ′ ≤ δ. Hence we have,

|Re V (z)| ≤ C = C(δ).

We now prove that V satisfies the conditions necessary to guarantee
the existence of solutions to the ∂-equation. Namely, we prove that the
Laplacian and the derivative of V gives rise to a Carleson measure.

The proof again is basically a repeat of what appears in [12]. We
include it for the ease of the reader. Note that

∆V (z) =
∑

R∈R

∆VR(z) +
∑

a∈σ1

∆Va(z)

and the summand ∆VR(z) is not equal to zero (respectively, ∆Va(z) 6=
0), only if either
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(a) z ∈ ΓR
δ (respectively, z ∈ T δ

a ), or

(b) z ∈ Sδ where S is a slit corresponding to the component R (re-
spectively, to the point a).

By Lemmas 4.3 and 4.4, for each z ∈ C+, at most K = K(δ) sum-
mands satisfy condition (a). Therefore, given the estimates obtained in
the construction of VR and Va, we have

∑

R:z∈ΓR

δ

|∆VR(z)| +
∑

a:z∈T δ
a

|∆Va(z)| ≤ C

(Im z)2
.

It remains to deal with those points that contribute arising from con-
dition (b). Let Nk(z) be the collection of all components R ∈ R such
that there exists a slit S of rank k corresponding to R for which z ∈ Sδ.
By symmetry, if R has this property then so will −R. Similarly, define
Ak(z) to be the set of all zeros a ∈ σ1 for which z ∈ Sδ, rkS = k,
and S is the slit corresponding to the point a. Lemma 4.2 implies that
cardNk(z) + cardAk(z) ≤ C(δ) for all z ∈ C+, and the estimates from
the construction VR and Va imply

∑

R∈Nk(z)

|∆VR(z)| +
∑

a∈Ak(z)

|∆Va(z)| ≤ C

(2k)2
.

The sets Nk(z) and Ak(z) are non-empty when 2k > 1
2 Im z. Hence,

∑

condition (b)

|∆VR(z)| +
∑

condition (b)

|∆Va(z)|

=
∑

k
2k+1>Im z





∑

R∈Nk(z)

|∆VR(z)| +
∑

a∈Ak(z)

|∆Va(z)|





≤
∑

k
2k+1>Im z

C(δ)

(2k)2
≤ C(δ)

(Im z)2
.

Thus, |∆V (z)| ≤ C(δ)
(Im z)2 . The same logic and method of proof shows

that |∂V | ≤ C(δ)
Im z

.
We now turn to demonstrating that V gives rise to Carleson measures.

Fix a square Q = Q(I) with |I| = d. Let Nk(z) and Ak(z) be as above.
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Let n be the integer such that 2n ≤ d < 2n+1, and let

N+(z) :=
⋃

k≥n+4

Nk(z), N+ :=
⋃

z∈Q

N+(z),

A+(z) :=
⋃

k≥n+4

Ak(z), A+ :=
⋃

z∈Q

A+(z),

and let

N−(z) :=

(

⋃

k<n+4

Nk(z)

)

∪ {R ∈ R : z ∈ ΓR
δ }, N− :=

⋃

z∈Q

N−(z),

A−(z) :=

(

⋃

k<n+4

Ak(z)

)

∪ {a ∈ σ1 : z ∈ T δ
a}, A− :=

⋃

z∈Q

A−(z).

By construction we have that if Sδ ∩ Q 6= ∅ for a slit S of rkS =
k ≥ n + 4, corresponding to a component R, then ΓR

δ ∩ Q = ∅ and
similarly, for all other slits S′ corresponding to the component, we will
have S′

δ ∩ Q = ∅. Thus, N+ ∩ N− = ∅. It is also possible to show that
A+ ∩ A− = ∅ as well.

If ∆VR(z) 6= 0 for a point z ∈ Q (respectively ∆Va(z) 6= 0 for z ∈ Q)
then R ∈ N+ ∪ N− (respectively a ∈ A+ ∪ A−). By the same logic as
above, we can conclude that

∑

R∈N+

|∆VR(z)| +
∑

a∈A+

|∆Va(z)| ≤ C

d2
,

and so

∫∫

Q

(

∑

R∈N+

|∆VR(z)| +
∑

a∈A+

|∆Va(z)|
)

Im z dx dy ≤ Cd = C|I|.

By the geometry of the construction, for any R ∈ N− and the estimates
on the Laplacian of VR, we have

∫∫

Q

|∆VR| Im z dx dy ≤ Cl(∂R∩ Q(20I))

with l the arc length. For a ∈ A−, a ∈ Q(20I), and the estimates on Va

imply
∫∫

Q

|∆Va| Im z dx dy ≤ C Im a.
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Using the above estimates, and the fact that µ=
∑

R∈R
lR+

∑

a∈σ1
Im a δa

is a Carleson measure, we can conclude

∫∫

Q

(

∑

R∈N−

|∆VR(z)| +
∑

a∈A−

|∆Va(z)|
)

Im z dx dy ≤ Cd = C|I|.

This implies that |V (z)| Im z dx dy is a Carleson measure.
To complete the verifications of the properties of V , we must show

that V is sufficiently close to an appropriate branch of log f1 on the set
{z : |f2(z)| < δ′} where 0 < δ′ ≤ δ. To accomplish this, we need the
following proposition, which is a consequence of Hall’s Lemma, see [5]
or [6].

Let f ∈ H∞ ‖f‖∞ ≤ 1 and let Q be a square. Let ǫ be a constant
0 < ǫ < 1. Let

Eǫ := {z ∈ Q : |f(z)| < ǫ}.
The sets ERe

ǫ and EIm
ǫ will denote the vertical and horizontal projections

of the set Eǫ.

Lemma 4.6. For a given 0 < δ < 1 there exists a constant ǫ = ǫ(δ),
0 < ǫ < δ such that for any f ∈ H∞, ‖f‖∞ ≤ 1 satisfying

max{|ERe
ǫ |, |EIm

ǫ |} ≥ 1

4
|I|

the inequality |f(z)| < δ holds for all z in the upper half of Q.

Let O be a connected component of the set {z ∈ C+ : |f2(z)| <
ǫ} where ǫ = ǫ(δ) from the above lemma. By the maximum modulus
principle, the set O is simply connected. Let n ∈ Z be the smallest
integer such that there exists a square Q = Q(I) with base I, |I| = 2n

for which O ⊂ Q.

Lemma 4.7. If, for a slit S, we have Sδ ∪ O 6= ∅ then the rank of S is
at least n − 3.

Proof: Let ORe and OIm be the vertical and horizontal projections of O.
If

max{|ORe|, |OIm|} <
1

4
|I| = 2n−2

then by the definition of n and the fact that O is simply connected, we
have for all z ∈ O, Im z > 1

4 |I|. Hence, if rkS < n − 3 then Sδ ∩O = ∅.
Now suppose that

max{|ORe|, |OIm|} ≥ 1

4
|I| = 2n−2.
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Let S be a slit of rank k, with k < n − 3, and Sδ ∩ O 6= ∅. Let z0 be
the origin of the slit S, i.e., either a point in ∂Rδ or σ1. Let J be the
interval in R with center at the point Re z0 or length 2 Im z0. Since O is
connected, for the set E := O ∩ Q(J) we have

max{|ERe|, |EIm|} >
1

4
|J |.

By Proposition 4.6, |f2(z0)| < δ. This leads to a contradiction, since we
were working under the assumption that f1 and f2 were Corona Data,
namely,

inf
z∈C+

(|f1(z)| + |f2(z)|) = 3δ > 0

and by construction of the Carleson regions, |f1(z0)| < δ.

Fix a point z0 ∈ O. For each connected component R, define on
the set O a branch of log(αRBR(z)B−R(z)), αR ∈ C a unimodular
number, such that log(αRBR(z0)B−R(z0)) = VR(z0). Analogously, for
any a ∈ σ1, define a branch of log(αaba(z)b−a(z)). If, for a component R,
there is a slit corresponding to it such that Sδ ∩O 6= ∅, then

|VR(z) − log(αRBR(z)B−R(z))| ≤ NK(δ),

where N is the number of slits S corresponding to R for which Sδ ∩O 6=
∅. As above, we let n be the smallest integer for which O ⊂ Q, with
Q = Q(I) such a square. Let R0 be the set of all components R ∈ R such
that there exist no slits , rk S ≥ n + 4 corresponding to this component
and satisfying Sδ ∩O 6= ∅. By Lemma 4.2, for any k ≥ n−3 there exists
at most C(δ) slits of rank k such that Sδ ∩O 6= ∅. By Lemma 4.7, there
exists no slits S with rkS < n − 3 for which Sδ ∩ O 6= ∅, and therefore
at most 7C(δ) slits S, with rkS < n + 4 satisfying Sδ ∩ O 6= ∅. It then
follows that

∑

R∈R0

|VR(z) − log(αRBR(z)B−R(z))| ≤ 7C(δ)K(δ), z ∈ O.

For a component R /∈ R0, it is possible to obtain a better estimate.
Indeed, if for a component R there exists a slit S of rank k ≥ n +
4 satisfying Sδ ∩ O 6= ∅, then for other slits S′ corresponding to this
component, S′

δ ∩ O = ∅. Therefore,

|VR(z)− log(αRBR(z)B−R(z))|

≤
(

sup
z∈Sδ

|V ′
R(z)| + sup

z∈Sδ

|(BR(z)B−R(z))′|
)

diam(Sδ ∩ O)

≤ C2−k diamQ ≤ C2n−k.
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We sum this estimate over n ≥ n + 4 and can conclude
∣

∣

∣

∣

∣

∑

R∈R

VR(z) − log(αRBR(z)B−R(z))

∣

∣

∣

∣

∣

≤ C(δ), z ∈ O.

Identical reasoning then implies the corresponding result for Va. This,
in turn, implies that the function V is sufficiently close to an appropriate
branch of logarithm of p and hence V has all the necessary properties.
This then proves Proposition 1.3.

5. Concluding remarks

The argument above shows that the stable rank of H∞
R

(D) is at least
two. A natural conjecture, first made by S. Treil, is

Conjecture 5.1. The stable rank of H∞
R

(D) is two.

In recent work with R. Mortini, we have been able to demonstrate
the validity of this conjecture. In [9] we show that, in fact, the stable
rank of H∞

R
(D) is two, but do so using the maximal ideal theory of

H∞(D). This results in a proof of the above conjecture that does not
produce estimates for the solutions. Thus, a natural question to pose is
the following:

Problem 5.2. Let f1, f2, f3 ∈ H∞
R

(D) be such that infz∈D(|f1(z)| +
|f2(z)| + |f3(z)|) = δ > 0. Does there exist h1, h2, g1, g2 ∈ H∞

R
(D) such

that

1 = f1(z)g1(z) + f2(z)g2(z) + (h1(z)g1(z) + h2(z)g2(z))f3(z) ∀ z ∈ D

and such that ‖hj‖∞, ‖gj‖∞ ≤ C(δ) for j = 1, 2?

By the result in [9], we know that solutions gj, hj exist, and the real
question is what happens in terms of the estimates.
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