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Abstract 

High Performance Computing is a rapidly evolving area of computer science 
which attends to solve complicated computational problems with the combination of 
computational nodes connected through high speed networks.  

This work concentrates on the networks problems that appear in such networks 
and specially focuses on the Deadlock problem that can decrease the efficiency of the 
communication or even destroy the balance and paralyze the network. 

Goal of this work is the Deadlock avoidance with the use of virtual channels, in 
the switches of the network where the problem appears. The deadlock avoidance 
assures that will not be loss of data inside network, having as result the increased 
latency of the served packets, due to the extra calculation that the switches have to 
make to apply the policy. 

Keywords: HPC, High Speed Networking, Deadlock Avoidance, Virtual Channels 
 

Resumen 

La computación de alto rendimiento es una zona de rápida evolución de la 
informática que busca resolver complicados problemas de cálculo con la combinación 
de los nodos de cómputo conectados a través de redes de alta velocidad. 

Este trabajo se centra en los problemas de las redes que aparecen en este tipo de 
sistemas y especialmente se centra en el problema del “deadlock” que puede 
disminuir la eficacia de la comunicación con la paralización de la red.  

El objetivo de este trabajo es la evitación de deadlock con el uso de canales 
virtuales, en los conmutadores de la red donde aparece el problema. Evitar el deadlock  
asegura que no se producirá la pérdida de datos en red, teniendo como resultado el 
aumento de la latencia de los paquetes, debido al overhead extra de cálculo que los 
conmutadores  tienen que hacer para aplicar la política. 

Palabras clave: Computación de altas prestaciones, Redes de alta velocidad, 
Evitación de “deadlock”, canales virtuales 

Resum 

La computació d'alt rendiment és una àrea de ràpida evolució de la informàtica 
que pretén resoldre complicats problemes de càlcul amb la combinació de nodes de 
còmput connectats a través de xarxes d'alta velocitat. 

Aquest treball se centra en els problemes de les xarxes que apareixen en aquest 
tipus de sistemes i especialment se centra en el problema del "deadlock" que pot 
disminuir l'eficàcia de la comunicació amb la paralització de la xarxa. 

L'objectiu d'aquest treball és l'evitació de deadlock amb l'ús de canals virtuals, 
en els commutadors de la xarxa on apareix el problema. Evitar deadlock assegura que 
no es produirà la pèrdua de dades en xarxa, tenint com a resultat l'augment de la 
latència dels paquets, degut al overhead extra de càlcul que els commutadors han de 
fer per aplicar la política. 

Paraules clau: Computació d'altes prestacions, Xarxes d'alta velocitat, evitació 
de "deadlock", canals virtuals 
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1 Introduction 
 

In the 1st chapter we will see the world of High Performance Computing and the 

various elements that HPC consists of. We will refer to the significance of the 

HPC and the complex problems that attends to solve through parallel 

programming. Important elements of HPC will be referred as some of the 

different kinds of parallel computers that are used for that reason and some of 

the interconnection networks that support the complexity of those machines.  As 

problems can occur on the interconnection networks we will refer on the most 

basic of them and what are the possible solutions. Finally we will refer on some 

of the most known network simulators and how through them we can study and 

propose a solution for a problem on an interconnection network. 

 

HPC is a term that describes the High Performance Computing, an area that is 

mostly related with the scientific research. HPC generally refers to the 

engineering applications that run on a parallel computer or on a cluster based 

computer system. These systems work closely so that in many respects they 

form a single computer. Computers of that form are capable of processing / 

calculating with speed big amounts of data. In the latest years the need for more 

computation power has increased and in other areas than science, like data 

warehouses, online applications or transaction processes.  

 

For the efficient control and processing of all the amount of data produced, has 

been evolved also the area of parallel computing. Parallel computing is the 

form of computation, in which many calculations are carried out simultaneously, 

operating with the principle that large problems can often divided in smaller 

ones. This calculation can be done concurrently, in parallel, through the 

combination of a parallel computer, a high speed interconnection network and a 

big storage base.  

 

Due to the technological evolution and the way that our lives evolve, new grand 

challenges have arisen. Grand challenge problem is one problem that cannot 

be solved in a reasonable amount of time with today's computers. Some of them 

are listed below. 



 

• Applied Fluid Dynamics 

• Meso to macro-scale environmental modelling 

• Ecosystem simulations 

• Biomedical imaging and biomechanics 

• Molecular design and process optimization 

• Cognition 

• Fundamental computation 

• Nuclear power and weapons simulations 

• Strong Artificial Intelligence 

• Robust, Predictive macroeconomic simulations 

 

Fundamental scientific problems currently being explored generate increasingly 

complex data, require more realistic simulations of the processes under study, 

and demand greater and more intricate visualizations of the results. These 

problems often require numerous large-scale calculations and collaborations 

between people with multiple disciplines and locations. Also the time of the 

calculations is a very important factor, thus in some problems like weather 

prediction, the result of the calculation has to be resolved before a predefined 

time. These calculations are done by machines called parallel computers. 

 

1.1 Parallel Computers 

 

Parallel computers can be classified according to the level at which the 

hardware supports parallelism with multi-core and multi-processor computers 

having multiple processing elements within a single machine, while clusters, 

MPPs, and Grids use multiple computers to work on the same task. In all the 

times a very good interconnection network is needed with architecture that will 

support respectively the computer. Specialized parallel computer architectures 

are sometimes used alongside traditional processors, for accelerating specific 

tasks.  
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Type of parallel computers 

� multicore computing 

� symmetric multiprocessing 

� distributed computing 

� cluster computing 

� massive parallel computing 

� grid computing 

 

Multicore computing 

A multicore computer is a machine which includes multiple execution units, 

cores. Multicore computer can execute multiple instructions per cycle from 

multiple instruction streams. Each core in a multicore computer can potentially 

be a superscalar core, meaning that on every cycle each core can execute 

multiple instructions by a single stream. 

 

Symmetric multiprocessing 

A symmetric multiprocessing system is a computer system with multiple 

identical processors that share the same memory and they are connected through 

a bus. The caused bus contention in these systems does not provide scalability. 

 

Distributed computing 

A distributed computing system is a distributed memory system with multiple 

computing and storage elements which are connected through an 

interconnection network. Cluster computers execute concurrent processes under 

a loose or strict policy. Distributed systems have also the advantage of high 

scalability. 

 

 

 



 

Cluster computing 

A cluster system is a machine that consists by multiple computers connected 

through an interconnection network. The elements of a cluster computer work 

so closely so that in many respects we can say that they work as a single 

computer. Most known type of a cluster computer is a Beowulf computer which 

consists by several high-end commercial computers connected through a high 

performance TCP/IP local area network (LAN). 

 

Massive parallel computing 

A massive parallel computer is a term that describes the computer architecture 

of a system with many independent computational units that run in parallel. The 

term massive means the use of hundreds or thousand computational units. The 

computing units are connected through a network, creating with that way a very 

large scale system. 

 

Grid computing 

A Grid system is the most known type of a distributed system. Grid architecture 

makes use of several computational units, usually computers, connected through 

internet that work together to solve a scientific or technical problem. Because of 

the low bandwidth and the high latency of those connections the Grid systems 

are usually occupied with small amount of calculations. 

 

Specialized Parallel Computers 

� Reconfigurable computing with field programmable gate arrays 

� General purpose computing on graphics processing units (GPGPU) 

� Applications specific integrated circuits 

� Vector processors 
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Reconfigurable computing with field programmable gate arrays 

Reconfigurable computing is the use of a field programmable gate array 

(FPGA) as a co-processor to a general purpose computer.  An FPGA is a 

computer chip that can rewire itself for a given task. 

 

General purpose computing on graphics processing units (GPGPU) 

General purpose computing on graphics processing units (GPGPU) is a fairly 

recent trend in computer engineering research. GPUs are co-processors that 

have been heavily optimized for computer graphics processing. Computer 

graphics processing is a field dominated by data parallel operations such as 

linear algebra matrix operations. 

 

Applications specific integrated circuits 

Application specific integrated circuit (ASIC) have been used for dealing with 

parallel applications. An ASIC is an integrated circuit (IC) customized for a 

particular use, rather than intended for general purpose use. 

 

Vector processors 

A vector processor is a computer system dedicated to execute the same 

instruction over large sets of data.  Vector processors have the ability of high 

level operations, over linear arrays of numbers of number or vectors. Cray 

system was the first known for its vector processing. 

 

1.2 Network Topologies 

 

The interconnection network plays a central role in determining the overall 

performance of all above parallel computers systems. Thus the computation 

nodes do all the data process and calculations. These calculations are based on 

the interconnection network for the communication among them or with some 

data storage base. Any given node in the network will have one or more links to 

one or more other nodes in the network and the mapping of these links and 

nodes onto a graph results in a geometrical shape that determines the physical 

topology of the network. The interconnection network characterized by the 



topology, the routing algorithm, the switching strategy and the flow control  

mechanism. Routing is responsible for the path selection that the network traffic 

has to follow inside a network. Switching is the network communication 

strategy that defines how are established the connections inside a network and 

the flow control mechanism is responsible to manage the rate of data 

transmission. All these characteristics are combined for the proper functionality 

and the high speed of the network. If the network cannot provide adequate 

performance, for a particular application, nodes will frequently be forced to wait 

for data to arrive. Important for the proper functionality and quality of the 

network service, is the topology that describes it. Some of the most known 

network topologies are listed below. 

 

 

� Fully connected all-to-all 

� Mesh 

� Rings 

� Hypercube 

� Torus 

� Fat-tree 

� Butterflies 

� Benes network 

 

 

Fully connected all-to-all 

In a fully connected network each node on the system is connected with all the 

others nodes through point to point links. This makes possible the simultaneous 

transmition of data from one node to all the others. 

 

Mesh 

In a Mesh network all the nodes in each dimension form a linear array. Mesh 

and torus topologies consist of N=kn nodes in a N dimensional cube with k 

nodes along each dimension. The mesh topology incorporates a unique network 

design in which each computer on the network connects to every other, creating 

a point-to-point connection between every device on the network. The purpose 

of the mesh design is to provide a high level of redundancy. Mesh networks 
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have two groups, Full-Mesh and Partial-Mesh. 

The Full-Mesh Topology connects every single node together. This will create 

the most redundant and reliable network around- especially for large networks. 

If any link fails, we (should) always have another link to send data through. The 

Partial-Mesh Topology is much like the full-mesh, only we don’t connect each 

device to every other device on the network. Instead we only implement a few 

alternate routes. 

 

Rings 

Ring is the type of network topology in which each of the nodes of the network 

is connected to two other nodes in the network and also the first and last nodes 

being connected to each other, forming a ring. Data inside ring are transmitted 

from one node to the next node in a circular manner and the data generally 

flows in a single direction only. 

 

Hypercube 

A special kind of mesh, limiting the number of hops between two nodes, is 

Hypercube.  

Hypercube is a configuration of nodes in which the locations of the nodes 

correspond to the vertices of a mathematical hypercube and the links between 

them correspond to its edges. A Hypercube network has 2n nodes, and each of 

these nodes is arranged on cube shape, having n sets of links for interconnecting 

other nodes, so as to form an n-dimensional hyper cube type network. 

 

Torus 

Torus network consists of N=kn nodes arranged in a N dimensional cube with k 

nodes along each dimension. In torus topology the nodes in each dimension 

form a ring topology. A torus is a mesh topology with wrap around links and 

with the double number of bisection channels, for the same radix and 

dimension. 

 

Fat-tree 

Fat tree topology is the type of network in which a central root node in the 

higher level of hierarchy is connected to one or more other nodes that are in the 

lower level of the hierarchy. These nodes in their turn are connected with one or 



more nodes that are in one lower level on the hierarchy. That structure gives us 

the hierarchy tree. The nodes on the lower level of the tree, are the leafs of the 

tree. 

 

Butterflies 

A butterfly network is a quintessential indirect network with two characteristics. 

Firstly a butterfly has no path diversity which means that there is only one route 

for each source node to its destination node. Secondly a butterfly network needs 

long wires at least equal with the half of the machine diameter, thing that 

decreases the speed of the wire quadratically as its length increase. This makes 

butterfly unattractive for large interconnection networks. 

 

Benes network 

A Benes network is a rearrangeably nonblocking network, widely used in 

telecommunication networks. Consists of n input nodes, n output nodes and in 

the middle has switches wired together. 

 

Network topology refers to the static arrangement of channels and nodes in an 

interconnection network, characterizing the available paths that the packets have 

to travel to reach their destinations. The network topology is the first step in the 

design of a network, because routing mechanism and the flow control method 

will be heavily based on the topology. Whereas the topology determines the 

ideal performance of a network, routing and flow control are the two factors that 

determine how much of its potential is realized. A pathway is needed before 

every route can be selected and the traversal of that route scheduled. The 

network topology not only specifies the type of the network but also the radix of 

the switch, meaning the maximum number of possible connected devices to it, 

the number of stages and the width and bit rate of each channel. 

 

Usually, we choose the topology based on its cost and performance. The cost is 

determined by the number and the complexity of the required machines for the 

network realization and the density and length of the interconnections between 

those machines. Performance is described by two components, bandwidth and 

latency. Bandwidth is the measurement of the available or consumed data 

communication resources expressed in bit/s or multiples of it, Kbit/s or Mbit/s. 
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Latency is the synonym expression of delay in networks. Refer to the amount of 

time that a packet makes from its source to its destination. Both these 

components are determined by factors other than network topology, like flow 

control, routing mechanism and traffic pattern. 

A way of connecting more than two devices is either through a shared media 

network or with a switched media network. 

 

Shared media network is the most traditional way of interconnection between 

devices. In half-duplex mode data can be carried in either dimension over the 

network that connects the machines, but without having the possibility of 

simultaneous transmission and reception by the same machine. In full-duplex 

mode it can be simultaneous reception and transmission by the same machine. 

 

Switched media networks is the alternative approach that does not share the 

entire network path at once, but progressively advance switching between 

disjoint portions of the network. These portions are point-to-point links, 

between active switch components. As the packet traverses through the network, 

it establishes communication between sets of source and destination pairs. 

These passive and active components make up the network switch fabric or 

network fabric. 

 

Main advantage of the switched media networks is that the amount of network 

resources implemented scales with the number of the connected devices, 

increasing the aggregate network bandwidth. These networks allow multiple 

pair of nodes to communicate simultaneously allowing much higher effective 

bandwidth than that provided by the shared media networks. Also the system in 

switch media networks can scale to a very large number of nodes, thing which is 

not feasible in shared media networks. 

 

In switch-based networks as these we are going to study, packet traverses inside 

network using several switches before it reach its destination. The packets have 

to pass through the communication lines and the switches. A switch acts as 

interface for communication between communications circuits in a networked 

environment. In addition, most modern switches have integrated network 



managing capabilities and may operate on numerous layers. Some of the 

integrated mechanisms that are implemented inside switches are routing, 

arbitration and switching. 

 

Routing is defined as the set of operations that need to be performed to compute 

a valid path from the packet source to its destination. Routing is setting the 

question “Which of the possible paths are allowable for packets.” 

 

Arbitration  is required to resolve a conflict, when several packets compete for 

the same resources in the same time. Arbitration is setting the question “When 

are paths available for packets.” 

 

Switching is the mechanism that provides a path for a packet to advance to its 

destination, when the requested resources are granted. Switching is setting the 

question “How are paths allocated to packets” 

 

1.3 Network Problems 

 

Although when the exchange of information increases and the number of the 

participating nodes is big is more often for a problem to appear. Problems occur 

due to failures or limitations on the hardware resources of the network. These 

can destroy the balance, or reduce the speed and the functionality of the 

network. Some of the most important problems that appear in the 

interconnections network are listed below. 

 

• Deadlock 

• Livelock 

• Starvation 
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Deadlock is a very common problem that happens in different communication 

levels, in our case in the interconnection network of a High Performance 

Computer. It is the situation that occurs when different processes wait one 

another to release specific resources. With that way there is cyclic dependency 

between these different processes for the same resources, creating like that a 

circular chain. 

 

Livelock is a condition that occurs when two or more processes continually 

change their state in response to changes in the other processes. The result is 

that none of the processes will complete. An analogy is when two people meet 

in a hallway and each tries to step around the other but they end up swaying 

from side to side getting in each other's way as they try to get out of the way. 

 

Starvation is similar in effect to deadlock. Starvation is a multitasking-related 

problem, where a process is perpetually denied necessary resources. Without 

those resources, the program can never finish its task.  

 

In High Performance Computing, networking is a very important issue, and that 

is because the interconnection network is the key element in the structure of a 

parallel computer. A well structured network can improve the performance of 

the computer minimizing the time that a packet takes from its source to its 

destination and as a sequence decrease the computation time. We have to 

implement several techniques that will solve or prevent problems that appear in 

such networks. Some solution proposals for the most important of the 

interconnection problems are listed below (Details are done in the next chapter). 

 

 

 

 

 



• Deadlock 

� Prevention 

� Avoidance 

� Recovery 

• Livelock 

� Minimal Paths 

� Restricted non minimal paths 

� Probabilistic Avoidance 

• Starvation 

� Resource assignment scheme 

 

One of the most serious problems that occur and we have to deal with, in this 

specific project, is Deadlock. Thus deadlock can be catastrophic and paralyze 

the network, is very important to eliminate any possibility that a deadlock will 

occur. There are four necessary conditions for a deadlock to occur, knows as 

Coffman conditions. These conditions are listed below. 

 

1. Mutual exclusion 

2. Hold and wait condition 

3. No pre-emption condition 

4. Circular wait condition 

 

Deadlock can be avoided if certain information about processes is available in 

advance of resource allocation. For every resource request, the system sees if 

granting the request will mean that the system will enter an unsafe state, 

meaning a state that could result in deadlock. The system then only grants 

requests that will lead to safe states. In order for the system to be able to figure 

out whether the next state will be safe or unsafe, it must know in advance at any 

time the number and type of all resources in existence, available, and requested. 

One known algorithm that is used for deadlock avoidance is the Banker's 

algorithm, which requires resource usage limit to be known in advance. 

However, for many systems it is impossible to know in advance what every 

process will request. This means that deadlock avoidance is often impossible. 
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A total ordering on a minimal set of resources within each dimension is 

required, if we would like to use these resources in full capacity. In contrary 

some resources along the dimension links have to stay free so that can remain 

below the full capacity and avoid deadlock. To allow full access to the network 

resources of the network, we have either to duplicate the physical links or 

duplicate the logical buffers associated with each link. This results respectively 

to physical channels or virtual channels. 

 

Routing algorithms based on this technique, called Duato’s protocol, can be 

defined that allow alternative paths provided by the topology, to be used for a 

given pair of source-destination nodes in addition to the escape resource set. 

One of those allowed paths must be selected, preferably the most efficient one. 

 

1.4 Virtual Channels 

 

Virtual channels are the representation of the partitioned buffer queue inside a 

switch. Buffers can exist in the input and the output of a switch, characterizing 

with that way the type of the switch. Buffers can be placed in the input port of a 

switch and give us the input buffered switch, centrally within the switch which 

give us a centrally buffered switch and finally at both input and output ports of 

the switch which give us an input-output buffered switch. 

 

The packets traverse through the network using the same communication lines, 

and use the switches as intermediate stops until their destination. With the 

structure of virtual channels is provided to the incoming packets of a switch, an 

alternative path to select in case that a previous packet is blocked inside a 

buffer. This alternative path is selected through the flow control mechanism that 

is implemented in the switch, with the use information that each packet carries 

in its header, so that can properly directed to its destination. 



 

For the proper construction and the effective representation of all those elements 

that structure an interconnection network, is necessary the use of a tool like a 

network simulator. Network simulator is a tool that can provide us detail in 

multiple layers of the interconnection network construction and allow us to 

make changes in all those layers. 

 

1.5 Network Simulator – OPNET 

 

Network simulators serve a variety of needs. Compared to the cost and time 

involved in setting up an entire test bed containing multiple networked 

computers, routers and data links, network simulators are relatively fast and 

inexpensive. They allow engineers to test scenarios that might be particularly 

difficult or expensive to emulate using real hardware- for instance, simulating 

the effects of a sudden burst in traffic or a DoS attack on a network service. 

Networking simulators are particularly useful in allowing designers to test new 

networking protocols or changes to existing protocols in a controlled and 

reproducible environment. 

 

Network simulators, as the name suggests are used by researchers, developers 

and Quality Assistants to design various kinds of networks, simulate and then 

analyze the effect of various parameters on the network performance. A typical 

network simulator encompasses a wide range of networking technologies and 

helps the users to build complex networks from basic building blocks like 

variety of nodes and links. With the help of simulators one can design 

hierarchical networks using various types of nodes like computers, hubs, 

bridges, routers, optical cross-connects, multicast routers, mobile units, MSAUs 

etc. 

 

There is a wide variety of network simulators, ranging from the very simple to 

the very complex. Minimally, a network simulator must enable a user to 
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represent a network topology, specifying the nodes on the network, the links 

between those nodes and the traffic between the nodes. More complicated 

systems may allow the user to specify everything about the protocols used to 

handle network traffic. Graphical applications allow users to easily visualize the 

workings of their simulated environment. Text-based applications may provide 

a less intuitive interface, but may permit more advanced forms of customization. 

Others, such as GTNets, are programming-oriented, providing a programming 

framework that the user then customizes to create an application that simulates 

the networking environment to be tested. A list of the most important network 

simulators is listed below. 

 

• ns2 / ns3 

• Opnet 

• Cisco Packet Tracer 

• Cisco NetworkSims 

• GloMoSim 

• OMNeT++ and Simulation Software based on Omnet++ 

• Simmcast 

• GTNets 

 

OPNET Modeler, a network modeling and simulation software solution, is one 

of OPNET Technologies, Inc. flagship solutions and also its oldest product. 

Opnet Modeller includes many predefined and ready-to-use models of switches, 

routers or servers, supports a variety of protocols and provides intervention in 

various levels of construction with the use of C/C++ programming language. 

 

What is our proposal for the problem? 

Proposal for the study of the Deadlock problem is the implementation through a 

network simulator, in our case the Opnet network simulator, of switch and node 

models that will form our preferred network topologies which are the Mesh, 

Torus and Fat tree. These models will make use of the Virtual channels in their 

hardware level, in the input and output buffers. In this structure will be also 



applied an efficient flow control method for packets, in a manner that the 

network can avoid to enter in a deadlock situation. In the below image 1 we can 

see the topologies of Mesh, Torus and Fat tree where the circles represent the 

switches. 

 

Image 1 Mesh, Torus, and Fat Tree topologies 

 

Through this implementation on the network simulator Opnet and the evaluation 

of the result collection, we will view the efficiency and the functionality of the 

created models. We will examine through the simulation process if the 

Deadlock avoidance policy has achieved and also how our models react, with 

variable network sizes and with different packet loads, for each one of our 

examined topologies. 

 

What is the addition that the project makes to the world of HPC and 

interconnection networks. 

This project will be made through the use of Opnet network simulator. That 

means that we can see fast and easy the results of the applied techniques, which 

we will make to our models. Having this way of experimenting we reduce the 

cost to minimum, avoiding in contrary the using of a real parallel computer with 

its high speed interconnection network.  

 

The addition that this project has to offer in HPC community is the elimination 

of a serious network problem, through an implementation on a network 

simulator. That can work as a base so that we can further examine other 
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problems and techniques in high speed interconnection networks, and conclude 

to a proper network architecture that can serve our purposes. 

 

As a conclusion to the first chapter we can say that the need for HPC in our 

times is very important so that we can give answers to important questions and 

solve complex problems. Thus the complexity of a High Performance Computer 

must be supported by an equal robust high speed network, problems that appear 

on those machines and to the networks that support them are important to solve. 

We need to pay attention on the details of such structures, like the network 

switches or the interconnection lines that support our systems, depending 

always on the different purposes and use for which we need such machines. 
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2 State of the art 
 

In this 2nd chapter we will situate the position of our problem explaining the 

related areas of interest for our work. We will refer to the proposed actions that 

exist and can handle deadlock, focusing specially on the deadlock avoidance 

concept and its possible solutions. In the final section we are going to refer the 

relative with our project previous works that have studied the deadlock problem 

and its solution through the use of the virtual channels. 

 

2.1 In which level is situated our problem 

 

The HPC area is a rapidly evolving area of investigation which attends to help 

on the solution of complex problems. To succeed this purpose High 

Performance Computing has to make use of a combination of sophisticated 

hardware computing infrastructures with high speed interconnection networks. 

The hardware or network infrastructures may vary depending on the needs of 

the HPC designer. HPC hardware structures making use of parallel 

programming techniques to solve the complex problems, techniques that need 

continuous and high speed data exchange between the computational nodes. As 

the complexity of a problem increases and the programming technique acquire 

more data exchange to achieve the solution of the problem, the interconnection 

network is some times unable to handle all this amount of data due to finite 

hardware resources. 

The interconnections networks are used nowadays for several applications and 

for different purposes. The type of the interconnection network varies 

depending on the goal that we want to achieve or the system architecture that is 

going to be applied. Different types of networks are listed below. 

 

� Backplane buses and system networks 

� Processor to memory interconnections 

� Internal networks for asynchronous transfer mode (ATM) 

� Multicomputer networks  



� High Performance Computing interconnection networks 

� Distributed shared-memory multiprocessor interconnection 

� LAN's, MAN's, WAN's 

� Industrial application networks 

 

In our case we will focus on the interconnection network of High Performance 

Computers.  Thus the demand for bigger computation power is always 

increasing, it create needs for the reliability and the accuracy of the 

interconnection network. The communication between processors in a 

computational node of an HPC system is done through buses. These 

connections have small length which is limited in the length of few millimeters 

and due to their construction materials can provide small communication 

latency. This latency compared with the communication latency on an 

interconnection network is almost zero, thus the length of a communication line 

can exceed in some meters or tens of meters and the constructional material of 

the communication wire can cause extra latency to the packet delivery. Having 

in mind that the network is the slowest form of communication between 

processors, we would like to make the communication time as smaller as 

possible and eliminate communication problems. The network has to support 

respectively the transition of the information, without causing delays or 

rejection of packets, due to several problems that can appear.  

 

For the design of the interconnection network we have to consider the network 

infrastructure that will form the network and will connect the nodes between 

them. The type of communication wires, the switches or routers and their 

combination with the routing techniques that we need, have to be examined in 

detail so that we can have a robust interconnection network and avoid the 

problems that can appear under a heavy communication load. 

 

To understand the causes of an interconnection problem, we have to focus on 

the way that the intermediate hardware infrastructures, that our network uses, 

work. The switches on an interconnection network play a serious role in the 

transition of packet from their source to their destinations, thus they manage and 
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provide a path for the traversed packet. In the case that a problem occurs or the 

heavy load makes these infrastructures unable to serve the network, we need to 

focus our interest on the internal architecture of a switch and examine the 

pipeline with which it functions. We need to study the different elements from 

which a switch is structured, how they are combined together to work and what 

are the necessary alterations that we need to make in hardware and logic level to 

solve a network problem. 

 

For the purposes of the deadlock avoidance with the use of virtual channels is 

necessary to examine in this lower level, how the packets enter and make use of 

the switch hardware resources, how the problems appear while the traffic load 

increases and what are the possible changes that need to be made in hardware 

and software level, to eliminate the possibility that a deadlock will occur. 

While the amount of traffic load increases, increase also and the possibility of 

simultaneous need by the packets to have access over the same hardware 

resources, such as the input and output buffers of the switch. Because of that we 

have to use a technique such as virtual channels that can provide alternative 

ways of access on these resources and will not stop or delay significantly the 

packet traversal on the network. 

 

For the investigation of such a problem, we will need a tool that can provide us 

access to the various levels of the network structure, allowing us to alter the 

internal logic and components of our network elements. Proper tool for that 

purpose can be a network simulator that will support changes in that level and 

can give us results, through which we can examine the effects of our alterations 

and if needed improve the structural logic. 

 

2.2 What are the existing proposals for the problem 

 

As the big delays on the packets transition can significantly reduce the  

calculation ability of an HPC structure, the undelivered packets can have 



catastrophic sequences for the ability of such a machine to produce the correct 

amount of work, due to lack of information exchange. Some of the most serious 

problems that can cause undelivered packets inside our network are listed below 

in image 2 with their proposed solutions. 

 

 

 

 

 

 

 

 

 

 

Phenomena like deadlock, livelock or starvation, appear in interconnection 

networks due to the finite number of resources and can create the problem of 

undelivered packets or even paralyze the network. This is caused because of 

conflicts between agents and resources, in our case packets and packet buffers.  

An explanation for each one of the phenomena follows. 

 

Deadlock 

Deadlock is the situation where two or more competing agents waiting each one 

for the other to release critical resources. The problem occurs because none of 

the agents is able to progress due to the denial of another agent to release its 

resources or to reach in a compromise. 

 

Livelock 

Livelock is the condition when two or more agents are continually changing 

their state in response with the state of other agents, causing a continuous loop. 

Image 2 Causes of undelivered packets 
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Result of that is that none of the agents can have access to the resources. 

Livelock is similar with deadlock thus no progress is made over the resources, 

and differs in the way that none of the agents is blocked or waiting for a 

resource. 

 

Starvation 

Starvation is the situation that the competing agents may never be granted to the 

requested resources falling in the situation that an agent is starved. A network 

falls in starvation when the requests by the agents for resources are coming 

more frequently that they can been handled. 

 

For our case, we will examine the deadlock phenomenon, which is the most 

serious of all the above. Deadlock may occur due to four conditions which are 

the Mutual exclusion, the Hold and Wait condition, a no pre-emption condition 

or due to circular wait condition. A small explanation for each one of them 

follows. 

 

3 Mutual exclusion condition is when a resource is either assigned to one agent 

or it is available.  

4 Hold and wait condition is when an agent which already holding resources 

may request new resources.  

5 Non preemption condition is when only an agent who holds a resource may 

release it 

6 Circular wait condition is the condition where two or more agents form a 

circular chain where each agent waits for a resource that the next agent in the 

chain holds. 

 

For Deadlock there are three known solution techniques, Prevention, Recovery 

and Avoidance. Each one of them refers to a different approach for the 

deadlock. 

 



Prevention 

The system itself is built in such a way that there are no deadlocks. That means 

that the system makes sure, that at least one of the necessary for deadlock 

conditions will never occur. This is done for example in circuit switching where 

the resources are granted before the transmission starts. It is very conservative 

approach and may lead to very low resource utilization. 

 

Recovery 

Deadlock recovery does not impose any restrictions to the routing mechanism, 

but rather allows deadlock to occur. Deadlock recovery attends to give a 

solution to the problem after that has caused, forcing the agents that hold 

resources to release them, allowing with that way other agents to use those 

resources and break the deadlock. 

 

Avoidance 

Deadlock avoidance is the technique where certain information about agents is 

available in advance of resource allocation. For every resource request, the 

system sees if granting the request will mean that the system will enter an 

unsafe state, meaning a state that could result in deadlock. The system then only 

grants request that will lead to safe states. In order for the system to be able to 

figure out whether the next state will be safe or unsafe, it must know in advance 

at any time the number and type of all resources in existence, available, and 

requested. One known algorithm that is used for deadlock avoidance is the 

Banker's algorithm. However, for many systems it is impossible to know in 

advance what every process will request. This means that deadlock avoidance is 

often impossible. 

 

In our project we will focus specially on the deadlock avoidance technique and 

how this is achieved with the use of virtual channels. The virtual channels will 

provide to our system extra alternative resources that can be used by the agents, 

meaning packets, to avoid other blocked resources and with that way avoid 
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deadlock. Changes in the mechanism of the switch have to be done so that can 

support this new structure and avoid resource dependencies to occur. The logic 

of the mechanism now has to put a specific order on the resources and 

restrictions on the way that these resources are going to be accessed by the 

packets. The implementation and the examination of that proposal will be 

studied through the network simulator in which we will implement and test our 

models. 

 

2.3 Related works 

 

Previous implementations for the deadlock refer to the solution of the problem 

in different levels and with various ways. Deadlock problem appears from 

processor to processor communications, to different types of networks, deadlock 

on chip level or most often in databases and multi-threaded applications. 

Deadlock occurs in software where a shared resource is locked by one thread 

and another thread is waiting to access it and something occurs so that the thread 

holding the locked item is waiting for the other thread to execute. Another case 

where deadlock can occur is in databases where one application has asked for a 

lock on a table. It then requires a second table but another application has locked 

the second table and is waiting to get a lock on the first.  

 

Some of the related with our project implementation refer to various approaches 

like the use of adaptive routing using only one virtual channel [4], virtual lanes 

for ATM networks [5] or the implementation on QNOC router with a dynamic 

virtual channel allocation [6]. In these researches is studied the effect and the 

utilization of the virtual channels and the appropriate number of them for the 

deadlock solution but with different types of network or routing strategy. 

 

None of the previous implementations or approaches to the problem is referring 

to the solution of deadlock avoidance through a simulation process, for the 

specific network models that we are going to study, and the comparison of the 



results between these tree topologies. In our case, thus the construction of a 

network with the appropriate policy needs further examination and 

implementation we are using a network simulator. This approach offers the 

ability to change the numbers of virtual channels and the buffer capacity that 

each one of they contains. Also we can experiment with the deadlock avoidance 

policy and see how we can implement it to our network topologies, with the 

minimum cost on resources while having the desired result. 
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3 Theoretical backs 
 

In the 3rd chapter we will focus on the problem of deadlock and its possible 

solutions. We will see the reasons that cause the deadlock and how we can avoid 

it by the use of virtual channels. The definition of virtual channels will be given 

next and the possible uses that the virtual channels have. At the last part of the 

chapter will be described the parts of the Opnet network simulator that our 

implementation is going to uses and important details about their use and 

functionality. 

3.1 Theory  

 

3.1.1 Deadlock Avoidance 
 

A deadlock is a situation where in two or more competing actions are waiting 

for the other to finish, and thus neither ever does. It is often seen in a paradox 

like 'the chicken or the egg'. 

 

In computer science, deadlock refers to a specific condition when two or more 

processes are each waiting for each other to release a resource, or more than two 

processes are waiting for resources in a circular chain. Deadlock is a common 

problem in multiprocessing where many processes share a specific type of 

mutually exclusive resources known as a software, or soft, lock. 

 

 

 

 

 

 

 

 

Image 3 Deadlocked configuration 



 

Deadlock occurs in an interconnection network when a group of agents, 

usually packets are unable to make progress because they are waiting on one 

another to release resources, usually buffers on channels. If a sequence of 

waiting agents forms a cycle, as it shown in image 3, then the network is 

deadlocked. This can have catastrophic sequences for the network. When some 

resources of the network are been occupied with deadlocked packets other 

packets that coming block on these resources and cannot proceed to their 

destination. [1 ch.14] 

 

For Deadlock handling there are three known techniques that has been used 

and these are  

 

 1. Deadlock Prevention,  

 2. Deadlock Avoidance  

 3. Deadlock Recovery 

 

To prevent this situation, networks must either use deadlock avoidance, method 

that guarantee that a network cannot deadlock, or deadlock recovery in which 

deadlock is detected and corrected. As in almost all the modern networks [1 

ch.14], our project will make use of the Deadlock Avoidance technique. 

 

Deadlock appears because the network resources such as channels and buffers 

are limited. We have to focus that in the switched based networks, like these we 

are going to study, where each switch is connected with a processor. The 

switches that are connected with a processor can send and receive messages 

from the processor.. Due to the similarity between the direct networks and the 

switch based networks we can apply that policy for the deadlock avoidance. [3 

ch.1] 
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To achieve the Deadlock Avoidance, the routing mechanism applied has to 

restrict the allowed paths for the packets that keep deadlock free the global 

network state. An approach for the solution of this is to put an order on the 

resources that want to be accessed by the packets, in the minimum way for 

having network full access. Assigning the resources partially or totally to the 

packets, so that cannot exist the possibility that a circular dependency will 

appear. With that way we are applying escape paths to the packets, no matter 

where they are inside the network, avoiding the probability that they will come 

in a deadlock situation. 

 

Critical resources on the deadlock avoidance, in network level, are the 

connection lines and the buffers associated with them. There must be an order 

in the access of the resources by the packet, while these are travelling from their 

source to the destination.  

 

 

 

 

 

 

 

 

 

When a packet inserted in the network at the phase 0 is entering in a switch. 

Through the communication lines goes to the phase 1 where the next switch is, 

and continues until it reach its destination. While not exist recirculation of 

packets, once a packet have reserved an output channels from the first phase, it 

cannot request any other output channel from the same phase, thus there are no 

dependencies between the output channels of the same phase. Similarly a packet 

that has reserved an output channel on a given phase, cannot request for an 

output channel at a previous phase. With that way we only have dependencies 

 

Image 4 Stages of traversing packet 



from this phase to the next phase. Sequence of that is that we don't have cyclic 

dependency between channels and we avoid deadlock. 

 

While using a flow control method, like store and forward or virtual cut 

through, the agents are packets and the resources are the packet buffers. At any 

given time each packet can only occupy one packet buffer. When a packet 

request for a new packet buffer, it should release the old packet buffer a short 

time later. In our case the resources will be the virtual channels that will replace 

the packet buffers as entities. 

The lines (agents) and the virtual channels (resources) are related with “Wait 

for” and “Hold” relations. If a line holds a buffer, then that buffer is waiting 

from the line to be released. If that not happen, a deadlock occur. 

 

 

Image 6 Wait for and Hold graph 

 

A representation of the relations between agents and resources can be done 

through the dependence graph and the wait-for graph . In both above images 5 

an 6, we can see how connections A and B occupying some resources while 

they are waiting for some others. A occupies channels u and v and waits for 

channel w which is occupied by the connection B. Similarly the connection B 

holds channels w and x and waits for channel u.  

 

If we focus on the Hold relations that lead to the buffers u and w from the lines 

A and B in Image 6.a, and we redraw these lines to the opposite direction as 

 

 

Image 5 Dependence graph 
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Wait for relations we have the Image 6.b. Here we can see, from the dotted 

arrows that appear a circulation between the resources. This circulation shows 

us that the configuration is deadlocked. 

 

In order to occur deadlock, the lines have to acquire buffer resources and wait 

on others, with a way that creates a cycle in the wait for graph. This cycle is a 

necessary nut not sufficient condition for a deadlock. If we can manage to 

eliminate the cycles from the resource dependence graph we can we eliminate 

the possibility of a circular dependence on the wait for graph and as a sequence 

we avoid to deadlock the network. 

 

If the above scheme we replace the buffer resources with the two equal virtual 

channels (explained in next section), we will have a dependence graph like the 

one below, in Image 7.  

 

 

Image 7 Dependence graph with 2 VC 

 

 

3.1.2 Virtual Channels 
 

To avoid Deadlock to our network we have to apply a flow control method to 

allocate the appropriate for the packet resources. Important resources for the 

interconnection network are the communications lines and the buffers. Buffers 

are storage inside nodes and switches, with the form of a memory. In this 



memory is where the packets are temporarily stored, while traversing to their 

destination through the communication lines. Dependent on the switching 

technique and flow control that we use, we may respect to the packets either as 

entire packets or as flits. Flits or flow control units, are the smaller units from 

which the packet consists and create the header, data and tail sections of the 

packet. The flits are also divided in smaller units called phits (phase digits) 

which are the binary representation of a flit. 

 

While the topology of the network determines the possible ways that a packet 

has to reach its destination, the flow control is the method applied to the 

network that organizes the network traffic. Flow control determines when and 

how a travelling packet inside the network can overcome network problems and 

advance itself until destination. This applied strategy must avoid resource 

conflicts between packets, keeping with that way the channels idle. 

 

As an analogy to the real world, we should provide alternative pathways if it 

occurs a problem in a highway road, so that the incoming traffic can overcome 

the accident and continue its way. Having this analogy in mind, at hardware 

level, if a packet gets blocked in a buffer while expecting other resources to get 

free, incoming packets should not get blocked by this packet. The flow control 

mechanism should provide them an escape path in the form of an alternative 

buffer, so that the packet can proceed. The implementation of this in hardware is 

the partition of the used buffer in several pieces that we call virtual channels. 

 

If we consider that the buffer is a (FIFO) First In First Out queue, Virtual 

Channels is the partitioned representation on several smaller parts of memory, 

called or else subqueues. These subqueues are those that used as escape paths 

for the packets. The implementation can be in hardware or software level. In 

hardware can be in form of separated buffers with a circuit flow control 

mechanism. In software level the unique buffer is treated as partitioned, 

applying the flow control policy through a software implementation over the 

virtual channels. To make our job easier for this purpose we will use the Opnet 
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network simulator, partitioning virtually a predefined model of a FIFO buffer 

queue as it shown below on image 8. 

 

 

 

 

 

 

 

 

Buffers are commonly operated as FIFO queues. Therefore, once a message 

occupies a buffer for a channel, no other message can access the physical 

channel, even if the message is blocked. Alternatively, a physical channel may 

support several logical or virtual channels multiplexed across the physical 

channel. Each unidirectional virtual channel is realized by an independently 

managed pair of message buffers. Logically, each virtual channel operates as if 

each were using a distinct physical channel operating at half the speed. This 

representation can be seen in Image 9. Virtual channels were originally 

introduced to solve the problem of deadlock in wormhole-switched networks [3 

ch2]. Deadlock is a network state where no messages can advance because each 

message requires a channel occupied by another message. 

 

 

 

 

 

 

 

 

Image 8 Simple buffer & Buffer with VC 

Image 9 Communication lines with VC 



Virtual channels can also be used to improve message latency and network 

throughput . By allowing messages to share a physical channel, messages can 

make progress rather than remain blocked. For example, in Image 10 we see 

two messages crossing the physical channel between routers R1 and R2. With 

no virtual channels, message A will prevent message B from advancing until the 

transmission of message A has been completed. 

 

Partitioning the buffer in virtual channels, both messages continue to make 

progress. The rate at which each message is forwarded is nominally one-half the 

rate achievable when the channel is not shared. In effect, the use of virtual 

channels decouples the physical channels from message buffers, allowing 

multiple messages to share a physical channel in the same manner that multiple 

programs may share a CPU. The overall time a message spends blocked at a 

router waiting for a free channel is reduced, leading to an overall reduction in 

individual message latency. 

 

 

 

 

 

 

 

 

 

This approach described, does not place any restrictions on the use of the virtual 

channels. Therefore, when used in this manner these buffers are referred to as 

virtual lanes [5] . Virtual channels were originally introduced as a mechanism 

for deadlock avoidance in networks with physical cycles, and as such routing 

restrictions are placed on their use. Virtual channels also can have different 

classes, meaning that each virtual channels can have its own type of priority 

dependent on the characteristics that we want to provide them. Those classes 

may restrict the use of the virtual channels for packets, dependent on the virtual 

Image 10 Packets advances with the use of VC’s 
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channel buffer utilization or the priority type of a packet. For example, packets 

may be prohibited from being transferred between certain classes of virtual 

channels to prevent cyclic waiting dependencies for buffer space. Thus, in 

general we have virtual channels that may in turn be made of multiple lanes. 

While the choice of virtual channels at a router may be restricted, it does not 

matter which lane within a virtual channel is used by a message, although all of 

the flits within a message will use the same lane within a channel. 

 

Acknowledgment traffic is necessary to regulate the flow of data and to ensure 

the availability of buffer space on the receiver. Acknowledgments are necessary 

for each virtual channel or lane, increasing the volume of such traffic across the 

physical channel. Furthermore, for a fixed amount of buffer space within a 

router, the size of each virtual channel or lane buffer is now smaller. Therefore, 

the effect of optimizations such as the use of acknowledgments for a block of 

flits or phits is limited. If physical channel bandwidth is allocated in a demand-

driven fashion, the operation of the physical channel now includes the 

transmission of the virtual channel address to correctly identify the receiving 

virtual channel, or to indicate which virtual channel has available message 

buffers. 

 

For the recognition of the packets and their corresponding direction to the 

virtual channels, has to be added a flit more to the header of each packet. That 

flit is inserted in the source node and will contain the number with the desired 

virtual channel for the packet. With that way, it will be described the preferred 

route that the packet will follow through the network, and will be applied the 

necessary flow control mechanism on the input or output virtual channels of a 

switch. 

 

3.1.3 OPNET 
 

For our project, the implementation will be based on the Opnet network 

simulator. Opnet network simulator is a simulation tool equipped with many 

predefined models of nodes, servers, switches and communication lines, which 



exist in the market. Also supports a wide range of protocols, and allows altering 

on the predefined characteristic models. The simulator allows user intervention 

in 4 different levels that start from the network or subnetwork level, to the 

module level, the process level and in the lower part is the code level. Here 

Opnet network simulator supports the use of external commands based in the 

programming language of C/C++.With that we way we can manage the existing 

models and protocols, or design and create a new one for our purposes.  

 

3.1.3.1 Network 

 

The network defines the overall scope of the system we are going to simulate. 

It’s a representation of the objects that participate in the network construction. 

The network model specifies the objects inside the network, as well as their 

physical locations, interconnections and configurations. It can contain 

subnetworks and nodes, connected through several links, giving a more complex 

structure to the network. This supported complexity provides us easiness to 

design networks similar to the appearance and functions, with the real ones that 

we want to simulate. 

 

The interprocessor communications as in High Performance Computing can be 

viewed as a hierarchy of services. These services begin form a higher level, the 

application layer, in which are performed actions for the preparation of the 

packets and the data encryption and data compression, until the physical layer 

which is responsible for the transition of the packets that come from a higher 

layer. We can view such a layering in the communications services, especially 

for the Local and Wide Area Networks (LAN's and WAN's). This layering can 

be characterized in three layers, and these are from the lower to the higher.  

 

Physical layer 

The physical layer is responsible for packet transfer through the physical 

channel from switch to switch. 
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Switching layer 

Switching layer make use of the physical layer, implementing mechanisms so 

that can forward the messages to their destination. 

 

Routing layer 

At the routing layer are taken the routing decisions for the output channels that 

can provide a path, so that the packet can continue through the network to its 

destination. 

 

The routing mechanisms and their properties (deadlock or livelock freedom) are 

determined mostly by the switching layer. The switching techniques that are 

implemented inside the switching layer are responsible to set the switch inputs 

and outputs and the appropriate time that the packet needs to travel the path 

inside the switch. [3 ch.3] 

 

These switching techniques make use of flow control mechanisms that are 

responsible for the packet transfer synchronization between the switches. The 

flow control mechanisms are related with the management of the packet buffers. 

Determine how the buffers are accessed and released by the packets and which 

is the appropriate policy when exist blocked packets inside these buffers. [3 ch3] 

 

 

 

 

 

 



 

Image 11 Network Domain 

 

In Image 11 we can view the network representation of 4x4 Mesh. We see the 

similarity with the real topology of a mesh, how the computation node that 

insert the packets in the network, are connected with the switches, and how the 

connections of the switches forms our topology. 

 

3.1.3.2 Nodes 

 

A communication node exists within a subnetwork and represents a network 

device with a wide range of possible capabilities. The actual function and 

behaviour of a node is determined by its node model, which is specified by the 

node's "node model" attribute. A node model is defined in the Node Editor and 

specifies the internal structure of the node. A node may refer to a derived node 

model rather than an actual node model specified in the Node Editor. 
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Switch node model 
 

 

The Switch node model supports large numbers of incoming and outgoing data 

links and performs packet routing at high speeds. Within the model are defined 

the characteristics that we want to provide, in form of a sequence of modules  

 

 

Computation node model 

 

Can generate and receive transfers of files or sparse packets, also depend on the 

architecture and the functionality that we want to apply to our network. 

 

 

Communication lines 
 

Links allow communication of information between nodes in the form of 

structured messages called packets. When a packet is submitted to a transmitter 

in a source node, the packet is conveyed over a link to a receiver in a destination 

node. A transmitter may support multiple outgoing channels into a link and, 

similarly, a receiver may support multiple incoming channels from a link as it 

shown below in the image 12. 

 

 

 

 

 

 

 

 

 

Image 12 Communication channels 



A link is actually composed of one or more communication channels, each of 

which defines a connection between a transmitter channel and a receiver 

channel. A communication channel can be thought of as a pipe, where packets 

are placed in one end by a transmitter channel and retrieved at the other end by a 

receiver channel. If a link has multiple communication channels, it can be 

thought of as a "bundle" of pipes, each one conveying packets from the source 

node to the destination node.  

 

Simplex and Duplex Point-to-Point Links  

 

A point-to-point  link can be thought of as a bundle of one or more 

communication channels between the transmitter(s) and receiver(s) that it 

connects. Within a point-to-point link, the number of communication channels is 

static, because there is one communication channel between each transmitter 

channel and receiver channel of the same index. Packets sent by transmitter 

channel in the source node will be received by the receiver channel with same 

index in the destination node. Each communication channel acts independently 

of the others in the same link, as though it were defined in a separate and 

parallel point-to-point link.  

 

A simplex point-to-point link defines a connection from a transmitter in the 

source node to a receiver in the destination node. Packets are conveyed in that 

one direction. A duplex point-to-point link, however, defines a pair of 

connections between two nodes, connecting a transmitter in each node to a 

receiver in the other. Packets can flow in both directions, from each node to the 

other.  

For a point-to-point link to be operable, it must be attached to point-to-point 

transmitters and receivers in the nodes that it connects. The transmitter and 

receiver of a simplex point-to-point  link are designated using its "transmitter" 

and "receiver" object attributes. For duplex links, four attributes ("transmitter a", 

"receiver a", "transmitter b", and "receiver b") serve to identify the modules 

within the nodes to which the link is attached.  
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3.1.3.3 Node modules 

 

The internal structural complexity of network nodes and their scope of activity 

can vary greatly depending on the system which is modelled. For this purpose 

exist several modules that can help us achieve the level of complexity we want.  

 

Processor modules 
 

 

 

 

Processor modules are the primary general-purpose building blocks of node 

models. This process model can respond to external events or interrupts as 

desired to model a specific function. Processors can be connected to other 

modules to send and receive packets via any number of packet streams. 

 

Processor modules are used to do general processing of data packets. A typical 

processor might receive a packet on an input stream, do some processing, and 

send the packet out again on an output stream. The output packet might be 

delayed for a short time, or it might be modified with respect to the input 

packet. 

 

Queue Modules 
 

 

 

 

Node models may employ both processor modules and queue modules to 

implement general processing of packets. Normally, a processor module would 

be used in cases where a packet can be completely processed in response to the 

interrupt associated with its arrival or generation. If this is not the case, and it is 

Image 13 Processor module 

Image 14 Queue module 



necessary to buffer the packet while awaiting a later event to complete 

processing, then a queue module, with its additional buffering resources, is 

likely to be more correct. This is particularly true if multiple packets must be 

buffered simultaneously.  

 

Queue modules provide a superset of the functionality of processor modules. 

Like processors, they can execute an arbitrary process model that describes the 

behaviour of a particular process or protocol, and can be connected via packet 

streams to other modules, allowing them to send and receive data packets. The 

process model can also affect the queue object's list of attributes. 

 

The primary difference between processors and queue modules is that queues 

contain additional internal resources called subqueues. Subqueues facilitate 

buffering and managing a collection of data packets. While it is possible to 

implement this functionality with ordinary processor modules, the use of 

subqueues, provide greater flexibility and ease of implementation of a variety of 

queuing disciplines. Moreover, subqueues automatically compute a number of 

statistics about their operation 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Image 15 Subqueue representation 
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Each queue module contains a definable number of subqueues as we see on 

image 15. A subqueue is an object which is subordinate to the queue object and 

which has its own attributes used to configure it. The capacity of each subqueue 

to hold data is unlimited by default, but a limit may be set on the number of 

packets or the total size of all packets (or both) within a subqueue. It is up to the 

processes in the queue to determine what action to take when subqueues become 

full: packets may be removed to create space for new arrivals, or the new 

arrivals may be discarded. Because the user controls the process model executed 

by a queue, it is possible to model any queuing protocol by defining the manner 

in which the subqueues are accessed and managed. 

 

 

Transmitters – Receivers 
 

Transmitter modules serve as the outbound interface between packet streams 

inside a node and communication links outside the node. There are two types of 

transmitter modules, corresponding to the different types of communication 

links: point-to-point and bus. 

 

 

Image 16 Receiver – Transmitter 

 

Several of the parameters controlling transmission of packets from point-to-

point and bus transmitter modules are actually specified as attributes of the link. 

Within a node model, a transmitter module is considered to be a data sink. 

Therefore, although they may have many input packet streams, transmitter 

modules do not have output packet streams. From the point of view of the 

network model, a transmitter module acts as the node's output port, to which a 

communication link of the corresponding type may be connected: simplex and 

duplex links to point-to-point transmitters and bus links to bus transmitters. 

 



3.1.3.4 Connections 

 

Packet streams 
 

 

 

 

 

 

 

Packet streams are connections that carry data packets from a source module to 

a destination module. They represent the flow of data across the hardware and 

software interfaces within a communication node. There are three different 

methods for transferring a packet over a stream and notifying the destination 

module of its arrival: scheduled, forced, or quiet. 

 

Statistic wires 
 

 

 

 

 

 

 

Statistic wires carry data from a source module to a destination module. Unlike 

packet streams, which convey packets, statistic wires convey individual values. 

They are generally used as an interface by which the source module can share 

certain values with the destination module, and thereby provide information 

regarding its state. Each module within a node has a set of local output statistics 

whose values are updated at correct times during the simulation. It is this set of 

statistics that can act as the sources of statistic wires. 

 

Image 17 Packet stream 

Image 18 Statistic stream 
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Logical associations 
 

Logical associations are special connections that to not actually carry data 

between modules. In fact, logical associations do not exist during simulation, 

but are used purely as specification devices. The purpose of a logical association 

is to indicate that a relationship exists between two modules in a node model. 

The existence of this relationship is used to interpret the node model's structure.  

 

3.1.3.5 Process 

 

States 

 

Opnet modeller defines two types of states, called forced and unforced, that 

differ in execution-timing. Each state is split in two executives, called enter 

executives and exit executives. As the names indicate, a state's enter executives 

are executed when a process enters the state, and its exit executives are executed 

when the process leaves to follow one of the outgoing transitions. Forced states 

are graphically represented as green circles, and unforced states are drawn as 

red circles.  

 

 

 

 

 

 

The process completes the enter executives upon entering an unforced state and 

then blocks until a new invocation occurs. When an invocation occurs the 

process executes the exit executives and proceeds immediately to the next stage 

to also complete the enter executives there, and then blocks again. These actions 

comprise a complete process invocation and require no time delay. Transitions 

guide the process to a new state or possibly back to the same one depending 

upon the applicability of their conditions. 

Image 19 Unforced and Forced states of the processes 



 

Unforced states allow a pause between the enter executives and exit executives, 

and thus can model true states of a system. After a process has completed the 

enter executives of an unforced state, it blocks and returns control to the 

previous context that invoked it. 

 

Forced states are so called because they do not allow the process to wait. They 

therefore cannot be used to represent modes of the system that persist for any 

duration. In other words, the exit executives of a forced state are executed by a 

process immediately upon completion of the enter executives. Therefore the exit 

executives of a forced state are generally left blank, because they are equivalent 

to the same statements placed at the end of the enter executives. Because forced 

states cannot represent actual system states, they are not generally used as much 

as unforced states. However they are useful in certain cases to graphically 

separate actions or control flow decisions that are common to several unforced 

states; graphically separating out definitions of decisions or actions this way can 

sometimes provide better modularity of specification, as well a more visually 

informative state transition diagram.  

 

Transitions 

 

Transitions describe the possible movement of a process from state to state and 

the conditions under which such changes may take place. There are four 

components to a transition's specification: a source state, a destination state, a 

condition expression, and an executive expression. The specification may be 

read as follows: when in the source state, if the condition is true, implement the 

executive expression and transfer control to the destination state. The types of 

the conditions are shown in image 20. 
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Non Empty Condition 

A non empty condition is caused by an interrupt. If the interrupt value is true the 

process goes from the source state to the destination state. If its needed, while 

the non empty transitions is true, can execute a function before reach the 

destination state. The condition and the executive expression are declared as 

attributes of the transition. 

 

Empty Condition 

An empty condition simply transfers one state to an other, after the first stage 

has completed its work on the exit executives. The empty condition does not 

need an interrupt to occur to be enabled, and may have also as the non empty 

condition an executive in its transfer between the source and destination states. 

 

Transition to the same stage 

A transition to the same stage is the loop action that Opnet provides, and may be 

either a non empty condition or either an empty condition. This type of 

transitions is used to have executive expressions that can be used for checks or 

alternations on the used by the process variables. 

 

Image 20 Transitions between states 



3.1.3.6 Source code 

 

Opnet modeller inside the process level uses code. This code is responsible for 

all the actions we want to make in code level. With this code we can have 

actions like receive and send packets, cause or receive interrupts, interface 

control informations (ICI’s) and update statistics. These actions carry important 

informations about the routing and switching mechanisms of our switch. Opnet 

uses these integrated functions for all the basic uses like internal 

communications inside module and communication between several modules. 

The integrated code of Opnet supports the use of C/C++ with the use of the 

internal compiler. This support gives us the opportunity to alter functionality in 

even lower level of the constructed module and organize better our 

programming structure. 

 

In the 3rd chapter we have seen the theoretical base in which we are going to be 

based for the analysis of our project. We have seen the definition of deadlock 

and the reasons that cause the problem. Has been given the definition and the 

usage of the virtual channels and has been explained the approach of the 

deadlock avoidance with the use of virtual channels. Finally in the last section 

we have seen the theoretical approach of the elements that we need to use on 

our network simulator, Opnet, to implement the virtual channels. 
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4 Analysis 
 

In this chapter we will focus on the theoretical part that encloses the solution of 

the Deadlock avoidance policy with virtual channels, and how the theory has to 

be used in practical level for our models. The analysis for the Deadlock 

avoidance, has been based on the theory that has explained on chapter 3. Also 

ideas about deadlock avoidance policy in different levels and memory 

partioning for use as virtual channels have been collected from the books and 

the papers of the bibliography. This analysis concentrates in the architecture of 

existing models, specifically node and switch models that will explained fin the 

start of the subject. These models are constructed in Opnet network simulator, 

version 14.0.A, that the CAOS department is using, to examine various network 

topologies, problems that appear in high performance networks and fault 

tolerance. The pre-existing model is implemented by Diego Lugones, doctoral 

student of the Department.   

 

4.1 Previous model 

 

The network model that has been used as base for out implementation was a 

previous implementation of switches and nodes, through the Opnet simulator. 

This implementation was an ATM switch based network structured in a 4x4 

MESH topology with 16 switches and 16 compute node as shown in Image 21. 

That means that the packets from their source to their destination are travelling 

through the switches. Each one of the nodes is connected through a 

communication line with a switch. Diagram of the Mesh topology is shown 

below, where switches are indicated by “S” and compute nodes by “N”. 

 

 



 

Image 21 4X4 MESH Topology 

 

The nodes produce and send packets inside network with the use of the 

switches. Each switch is reading information that exists in the header of the 

packets and directs the packet to the necessary output port, so that it can 

continue its trip inside network until its destination. We will focus in the 

internal architecture of the models, the packets and the conditions that have to 

exist inside the models, so that we can understand the logic with witch the 

network functions. We will give special attention to the switch architecture that 

is responsible for the deadlock and how we can avoid it implementing a routing 

mechanism. 

 

4.1.1 SWITCH 

 

The theoretical model of the switch model in which we will be based, is an 

input-output buffer switch. The michroarchitecture pipeline of the model is 

show on the Image 22. The pipeline is separated in 5 stages. Stages 1 and 2 are 

the input and output buffers that characterize our model. Stages 2, 3 and 4 are 

the modules that create the central routing mechanism of the switch. 

Respectively stage 2 is the routing mechanism, stage 3 is the arbitration and 

finally stage 4 is the crossbar. 
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The packets are inserted from the physical layer into the switch, with the 

receivers (R) of the switch. In stage 1, packets are stored in the input buffers 

while informing the routing mechanism with their destination information. In 

stage 2 the routing mechanism creates and updates the forward table, with witch 

will find an appropriate port to send the packet to its destination. This is 

information is sended in stage 3, in the arbitration unit which in its turn 

determines when the requested port for the competing packets is available. 

When the port is available arbitration sends to the crossbar unit, in stage 4 

information to establish a path inside switch. Through the path that crossbar 

creates, the stored in the input buffers packets are forward to stage 5, in the 

output buffers. Here in stage 5, packets are stored in the output buffers of their 

preferred port, before they transmitted through the transmitters (T) to the 

physical layer and to their destination. 

 

As in the theoretical model, in the Image 23 is represented the structure of the 

Opnet Switch model. As we can see the switch model is an input-output 

buffered switched. The internal data path of the switch provides connectivity 

among the input and output ports, through the routing mechanism. Our model 

Image 22 Michroarchitecture Pipeline of an Input-Output Switch 



has 8 receivers and 8 transmitters. Each pair of receiver and transmitter 

represents a bidirectional input-output port. The receivers are connected through 

stream wires with the input buffers that receive and host the incoming packets. 

The incoming packets are stored inside the input buffers, while waiting to be 

routed by the routing mechanism. With the use of information stored inside the 

header of packets, the mechanism finds the appropriate output port for the 

packet and allows it to pass to an output buffer related with the requested port. 

Output buffer with its turn informs the forward unit for an outcomming packet, 

and send it so that can be inserted inside the network. 

 

Port Configuration Input Port Routing unit AMR_sw_handler Output Port 

Switch Info Receiver 
Input Buffer 

Routing 
Arbitration 
Crossbar 

AMR_sw_handler Output Buffer 
Forward Unit 
Transmitter 

Table 1 Internal modules of predefined switch model 

 

In the below Image 23 appear the internal structure of the switch and all of its 

modules. We see the distinct parts of Port Configuration, Input and Output 

buffers, ACK unit and finally the Routing structure that is the combination of 

routing, arbitration and crossbar modules. The internal parts of the switch are 

shown with detail at Table 4.1. The modules are connected between them with 

communication wires. The red ones represent the statistic streams and the blue 

ones the packet stream. 
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Image 23 Original Switch Structure 

 

4.1.1.1 Port Configuration - Switch Info 

 

The switch info unit is the first unit that is accessed inside the switch. It has the 

biggest priority from all the modules of the switch. Switch info in first step 

initializes the network. Receives information for the number of the nodes and 

characterizes them in nodes and switches giving their names and coordinates. 

Also the switch info allocates memory for the nodes that have found, for the 

initialization of the simulation process, finds the ports in each network node and 

give them a port number and checks the connected link in the switch and names 

them also. The unit also discovers the neighbors and constructs the topology 

while understanding the logical position of the switch and the geographical 

position of the neighbors. Finally switch info unit informs the routing unit, 

through a statistic wire, for the ports and deallocates the memory that has used. 

 

 



 

4.1.1.2 Routing Logic 

The central part of the switch which contains the routing logic is the 

combination of 3 units. These units are the routing unit, the arbitration unit and 

the crossbar. The functions that each units performs, so that the packets can find 

an appropriate output port, are explained below. 

 

Routing 

Routing unit is the first step for the routing mechanism that the switch uses. 

Routing unit is receiving information through statistic wires, firstly from the 

switch info unit that informs the routing mechanism with information about the 

switch situation. And from each one of the input buffers, that represent equal 

input ports. Unit is also connected through statistic wires to send information, 

with the AMR_sw_handler and with the arbitration unit.  

 

The routing process starts by receiving the number of the input ports that is 

connected with and allocating the appropriate memory space, for equal number 

of packets that waiting to be routed. Then registers the statistics with which is 

going to inform the Arbitration and AMR units. Here also initialized variable for 

a Round robin approach to search between the input channels. 

 

In the next state the routing unit receives from the switch info information, 

through the statistic wire, in order to arbitrate. The information received is the 

port configuration, with witch checks if the switch has a valid logical position, 

the routing algorithm that is used for the packet traversal and the low and high 

values of the threshold. In this part also the unit makes pair the input port 

number with the equivalent input buffer. 

 

Now the routing unit comes in a ”pause” situation, here waits to clean the 

memory for waiting packets if simulation terminated, and also waits for 
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incoming interrupt by one of the connected input buffers. When an interrupt 

occur the unit receives all the information from the interrupt, increases the 

number of waiting packets by one and goes in the next state to route the packet.  

 

The unit now searches in all ports, using round robin, to find a waiting packet 

which needs to be routed. When it finds it, is applying the routing algorithm that 

gives the appropriate output port, clearing the waiting packets memory for the 

specified input and decreasing the number of the packets that waiting to be 

routed by one. Before it exits from the state, make some checks for the received 

output port, and sets that routing has completed, continuing with a self interrupt 

proceeds to the next state. 

 

Here the routing unit comes once more in a “pause” situation where it waits for 

interrupt of a packet that waiting to be routed. If from the previous state is 

declared that the routing has been done it proceeds to the next state where 

prepares information to be sended in the Arbitration unit, informing that the 

sender module has a packet in the queue. 

 

Arbitration  

The arbitration unit is a connection between the routing unit and the crossbar 

unit. Arbitration receives information from the routing unit and passes it to the 

crossbar. Given the input and the output port, the unit finds the correct stream to 

forward the packet to that port. 

 

Crossbar 

Crossbar unit is responsible to receive incoming packets from the input buffers 

and forward them to the requested output buffers that will lead them to a 

predetermined output port. The Crossbar unit is informed from the Arbitration 

unit by an interrupt, which declares that a specific input port has requested an 

output port. The unit checks in the information received by the arbitration unit, 



if its necessary update specific packet headers and forwards the packet to the 

requested output port. 

 

4.1.1.3 Input Port 

The input port is characterized from two units. The receiver and the input 

buffer. While the receiver accepts an incoming packet it forwards it to the 

connected input buffer. 

 

Receiver 

Each receiver unit is representing the input port of the bidirectional channel. 

The receiver is passing the incoming packet from the physical layer of the 

channel to the input buffers of the switch. 

 

Input Buffer  

The input buffer is connected between the receiver unit, from where it receives 

any incoming packet, with the routing unit which informs that a packet needs to 

be routed and with the crossbar unit where its sends the packet so that can find 

its requested output buffer and port. 

 

Input buffer starts by initializing the statistic that will inform the routing unit, 

receives the input port number and the internal bandwidth of the buffer. Before 

exit the state declares that has no outcomming packet. 

 

When the unit receives an interrupt for incoming packet, receive the packet and 

sees if the buffer is empty. If it is, inserts the packet in the tail of the FIFO 

queue, and informs the routing unit by a statistic wire that it has a packet 

waiting to be routed, in the specified port. 
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When the module is having access to the interrupt that has appeared continues 

to the next state. Now the module searches in the head of the queue, and if the 

queue is not empty and contains a packet, module is having access to that 

packet. The module next is getting the latency of the packet and update the 

average occupation of the buffer, while removing the packet from the head of 

the queue and receiving its size. In sequence the module send the packet through 

a packet stream to the crossbar without causing an interrupt, thus earlier has 

informed the routing mechanism through a statistic wire. The module computes 

a delay based on the packet size, the internal bandwidth and delay of the switch 

and when this time pass creates a self interrupt which makes the module 

proceed to the last state. 

 

In this last state the module checks for the buffer if its empty, to find if any new 

packet has reached the head of the queue while the last packet was exiting from 

the queue. If a new packet has appeared the module is getting once more access 

to the head of the queue. Before it  exits from the state takes the information 

from the new arrived packet and informs once more the routing unit through a 

statistic wire. 

 

4.1.1.4 Output Port 

 

Output Buffer  

The output buffer module is connected with the crossbar unit from which 

receives packets through a packet stream. The unit is also connected and 

sending information, with the forward unit, through a statistic and a packet 

stream.  

 

Output buffer module, after initialize the necessary variables, proceeds to the 

next state to receive a packet. Here the unit receives through an interrupt stream 

the packet arrived. Checks if the tail of the queue is empty, and if it is, it inserts 

the packet inside the tail. While there are no other packets that waiting to exit or 



occupying the link, the unit informs the sender module that there is a packet 

inside the queue.  

 

In the next state, the unit receives a request to access the queue. If the queue is 

not empty and contains packets, receive the first packet that is in the head of the 

queue and calculates the buffer latency. After that removes the packet from the 

queue, receiving its size and send it to the forward unit without causing an 

interrupt because it has already informed the unit by a statistic wire. Thus the 

packet will occupy the link for some time, the unit calculates that time based on 

the bandwidth of the switch and the packet size. After that time expires the unit 

causes a self interrupt that makes it proceed to the next state. 

 

In this last state after the last packet has completely left from the queue, the unit 

searches in the head of the packet once more if it has a new packet, and if it is 

informs once more the forward unit through a statistic wire. 

 

Transmitter  

Each transmitter unit is representing the output port of the bidirectional channel. 

The transmitter is passing the incoming packet from the output buffers to the 

physical layer of the channel. 
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4.1.2 NODE 
 

The internal structure of the Node model is shown in the image 24. The node 

model is separated in the node processor and the network interface. These two 

parts are connected through statistic and packet streams, and with the 

intermediate action of the AMR_handler. 

. 

 

Image 24 Original Node Structure 

 

 

The node processor consists by the dst and src modules. The src module is 

responsible for the creation of the packets and the insertion of the necessary 

information in their headers fields. Src module controls also the number of the 

injected packets inside the network. The dst module receives the incoming 

packets and is responsible for the calculation of the offered and received load 

that has travelled inside network and also for the average global latency of those 

packets. 

 

The AMR_handler is situated between these the node processor and the network 

interface of the node . AMR_handler is responsible to receive the packets from 

the input port and recognize their type and also receive the packets that come 

from the src module and forward them to the sender module that will insert 

them to the network.  



 

The network interface of the node is composed by six modules. These are the 

transmitter (TX) and receiver (RX) units that give access to the physical layer, 

the input and output buffers which are rec_queue and send_queue modules 

respectively and the receiver and sender modules which are settled after the 

buffers. When a packet is received by the network from the RX unit, is passing 

into the rec_queue module tail, which works similarly with the switch buffers, 

and informs through a statistic wire the receiver module that a packet is inside 

the queue.  

 

When the packet reach the head of the queue is sended through a packet stream 

to the receiver module. The receiver module after a small time delay receives 

the incoming packet and depended on the type of the packet, data or ack, gets 

the latency values for each one of the packets. After that informs the 

AMR_handler through a statistic wire and sends the packet to its destination, the 

dst unit, through a packet stream. The same happens also, when a packet needs 

to exit from the node. The packet is received by the send_queue and stored in 

the tail of the queue. The send_queue informs the sender module with a statistic 

and when the packet reaches the head of the queue is sended to the sender 

module where after a small delay is sended to the physical layer. 

  

4.2 Description of the proposition 

 

Network Topologies 

 

Starting from the network level, we will see how the network topologies are 

structured, how a deadlock occurs and how a routing mechanism with the 

support of virtual channels in the switch architecture can avoid the deadlock. 

Beginning from that level will make easier the understanding of the problem 
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and the approach of the solution with a new internal routing and arbitration 

logic. 

 

The area of network topologies that we will focus has an orthogonal topology. A 

network topology is an orthogonal topology if and only if the nodes can be 

arranged in an orthogonal n-dimensional space, and every link can be arranged 

in such way so that can produce a displacement in a single dimension. The 

orthogonal topologies are separated in weakly orthogonal topologies and strictly 

orthogonal topologies. In strictly orthogonal topologies, each node have at least 

one link in each dimension and in weakly orthogonal some nodes may not have 

any link in some dimension. 

 

The most interesting property of strictly orthogonal topologies is that routing is 

very simple, thus the routing algorithm can be implemented in hardware. Our 

examined network topologies in which we would like to have the deadlock 

avoidance are the Mesh, Torus which are direct switch networks with 

orthogonal topology. Another popular topology that we will study is the Fat-tree 

which belongs also to the direct switch networks but is not an orthogonal 

topology. Fat-tree has a root node connected to a certain number of descent 

nodes. Each one of these nodes in its turn is connected to a certain number of 

descendant nodes. A node with no descendants is a leaf. The geographical 

representation of these topologies is shown below in image 25. 

 

 

Image 25 Topologies of Mesh, Torus and Fat Tree 

 



Thus in our examination we will see that dealing the deadlock avoidance with 

the use of virtual channels, the complexity of the routing mechanism 

implemented inside switches increases. For that case we have to consider the 

possibilities and the limitations that appear, and the efficient ways with which 

we will approach them. In mesh and Fat tree topologies the deadlock avoidance 

approach is the same. In Torus topologies thus there are no end nodes, because 

of the existence of wrap around links, the complexity of the mechanism 

increases allowing to the packets recirculate inside network in all dimensions.  

 

A mesh network has the same node degree but half of the bisectional channels 

as a torus with the same radix and dimension. Although Mesh has a natural 2D 

geographical representation that keeps channel length short it gives up the edge 

symmetry of torus. This can cause imbalance in many traffic patterns, as the 

demand from the packets on the resources can increase significantly in the 

central channels that the edge channels. 

 

A small analysis follows on a simple 4x4 Mesh network. In image 26a several 

source nodes indicated by S, sending packets to equal destination nodes 

indicated by D. The routing mechanism provided changing the routing 

directions on the packets from XY to YX routing, causing in the central part of 

the network deadlock to occur. Blocked packets in the buffers of the switches, 

do not allow upcoming packets to pass and reach their destinations. Now the 

network is paralyzed and the packets cannot advance due to previous blocked 

packets. 

 

On contrary in image 26b, is shown the same 4x4 Mesh network but only this 

time using Dimension Order routing (DOR) with the use of virtual channels. 

Packets are sended by their source nodes to their equal destination nodes 

following this time DOR. That means that the packets are forwarded by the 

switches in one dimension, and they change their routing function from XY to 

YX or the opposite, only when the reach the coordination of their destination 

node. The use of the virtual channels in the internal structure of the switches 
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helps the traversal of the packets which move in the same coordinates of the 

network.  

 

 

Our switch model is using the dimension Order Routing (DOR). Based on that we 

have to see how the DOR works and what makes the appearance of Deadlock. DOR is 

a deterministic routing algorithm, meaning that is always choose the same path x and 

y, even there are multiple possible paths. The algorithm ignores the path diversity of 

the underlying topology and because of that makes poor job on balancing the load of 

packets. Despite this t is very common in practice thus it’s easy to implement and 

easy to make it deadlock free. 

 

The functionality of DOR in Mesh and Hypercube topologies is to establish an order 

on all the resources based on network dimension. In Torus and Rings which are 

topologies with wrap around links, DOR has to establish an order on all resources 

between and within each dimension, and also apply multiple virtual channels for each 

physical channel. An alternative approach is to maintain the resources along each 

dimension, from reaching their full capacity by ensuring the existence of bubbles. 

 

Image 26 Deadlock avoidance in a 4x4 Mesh 



One of the strategies that exist for deadlock avoidance is the approach with 

Dimensional Order Routing. DOR affects both the Mesh and Torus topologies. For 

Meshes DOR has to establish an order on all resources based on network dimension. 

In Torus DOR comes in 2 different approaches to resolve the problem. Has either to 

order all the resources between and within each dimension, applying multiple virtual 

channels (VCs) per physical channel. An alternative is to keep the resources in along 

each dimension from reaching full capacity, by ensuring the existence of bubble. The 

functionality of DOR on torus topology appears in image 27. 

 

 

 

 

 

 

 

 

 

 

A packet is sended by the source S to the destination D. As packet traverses through 

the network following DOR routing can choose multiple paths, thus the torus 

topology provides also the wrap around links. Packet uses the selected VC, from 

which have been entered inside the network and follows that VC while traversing in X 

coordinate. It can start from the +X coordinate or choose the minimal path starting by 

the -X coordinate. When the packet reach the Y coordinate of its destination the 

routing function changes from X to Y, giving now the possibility to the packet to 

follow alternative VCs to reach its destination.  

 

Restricting the use of resources in classes, on specific datelines, while making the 

resource graph acyclic can have as a result load imbalance on the network. Most of 

Image 27 DOR on Torus topology 
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the packets will go to the VC 0 having as result to left idle the other virtual channels. 

An approach to reduce this load imbalance is to restrict the use of virtual channels 

with datelines. This approach reduces the caused load imbalance by allowing most of 

the packets to be used by buffers that require an other class. It is important to notice 

that in the case of overlapping datelines, we never allow a packet waiting for a busy 

resource in an overlapping region. An approach of the datelines and the overlapping 

classes in Torus network is shown below in image 28. 

 

 

 

 

 

 

 

 

 

The use of dimension order routing in Torus can have deadlock avoidance by 

applying a dateline to each dimension X and Y. The result of that action is that the 

dateline classes turn the Torus network into a Mesh, having in mind the resource 

dependency that can appear. Now in the resulting Mesh network the dimension order 

routing, routes the deadlock avoidance. 

 

As a packet inserted inside network it uses the VC 0. If the packet crosses the 

predefined coordination dateline, for each dimension, changes to the class of VC 1. 

When a packet finish with the routing process in one dimension, X for example, it 

always has to enter in the VC 0 of the next dimension Y. This continues until the 

packet is consumed by the computation node. 

Image 28 Dateline classes in Torus 



 

 

 

4.2.1 Network Elements 

 

Important network elements in which we have also to focus and will complete 

our network construction are the compute nodes, and the packet structure. The 

compute nodes are the elements that produce, consume and taking information 

from the packets. For the packet we will examine which are the parts that 

complete the structure of the packet and what additions we have to make in 

order the packets to follow our routing decisions using the virtual channels. 

 

4.2.1.1 Compute Node 

 

Our compute node models are responsible to generate packets inserting in their 

header the appropriate informations like a packet id, receiving the id of the 

packet and calculating the latency of the packet. Thus these computational node 

models will work as senders and receivers there are several steps that we need to 

follow. Important steps for the creation of the node and its functionality, so that 

can send a packet to a destination node over the network are listed below. 

 

Sender 

� The application layer of the node executes a system call which copies data to be 

sent, into a network interface buffer, and composes the header and trailer of the 

packet. 

 

� The checksum is calculated and inserted also in the header or trailer of the 

packet. 
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� The timer starts and the packet is inserted through the network hardware 

interface into the physical layer. 

 

The sender has to react also in case that receives an acknowledgment packet. 

The steps for that procedure follow bellow. 

 

� When the sender receive an acknowledgment packet releases the copy of that 
corresponding packet from the buffer. 
 

� If the sender reaches the timeout instead of receiving an acknowledgment 
packet, it resends the packet and restarts the timer. 
 

Receiver 

 Message reception is in the receiver part of nodes network interface 

 

� Network interface receives the packet from the physical layer, and puts it into 

the input buffers of the network interface or system buffer. 

 

� Checksum is calculated for each message. If the checksum matches the senders 

checksum the receiver send and acknowledgment packet to the packet sender. If 

not, deletes the packet assuming that the sender will resend the packet after the 

associated time expiration. 

 

� Once all packets pass the test, the system copies data to the system address 

space and signals the corresponding application. 

 

4.2.1.2 Packet 

 

The packet is the basic unit of information that is sent from the sender part of 

the source computation node to the receiver part of the destination computation 



node. The structure of the packet must be able to carry several fields of 

information to make easier the traverse of the packet inside network. The fields 

that a packet is separated to are called flits. Each one of the flits can have 

different size and can carry different types of information. Packets are formed 

by 3 different types of flits. The header flit, the data flit and the tail flit.  

 

The header flit carries basic informations like the source and destination id's, X 

and Y coordinates of the destination, the type of the packet, the hops that make 

between switches, the packet latency, and for our implementation an addition 

flit in the header that will determine the VC number of the packet. This number 

will be inserted in the packet header when the source computation node will 

generate the fabric of the packet. The creation of the VC number can be through 

a random number generator which will be limited in the number of virtual 

channels that the switches use, or through a round robin generator. A 

representation of the internal structure of the packet is shown below on image 

29. 

 

 

 

 

 

 

 

 

 

Some fields of the packet should not be changed for routing reasons like source 

and destination id's, while some others have to be updated by the switches while 

the packets traverses the network, like the vc the latency or the hops flit of the 

packet.  

 

Image 29  Packet Structure 
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4.2.1.3 Switch michroarchitecture 

 

The subject that we have to deal with is the Deadlock avoidance inside a switch, 

with the use of virtual channels. As we have referred in the theory chapter, we 

need to eliminate any circular dependencies that exist from the packets to the 

buffers. For that we have to focus on the switch architecture with which our 

switch model is structured. We have to focus in the way that the switch provides 

access to the agents over resources, meaning the packets over the buffers. Thus 

our implementation is going to use virtual channels, it means that the number of 

entrances and exits of the switch increases, and is now equal with the number of 

ports that we use multiplied by the number of virtual channels that each port 

hosts.  

 

 

An example of the increased complexity inside the architecture of the switch 

with the use of 2 virtual channels is shown at image 30. Each one of the input 

and output ports now hosts 2 VC increasing with that way the number of input 

Image 30 Pipelined Switch michroarchitecture with 2VC 



buffers and the equal lines that connect them with the routing mechanism in 

stage 2 and with the crossbar unit in stage 4. The same also happens and in stage 

5 where equal output buffers are partioned in virtual channels. 

 

Now the complexity of the routing mechanism increases thus the competing 

packets for an exit port may also compete for the same virtual channel. We 

should consider the complexity of the mechanism changing equally the central 

routing mechanism, mean the routing, arbitration and crossbar units logic, so 

that they can support the new architecture and avoid Deadlock. 

 

The virtual channel switch and node models that have implemented are based on 

the previous switch model that has explained in chapter 4.2 and uses single 

input and output buffers. The logic in the virtual channel implementation is not 

only the partioning of the input and output buffers in 4 virtual channels for one 

buffer, but also the altered logic in the central routing mechanism of the switch 

so that can respectively support the use of virtual channels. Based on the 

internal architecture pipeline we will explain briefly the traversal of the packets 

inside switch in stages, the port and VC allocation mechanisms and the 

necessary actions in case of competing packets for the same output port and 

virtual channel. In our case we make use of the virtual cut through switching, 

means that the mechanism is applied in packet level and not in flit level.  

 

Routing computation 

 

Our virtual channel switch for the efficient allocation of an output port and 

virtual channel for a newly incoming packet in the switch should make use of 2 

state field tables. These tables are the input and output virtual channels state 

tables, which contain information about the route computation and virtual 

channel allocation of the switch. The first is 5-vector GROPC state table that 

has informations for the input virtual channels state and the second is a 3-vector 

GIC state table which has informations for the output virtual channels state. 
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Structure and explanation of these tables are shown equal in Table 2 for 

GROPC and in Table 3 for GIC. 

 

Field Name Description 

G Global State ( I ) Idle 
( R ) Routing 
( V ) Wait output VC 
( A ) Active 
( C ) Wait for credits 

R Route Stores the Output Port 

O Output VC Stores the Output VC 

P Pointers Size of packet in the input VC 

C Credit count Empty packet buffer on output VC 

 

Table 2 Input VC State Fields represented by a 5-vector GROPC 

 

The input virtual channel GROPC state vector table consists of 5 fields. G field 

keeps the global state of the input virtual channel. This field can be 5 different 

states according to the routing logic, and these are the Idle, Routing, waiting for 

an output VC, Active or waiting for credit states. After routing is complete R 

field contains the output port information. O field has the virtual channel 

number on the port R, after the VC allocation is complete. The P field pointers 

into the input buffer and gets the size of the packet contained into the specific 

virtual channel. Finally the last field C is the credit counter which contains the 

number of available empty packet buffers for the selected output virtual channel 

O in port R. The fields of the table are updated once per packet while the 

routing process continues. 

Field Name Description 

G Global State ( I ) Idle 
( A ) Active 
( C ) wait for Credits 

I Input VC Stores Input Port & Input VC 

C Credit count Empty Buffer for packet in 
output VC 

 

Table 3 Output VC State Fields represented by a 3-vector GIC 



 

The output virtual channel state vector GIC table consists of 3 fields. The global 

state field   has 3 different states for the output virtual channel buffer which are 

the Idle, Active or waiting for Credits. The field I contain the number of the 

input port and virtual channels that forward packets to this output virtual 

channels. Finally the C field has the number of available free packet buffer for 

the packet in the selected output virtual channel. 

Stage 1 

As shown in Image 4.5 in stage 1, the packets arrive to the switch from the 

physical level and received by the receivers in the input ports. The packets 

according to their virtual channel number which is stored in the VC header flit, 

are directed and stored in the appropriate input virtual channels of the switch. 

Now from stage 1 the input virtual channel informs the routing unit so that can 

start the routing process and allocate an output port and an output virtual 

channel for the packet. The global state (G) field of the GROPC table which 

was Idle until now for the specific VC, turns to (G=R).  

 

Stage 2 

In stage 2 of the pipeline the information from the header of the packet is used 

by the router to select an output port. The result of this computation updates the 

route R field of the GROPC table  with number of the selected output port and 

advances the global state (G) of the packet in waiting for an output virtual 

channel  (G=V). Both actions happen at the start of Stage 3 in VC switch 

pipeline.  

 

Stage 3 

During stage 3 the result of the routing computation information from the 

packets header which was stored in the R field of the GROPC table, is used as 

input on the Virtual Channel Allocator. If the insertion of the value is 

successful, the VC allocator search and assign a single output virtual channel on 

the output port specified on the R field of the table. The result of the virtual 
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channel allocation updates the (O) field of the GROPC table with the virtual 

channel number and updates also the global state (G) field to the active A state 

(G=A). 

 

In stage 3 are also updated and the fields of the GIC table. The result of the 

allocation updates the global state G field of the GIC table to an active A state 

(G=A), thus until now was in the Idle state. After the channel turns active, the 

(I) field is updated with the appropriate information, so that can identify the 

input port and virtual channel of the packet. From now and until the release of 

the input buffer by packet, the (C) field of the GIC table is also reflected in the 

(C) field of the GROPC table. 

 

For the purposes of Deadlock Avoidance, stage 3 where the virtual channel 

allocation takes place, is the point at which a dependency is created from the 

input virtual channel to the output virtual channel. “After a single output virtual 

channel is allocated to the packet, the input virtual channel will not be freed 

until the packet is able to move its entire content into the output virtual channel” 

[1 ch16] 

 

Stage 4 

In the begging of the stage 4, all the “per packet processing” is complete and 

remains the crossbar to establish a path between the input virtual channel on the 

input port, and the output virtual channel on the output port. In this stage any 

active virtual channel (G=A) that contains buffered packet inside of a certain 

size, indicated by the field P on GROPC table, and has equal empty packet 

buffer space on the output virtual channel (C>0 && C>=P), informs the 

crossbar. The active virtual channel bids on crossbar for a connection between 

its input virtual channel and the output port that contains its output virtual 

channel. Depending on the configuration of the switch this allocation may 

involve competition not only for the output port of the switch but also 

competition for the specific output virtual channel. 



 

Until the allocation process finish the packet staying stored inside the input 

buffers of the switch, thus we don’t treat them as separated flits that progress 

with the routing computation and the port and virtual channel allocation. 

 

Stage 5 

In that last stage the necessary information has reached the crossbar and the 

allocation has performed. When the packet is successfully scheduled, releases 

the virtual channel at the start of the stage and is setting the virtual channel state 

(G) field of the GIC table to Idle (G=I). The same field (G) for the GROPC 

table is also updated to Idle, if the input buffer is empty.   

If the input buffer is not empty, information for the next packet that is waiting in 

the buffer is issued. In that case the state transition to routing (G=R). 

 

Analysis of Resource Dependencies for Deadlock Avoidance 

 

The analysis for the resource dependencies is focusing on the arbitration unit of 

the switch. Inside the arbitration unit are received the numbers of the input port 

and input virtual channel that contain the packet and the requested output port 

and output virtual channel. Our unit make use of a round robin arbiter which can 

provide strong fairness to our switch.  

 

The arbitration unit have to resolve the resource dependencies that occur when 

multiple packets request the same resources. This process is done through the 5 

stages of the pipeline architecture which is concentrated as control into the 

arbitration unit. The arbitration unit passes information into the crossbar and 

assures that the input virtual channel in which the packet is stored, will not let 

free until the entire packet pass to the calculated output virtual channel and 

output port. 
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Image 31 3 phase arbitration 

 

The used arbitration is a 3 phase arbitration technique which consists by 3 

phases, the Request, Grand and Acknowledgment phase. We need to make use 

of 3 phase arbitration because the increased inputs and outputs of the switch 

with the virtual channel implementation, increasing the probability of matching 

requests. For an input output buffered switch which each input port has an 

associated queue, the output port needs to have a local arbiter with a round robin 

strategy. As it seen from the image 31 the arbitration technique starts by 

submitting requests to the output port arbiters which receiving the messages and 

through the round robin selecting one of the requests. The arbiters now in Grand 

phase giving permission to the selected for Grand input port. Thus the requested 

for Grand input ports may request for more than one output port, they may 

receive more than one Grands. In the last phase, the input ports select one of the 

responded output ports and send an Ack to confirm the selection of the output 

port. The used 3 phase arbitration provides 75% efficiency thus the 3 of the 4 

requests are granted to output ports, in comparison with a 2 phase arbitration 

that provides only 50% efficiency. 

 

 

 

 



To understand and solve deadlock, we have to see the possible routes that the 

packet traffic inside network can have. As deadlock is created when packet 

turns in other coordinate in order to reach its destination, we have to detect the 

turn in the coordinate and increase the number of the virtual channel through 

which the packet will be directed. As it shown on image 32 the cases 1, 2, 3 and 

4 are packets that follow the coordinate X, directed by the DOR algorithm, and 

make a turn to coordinate Y to reach their destinations. In this point is where 

deadlock has possibilities to occur, thus multiple packets may require the same 

output port. 

 

Image 32 Cases of Packet Traffic 

 

To detect the transitions from one coordinate to another, we need to know the 

coordinate on the input port and the coordinate of the output port, which means 

the position of the packet in comparison with its destination. With that way we 

know from what coordinate the packet comes and to which is going 

This calculation takes place inside the arbitration unit that has the local 

coordinate informations and is informed also by the routing unit about the 

coordinate of the input and output ports. The unit compares the entrance 

coordinate value with the output coordination value and detects if there is a turn 

on the coordinate. If the arbitration unit detect a change on the coordinates, pass 

this information to the arbitration unit which will advance the packet to the next 

class of virtual channel through the round robin policy. Now the packet follow 
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the next in class virtual channels, avoiding to enter in the first virtual channel 

which can be used by a packet that travels in one coordinate. From the image 32 

we create an offset table based on the offset values from the 3 switches that each 

packet passes. With that strategy we avoid the possibility that will occur a 

deadlock. 
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5 Design 
 

The design of the switch and node model is through the Opnet network 

simulator version 14.5.A. The basic model, in which our implementation is 

based, has been created in version 14.0.A of the simulator.  In this chapter, it 

will be presented the several modules that create a virtual channel switch, how 

these are connected between them and what is the function of each module 

separately. The explanation of the design will follow the pipeline architecture of 

a virtual channel switch, which has explained in the previous chapter of the 

analysis. In our model, we make use of 4 virtual channels, providing with that 

way 3 more alternative paths for the packets to pass through the switch. 

 

5.1 General Switch Structure 

 

In the virtual channel switch, the partition of the input buffers into virtual 

channels cause the need of equal packet stream lines that will connect the input 

buffers with the crossbar unit. The internal structure of the switch is presented in 

the image 33.The switch architecture consists of several parts. First and basic is 

the switch unit that initializes the functions of our switch like the ports. The 

input unit, which is at the entrance of the switch, consists of the virtual channel 

selection unit and the input virtual channel buffers. The central mechanism 

consists of the routing, arbitration and crossbar units, that all together 

accomplish the routing logic of our switch. In the exit of the switch, there are 

the output buffers and the forward unit that sends our packets into network.  

 

For the input unit of our switch, the virtual selection unit is connected to the 

input virtual channels with four packet wires. This is because the virtual channel 

selection unit recognise the vc header on the packet and according to the virtual 

channel state sends the packet through the appropriate channel. The same design 

in connections also follows the input virtual channel buffers which are 

connected with the crossbar unit, through packet wires, equal with the virtual 

channels. 



 

In the exit ports of the switch the output virtual channel buffers are also 

connected with the crossbar with equal packet lines as the output virtual 

channels. They store and process the packet through equal number of channel to 

the forward unit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The switch module is the module with the highest priority in our switch because 

it initializes all the input and output ports of the switch while making checks for 

the switch neighbours and creates the topology through which are connected. 

The switch module also is important because informs the routing unit with the 

routing algorithm that runs for the simulation 

 

Image 33 VC switch structure 
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In the central part of the switch the routing module is responsible to receive 

information from the input virtual channel buffers about the packet that are 

waiting to be routed. The routing unit have to calculate the appropriate output 

port and inform the Virtual Channel Arbitration unit. The virtual channel 

arbitration unit is receiving that informations and after the necessary 

calculations that will resolve any resource dependencies which may occur, pass 

the information to the crossbar. Now the crossbar using the information will 

establish a link between the input and the output virtual channels, so that the 

packet can pass. 

 

5.1.1 Input Virtual Channel Buffers 
 

The input virtual channel buffers are the unit that contains our virtual channels 

into it. The module, for the representation of the virtual channels, provides the 

advantage of having finite or infinite buffer size for our virtual channels. The 

module is connected with the receiver of the switch so that can receive the 

incoming packet from the physical layer and with the crossbar through packet 

streams equal to the number of our subqueue, in our case four. The internal 

states of the module are shown below in image 34. 

 

 

 

 

 

 

 

 

 

Init 

Unit starts with the init process where initialize the functions that will use. It 

starts with registering the local statistic that is going to use for the 

Image 34 Input virtual channel buffers 



communication with the routing unit. Next the unit receive the input port and 

the number of the subqueue in which is partitioned and allocates dynamically a 

space on the memory to store the current outgoing packets. After the 

initialization proceed to the next BRANCH state.  

Branch 

The module now pass through an empty condition to the Branch state where is 

idle, waiting an interrupt to occur. Depending on the type of interrupt or the 

value that the interrupt it carries, the module proceed to the corresponding state.  

 

Ins_Tail 

The first state that is enabled with a stream interrupt is the INS_TAIL. Here the 

module receives the packet from the incoming stream and read its virtual 

channel number from its header. Next the state receives the size of the packet 

and the packet id and check if the subqueue which corresponds to the virtual 

channel number is empty. If the subqueue is empty, the packet is inserted in the 

tail of the subqueue and the module inform the routing unit, through a statistic 

wire, that a packet has inserted in the specific port and the specific virtual 

channel subqueue. 

 

Send_Head 

This state is the next that is enabled with an access interrupt by the crossbar. 

Here the state makes a check in the subqueue, for the specific virtual channel 

number, to see if it has a waiting packet in the head. If it is, the state making 

access to the head of the subqueue to receive the packet while calculates the 

latency of the buffer. The packet is removed from the head of the subqueue and 

the size of it and its id are stored before the state send the packet to the crossbar 

unit. The state here for simulation reasons and based on the internal bandwidth 

of the switch, the switch delay and the packet size, it calculates the time that the 

packet needs to entirely leave the subqueue. Based on this time causes a self 

interrupt that passes the module to the next state. 

 

PkSENT 

The PkSENT state is enabled with the self interrupt of the Send_Head state after 

the small time delay. Now a second check is made to the subqueue to see if new 

packet has reached the Head of the subqueue while the last packet was leaving. 
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If in the head exist a packet the unit informs once more the routing unit through 

a statistic for the input port and subqueue in which the packet is stored. 

 

END_SIM 

This state is inactive and is activated only if we need to, with an exit interrupt. 

The state is used only to store simulation information into a text file. 

 

5.1.2 Routing Unit 
 

The routing unit is the responsible unit that will find an exit port to our packet 

based on the current position of the switch, the destination information that the 

packet carries and the routing algorithm that our switch uses. The unit is 

connected with statistic wires with every input port of our switch to receive 

information about the packets that waiting to be routed, with the arbitration unit 

in which will pass the calculated output port number and finally with the switch 

unit of our switch from which receives the forward tables that will use. The 

internal structure of the routing unit is shown on the image 35. 

 

 

Init 

The routing unit begins its function by initializing the necessary variables in the 

unforced state Init. Here the unit receives information about the connected to its 

ports, the internal bandwidth of the switch. Here is also allocated and initialized 

a structure that will be used with a round robin strategy to search between the 

Image 35 Routing unit 



connected ports to it to find in which port exists a packet that is waiting to be 

routed. Before it proceed to the next state the module initialize the local 

statistics which are going to inform the arbitration and AMR units with the 

appropriate informations from each one. After the initialization, the module 

expects an incoming interrupt by the switch info unit, to proceed to the next 

state. 

 

Store_FT 

The Store_FT is enabled by an incoming interrupt from the switch info unit. The 

state reads the incoming information like the supported virtual channels for each 

port and receives a port configuration pointer with which will create the forward 

table of the routing unit. Next make a check about the logical position of the 

switch, based on its coordinates, and the routing algorithm that will be used by 

the switch.  

 

 

Idle 

In this state the routing unit cleans the memory for the waiting to be routed 

packets structure, that has initialized in the Init state, and waits for an incoming 

by the input subqueues interrupt. If an interrupt occur, the state receives the 

contained by the interrupt information, increases the number of the waiting to be 

routed packets and proceeds to the Route state. 

 

Route 

The Route state receives the information by the incoming interrupt and with a 

check on the destination field that the packet carries and the combination of the 

routing algorithm; the unit finds the output port in which the packet should go. 

After the routing process is complete, the state cleans the allocated memory that 

has been used by the particular input port for the waiting to be routed packet and 

decrease the number of the packets that are waiting to be routed. The state 

checks the number of the output port given by the used routing algorithm and 

updates specific information fields. Before the state exits, creates a self interrupt 

based on the switch delay time and, after this time is passed, it proceeds to the 

Routing state. 
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Routing 

The routing state is an unforced state. Here the Routing state uses two self 

transitions. The one is to clean the allocated memory structure and the other to 

wait and receive an incoming interrupt by the input subqueues, for a packet that 

is waiting to be routed. If an interrupt occur the state receives the incoming by 

the interrupt information and proceeds to the Routed state to complete the 

routing execution. 

 

Routed 

The Routed state checks if routing calculation was successful and if it is, 

prepares the calculated information, including now and the calculated output 

port and sends it to the arbitration unit of the switch, through a statistic wire. 

The unit also sends a port map structure that relates the connected ports of the 

switch with its coordinates, so that arbitration unit can detect a turn on the 

coordinations.  

 

Between the states Idle, Route, Routing and Routed is formed a cycle that 

makes the routing module ready to receive and proceed to output port 

calculation, for each packet that is waiting to be routed, until no packet is 

waiting for the routing process. 

5.1.3 Arbitration 
 

The Arbitration unit is located between the routing unit and the crossbar unit. 

Receives the calculated by the routing unit information through a statistic wire 

and after the arbitration calculation passes the information also through a 

statistic wire to the crossbar unit. The unit is responsible to resolve the Deadlock 

phenomenon, providing the correct output virtual channel information to the 

crossbar unit. This unit is shown in image 36 

 
 
 
 
 

Init 

Image 36 Arbitration unit 



In Init state, the module initializes the local statistic that going to use, to pass its 

calculated information to the crossbar unit. After the initialization, it proceeds to 

the next state. 

 

Idle 

Here the module is waiting for an incoming interrupt by the routing unit. If an 

interrupt occurs, the module pass to the next state where it will begin the 

arbitration process. 

 

ARBIT 

In the Arbit state, the unit receives the incoming by the routing unit information. 

The unit based on the input and output port numbers that have received, 

calculates the streams through which the crossbar will receive the packets from 

the input subqueues and through which stream will send them to the 

corresponding output ports. In this state also the arbitration checks if between 

the input and output ports exists a turn on the coordinations from X to Y or the 

opposite. If the state detects a turn, changes the number of the virtual channel 

providing with that way the deadlock avoidance policy that we need for our 

Mesh models. The state prepare the information like the input and output 

streams and the input and output virtual channels and send this information 

through a statistic wire to the crossbar. The Deadlock Avoidance policy that 

detects the turn on the coordinations is shown on the table 4. 

 

// HERE DETECT A TURN ON THE COORDINATE 
If( (((output_port == y_negative) || (output_port == y_positive)) && 
    ((input_port == x_negative)  || (input_port == x_positive))) || 
    ((output_port == x_negative) || (output_port == x_positive)) && 
    ((input_port == y_negative)  || (input_port == y_positive)) 
 
 ) 
 { 
 if (input_vc==3) output_vc=0; 
 else output_vc = input_vc++ 
 } 
 
// NO TURN ON THE COORDINATE HAVE DETECTED 
If(((output_port == y_negative) && (input_port == y_positive)) || 
   ((output_port == y_positive) && (input_port == y_negative)) || 
   ((output_port == x_negative) && (input_port == y_positive)) || 
   ((output_port == x_positive) && (input_port == x_negative)) || 
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 { 
 output_vc = input_vc; 
 }) 

Table 4 Deadlock Avoidance Policy 

 

In the Deadlock Avoidance policy that is shown on table 4, the unit receives the 

coordinate values from the input port that the packet has entered inside switch 

and compare that value with the coordinate value of the output port that the 

packet needs. The unit now is able to detect the change on the coordinate and if 

that happen, increase the class of the virtual channel field through a round robin 

algorithm. 

For the case of torus that we need the dateline policy. Here the module checks 

the logical position of the switch and in case that the switch is in the dateline 

limits of our network, the module provides the dateline policy that affect the 

virtual channel fields. A sample of the code that is included in this module for 

the dateline classes in the X an Y coordinates of a torus topology, follows below 

on table 5. 

 

op_ima_obj_attr_get (node, “X”, &x_label); 

op_ima_obj_attr_get (node, “Y”, &y_label); 

if ((x_label==0) || (y_label==0)) 

    { if (vc==3) {vc=0;} 

       else vc++; 

    } 

Table 5 Dateline classes for Torus 

 

In the code that is shown on table 5, the state receives the logical local 

coordinates of the switch and checks if these coordinates mach with the dateline 

coordinates of the topology, meaning the coordinate X=0 and Y=0. If the check 

detects that the packet pass from those coordinates, make a check on the virtual 

channel header flit of the packet and increase the virtual channel number 

through a round robin calculation. 

 



5.1.4 Crossbar 
 

The crossbar unit is the last part of the routing logic. Crossbar unit is connected 

with the arbitration unit with a statistic wire from which receive the information 

calculated by the routing and arbitration units. The crossbar is also connected 

with each subqueue of each input port through packet streams, counting totally 

32 connections which is the result of the 8 input ports that our switch uses 

multiplied by the 4 subqueues (virtual channels) that each port hosts. The same 

number of packet streams exists also in the exit of the crossbar unit, to connect 

the unit with the subqueue in the output ports. The internal structure of the 

crossbar is shown in the image 37. 

 

 
 

 
 
 
 
 
 
 
 
 
 

 

 

Init 

In the Init state the module initialize the streams that will use for the receipt and 

sending of the packet and the number of the virtual channel that each port hosts. 

 

Idle 

In the Idle state, the Crossbar unit expects an interrupt to occur caused by the 

arbitration unit. When an interrupt occur the unit proceeds to the Crossing state 

 

Crossing 

In the Crossing state, the Crossbar unit receives the incoming by the arbitration 

information, and based on that information acquires a packet from a specific 

input port and input virtual channel. If the connection is established, the 

Image 37 Crossbar unit 
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Crossbar unit that received the packet, reads the information carried by the 

packet fields and if it is needed updates some fields. After this calculation, the 

unit passes the packet to the corresponding output stream that will lead the 

packet to the output port calculated by the routing algorithm and the output 

virtual channel calculated by the arbitration unit. 

 

5.1.5 Output Virtual Channel Buffers 
 

The output virtual channel buffers are located in the last part of the switch after 

the crossbar unit. The unit is connected with the crossbar with packet streams 

equal to the number of the virtual channel subqueues that hosts, and has equal 

packet stream connections with the forward unit after it. Also a statistic wire 

from the output virtual channel buffers informs the next unit that a packet is 

ready to be sent from the buffers to the physical layer. The internal structure of 

the output virtual channel buffers is show at the image 38. 

 
 

 

 

 

 

 

 

 

 

 

Init 

In the Init state, the unit receives the number of the supported ports by the 

switch, the number of the specific port in which it is and the number of the 

subqueues hosted by the buffer. Before exit the Init state, the unit allocates a 

space in the memory for the outgoing packets by the unit and initialize the local 

statistic through which will inform the forward unit for an outgoing packet. 

 

Image 38 Output virtual channel buffers 



Ins_Tail 

In the Ins_tail state, the unit receives the incoming packet by the input stream 

and reads the virtual channel number that the packet carries in its VC field. The 

unit obtains the packet size and checks if the subqueue with the same number as 

the virtual channel field is empty. If the subqueue is empty, the unit insert the 

packet to the tail of the subqueue and informs through a statistic wire the 

forward unit that the specific subqueue has a packet. Then returns to the idle 

state where waits for the next interrupt to occur and have access at the Head of 

the subqueue. 

 

Send_Head 

In the Send_Head state, the unit receives the access request to access the 

specific subqueue. The unit checks if the requested subqueue is empty and if it’s 

not, it access the first packet that is on the Head of the subqueue, and gets the 

size of that packet. Next the unit calculates the latency for the specific subqueue 

and removes the packet from its Head. The unit sends the removed packet by 

the subqueue and sends it to the forward unit without causing an interrupt, 

because earlier had informed the forward unit through the statistic wire. The 

unit based on the packet size and the bandwidth of its line, calculates the time 

that the packet needs to entirely leave the subqueue and based on that time 

creates a self interrupt that will lead the unit to the next state.  

 

PkSENT 

After the expiration time of the caused interrupt the unit enters the PkSENT 

state. Here the unit makes a second check to the head of the subqueue to see if a 

new packet has arrived in the Head of the subqueue while the last was leaving 

the subqueue. If a new packet has reached the subqueue the unit informs once 

more the forward unit through the statistic wire. 

5.1.6 Forward unit 
The forward unit is the last unit of the switch before the packets are sended to 

the physical layer. The unit is connected with the output virtual buffers with four 

packet wires through which will receive the packet and also with a statistic wire 

from which is informed when a packet is entering or leaving a subqueue. The 

unit is also connected with the transmitter of the switch through a packet stream 
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to pass the packets to the physical layer. The internal structure of the forward 

unit is shown below in the image 39. 

 

 

 

 

 

 

 

 

 

 

Init 

In the Init state the unit makes the necessary initialization, by receiving the port 

number in which the unit is located. Also in the init state is allocated a structure 

on the memory so that can hold in each subqueue of the output virtual channel 

buffers are packets that waiting to be forward. When the unit finish with the 

initialization process, proceeds to the idle state where waits for the next 

interrupt to occur. 

 

Receiving 

This state is enabled first by the statistic interrupt that connect the unit with the 

output virtual channel buffers. The forward unit is informed that a packet exists 

in the head of the subqueue and wants to be forward to the physical layer. Here 

the unit informs the allocated structure table for the subqueue that has the packet 

stored. The unit calculates the time that the packet needs to be forward and 

makes a self interrupt based on this time delay, to proceed on the next state. 

 

Send 

After the small delay the unit enters the Send state. Here the unit make access to 

the requested stream that caused the interrupt and after a small check to the 

stream, to see if its empty, receive the packet from the specific subqueue and 

forwards it to the physical layer. 

 

Image 39 Forward unit 
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6 Experimentation and Simulation results 
 

In the 6th chapter, we will view the experimentation design for the three 

topologies and the strategy that we will follow to create and study the deadlock 

phenomenon. Different configurations will be examined for the topologies of 

Fat Tree, Torus and Mesh topologies. The collected results will be evaluated so 

that we can see the efficiency of the inserted Deadlock avoidance mechanism, in 

comparison with the increased latency that causes to the data traffic of the three 

networks. 

 

6.1 System Details 

 

The simulation models and the simulation process have taken place in a 

personal laptop that running an Ubuntu 8.04 operating system, with Opnet 

modeller version 14.5.A installed.  

 

In our Opnet switch models, we set the size of the input and output virtual 

channels of the switch in the minimum size of packets that they can accept. In 

detail, the size of each virtual channel is set to the minimum, so that can accept 

only one packet of 1024 bits for each virtual channel. With that configuration 

we increase the probability that more than one packet has the need for the same 

buffer resources, and because it has the buffers at the minimum size, we force 

the network to produce a deadlock on these resources. 

 

Each simulation will run for packet load from 200 to 4000 Mbps / node with a 

step of 200 Mbps / node for each topology. Through this we will observe how 

each topology reacts for the same amount of load and in case of torus with 

different deadlock configuration. The size of the Mesh and Torus topologies will 

be 4x4, and for the Fat Tree we will use a tree with 16 end nodes. 

 

 



6.2 Simulation models 

 

6.2.1 Mesh 
 

In the Mesh topology, it will be examined the configuration for deadlock 

creation as it shows in the image 40. A cycle will be created on the packet 

traffic, by assigning 4 distinct source nodes to send packets to equal destination 

nodes in a cyclic manner. With that way provide to our network the ideal 

conditions so that a deadlock can occur in the resources of the internal switches 

of our network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The source nodes S1, S2, S3 and S4 will send packets to the equal destinations 

D1, D2, D3 and D4 of the network, respectively. A cycle on the packet traffic 

will be created between the destination nodes and with the configuration of the 

virtual channels to accept only one packet in their buffers will provide us the 

deadlock. 

 

We will examine the offered and the received data load on the network, so that 

we can see if due to deadlock we lose packets inside the network. Also, we will 

examine the latency of the packets as we increase the offered amount of packet 

load to the network. We should see an increment on the value of the latency, 

because the deadlock avoidance mechanism has to calculate now for more 

Image 40 Mesh – Deadlock Configuration 
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requests for the inserted packets on the switch. 

 

6.2.2 Torus 
 

In torus topology, we will take advance of the wrap around links with the 

combination of DOR algorithm to create deadlock in the end switches of the 

network. In comparison with the Mesh topology were the effort of the traffic 

load creates deadlock in the central switches of the topology. 

 

Thus, the wrap around links provide extra paths to the traffic load, we use an 

extra configuration on the switch mechanism for the dateline classes that the 

virtual channel implementation need on the Torus topology. The below example 

on image 41 will be examined so that we force deadlock to occur on the end 

switches  

 

 

Image 41 Torus Deadlock Configuration & Dateline Policy 

 

The traffic is controlled so that we can send packets from the source nodes S1to 

S8 to equal destination nodes D1 to D8, respectively. The configuration will be 

tested with and without the dateline policy so that we can see the effect of it. 

The dateline policy should change the number of virtual channel, through which 

the packet will be directed, when the packet reach a switch on the coordinates 

X=0 and Y=0. With that way we will break the circle that is created when the 

packets will try to use the wrap around link.  



 

If we see the example of image 41 separately for each one of the intermediate 

switches that each packet has to travel from its source to each destination, we 

will create the below tables. These tables map the path for each packet and 

showing the change of virtual channel when the dateline policy is applied to the 

switches. The selected dateline is the axis Y=0. When the packets pass from that 

axis, they change virtual channel breaking with that way the circular 

dependency. 

 

 

Virtual 
channel 

at  
Switch 1 

Virtual 
channel 

at  
Switch 2 

Virtual 
channel 

at  
Switch 3 

Virtual 
channel 

at  
Switch 4  

Source 1 0 0 0 0 Destination 1 

Source 2 0 0 0 0 Destination 2 

Source 3 0 0 0 0 Destination 3 

Source 4 0 0 0 0 Destination 4 

Table 6  Torus without the use of VC 

 

In table 6 we see that all the packet s that travel inside network use the virtual 

channel 0, making with that way a dependency to create between the resources 

that the packets want to access on the switches. This dependency cycle is 

avoided with the use of the dateline policy.  

 

 

Virtual 
channel 

at  
Switch 1 

Virtual 
channel 

at  
Switch 2 

Virtual 
channel 

at  
Switch 3 

Virtual 
channel 

at  
Switch 4  

Source 1 0 0 0 0 Destination 1 

Source 2 0 0 0 1 Destination 2 

Source 3 0 0 1 1 Destination 3 

Source 4 1 1 1 1 Destination 4 

Table 7 Torus with the use of VC 
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Now when the packets are passing from a switch in the axis Y=0, they change 

the virtual channel class which are going to use through round robin. The result 

of this is shown on table 7. The packets that have passed from the axis Y=0 

have increased their class to one, breaking the dependency that can be created 

and avoiding a deadlocked situation to occur. We can view now that our table 

has created a small lower triangle of 1 and a bigger upper triangle of 0. That 

change on virtual channels can provide us a deadlock free network. 

 

6.2.2 Fat Tree 
 

In the fat tree topology, we will examine a network of 16 end nodes. Thus the 

topology does not have turns or wrap around links we should see that no 

deadlock occurs and for that reason there is no packet loss due to deadlock on 

that topology or increased latency due to extra calculation inside switches.  

 

6.3 Result Evaluation 

Mesh 
 

In mesh topology we have created the deadlock configuration that has explained 

in the previous section of the chapter. We forced the network with traffic load 

and with the minimum size of packet buffers so that can make the deadlocked 

configuration occur in the internal switches.   

 

 

 

 

 

 

 

 

 

Image 42 Deadlock Avoidance with the use of DOR. 
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As we use the Dimension Order Routing (DOR), the traffic load is directed first 

on the axis X and when it reaches the equal coordinate Y as the destination, 

makes a turn to this axis. Based on the DOR algorithm, we have seen that we 

cannot produce deadlock in mesh topology thus we put an order on the routing 

of the packet traffic, eliminating the routing from axis Y to X as a first step. The 

turns from Y to X and from X to Y make the traffic of the topology create a 

circle and deadlock to occur. Therefore, this configuration has been tested 

without the use of the virtual channels because they are not needed. 

 

Torus  

 

In the Torus topology, we forced the system with the deadlock configuration that 

has explained on section 6.2.2. The packet buffers of the switch were limited to 

the size for 1 packet, so that we can force the network to produce deadlock on 

the end switches. The results collected by the simulation without the use of the 

dateline policy are shown on the below table 7. 

 

Load Global Offered 
Load 

(Mbps / node) 

Global 
Received Load 
(Mbps / node) 

Latency 
(sec) 

Global 
Generated packets 

(Mbps / node) 

Global 
Received packets 

(Mbps / node) 

Global 
Load Difference 
(Mbps / node) 

200 1,00E+008 1,00E+008 1,58E-006 781256 781256 0 

400 2,00E+008 2,00E+008 1,58E-006 1,56E+006 1,56E+006 0 

600 3,00E+008 3,00E+008 1,58E-006 2,34E+006 2,34E+006 0 

800 4,00E+008 4,00E+008 1,58E-006 3,13E+006 3,13E+006 10 

1000 5,00E+008 5,00E+008 1,58E-006 3,91E+006 3,91E+006 10 

1200 6,82E+008 3,41E+008 1,63E-006 24 12 12 

1400 8,03E+008 4,01E+008 1,58E-006 16 8 8 

1600 8,65E+008 2,16E+008 1,42E-006 16 4 12 

1800 9,20E+008 2,30E+008 1,42E-006 16 4 12 

2000 1,45E+009 2,42E+008 1,42E-006 24 4 20 

2200 1,45E+009 2,42E+008 1,42E-006 24 4 20 

2400 1,45E+009 2,42E+008 1,42E-006 24 4 20 

2600 1,45E+009 2,42E+008 1,42E-006 24 4 20 

2800 1,45E+009 2,42E+008 1,42E-006 24 4 20 

3000 1,94E+009 2,42E+008 1,42E-006 32 4 28 

3200 1,94E+009 2,42E+008 1,42E-006 32 4 28 

3400 1,94E+009 2,42E+008 1,42E-006 32 4 28 

3600 1,94E+009 2,42E+008 1,42E-006 32 4 28 

3800 1,94E+009 2,42E+008 1,42E-006 32 4 28 

4000 2,42E+009 2,42E+008 1,42E-006 40 4 36 

Tablet 7 Deadlock configurations on torus without virtual channels 
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We can see that when the amount of traffic load passes the limit of 1000 the 

system is fulfilled of packets and the generated packets that inserted inside 

network are reduced to the minimum. Now we see that deadlock has occurred 

and the network is paralysed without being able to progress the generated packet 

traffic through it. The collected results by the Torus simulation for the values of 

global latency, for various loads of packet traffic, are shown on the chart 1. We 

see that the latency decreases significantly over the limit of 2000 Mbps / node 

and stays in stable value, for all the loads over that value. That is caused because 

the amount of traffic load produced by the nodes, has decreased significantly 

and the received by the node packets have a stable reception rate.  

 
Chart 1 Torus Load / Latency chart 

 

 
Chart 2 Torus (Generated /Received Packets)/ Load 
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The detection of deadlock can be seen by the loss of packets in the network 

traffic. When the network paralyse the amount of received by the node packets 

is decreasing, thus many blocked packets are waiting in the buffers of the 

switches. This difference between the generated and received amount of packets 

is shown on the chart 2. 

 

 

Chart 3 Packet loss on various traffic loads 

 

As we increase the amount of traffic load we see that the packet loss increases 

with a non normal rate. With more traffic load inside the network the packet loss 

increases thus more packet are staying blocked inside the buffers of the 

switches.  

 

The dateline policy applied on our simulation models, have caused an 

unexpected behavior on the switches. When the policy has applied and forced 

the packets to change their virtual channel class, the switch was trying to reach 

packets from the input buffers finding them empty. The incoming packets had 

informed the central routing mechanism of the switch to find them an output 

virtual channel and output port through the routing and arbitration unit. Even if 

the crossbar received the information correctly and tried to access the packets in 

the correct input and output port, found those buffers where recognized as 
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empty. This problem didn’t give us the opportunity to study in the torus 

topology the dateline policy, through the collected simulation results. However, 

from the analysis showed at section 6.2.2 we can see how deadlock should be 

avoided and network could work normally at loads higher than 1000 Mbps / 

node.  
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7 Conclusions 
 

In this work, we have examined the problem of communication deadlock for 

interconnection networks. This kind of networks is used in High Performance 

Systems and they are a key component of them. Deadlock is one of the problems that 

can appear and provokes network paralysation. Deadlock can appear when there is a 

circular dependency of some of the resources of the network. In this case, network 

buffer are the resources that can produce deadlock depending on the routes the 

packets use as determined by the routing algorithm. In order to avoid deadlock, we 

use the technique of virtual channels. Using this technique, each physical channel is 

split into several virtual channels so several packet flows can use the physical channel 

in a  multiplexed way over the time. In order to create several virtual channels from a 

physical channel, we need to split the buffer associated to this physical channel and 

assign each part to a virtual channel. 

 

For conclusions over the phenomenon of deadlock with the use of virtual channels, in 

high speed interconnection networks, we can conclude on the below. 

 

Deadlock can be avoided in Mesh topology with the use of DOR algorithm. The 

algorithm restricts the packet traffic in specific order on accessing firstly the axis X 

and then the axis Y, providing with that way a deadlock free configuration on the 

network. DOR is putting an order to the traffic and eliminates the possibility of 

dependency cycles between packets and buffers. 

 

The deadlock phenomenon in torus can be avoided with the use of a dateline policy on 

its axis. The policy has to be applied on both axis because the torus topology make 

use of the wrap around links that form a ring to each one of its axis. The dateline 

policy breaks the dependency on the buffers that the packets require, by increasing the 

class on the virtual channels through the round robin policy. 

 

Deadlock cannot occur in a topology like fat tree thus the topology is not a 

geographically order topology with possibilities on turn between the axis X and Y 



thus those axis does not exist. The fat tree manipulates the packet traffic by sending 

the packet from the leaf nodes to the root and once more back to the leaf nodes. The 

packets follow and order to their traversals over the network without having the 

possibility due to network topology to turn and create with that way a cyclic 

dependency. 
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