

Departament d'Arquitectura de
Computadors i Sistemes Operatius

Màster en Computació d'Altes Prestacions

Deadlock
Avoidance with
Virtual channels

Memoria del trabajo de investigación

del “Máster en Computación de Altas

Prestaciones”, realizada por Fragkakis

Emmanouil, bajo la dirección de Daniel

Franco Puntes Presentada en la

Escuela Técnica Superior de Ingeniería

(Departamento de Arquitectura de

Computadores y Sistemas Operativos)

B a r c e l o n a J u l i o d e 2 0 0 9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13287111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

41746 - Iniciació a la recerca i treball fi de màster

Máster en Computación de Altas Prestaciones

Curso 2008-09

Título

Deadlock Avoidance with Virtual Channels

Autor

Fragkakis Emmanouil

Director

Daniel Franco Puntes

Departamento Arquitectura de Computadores y Sistemas Operativos

Escuela Técnica Superior de Ingeniería (ETSE)

Universidad Autónoma de Barcelona

Firmado

Autor Director

Abstract

High Performance Computing is a rapidly evolving area of computer science
which attends to solve complicated computational problems with the combination of
computational nodes connected through high speed networks.

This work concentrates on the networks problems that appear in such networks
and specially focuses on the Deadlock problem that can decrease the efficiency of the
communication or even destroy the balance and paralyze the network.

Goal of this work is the Deadlock avoidance with the use of virtual channels, in
the switches of the network where the problem appears. The deadlock avoidance
assures that will not be loss of data inside network, having as result the increased
latency of the served packets, due to the extra calculation that the switches have to
make to apply the policy.

Keywords: HPC, High Speed Networking, Deadlock Avoidance, Virtual Channels

Resumen

La computación de alto rendimiento es una zona de rápida evolución de la
informática que busca resolver complicados problemas de cálculo con la combinación
de los nodos de cómputo conectados a través de redes de alta velocidad.

Este trabajo se centra en los problemas de las redes que aparecen en este tipo de
sistemas y especialmente se centra en el problema del “deadlock” que puede
disminuir la eficacia de la comunicación con la paralización de la red.

El objetivo de este trabajo es la evitación de deadlock con el uso de canales
virtuales, en los conmutadores de la red donde aparece el problema. Evitar el deadlock
asegura que no se producirá la pérdida de datos en red, teniendo como resultado el
aumento de la latencia de los paquetes, debido al overhead extra de cálculo que los
conmutadores tienen que hacer para aplicar la política.

Palabras clave: Computación de altas prestaciones, Redes de alta velocidad,
Evitación de “deadlock”, canales virtuales

Resum

La computació d'alt rendiment és una àrea de ràpida evolució de la informàtica
que pretén resoldre complicats problemes de càlcul amb la combinació de nodes de
còmput connectats a través de xarxes d'alta velocitat.

Aquest treball se centra en els problemes de les xarxes que apareixen en aquest
tipus de sistemes i especialment se centra en el problema del "deadlock" que pot
disminuir l'eficàcia de la comunicació amb la paralització de la xarxa.

L'objectiu d'aquest treball és l'evitació de deadlock amb l'ús de canals virtuals,
en els commutadors de la xarxa on apareix el problema. Evitar deadlock assegura que
no es produirà la pèrdua de dades en xarxa, tenint com a resultat l'augment de la
latència dels paquets, degut al overhead extra de càlcul que els commutadors han de
fer per aplicar la política.

Paraules clau: Computació d'altes prestacions, Xarxes d'alta velocitat, evitació
de "deadlock", canals virtuals

To my family,

For all their efforts, and support

To Dani, Diego and Gonzalo,

For their precious help on this project

To CAOS department,

For the all the knowledge and experiences

9

Table of Contents
MÀSTER EN COMPUTACIÓ D'ALTES PRESTACIONS .. 1

1 INTRODUCTION ... 13

1.1 PARALLEL COMPUTERS .. 14

1.2 NETWORK TOPOLOGIES ... 17

1.3 NETWORK PROBLEMS ... 22

1.4 VIRTUAL CHANNELS .. 25

1.5 NETWORK SIMULATOR – OPNET ... 26

2 STATE OF THE ART ... 31

2.1 IN WHICH LEVEL IS SITUATED OUR PROBLEM... 31

2.2 WHAT ARE THE EXISTING PROPOSALS FOR THE PROBLEM .. 33

2.3 RELATED WORKS ... 37

3 THEORETICAL BACKS .. 39

3.1 THEORY.. 39

3.1.1 Deadlock Avoidance .. 39

3.1.2 Virtual Channels .. 43

3.1.3 OPNET ... 47

4 ANALYSIS .. 61

4.1 PREVIOUS MODEL .. 61

4.1.1 SWITCH ... 62

4.1.2 NODE... 71

4.2 DESCRIPTION OF THE PROPOSITION .. 72

4.2.1 Network Elements ... 78

5 DESIGN .. 91

5.1 GENERAL SWITCH STRUCTURE ... 91

5.1.1 Input Virtual Channel Buffers .. 93

5.1.2 Routing Unit .. 95

5.1.3 Arbitration ... 97

5.1.4 Crossbar .. 100

5.1.5 Output Virtual Channel Buffers ... 101

5.1.6 Forward unit ... 102

6 EXPERIMENTATION AND SIMULATION RESULTS ... 105

6.1 SYSTEM DETAILS ... 105

6.2 SIMULATION MODELS ... 106

6.2.1 Mesh ... 106

6.2.2 Torus ... 107

6.2.2 Fat Tree ... 109

6.3 RESULT EVALUATION .. 109

7 CONCLUSIONS ... 115

8 BIBLIOGRAPHY... 117

11

Index of Images and Tables

IMAGE 1 MESH, TORUS, AND FAT TREE TOPOLOGIES ... 28

IMAGE 2 CAUSES OF UNDELIVERED PACKETS ... 34

IMAGE 3 DEADLOCKED CONFIGURATION ... 39

IMAGE 4 STAGES OF TRAVERSING PACKET .. 41

IMAGE 6 WAIT FOR AND HOLD GRAPH ... 42

IMAGE 5 DEPENDENCE GRAPH .. 42

IMAGE 7 DEPENDENCE GRAPH WITH 2 VC ... 43

IMAGE 8 SIMPLE BUFFER & BUFFER WITH VC .. 45

IMAGE 9 COMMUNICATION LINES WITH VC ... 45

IMAGE 10 PACKETS ADVANCES WITH THE USE OF VC’S .. 46

IMAGE 11 NETWORK DOMAIN ... 50

IMAGE 12 COMMUNICATION CHANNELS .. 51

IMAGE 13 PROCESSOR MODULE .. 53

IMAGE 14 QUEUE MODULE ... 53

IMAGE 15 SUBQUEUE REPRESENTATION .. 54

IMAGE 16 RECEIVER – TRANSMITTER .. 55

IMAGE 17 PACKET STREAM ... 56

IMAGE 18 STATISTIC STREAM... 56

IMAGE 19 UNFORCED AND FORCED STATES OF THE PROCESSES ... 57

IMAGE 20 TRANSITIONS BETWEEN STATES .. 59

IMAGE 21 4X4 MESH TOPOLOGY ... 62

IMAGE 22 MICHROARCHITECTURE PIPELINE OF AN INPUT-OUTPUT SWITCH .. 63

TABLE 1 INTERNAL MODULES OF PREDEFINED SWITCH MODEL ... 64

IMAGE 23 ORIGINAL SWITCH STRUCTURE .. 65

IMAGE 24 ORIGINAL NODE STRUCTURE .. 71

IMAGE 25 TOPOLOGIES OF MESH, TORUS AND FAT TREE ... 73

IMAGE 26 DEADLOCK AVOIDANCE IN A 4X4 MESH ... 75

IMAGE 27 DOR ON TORUS TOPOLOGY .. 76

IMAGE 28 DATELINE CLASSES IN TORUS .. 77

IMAGE 29 PACKET STRUCTURE .. 80

IMAGE 30 PIPELINED SWITCH MICHROARCHITECTURE WITH 2VC .. 81

TABLE 2 INPUT VC STATE FIELDS REPRESENTED BY A 5-VECTOR GROPC .. 83

TABLE 3 OUTPUT VC STATE FIELDS REPRESENTED BY A 3-VECTOR GIC ... 83

IMAGE 31 3 PHASE ARBITRATION ... 87

IMAGE 32 CASES OF PACKET TRAFFIC .. 88

IMAGE 33 VC SWITCH STRUCTURE .. 92

IMAGE 34 INPUT VIRTUAL CHANNEL BUFFERS .. 93

IMAGE 35 ROUTING UNIT .. 95

IMAGE 36 ARBITRATION UNIT .. 97

TABLE 4 DEADLOCK AVOIDANCE POLICY .. 99

TABLE 5 DATELINE CLASSES FOR TORUS .. 99

IMAGE 37 CROSSBAR UNIT .. 100

IMAGE 38 OUTPUT VIRTUAL CHANNEL BUFFERS .. 101

IMAGE 39 FORWARD UNIT ... 103

IMAGE 40 MESH – DEADLOCK CONFIGURATION .. 106

IMAGE 41 TORUS DEADLOCK CONFIGURATION & DATELINE POLICY ... 107

TABLE 6 TORUS WITHOUT THE USE OF VC .. 108

TABLE 7 TORUS WITH THE USE OF VC ... 108

IMAGE 42 DEADLOCK AVOIDANCE WITH THE USE OF DOR. ... 109

Formatted: Font: 10 pt, English
(U.S.), Small caps

Field Code Changed

Deleted: 39

Formatted: Font: 10 pt, English
(U.S.), Small caps

Formatted: English (U.S.)

Formatted: Font: 10 pt, English
(U.S.), Small caps

Field Code Changed

Deleted: 53

Formatted: Font: 10 pt, English
(U.S.), Small caps

Formatted: English (U.S.)

13

1 Introduction

In the 1st chapter we will see the world of High Performance Computing and the

various elements that HPC consists of. We will refer to the significance of the

HPC and the complex problems that attends to solve through parallel

programming. Important elements of HPC will be referred as some of the

different kinds of parallel computers that are used for that reason and some of

the interconnection networks that support the complexity of those machines. As

problems can occur on the interconnection networks we will refer on the most

basic of them and what are the possible solutions. Finally we will refer on some

of the most known network simulators and how through them we can study and

propose a solution for a problem on an interconnection network.

HPC is a term that describes the High Performance Computing, an area that is

mostly related with the scientific research. HPC generally refers to the

engineering applications that run on a parallel computer or on a cluster based

computer system. These systems work closely so that in many respects they

form a single computer. Computers of that form are capable of processing /

calculating with speed big amounts of data. In the latest years the need for more

computation power has increased and in other areas than science, like data

warehouses, online applications or transaction processes.

For the efficient control and processing of all the amount of data produced, has

been evolved also the area of parallel computing. Parallel computing is the

form of computation, in which many calculations are carried out simultaneously,

operating with the principle that large problems can often divided in smaller

ones. This calculation can be done concurrently, in parallel, through the

combination of a parallel computer, a high speed interconnection network and a

big storage base.

Due to the technological evolution and the way that our lives evolve, new grand

challenges have arisen. Grand challenge problem is one problem that cannot

be solved in a reasonable amount of time with today's computers. Some of them

are listed below.

• Applied Fluid Dynamics

• Meso to macro-scale environmental modelling

• Ecosystem simulations

• Biomedical imaging and biomechanics

• Molecular design and process optimization

• Cognition

• Fundamental computation

• Nuclear power and weapons simulations

• Strong Artificial Intelligence

• Robust, Predictive macroeconomic simulations

Fundamental scientific problems currently being explored generate increasingly

complex data, require more realistic simulations of the processes under study,

and demand greater and more intricate visualizations of the results. These

problems often require numerous large-scale calculations and collaborations

between people with multiple disciplines and locations. Also the time of the

calculations is a very important factor, thus in some problems like weather

prediction, the result of the calculation has to be resolved before a predefined

time. These calculations are done by machines called parallel computers.

1.1 Parallel Computers

Parallel computers can be classified according to the level at which the

hardware supports parallelism with multi-core and multi-processor computers

having multiple processing elements within a single machine, while clusters,

MPPs, and Grids use multiple computers to work on the same task. In all the

times a very good interconnection network is needed with architecture that will

support respectively the computer. Specialized parallel computer architectures

are sometimes used alongside traditional processors, for accelerating specific

tasks.

15

Type of parallel computers

� multicore computing

� symmetric multiprocessing

� distributed computing

� cluster computing

� massive parallel computing

� grid computing

Multicore computing

A multicore computer is a machine which includes multiple execution units,

cores. Multicore computer can execute multiple instructions per cycle from

multiple instruction streams. Each core in a multicore computer can potentially

be a superscalar core, meaning that on every cycle each core can execute

multiple instructions by a single stream.

Symmetric multiprocessing

A symmetric multiprocessing system is a computer system with multiple

identical processors that share the same memory and they are connected through

a bus. The caused bus contention in these systems does not provide scalability.

Distributed computing

A distributed computing system is a distributed memory system with multiple

computing and storage elements which are connected through an

interconnection network. Cluster computers execute concurrent processes under

a loose or strict policy. Distributed systems have also the advantage of high

scalability.

Cluster computing

A cluster system is a machine that consists by multiple computers connected

through an interconnection network. The elements of a cluster computer work

so closely so that in many respects we can say that they work as a single

computer. Most known type of a cluster computer is a Beowulf computer which

consists by several high-end commercial computers connected through a high

performance TCP/IP local area network (LAN).

Massive parallel computing

A massive parallel computer is a term that describes the computer architecture

of a system with many independent computational units that run in parallel. The

term massive means the use of hundreds or thousand computational units. The

computing units are connected through a network, creating with that way a very

large scale system.

Grid computing

A Grid system is the most known type of a distributed system. Grid architecture

makes use of several computational units, usually computers, connected through

internet that work together to solve a scientific or technical problem. Because of

the low bandwidth and the high latency of those connections the Grid systems

are usually occupied with small amount of calculations.

Specialized Parallel Computers

� Reconfigurable computing with field programmable gate arrays

� General purpose computing on graphics processing units (GPGPU)

� Applications specific integrated circuits

� Vector processors

17

Reconfigurable computing with field programmable gate arrays

Reconfigurable computing is the use of a field programmable gate array

(FPGA) as a co-processor to a general purpose computer. An FPGA is a

computer chip that can rewire itself for a given task.

General purpose computing on graphics processing units (GPGPU)

General purpose computing on graphics processing units (GPGPU) is a fairly

recent trend in computer engineering research. GPUs are co-processors that

have been heavily optimized for computer graphics processing. Computer

graphics processing is a field dominated by data parallel operations such as

linear algebra matrix operations.

Applications specific integrated circuits

Application specific integrated circuit (ASIC) have been used for dealing with

parallel applications. An ASIC is an integrated circuit (IC) customized for a

particular use, rather than intended for general purpose use.

Vector processors

A vector processor is a computer system dedicated to execute the same

instruction over large sets of data. Vector processors have the ability of high

level operations, over linear arrays of numbers of number or vectors. Cray

system was the first known for its vector processing.

1.2 Network Topologies

The interconnection network plays a central role in determining the overall

performance of all above parallel computers systems. Thus the computation

nodes do all the data process and calculations. These calculations are based on

the interconnection network for the communication among them or with some

data storage base. Any given node in the network will have one or more links to

one or more other nodes in the network and the mapping of these links and

nodes onto a graph results in a geometrical shape that determines the physical

topology of the network. The interconnection network characterized by the

topology, the routing algorithm, the switching strategy and the flow control

mechanism. Routing is responsible for the path selection that the network traffic

has to follow inside a network. Switching is the network communication

strategy that defines how are established the connections inside a network and

the flow control mechanism is responsible to manage the rate of data

transmission. All these characteristics are combined for the proper functionality

and the high speed of the network. If the network cannot provide adequate

performance, for a particular application, nodes will frequently be forced to wait

for data to arrive. Important for the proper functionality and quality of the

network service, is the topology that describes it. Some of the most known

network topologies are listed below.

� Fully connected all-to-all

� Mesh

� Rings

� Hypercube

� Torus

� Fat-tree

� Butterflies

� Benes network

Fully connected all-to-all

In a fully connected network each node on the system is connected with all the

others nodes through point to point links. This makes possible the simultaneous

transmition of data from one node to all the others.

Mesh

In a Mesh network all the nodes in each dimension form a linear array. Mesh

and torus topologies consist of N=kn nodes in a N dimensional cube with k

nodes along each dimension. The mesh topology incorporates a unique network

design in which each computer on the network connects to every other, creating

a point-to-point connection between every device on the network. The purpose

of the mesh design is to provide a high level of redundancy. Mesh networks

19

have two groups, Full-Mesh and Partial-Mesh.

The Full-Mesh Topology connects every single node together. This will create

the most redundant and reliable network around- especially for large networks.

If any link fails, we (should) always have another link to send data through. The

Partial-Mesh Topology is much like the full-mesh, only we don’t connect each

device to every other device on the network. Instead we only implement a few

alternate routes.

Rings

Ring is the type of network topology in which each of the nodes of the network

is connected to two other nodes in the network and also the first and last nodes

being connected to each other, forming a ring. Data inside ring are transmitted

from one node to the next node in a circular manner and the data generally

flows in a single direction only.

Hypercube

A special kind of mesh, limiting the number of hops between two nodes, is

Hypercube.

Hypercube is a configuration of nodes in which the locations of the nodes

correspond to the vertices of a mathematical hypercube and the links between

them correspond to its edges. A Hypercube network has 2n nodes, and each of

these nodes is arranged on cube shape, having n sets of links for interconnecting

other nodes, so as to form an n-dimensional hyper cube type network.

Torus

Torus network consists of N=kn nodes arranged in a N dimensional cube with k

nodes along each dimension. In torus topology the nodes in each dimension

form a ring topology. A torus is a mesh topology with wrap around links and

with the double number of bisection channels, for the same radix and

dimension.

Fat-tree

Fat tree topology is the type of network in which a central root node in the

higher level of hierarchy is connected to one or more other nodes that are in the

lower level of the hierarchy. These nodes in their turn are connected with one or

more nodes that are in one lower level on the hierarchy. That structure gives us

the hierarchy tree. The nodes on the lower level of the tree, are the leafs of the

tree.

Butterflies

A butterfly network is a quintessential indirect network with two characteristics.

Firstly a butterfly has no path diversity which means that there is only one route

for each source node to its destination node. Secondly a butterfly network needs

long wires at least equal with the half of the machine diameter, thing that

decreases the speed of the wire quadratically as its length increase. This makes

butterfly unattractive for large interconnection networks.

Benes network

A Benes network is a rearrangeably nonblocking network, widely used in

telecommunication networks. Consists of n input nodes, n output nodes and in

the middle has switches wired together.

Network topology refers to the static arrangement of channels and nodes in an

interconnection network, characterizing the available paths that the packets have

to travel to reach their destinations. The network topology is the first step in the

design of a network, because routing mechanism and the flow control method

will be heavily based on the topology. Whereas the topology determines the

ideal performance of a network, routing and flow control are the two factors that

determine how much of its potential is realized. A pathway is needed before

every route can be selected and the traversal of that route scheduled. The

network topology not only specifies the type of the network but also the radix of

the switch, meaning the maximum number of possible connected devices to it,

the number of stages and the width and bit rate of each channel.

Usually, we choose the topology based on its cost and performance. The cost is

determined by the number and the complexity of the required machines for the

network realization and the density and length of the interconnections between

those machines. Performance is described by two components, bandwidth and

latency. Bandwidth is the measurement of the available or consumed data

communication resources expressed in bit/s or multiples of it, Kbit/s or Mbit/s.

21

Latency is the synonym expression of delay in networks. Refer to the amount of

time that a packet makes from its source to its destination. Both these

components are determined by factors other than network topology, like flow

control, routing mechanism and traffic pattern.

A way of connecting more than two devices is either through a shared media

network or with a switched media network.

Shared media network is the most traditional way of interconnection between

devices. In half-duplex mode data can be carried in either dimension over the

network that connects the machines, but without having the possibility of

simultaneous transmission and reception by the same machine. In full-duplex

mode it can be simultaneous reception and transmission by the same machine.

Switched media networks is the alternative approach that does not share the

entire network path at once, but progressively advance switching between

disjoint portions of the network. These portions are point-to-point links,

between active switch components. As the packet traverses through the network,

it establishes communication between sets of source and destination pairs.

These passive and active components make up the network switch fabric or

network fabric.

Main advantage of the switched media networks is that the amount of network

resources implemented scales with the number of the connected devices,

increasing the aggregate network bandwidth. These networks allow multiple

pair of nodes to communicate simultaneously allowing much higher effective

bandwidth than that provided by the shared media networks. Also the system in

switch media networks can scale to a very large number of nodes, thing which is

not feasible in shared media networks.

In switch-based networks as these we are going to study, packet traverses inside

network using several switches before it reach its destination. The packets have

to pass through the communication lines and the switches. A switch acts as

interface for communication between communications circuits in a networked

environment. In addition, most modern switches have integrated network

managing capabilities and may operate on numerous layers. Some of the

integrated mechanisms that are implemented inside switches are routing,

arbitration and switching.

Routing is defined as the set of operations that need to be performed to compute

a valid path from the packet source to its destination. Routing is setting the

question “Which of the possible paths are allowable for packets.”

Arbitration is required to resolve a conflict, when several packets compete for

the same resources in the same time. Arbitration is setting the question “When

are paths available for packets.”

Switching is the mechanism that provides a path for a packet to advance to its

destination, when the requested resources are granted. Switching is setting the

question “How are paths allocated to packets”

1.3 Network Problems

Although when the exchange of information increases and the number of the

participating nodes is big is more often for a problem to appear. Problems occur

due to failures or limitations on the hardware resources of the network. These

can destroy the balance, or reduce the speed and the functionality of the

network. Some of the most important problems that appear in the

interconnections network are listed below.

• Deadlock

• Livelock

• Starvation

23

Deadlock is a very common problem that happens in different communication

levels, in our case in the interconnection network of a High Performance

Computer. It is the situation that occurs when different processes wait one

another to release specific resources. With that way there is cyclic dependency

between these different processes for the same resources, creating like that a

circular chain.

Livelock is a condition that occurs when two or more processes continually

change their state in response to changes in the other processes. The result is

that none of the processes will complete. An analogy is when two people meet

in a hallway and each tries to step around the other but they end up swaying

from side to side getting in each other's way as they try to get out of the way.

Starvation is similar in effect to deadlock. Starvation is a multitasking-related

problem, where a process is perpetually denied necessary resources. Without

those resources, the program can never finish its task.

In High Performance Computing, networking is a very important issue, and that

is because the interconnection network is the key element in the structure of a

parallel computer. A well structured network can improve the performance of

the computer minimizing the time that a packet takes from its source to its

destination and as a sequence decrease the computation time. We have to

implement several techniques that will solve or prevent problems that appear in

such networks. Some solution proposals for the most important of the

interconnection problems are listed below (Details are done in the next chapter).

• Deadlock

� Prevention

� Avoidance

� Recovery

• Livelock

� Minimal Paths

� Restricted non minimal paths

� Probabilistic Avoidance

• Starvation

� Resource assignment scheme

One of the most serious problems that occur and we have to deal with, in this

specific project, is Deadlock. Thus deadlock can be catastrophic and paralyze

the network, is very important to eliminate any possibility that a deadlock will

occur. There are four necessary conditions for a deadlock to occur, knows as

Coffman conditions. These conditions are listed below.

1. Mutual exclusion

2. Hold and wait condition

3. No pre-emption condition

4. Circular wait condition

Deadlock can be avoided if certain information about processes is available in

advance of resource allocation. For every resource request, the system sees if

granting the request will mean that the system will enter an unsafe state,

meaning a state that could result in deadlock. The system then only grants

requests that will lead to safe states. In order for the system to be able to figure

out whether the next state will be safe or unsafe, it must know in advance at any

time the number and type of all resources in existence, available, and requested.

One known algorithm that is used for deadlock avoidance is the Banker's

algorithm, which requires resource usage limit to be known in advance.

However, for many systems it is impossible to know in advance what every

process will request. This means that deadlock avoidance is often impossible.

25

A total ordering on a minimal set of resources within each dimension is

required, if we would like to use these resources in full capacity. In contrary

some resources along the dimension links have to stay free so that can remain

below the full capacity and avoid deadlock. To allow full access to the network

resources of the network, we have either to duplicate the physical links or

duplicate the logical buffers associated with each link. This results respectively

to physical channels or virtual channels.

Routing algorithms based on this technique, called Duato’s protocol, can be

defined that allow alternative paths provided by the topology, to be used for a

given pair of source-destination nodes in addition to the escape resource set.

One of those allowed paths must be selected, preferably the most efficient one.

1.4 Virtual Channels

Virtual channels are the representation of the partitioned buffer queue inside a

switch. Buffers can exist in the input and the output of a switch, characterizing

with that way the type of the switch. Buffers can be placed in the input port of a

switch and give us the input buffered switch, centrally within the switch which

give us a centrally buffered switch and finally at both input and output ports of

the switch which give us an input-output buffered switch.

The packets traverse through the network using the same communication lines,

and use the switches as intermediate stops until their destination. With the

structure of virtual channels is provided to the incoming packets of a switch, an

alternative path to select in case that a previous packet is blocked inside a

buffer. This alternative path is selected through the flow control mechanism that

is implemented in the switch, with the use information that each packet carries

in its header, so that can properly directed to its destination.

For the proper construction and the effective representation of all those elements

that structure an interconnection network, is necessary the use of a tool like a

network simulator. Network simulator is a tool that can provide us detail in

multiple layers of the interconnection network construction and allow us to

make changes in all those layers.

1.5 Network Simulator – OPNET

Network simulators serve a variety of needs. Compared to the cost and time

involved in setting up an entire test bed containing multiple networked

computers, routers and data links, network simulators are relatively fast and

inexpensive. They allow engineers to test scenarios that might be particularly

difficult or expensive to emulate using real hardware- for instance, simulating

the effects of a sudden burst in traffic or a DoS attack on a network service.

Networking simulators are particularly useful in allowing designers to test new

networking protocols or changes to existing protocols in a controlled and

reproducible environment.

Network simulators, as the name suggests are used by researchers, developers

and Quality Assistants to design various kinds of networks, simulate and then

analyze the effect of various parameters on the network performance. A typical

network simulator encompasses a wide range of networking technologies and

helps the users to build complex networks from basic building blocks like

variety of nodes and links. With the help of simulators one can design

hierarchical networks using various types of nodes like computers, hubs,

bridges, routers, optical cross-connects, multicast routers, mobile units, MSAUs

etc.

There is a wide variety of network simulators, ranging from the very simple to

the very complex. Minimally, a network simulator must enable a user to

27

represent a network topology, specifying the nodes on the network, the links

between those nodes and the traffic between the nodes. More complicated

systems may allow the user to specify everything about the protocols used to

handle network traffic. Graphical applications allow users to easily visualize the

workings of their simulated environment. Text-based applications may provide

a less intuitive interface, but may permit more advanced forms of customization.

Others, such as GTNets, are programming-oriented, providing a programming

framework that the user then customizes to create an application that simulates

the networking environment to be tested. A list of the most important network

simulators is listed below.

• ns2 / ns3

• Opnet

• Cisco Packet Tracer

• Cisco NetworkSims

• GloMoSim

• OMNeT++ and Simulation Software based on Omnet++

• Simmcast

• GTNets

OPNET Modeler, a network modeling and simulation software solution, is one

of OPNET Technologies, Inc. flagship solutions and also its oldest product.

Opnet Modeller includes many predefined and ready-to-use models of switches,

routers or servers, supports a variety of protocols and provides intervention in

various levels of construction with the use of C/C++ programming language.

What is our proposal for the problem?

Proposal for the study of the Deadlock problem is the implementation through a

network simulator, in our case the Opnet network simulator, of switch and node

models that will form our preferred network topologies which are the Mesh,

Torus and Fat tree. These models will make use of the Virtual channels in their

hardware level, in the input and output buffers. In this structure will be also

applied an efficient flow control method for packets, in a manner that the

network can avoid to enter in a deadlock situation. In the below image 1 we can

see the topologies of Mesh, Torus and Fat tree where the circles represent the

switches.

Image 1 Mesh, Torus, and Fat Tree topologies

Through this implementation on the network simulator Opnet and the evaluation

of the result collection, we will view the efficiency and the functionality of the

created models. We will examine through the simulation process if the

Deadlock avoidance policy has achieved and also how our models react, with

variable network sizes and with different packet loads, for each one of our

examined topologies.

What is the addition that the project makes to the world of HPC and

interconnection networks.

This project will be made through the use of Opnet network simulator. That

means that we can see fast and easy the results of the applied techniques, which

we will make to our models. Having this way of experimenting we reduce the

cost to minimum, avoiding in contrary the using of a real parallel computer with

its high speed interconnection network.

The addition that this project has to offer in HPC community is the elimination

of a serious network problem, through an implementation on a network

simulator. That can work as a base so that we can further examine other

29

problems and techniques in high speed interconnection networks, and conclude

to a proper network architecture that can serve our purposes.

As a conclusion to the first chapter we can say that the need for HPC in our

times is very important so that we can give answers to important questions and

solve complex problems. Thus the complexity of a High Performance Computer

must be supported by an equal robust high speed network, problems that appear

on those machines and to the networks that support them are important to solve.

We need to pay attention on the details of such structures, like the network

switches or the interconnection lines that support our systems, depending

always on the different purposes and use for which we need such machines.

31

2 State of the art

In this 2nd chapter we will situate the position of our problem explaining the

related areas of interest for our work. We will refer to the proposed actions that

exist and can handle deadlock, focusing specially on the deadlock avoidance

concept and its possible solutions. In the final section we are going to refer the

relative with our project previous works that have studied the deadlock problem

and its solution through the use of the virtual channels.

2.1 In which level is situated our problem

The HPC area is a rapidly evolving area of investigation which attends to help

on the solution of complex problems. To succeed this purpose High

Performance Computing has to make use of a combination of sophisticated

hardware computing infrastructures with high speed interconnection networks.

The hardware or network infrastructures may vary depending on the needs of

the HPC designer. HPC hardware structures making use of parallel

programming techniques to solve the complex problems, techniques that need

continuous and high speed data exchange between the computational nodes. As

the complexity of a problem increases and the programming technique acquire

more data exchange to achieve the solution of the problem, the interconnection

network is some times unable to handle all this amount of data due to finite

hardware resources.

The interconnections networks are used nowadays for several applications and

for different purposes. The type of the interconnection network varies

depending on the goal that we want to achieve or the system architecture that is

going to be applied. Different types of networks are listed below.

� Backplane buses and system networks

� Processor to memory interconnections

� Internal networks for asynchronous transfer mode (ATM)

� Multicomputer networks

� High Performance Computing interconnection networks

� Distributed shared-memory multiprocessor interconnection

� LAN's, MAN's, WAN's

� Industrial application networks

In our case we will focus on the interconnection network of High Performance

Computers. Thus the demand for bigger computation power is always

increasing, it create needs for the reliability and the accuracy of the

interconnection network. The communication between processors in a

computational node of an HPC system is done through buses. These

connections have small length which is limited in the length of few millimeters

and due to their construction materials can provide small communication

latency. This latency compared with the communication latency on an

interconnection network is almost zero, thus the length of a communication line

can exceed in some meters or tens of meters and the constructional material of

the communication wire can cause extra latency to the packet delivery. Having

in mind that the network is the slowest form of communication between

processors, we would like to make the communication time as smaller as

possible and eliminate communication problems. The network has to support

respectively the transition of the information, without causing delays or

rejection of packets, due to several problems that can appear.

For the design of the interconnection network we have to consider the network

infrastructure that will form the network and will connect the nodes between

them. The type of communication wires, the switches or routers and their

combination with the routing techniques that we need, have to be examined in

detail so that we can have a robust interconnection network and avoid the

problems that can appear under a heavy communication load.

To understand the causes of an interconnection problem, we have to focus on

the way that the intermediate hardware infrastructures, that our network uses,

work. The switches on an interconnection network play a serious role in the

transition of packet from their source to their destinations, thus they manage and

33

provide a path for the traversed packet. In the case that a problem occurs or the

heavy load makes these infrastructures unable to serve the network, we need to

focus our interest on the internal architecture of a switch and examine the

pipeline with which it functions. We need to study the different elements from

which a switch is structured, how they are combined together to work and what

are the necessary alterations that we need to make in hardware and logic level to

solve a network problem.

For the purposes of the deadlock avoidance with the use of virtual channels is

necessary to examine in this lower level, how the packets enter and make use of

the switch hardware resources, how the problems appear while the traffic load

increases and what are the possible changes that need to be made in hardware

and software level, to eliminate the possibility that a deadlock will occur.

While the amount of traffic load increases, increase also and the possibility of

simultaneous need by the packets to have access over the same hardware

resources, such as the input and output buffers of the switch. Because of that we

have to use a technique such as virtual channels that can provide alternative

ways of access on these resources and will not stop or delay significantly the

packet traversal on the network.

For the investigation of such a problem, we will need a tool that can provide us

access to the various levels of the network structure, allowing us to alter the

internal logic and components of our network elements. Proper tool for that

purpose can be a network simulator that will support changes in that level and

can give us results, through which we can examine the effects of our alterations

and if needed improve the structural logic.

2.2 What are the existing proposals for the problem

As the big delays on the packets transition can significantly reduce the

calculation ability of an HPC structure, the undelivered packets can have

catastrophic sequences for the ability of such a machine to produce the correct

amount of work, due to lack of information exchange. Some of the most serious

problems that can cause undelivered packets inside our network are listed below

in image 2 with their proposed solutions.

Phenomena like deadlock, livelock or starvation, appear in interconnection

networks due to the finite number of resources and can create the problem of

undelivered packets or even paralyze the network. This is caused because of

conflicts between agents and resources, in our case packets and packet buffers.

An explanation for each one of the phenomena follows.

Deadlock

Deadlock is the situation where two or more competing agents waiting each one

for the other to release critical resources. The problem occurs because none of

the agents is able to progress due to the denial of another agent to release its

resources or to reach in a compromise.

Livelock

Livelock is the condition when two or more agents are continually changing

their state in response with the state of other agents, causing a continuous loop.

Image 2 Causes of undelivered packets

35

Result of that is that none of the agents can have access to the resources.

Livelock is similar with deadlock thus no progress is made over the resources,

and differs in the way that none of the agents is blocked or waiting for a

resource.

Starvation

Starvation is the situation that the competing agents may never be granted to the

requested resources falling in the situation that an agent is starved. A network

falls in starvation when the requests by the agents for resources are coming

more frequently that they can been handled.

For our case, we will examine the deadlock phenomenon, which is the most

serious of all the above. Deadlock may occur due to four conditions which are

the Mutual exclusion, the Hold and Wait condition, a no pre-emption condition

or due to circular wait condition. A small explanation for each one of them

follows.

3 Mutual exclusion condition is when a resource is either assigned to one agent

or it is available.

4 Hold and wait condition is when an agent which already holding resources

may request new resources.

5 Non preemption condition is when only an agent who holds a resource may

release it

6 Circular wait condition is the condition where two or more agents form a

circular chain where each agent waits for a resource that the next agent in the

chain holds.

For Deadlock there are three known solution techniques, Prevention, Recovery

and Avoidance. Each one of them refers to a different approach for the

deadlock.

Prevention

The system itself is built in such a way that there are no deadlocks. That means

that the system makes sure, that at least one of the necessary for deadlock

conditions will never occur. This is done for example in circuit switching where

the resources are granted before the transmission starts. It is very conservative

approach and may lead to very low resource utilization.

Recovery

Deadlock recovery does not impose any restrictions to the routing mechanism,

but rather allows deadlock to occur. Deadlock recovery attends to give a

solution to the problem after that has caused, forcing the agents that hold

resources to release them, allowing with that way other agents to use those

resources and break the deadlock.

Avoidance

Deadlock avoidance is the technique where certain information about agents is

available in advance of resource allocation. For every resource request, the

system sees if granting the request will mean that the system will enter an

unsafe state, meaning a state that could result in deadlock. The system then only

grants request that will lead to safe states. In order for the system to be able to

figure out whether the next state will be safe or unsafe, it must know in advance

at any time the number and type of all resources in existence, available, and

requested. One known algorithm that is used for deadlock avoidance is the

Banker's algorithm. However, for many systems it is impossible to know in

advance what every process will request. This means that deadlock avoidance is

often impossible.

In our project we will focus specially on the deadlock avoidance technique and

how this is achieved with the use of virtual channels. The virtual channels will

provide to our system extra alternative resources that can be used by the agents,

meaning packets, to avoid other blocked resources and with that way avoid

37

deadlock. Changes in the mechanism of the switch have to be done so that can

support this new structure and avoid resource dependencies to occur. The logic

of the mechanism now has to put a specific order on the resources and

restrictions on the way that these resources are going to be accessed by the

packets. The implementation and the examination of that proposal will be

studied through the network simulator in which we will implement and test our

models.

2.3 Related works

Previous implementations for the deadlock refer to the solution of the problem

in different levels and with various ways. Deadlock problem appears from

processor to processor communications, to different types of networks, deadlock

on chip level or most often in databases and multi-threaded applications.

Deadlock occurs in software where a shared resource is locked by one thread

and another thread is waiting to access it and something occurs so that the thread

holding the locked item is waiting for the other thread to execute. Another case

where deadlock can occur is in databases where one application has asked for a

lock on a table. It then requires a second table but another application has locked

the second table and is waiting to get a lock on the first.

Some of the related with our project implementation refer to various approaches

like the use of adaptive routing using only one virtual channel [4], virtual lanes

for ATM networks [5] or the implementation on QNOC router with a dynamic

virtual channel allocation [6]. In these researches is studied the effect and the

utilization of the virtual channels and the appropriate number of them for the

deadlock solution but with different types of network or routing strategy.

None of the previous implementations or approaches to the problem is referring

to the solution of deadlock avoidance through a simulation process, for the

specific network models that we are going to study, and the comparison of the

results between these tree topologies. In our case, thus the construction of a

network with the appropriate policy needs further examination and

implementation we are using a network simulator. This approach offers the

ability to change the numbers of virtual channels and the buffer capacity that

each one of they contains. Also we can experiment with the deadlock avoidance

policy and see how we can implement it to our network topologies, with the

minimum cost on resources while having the desired result.

39

3 Theoretical backs

In the 3rd chapter we will focus on the problem of deadlock and its possible

solutions. We will see the reasons that cause the deadlock and how we can avoid

it by the use of virtual channels. The definition of virtual channels will be given

next and the possible uses that the virtual channels have. At the last part of the

chapter will be described the parts of the Opnet network simulator that our

implementation is going to uses and important details about their use and

functionality.

3.1 Theory

3.1.1 Deadlock Avoidance

A deadlock is a situation where in two or more competing actions are waiting

for the other to finish, and thus neither ever does. It is often seen in a paradox

like 'the chicken or the egg'.

In computer science, deadlock refers to a specific condition when two or more

processes are each waiting for each other to release a resource, or more than two

processes are waiting for resources in a circular chain. Deadlock is a common

problem in multiprocessing where many processes share a specific type of

mutually exclusive resources known as a software, or soft, lock.

Image 3 Deadlocked configuration

Deadlock occurs in an interconnection network when a group of agents,

usually packets are unable to make progress because they are waiting on one

another to release resources, usually buffers on channels. If a sequence of

waiting agents forms a cycle, as it shown in image 3, then the network is

deadlocked. This can have catastrophic sequences for the network. When some

resources of the network are been occupied with deadlocked packets other

packets that coming block on these resources and cannot proceed to their

destination. [1 ch.14]

For Deadlock handling there are three known techniques that has been used

and these are

 1. Deadlock Prevention,

 2. Deadlock Avoidance

 3. Deadlock Recovery

To prevent this situation, networks must either use deadlock avoidance, method

that guarantee that a network cannot deadlock, or deadlock recovery in which

deadlock is detected and corrected. As in almost all the modern networks [1

ch.14], our project will make use of the Deadlock Avoidance technique.

Deadlock appears because the network resources such as channels and buffers

are limited. We have to focus that in the switched based networks, like these we

are going to study, where each switch is connected with a processor. The

switches that are connected with a processor can send and receive messages

from the processor.. Due to the similarity between the direct networks and the

switch based networks we can apply that policy for the deadlock avoidance. [3

ch.1]

41

To achieve the Deadlock Avoidance, the routing mechanism applied has to

restrict the allowed paths for the packets that keep deadlock free the global

network state. An approach for the solution of this is to put an order on the

resources that want to be accessed by the packets, in the minimum way for

having network full access. Assigning the resources partially or totally to the

packets, so that cannot exist the possibility that a circular dependency will

appear. With that way we are applying escape paths to the packets, no matter

where they are inside the network, avoiding the probability that they will come

in a deadlock situation.

Critical resources on the deadlock avoidance, in network level, are the

connection lines and the buffers associated with them. There must be an order

in the access of the resources by the packet, while these are travelling from their

source to the destination.

When a packet inserted in the network at the phase 0 is entering in a switch.

Through the communication lines goes to the phase 1 where the next switch is,

and continues until it reach its destination. While not exist recirculation of

packets, once a packet have reserved an output channels from the first phase, it

cannot request any other output channel from the same phase, thus there are no

dependencies between the output channels of the same phase. Similarly a packet

that has reserved an output channel on a given phase, cannot request for an

output channel at a previous phase. With that way we only have dependencies

Image 4 Stages of traversing packet

from this phase to the next phase. Sequence of that is that we don't have cyclic

dependency between channels and we avoid deadlock.

While using a flow control method, like store and forward or virtual cut

through, the agents are packets and the resources are the packet buffers. At any

given time each packet can only occupy one packet buffer. When a packet

request for a new packet buffer, it should release the old packet buffer a short

time later. In our case the resources will be the virtual channels that will replace

the packet buffers as entities.

The lines (agents) and the virtual channels (resources) are related with “Wait

for” and “Hold” relations. If a line holds a buffer, then that buffer is waiting

from the line to be released. If that not happen, a deadlock occur.

Image 6 Wait for and Hold graph

A representation of the relations between agents and resources can be done

through the dependence graph and the wait-for graph . In both above images 5

an 6, we can see how connections A and B occupying some resources while

they are waiting for some others. A occupies channels u and v and waits for

channel w which is occupied by the connection B. Similarly the connection B

holds channels w and x and waits for channel u.

If we focus on the Hold relations that lead to the buffers u and w from the lines

A and B in Image 6.a, and we redraw these lines to the opposite direction as

Image 5 Dependence graph

43

Wait for relations we have the Image 6.b. Here we can see, from the dotted

arrows that appear a circulation between the resources. This circulation shows

us that the configuration is deadlocked.

In order to occur deadlock, the lines have to acquire buffer resources and wait

on others, with a way that creates a cycle in the wait for graph. This cycle is a

necessary nut not sufficient condition for a deadlock. If we can manage to

eliminate the cycles from the resource dependence graph we can we eliminate

the possibility of a circular dependence on the wait for graph and as a sequence

we avoid to deadlock the network.

If the above scheme we replace the buffer resources with the two equal virtual

channels (explained in next section), we will have a dependence graph like the

one below, in Image 7.

Image 7 Dependence graph with 2 VC

3.1.2 Virtual Channels

To avoid Deadlock to our network we have to apply a flow control method to

allocate the appropriate for the packet resources. Important resources for the

interconnection network are the communications lines and the buffers. Buffers

are storage inside nodes and switches, with the form of a memory. In this

memory is where the packets are temporarily stored, while traversing to their

destination through the communication lines. Dependent on the switching

technique and flow control that we use, we may respect to the packets either as

entire packets or as flits. Flits or flow control units, are the smaller units from

which the packet consists and create the header, data and tail sections of the

packet. The flits are also divided in smaller units called phits (phase digits)

which are the binary representation of a flit.

While the topology of the network determines the possible ways that a packet

has to reach its destination, the flow control is the method applied to the

network that organizes the network traffic. Flow control determines when and

how a travelling packet inside the network can overcome network problems and

advance itself until destination. This applied strategy must avoid resource

conflicts between packets, keeping with that way the channels idle.

As an analogy to the real world, we should provide alternative pathways if it

occurs a problem in a highway road, so that the incoming traffic can overcome

the accident and continue its way. Having this analogy in mind, at hardware

level, if a packet gets blocked in a buffer while expecting other resources to get

free, incoming packets should not get blocked by this packet. The flow control

mechanism should provide them an escape path in the form of an alternative

buffer, so that the packet can proceed. The implementation of this in hardware is

the partition of the used buffer in several pieces that we call virtual channels.

If we consider that the buffer is a (FIFO) First In First Out queue, Virtual

Channels is the partitioned representation on several smaller parts of memory,

called or else subqueues. These subqueues are those that used as escape paths

for the packets. The implementation can be in hardware or software level. In

hardware can be in form of separated buffers with a circuit flow control

mechanism. In software level the unique buffer is treated as partitioned,

applying the flow control policy through a software implementation over the

virtual channels. To make our job easier for this purpose we will use the Opnet

45

network simulator, partitioning virtually a predefined model of a FIFO buffer

queue as it shown below on image 8.

Buffers are commonly operated as FIFO queues. Therefore, once a message

occupies a buffer for a channel, no other message can access the physical

channel, even if the message is blocked. Alternatively, a physical channel may

support several logical or virtual channels multiplexed across the physical

channel. Each unidirectional virtual channel is realized by an independently

managed pair of message buffers. Logically, each virtual channel operates as if

each were using a distinct physical channel operating at half the speed. This

representation can be seen in Image 9. Virtual channels were originally

introduced to solve the problem of deadlock in wormhole-switched networks [3

ch2]. Deadlock is a network state where no messages can advance because each

message requires a channel occupied by another message.

Image 8 Simple buffer & Buffer with VC

Image 9 Communication lines with VC

Virtual channels can also be used to improve message latency and network

throughput . By allowing messages to share a physical channel, messages can

make progress rather than remain blocked. For example, in Image 10 we see

two messages crossing the physical channel between routers R1 and R2. With

no virtual channels, message A will prevent message B from advancing until the

transmission of message A has been completed.

Partitioning the buffer in virtual channels, both messages continue to make

progress. The rate at which each message is forwarded is nominally one-half the

rate achievable when the channel is not shared. In effect, the use of virtual

channels decouples the physical channels from message buffers, allowing

multiple messages to share a physical channel in the same manner that multiple

programs may share a CPU. The overall time a message spends blocked at a

router waiting for a free channel is reduced, leading to an overall reduction in

individual message latency.

This approach described, does not place any restrictions on the use of the virtual

channels. Therefore, when used in this manner these buffers are referred to as

virtual lanes [5] . Virtual channels were originally introduced as a mechanism

for deadlock avoidance in networks with physical cycles, and as such routing

restrictions are placed on their use. Virtual channels also can have different

classes, meaning that each virtual channels can have its own type of priority

dependent on the characteristics that we want to provide them. Those classes

may restrict the use of the virtual channels for packets, dependent on the virtual

Image 10 Packets advances with the use of VC’s

47

channel buffer utilization or the priority type of a packet. For example, packets

may be prohibited from being transferred between certain classes of virtual

channels to prevent cyclic waiting dependencies for buffer space. Thus, in

general we have virtual channels that may in turn be made of multiple lanes.

While the choice of virtual channels at a router may be restricted, it does not

matter which lane within a virtual channel is used by a message, although all of

the flits within a message will use the same lane within a channel.

Acknowledgment traffic is necessary to regulate the flow of data and to ensure

the availability of buffer space on the receiver. Acknowledgments are necessary

for each virtual channel or lane, increasing the volume of such traffic across the

physical channel. Furthermore, for a fixed amount of buffer space within a

router, the size of each virtual channel or lane buffer is now smaller. Therefore,

the effect of optimizations such as the use of acknowledgments for a block of

flits or phits is limited. If physical channel bandwidth is allocated in a demand-

driven fashion, the operation of the physical channel now includes the

transmission of the virtual channel address to correctly identify the receiving

virtual channel, or to indicate which virtual channel has available message

buffers.

For the recognition of the packets and their corresponding direction to the

virtual channels, has to be added a flit more to the header of each packet. That

flit is inserted in the source node and will contain the number with the desired

virtual channel for the packet. With that way, it will be described the preferred

route that the packet will follow through the network, and will be applied the

necessary flow control mechanism on the input or output virtual channels of a

switch.

3.1.3 OPNET

For our project, the implementation will be based on the Opnet network

simulator. Opnet network simulator is a simulation tool equipped with many

predefined models of nodes, servers, switches and communication lines, which

exist in the market. Also supports a wide range of protocols, and allows altering

on the predefined characteristic models. The simulator allows user intervention

in 4 different levels that start from the network or subnetwork level, to the

module level, the process level and in the lower part is the code level. Here

Opnet network simulator supports the use of external commands based in the

programming language of C/C++.With that we way we can manage the existing

models and protocols, or design and create a new one for our purposes.

3.1.3.1 Network

The network defines the overall scope of the system we are going to simulate.

It’s a representation of the objects that participate in the network construction.

The network model specifies the objects inside the network, as well as their

physical locations, interconnections and configurations. It can contain

subnetworks and nodes, connected through several links, giving a more complex

structure to the network. This supported complexity provides us easiness to

design networks similar to the appearance and functions, with the real ones that

we want to simulate.

The interprocessor communications as in High Performance Computing can be

viewed as a hierarchy of services. These services begin form a higher level, the

application layer, in which are performed actions for the preparation of the

packets and the data encryption and data compression, until the physical layer

which is responsible for the transition of the packets that come from a higher

layer. We can view such a layering in the communications services, especially

for the Local and Wide Area Networks (LAN's and WAN's). This layering can

be characterized in three layers, and these are from the lower to the higher.

Physical layer

The physical layer is responsible for packet transfer through the physical

channel from switch to switch.

49

Switching layer

Switching layer make use of the physical layer, implementing mechanisms so

that can forward the messages to their destination.

Routing layer

At the routing layer are taken the routing decisions for the output channels that

can provide a path, so that the packet can continue through the network to its

destination.

The routing mechanisms and their properties (deadlock or livelock freedom) are

determined mostly by the switching layer. The switching techniques that are

implemented inside the switching layer are responsible to set the switch inputs

and outputs and the appropriate time that the packet needs to travel the path

inside the switch. [3 ch.3]

These switching techniques make use of flow control mechanisms that are

responsible for the packet transfer synchronization between the switches. The

flow control mechanisms are related with the management of the packet buffers.

Determine how the buffers are accessed and released by the packets and which

is the appropriate policy when exist blocked packets inside these buffers. [3 ch3]

Image 11 Network Domain

In Image 11 we can view the network representation of 4x4 Mesh. We see the

similarity with the real topology of a mesh, how the computation node that

insert the packets in the network, are connected with the switches, and how the

connections of the switches forms our topology.

3.1.3.2 Nodes

A communication node exists within a subnetwork and represents a network

device with a wide range of possible capabilities. The actual function and

behaviour of a node is determined by its node model, which is specified by the

node's "node model" attribute. A node model is defined in the Node Editor and

specifies the internal structure of the node. A node may refer to a derived node

model rather than an actual node model specified in the Node Editor.

51

Switch node model

The Switch node model supports large numbers of incoming and outgoing data

links and performs packet routing at high speeds. Within the model are defined

the characteristics that we want to provide, in form of a sequence of modules

Computation node model

Can generate and receive transfers of files or sparse packets, also depend on the

architecture and the functionality that we want to apply to our network.

Communication lines

Links allow communication of information between nodes in the form of

structured messages called packets. When a packet is submitted to a transmitter

in a source node, the packet is conveyed over a link to a receiver in a destination

node. A transmitter may support multiple outgoing channels into a link and,

similarly, a receiver may support multiple incoming channels from a link as it

shown below in the image 12.

Image 12 Communication channels

A link is actually composed of one or more communication channels, each of

which defines a connection between a transmitter channel and a receiver

channel. A communication channel can be thought of as a pipe, where packets

are placed in one end by a transmitter channel and retrieved at the other end by a

receiver channel. If a link has multiple communication channels, it can be

thought of as a "bundle" of pipes, each one conveying packets from the source

node to the destination node.

Simplex and Duplex Point-to-Point Links

A point-to-point link can be thought of as a bundle of one or more

communication channels between the transmitter(s) and receiver(s) that it

connects. Within a point-to-point link, the number of communication channels is

static, because there is one communication channel between each transmitter

channel and receiver channel of the same index. Packets sent by transmitter

channel in the source node will be received by the receiver channel with same

index in the destination node. Each communication channel acts independently

of the others in the same link, as though it were defined in a separate and

parallel point-to-point link.

A simplex point-to-point link defines a connection from a transmitter in the

source node to a receiver in the destination node. Packets are conveyed in that

one direction. A duplex point-to-point link, however, defines a pair of

connections between two nodes, connecting a transmitter in each node to a

receiver in the other. Packets can flow in both directions, from each node to the

other.

For a point-to-point link to be operable, it must be attached to point-to-point

transmitters and receivers in the nodes that it connects. The transmitter and

receiver of a simplex point-to-point link are designated using its "transmitter"

and "receiver" object attributes. For duplex links, four attributes ("transmitter a",

"receiver a", "transmitter b", and "receiver b") serve to identify the modules

within the nodes to which the link is attached.

53

3.1.3.3 Node modules

The internal structural complexity of network nodes and their scope of activity

can vary greatly depending on the system which is modelled. For this purpose

exist several modules that can help us achieve the level of complexity we want.

Processor modules

Processor modules are the primary general-purpose building blocks of node

models. This process model can respond to external events or interrupts as

desired to model a specific function. Processors can be connected to other

modules to send and receive packets via any number of packet streams.

Processor modules are used to do general processing of data packets. A typical

processor might receive a packet on an input stream, do some processing, and

send the packet out again on an output stream. The output packet might be

delayed for a short time, or it might be modified with respect to the input

packet.

Queue Modules

Node models may employ both processor modules and queue modules to

implement general processing of packets. Normally, a processor module would

be used in cases where a packet can be completely processed in response to the

interrupt associated with its arrival or generation. If this is not the case, and it is

Image 13 Processor module

Image 14 Queue module

necessary to buffer the packet while awaiting a later event to complete

processing, then a queue module, with its additional buffering resources, is

likely to be more correct. This is particularly true if multiple packets must be

buffered simultaneously.

Queue modules provide a superset of the functionality of processor modules.

Like processors, they can execute an arbitrary process model that describes the

behaviour of a particular process or protocol, and can be connected via packet

streams to other modules, allowing them to send and receive data packets. The

process model can also affect the queue object's list of attributes.

The primary difference between processors and queue modules is that queues

contain additional internal resources called subqueues. Subqueues facilitate

buffering and managing a collection of data packets. While it is possible to

implement this functionality with ordinary processor modules, the use of

subqueues, provide greater flexibility and ease of implementation of a variety of

queuing disciplines. Moreover, subqueues automatically compute a number of

statistics about their operation

Image 15 Subqueue representation

55

Each queue module contains a definable number of subqueues as we see on

image 15. A subqueue is an object which is subordinate to the queue object and

which has its own attributes used to configure it. The capacity of each subqueue

to hold data is unlimited by default, but a limit may be set on the number of

packets or the total size of all packets (or both) within a subqueue. It is up to the

processes in the queue to determine what action to take when subqueues become

full: packets may be removed to create space for new arrivals, or the new

arrivals may be discarded. Because the user controls the process model executed

by a queue, it is possible to model any queuing protocol by defining the manner

in which the subqueues are accessed and managed.

Transmitters – Receivers

Transmitter modules serve as the outbound interface between packet streams

inside a node and communication links outside the node. There are two types of

transmitter modules, corresponding to the different types of communication

links: point-to-point and bus.

Image 16 Receiver – Transmitter

Several of the parameters controlling transmission of packets from point-to-

point and bus transmitter modules are actually specified as attributes of the link.

Within a node model, a transmitter module is considered to be a data sink.

Therefore, although they may have many input packet streams, transmitter

modules do not have output packet streams. From the point of view of the

network model, a transmitter module acts as the node's output port, to which a

communication link of the corresponding type may be connected: simplex and

duplex links to point-to-point transmitters and bus links to bus transmitters.

3.1.3.4 Connections

Packet streams

Packet streams are connections that carry data packets from a source module to

a destination module. They represent the flow of data across the hardware and

software interfaces within a communication node. There are three different

methods for transferring a packet over a stream and notifying the destination

module of its arrival: scheduled, forced, or quiet.

Statistic wires

Statistic wires carry data from a source module to a destination module. Unlike

packet streams, which convey packets, statistic wires convey individual values.

They are generally used as an interface by which the source module can share

certain values with the destination module, and thereby provide information

regarding its state. Each module within a node has a set of local output statistics

whose values are updated at correct times during the simulation. It is this set of

statistics that can act as the sources of statistic wires.

Image 17 Packet stream

Image 18 Statistic stream

57

Logical associations

Logical associations are special connections that to not actually carry data

between modules. In fact, logical associations do not exist during simulation,

but are used purely as specification devices. The purpose of a logical association

is to indicate that a relationship exists between two modules in a node model.

The existence of this relationship is used to interpret the node model's structure.

3.1.3.5 Process

States

Opnet modeller defines two types of states, called forced and unforced, that

differ in execution-timing. Each state is split in two executives, called enter

executives and exit executives. As the names indicate, a state's enter executives

are executed when a process enters the state, and its exit executives are executed

when the process leaves to follow one of the outgoing transitions. Forced states

are graphically represented as green circles, and unforced states are drawn as

red circles.

The process completes the enter executives upon entering an unforced state and

then blocks until a new invocation occurs. When an invocation occurs the

process executes the exit executives and proceeds immediately to the next stage

to also complete the enter executives there, and then blocks again. These actions

comprise a complete process invocation and require no time delay. Transitions

guide the process to a new state or possibly back to the same one depending

upon the applicability of their conditions.

Image 19 Unforced and Forced states of the processes

Unforced states allow a pause between the enter executives and exit executives,

and thus can model true states of a system. After a process has completed the

enter executives of an unforced state, it blocks and returns control to the

previous context that invoked it.

Forced states are so called because they do not allow the process to wait. They

therefore cannot be used to represent modes of the system that persist for any

duration. In other words, the exit executives of a forced state are executed by a

process immediately upon completion of the enter executives. Therefore the exit

executives of a forced state are generally left blank, because they are equivalent

to the same statements placed at the end of the enter executives. Because forced

states cannot represent actual system states, they are not generally used as much

as unforced states. However they are useful in certain cases to graphically

separate actions or control flow decisions that are common to several unforced

states; graphically separating out definitions of decisions or actions this way can

sometimes provide better modularity of specification, as well a more visually

informative state transition diagram.

Transitions

Transitions describe the possible movement of a process from state to state and

the conditions under which such changes may take place. There are four

components to a transition's specification: a source state, a destination state, a

condition expression, and an executive expression. The specification may be

read as follows: when in the source state, if the condition is true, implement the

executive expression and transfer control to the destination state. The types of

the conditions are shown in image 20.

59

Non Empty Condition

A non empty condition is caused by an interrupt. If the interrupt value is true the

process goes from the source state to the destination state. If its needed, while

the non empty transitions is true, can execute a function before reach the

destination state. The condition and the executive expression are declared as

attributes of the transition.

Empty Condition

An empty condition simply transfers one state to an other, after the first stage

has completed its work on the exit executives. The empty condition does not

need an interrupt to occur to be enabled, and may have also as the non empty

condition an executive in its transfer between the source and destination states.

Transition to the same stage

A transition to the same stage is the loop action that Opnet provides, and may be

either a non empty condition or either an empty condition. This type of

transitions is used to have executive expressions that can be used for checks or

alternations on the used by the process variables.

Image 20 Transitions between states

3.1.3.6 Source code

Opnet modeller inside the process level uses code. This code is responsible for

all the actions we want to make in code level. With this code we can have

actions like receive and send packets, cause or receive interrupts, interface

control informations (ICI’s) and update statistics. These actions carry important

informations about the routing and switching mechanisms of our switch. Opnet

uses these integrated functions for all the basic uses like internal

communications inside module and communication between several modules.

The integrated code of Opnet supports the use of C/C++ with the use of the

internal compiler. This support gives us the opportunity to alter functionality in

even lower level of the constructed module and organize better our

programming structure.

In the 3rd chapter we have seen the theoretical base in which we are going to be

based for the analysis of our project. We have seen the definition of deadlock

and the reasons that cause the problem. Has been given the definition and the

usage of the virtual channels and has been explained the approach of the

deadlock avoidance with the use of virtual channels. Finally in the last section

we have seen the theoretical approach of the elements that we need to use on

our network simulator, Opnet, to implement the virtual channels.

61

4 Analysis

In this chapter we will focus on the theoretical part that encloses the solution of

the Deadlock avoidance policy with virtual channels, and how the theory has to

be used in practical level for our models. The analysis for the Deadlock

avoidance, has been based on the theory that has explained on chapter 3. Also

ideas about deadlock avoidance policy in different levels and memory

partioning for use as virtual channels have been collected from the books and

the papers of the bibliography. This analysis concentrates in the architecture of

existing models, specifically node and switch models that will explained fin the

start of the subject. These models are constructed in Opnet network simulator,

version 14.0.A, that the CAOS department is using, to examine various network

topologies, problems that appear in high performance networks and fault

tolerance. The pre-existing model is implemented by Diego Lugones, doctoral

student of the Department.

4.1 Previous model

The network model that has been used as base for out implementation was a

previous implementation of switches and nodes, through the Opnet simulator.

This implementation was an ATM switch based network structured in a 4x4

MESH topology with 16 switches and 16 compute node as shown in Image 21.

That means that the packets from their source to their destination are travelling

through the switches. Each one of the nodes is connected through a

communication line with a switch. Diagram of the Mesh topology is shown

below, where switches are indicated by “S” and compute nodes by “N”.

Image 21 4X4 MESH Topology

The nodes produce and send packets inside network with the use of the

switches. Each switch is reading information that exists in the header of the

packets and directs the packet to the necessary output port, so that it can

continue its trip inside network until its destination. We will focus in the

internal architecture of the models, the packets and the conditions that have to

exist inside the models, so that we can understand the logic with witch the

network functions. We will give special attention to the switch architecture that

is responsible for the deadlock and how we can avoid it implementing a routing

mechanism.

4.1.1 SWITCH

The theoretical model of the switch model in which we will be based, is an

input-output buffer switch. The michroarchitecture pipeline of the model is

show on the Image 22. The pipeline is separated in 5 stages. Stages 1 and 2 are

the input and output buffers that characterize our model. Stages 2, 3 and 4 are

the modules that create the central routing mechanism of the switch.

Respectively stage 2 is the routing mechanism, stage 3 is the arbitration and

finally stage 4 is the crossbar.

63

The packets are inserted from the physical layer into the switch, with the

receivers (R) of the switch. In stage 1, packets are stored in the input buffers

while informing the routing mechanism with their destination information. In

stage 2 the routing mechanism creates and updates the forward table, with witch

will find an appropriate port to send the packet to its destination. This is

information is sended in stage 3, in the arbitration unit which in its turn

determines when the requested port for the competing packets is available.

When the port is available arbitration sends to the crossbar unit, in stage 4

information to establish a path inside switch. Through the path that crossbar

creates, the stored in the input buffers packets are forward to stage 5, in the

output buffers. Here in stage 5, packets are stored in the output buffers of their

preferred port, before they transmitted through the transmitters (T) to the

physical layer and to their destination.

As in the theoretical model, in the Image 23 is represented the structure of the

Opnet Switch model. As we can see the switch model is an input-output

buffered switched. The internal data path of the switch provides connectivity

among the input and output ports, through the routing mechanism. Our model

Image 22 Michroarchitecture Pipeline of an Input-Output Switch

has 8 receivers and 8 transmitters. Each pair of receiver and transmitter

represents a bidirectional input-output port. The receivers are connected through

stream wires with the input buffers that receive and host the incoming packets.

The incoming packets are stored inside the input buffers, while waiting to be

routed by the routing mechanism. With the use of information stored inside the

header of packets, the mechanism finds the appropriate output port for the

packet and allows it to pass to an output buffer related with the requested port.

Output buffer with its turn informs the forward unit for an outcomming packet,

and send it so that can be inserted inside the network.

Port Configuration Input Port Routing unit AMR_sw_handler Output Port

Switch Info Receiver
Input Buffer

Routing
Arbitration
Crossbar

AMR_sw_handler Output Buffer
Forward Unit
Transmitter

Table 1 Internal modules of predefined switch model

In the below Image 23 appear the internal structure of the switch and all of its

modules. We see the distinct parts of Port Configuration, Input and Output

buffers, ACK unit and finally the Routing structure that is the combination of

routing, arbitration and crossbar modules. The internal parts of the switch are

shown with detail at Table 4.1. The modules are connected between them with

communication wires. The red ones represent the statistic streams and the blue

ones the packet stream.

65

Image 23 Original Switch Structure

4.1.1.1 Port Configuration - Switch Info

The switch info unit is the first unit that is accessed inside the switch. It has the

biggest priority from all the modules of the switch. Switch info in first step

initializes the network. Receives information for the number of the nodes and

characterizes them in nodes and switches giving their names and coordinates.

Also the switch info allocates memory for the nodes that have found, for the

initialization of the simulation process, finds the ports in each network node and

give them a port number and checks the connected link in the switch and names

them also. The unit also discovers the neighbors and constructs the topology

while understanding the logical position of the switch and the geographical

position of the neighbors. Finally switch info unit informs the routing unit,

through a statistic wire, for the ports and deallocates the memory that has used.

4.1.1.2 Routing Logic

The central part of the switch which contains the routing logic is the

combination of 3 units. These units are the routing unit, the arbitration unit and

the crossbar. The functions that each units performs, so that the packets can find

an appropriate output port, are explained below.

Routing

Routing unit is the first step for the routing mechanism that the switch uses.

Routing unit is receiving information through statistic wires, firstly from the

switch info unit that informs the routing mechanism with information about the

switch situation. And from each one of the input buffers, that represent equal

input ports. Unit is also connected through statistic wires to send information,

with the AMR_sw_handler and with the arbitration unit.

The routing process starts by receiving the number of the input ports that is

connected with and allocating the appropriate memory space, for equal number

of packets that waiting to be routed. Then registers the statistics with which is

going to inform the Arbitration and AMR units. Here also initialized variable for

a Round robin approach to search between the input channels.

In the next state the routing unit receives from the switch info information,

through the statistic wire, in order to arbitrate. The information received is the

port configuration, with witch checks if the switch has a valid logical position,

the routing algorithm that is used for the packet traversal and the low and high

values of the threshold. In this part also the unit makes pair the input port

number with the equivalent input buffer.

Now the routing unit comes in a ”pause” situation, here waits to clean the

memory for waiting packets if simulation terminated, and also waits for

67

incoming interrupt by one of the connected input buffers. When an interrupt

occur the unit receives all the information from the interrupt, increases the

number of waiting packets by one and goes in the next state to route the packet.

The unit now searches in all ports, using round robin, to find a waiting packet

which needs to be routed. When it finds it, is applying the routing algorithm that

gives the appropriate output port, clearing the waiting packets memory for the

specified input and decreasing the number of the packets that waiting to be

routed by one. Before it exits from the state, make some checks for the received

output port, and sets that routing has completed, continuing with a self interrupt

proceeds to the next state.

Here the routing unit comes once more in a “pause” situation where it waits for

interrupt of a packet that waiting to be routed. If from the previous state is

declared that the routing has been done it proceeds to the next state where

prepares information to be sended in the Arbitration unit, informing that the

sender module has a packet in the queue.

Arbitration

The arbitration unit is a connection between the routing unit and the crossbar

unit. Arbitration receives information from the routing unit and passes it to the

crossbar. Given the input and the output port, the unit finds the correct stream to

forward the packet to that port.

Crossbar

Crossbar unit is responsible to receive incoming packets from the input buffers

and forward them to the requested output buffers that will lead them to a

predetermined output port. The Crossbar unit is informed from the Arbitration

unit by an interrupt, which declares that a specific input port has requested an

output port. The unit checks in the information received by the arbitration unit,

if its necessary update specific packet headers and forwards the packet to the

requested output port.

4.1.1.3 Input Port

The input port is characterized from two units. The receiver and the input

buffer. While the receiver accepts an incoming packet it forwards it to the

connected input buffer.

Receiver

Each receiver unit is representing the input port of the bidirectional channel.

The receiver is passing the incoming packet from the physical layer of the

channel to the input buffers of the switch.

Input Buffer

The input buffer is connected between the receiver unit, from where it receives

any incoming packet, with the routing unit which informs that a packet needs to

be routed and with the crossbar unit where its sends the packet so that can find

its requested output buffer and port.

Input buffer starts by initializing the statistic that will inform the routing unit,

receives the input port number and the internal bandwidth of the buffer. Before

exit the state declares that has no outcomming packet.

When the unit receives an interrupt for incoming packet, receive the packet and

sees if the buffer is empty. If it is, inserts the packet in the tail of the FIFO

queue, and informs the routing unit by a statistic wire that it has a packet

waiting to be routed, in the specified port.

69

When the module is having access to the interrupt that has appeared continues

to the next state. Now the module searches in the head of the queue, and if the

queue is not empty and contains a packet, module is having access to that

packet. The module next is getting the latency of the packet and update the

average occupation of the buffer, while removing the packet from the head of

the queue and receiving its size. In sequence the module send the packet through

a packet stream to the crossbar without causing an interrupt, thus earlier has

informed the routing mechanism through a statistic wire. The module computes

a delay based on the packet size, the internal bandwidth and delay of the switch

and when this time pass creates a self interrupt which makes the module

proceed to the last state.

In this last state the module checks for the buffer if its empty, to find if any new

packet has reached the head of the queue while the last packet was exiting from

the queue. If a new packet has appeared the module is getting once more access

to the head of the queue. Before it exits from the state takes the information

from the new arrived packet and informs once more the routing unit through a

statistic wire.

4.1.1.4 Output Port

Output Buffer

The output buffer module is connected with the crossbar unit from which

receives packets through a packet stream. The unit is also connected and

sending information, with the forward unit, through a statistic and a packet

stream.

Output buffer module, after initialize the necessary variables, proceeds to the

next state to receive a packet. Here the unit receives through an interrupt stream

the packet arrived. Checks if the tail of the queue is empty, and if it is, it inserts

the packet inside the tail. While there are no other packets that waiting to exit or

occupying the link, the unit informs the sender module that there is a packet

inside the queue.

In the next state, the unit receives a request to access the queue. If the queue is

not empty and contains packets, receive the first packet that is in the head of the

queue and calculates the buffer latency. After that removes the packet from the

queue, receiving its size and send it to the forward unit without causing an

interrupt because it has already informed the unit by a statistic wire. Thus the

packet will occupy the link for some time, the unit calculates that time based on

the bandwidth of the switch and the packet size. After that time expires the unit

causes a self interrupt that makes it proceed to the next state.

In this last state after the last packet has completely left from the queue, the unit

searches in the head of the packet once more if it has a new packet, and if it is

informs once more the forward unit through a statistic wire.

Transmitter

Each transmitter unit is representing the output port of the bidirectional channel.

The transmitter is passing the incoming packet from the output buffers to the

physical layer of the channel.

71

4.1.2 NODE

The internal structure of the Node model is shown in the image 24. The node

model is separated in the node processor and the network interface. These two

parts are connected through statistic and packet streams, and with the

intermediate action of the AMR_handler.

.

Image 24 Original Node Structure

The node processor consists by the dst and src modules. The src module is

responsible for the creation of the packets and the insertion of the necessary

information in their headers fields. Src module controls also the number of the

injected packets inside the network. The dst module receives the incoming

packets and is responsible for the calculation of the offered and received load

that has travelled inside network and also for the average global latency of those

packets.

The AMR_handler is situated between these the node processor and the network

interface of the node . AMR_handler is responsible to receive the packets from

the input port and recognize their type and also receive the packets that come

from the src module and forward them to the sender module that will insert

them to the network.

The network interface of the node is composed by six modules. These are the

transmitter (TX) and receiver (RX) units that give access to the physical layer,

the input and output buffers which are rec_queue and send_queue modules

respectively and the receiver and sender modules which are settled after the

buffers. When a packet is received by the network from the RX unit, is passing

into the rec_queue module tail, which works similarly with the switch buffers,

and informs through a statistic wire the receiver module that a packet is inside

the queue.

When the packet reach the head of the queue is sended through a packet stream

to the receiver module. The receiver module after a small time delay receives

the incoming packet and depended on the type of the packet, data or ack, gets

the latency values for each one of the packets. After that informs the

AMR_handler through a statistic wire and sends the packet to its destination, the

dst unit, through a packet stream. The same happens also, when a packet needs

to exit from the node. The packet is received by the send_queue and stored in

the tail of the queue. The send_queue informs the sender module with a statistic

and when the packet reaches the head of the queue is sended to the sender

module where after a small delay is sended to the physical layer.

4.2 Description of the proposition

Network Topologies

Starting from the network level, we will see how the network topologies are

structured, how a deadlock occurs and how a routing mechanism with the

support of virtual channels in the switch architecture can avoid the deadlock.

Beginning from that level will make easier the understanding of the problem

73

and the approach of the solution with a new internal routing and arbitration

logic.

The area of network topologies that we will focus has an orthogonal topology. A

network topology is an orthogonal topology if and only if the nodes can be

arranged in an orthogonal n-dimensional space, and every link can be arranged

in such way so that can produce a displacement in a single dimension. The

orthogonal topologies are separated in weakly orthogonal topologies and strictly

orthogonal topologies. In strictly orthogonal topologies, each node have at least

one link in each dimension and in weakly orthogonal some nodes may not have

any link in some dimension.

The most interesting property of strictly orthogonal topologies is that routing is

very simple, thus the routing algorithm can be implemented in hardware. Our

examined network topologies in which we would like to have the deadlock

avoidance are the Mesh, Torus which are direct switch networks with

orthogonal topology. Another popular topology that we will study is the Fat-tree

which belongs also to the direct switch networks but is not an orthogonal

topology. Fat-tree has a root node connected to a certain number of descent

nodes. Each one of these nodes in its turn is connected to a certain number of

descendant nodes. A node with no descendants is a leaf. The geographical

representation of these topologies is shown below in image 25.

Image 25 Topologies of Mesh, Torus and Fat Tree

Thus in our examination we will see that dealing the deadlock avoidance with

the use of virtual channels, the complexity of the routing mechanism

implemented inside switches increases. For that case we have to consider the

possibilities and the limitations that appear, and the efficient ways with which

we will approach them. In mesh and Fat tree topologies the deadlock avoidance

approach is the same. In Torus topologies thus there are no end nodes, because

of the existence of wrap around links, the complexity of the mechanism

increases allowing to the packets recirculate inside network in all dimensions.

A mesh network has the same node degree but half of the bisectional channels

as a torus with the same radix and dimension. Although Mesh has a natural 2D

geographical representation that keeps channel length short it gives up the edge

symmetry of torus. This can cause imbalance in many traffic patterns, as the

demand from the packets on the resources can increase significantly in the

central channels that the edge channels.

A small analysis follows on a simple 4x4 Mesh network. In image 26a several

source nodes indicated by S, sending packets to equal destination nodes

indicated by D. The routing mechanism provided changing the routing

directions on the packets from XY to YX routing, causing in the central part of

the network deadlock to occur. Blocked packets in the buffers of the switches,

do not allow upcoming packets to pass and reach their destinations. Now the

network is paralyzed and the packets cannot advance due to previous blocked

packets.

On contrary in image 26b, is shown the same 4x4 Mesh network but only this

time using Dimension Order routing (DOR) with the use of virtual channels.

Packets are sended by their source nodes to their equal destination nodes

following this time DOR. That means that the packets are forwarded by the

switches in one dimension, and they change their routing function from XY to

YX or the opposite, only when the reach the coordination of their destination

node. The use of the virtual channels in the internal structure of the switches

75

helps the traversal of the packets which move in the same coordinates of the

network.

Our switch model is using the dimension Order Routing (DOR). Based on that we

have to see how the DOR works and what makes the appearance of Deadlock. DOR is

a deterministic routing algorithm, meaning that is always choose the same path x and

y, even there are multiple possible paths. The algorithm ignores the path diversity of

the underlying topology and because of that makes poor job on balancing the load of

packets. Despite this t is very common in practice thus it’s easy to implement and

easy to make it deadlock free.

The functionality of DOR in Mesh and Hypercube topologies is to establish an order

on all the resources based on network dimension. In Torus and Rings which are

topologies with wrap around links, DOR has to establish an order on all resources

between and within each dimension, and also apply multiple virtual channels for each

physical channel. An alternative approach is to maintain the resources along each

dimension, from reaching their full capacity by ensuring the existence of bubbles.

Image 26 Deadlock avoidance in a 4x4 Mesh

One of the strategies that exist for deadlock avoidance is the approach with

Dimensional Order Routing. DOR affects both the Mesh and Torus topologies. For

Meshes DOR has to establish an order on all resources based on network dimension.

In Torus DOR comes in 2 different approaches to resolve the problem. Has either to

order all the resources between and within each dimension, applying multiple virtual

channels (VCs) per physical channel. An alternative is to keep the resources in along

each dimension from reaching full capacity, by ensuring the existence of bubble. The

functionality of DOR on torus topology appears in image 27.

A packet is sended by the source S to the destination D. As packet traverses through

the network following DOR routing can choose multiple paths, thus the torus

topology provides also the wrap around links. Packet uses the selected VC, from

which have been entered inside the network and follows that VC while traversing in X

coordinate. It can start from the +X coordinate or choose the minimal path starting by

the -X coordinate. When the packet reach the Y coordinate of its destination the

routing function changes from X to Y, giving now the possibility to the packet to

follow alternative VCs to reach its destination.

Restricting the use of resources in classes, on specific datelines, while making the

resource graph acyclic can have as a result load imbalance on the network. Most of

Image 27 DOR on Torus topology

77

the packets will go to the VC 0 having as result to left idle the other virtual channels.

An approach to reduce this load imbalance is to restrict the use of virtual channels

with datelines. This approach reduces the caused load imbalance by allowing most of

the packets to be used by buffers that require an other class. It is important to notice

that in the case of overlapping datelines, we never allow a packet waiting for a busy

resource in an overlapping region. An approach of the datelines and the overlapping

classes in Torus network is shown below in image 28.

The use of dimension order routing in Torus can have deadlock avoidance by

applying a dateline to each dimension X and Y. The result of that action is that the

dateline classes turn the Torus network into a Mesh, having in mind the resource

dependency that can appear. Now in the resulting Mesh network the dimension order

routing, routes the deadlock avoidance.

As a packet inserted inside network it uses the VC 0. If the packet crosses the

predefined coordination dateline, for each dimension, changes to the class of VC 1.

When a packet finish with the routing process in one dimension, X for example, it

always has to enter in the VC 0 of the next dimension Y. This continues until the

packet is consumed by the computation node.

Image 28 Dateline classes in Torus

4.2.1 Network Elements

Important network elements in which we have also to focus and will complete

our network construction are the compute nodes, and the packet structure. The

compute nodes are the elements that produce, consume and taking information

from the packets. For the packet we will examine which are the parts that

complete the structure of the packet and what additions we have to make in

order the packets to follow our routing decisions using the virtual channels.

4.2.1.1 Compute Node

Our compute node models are responsible to generate packets inserting in their

header the appropriate informations like a packet id, receiving the id of the

packet and calculating the latency of the packet. Thus these computational node

models will work as senders and receivers there are several steps that we need to

follow. Important steps for the creation of the node and its functionality, so that

can send a packet to a destination node over the network are listed below.

Sender

� The application layer of the node executes a system call which copies data to be

sent, into a network interface buffer, and composes the header and trailer of the

packet.

� The checksum is calculated and inserted also in the header or trailer of the

packet.

79

� The timer starts and the packet is inserted through the network hardware

interface into the physical layer.

The sender has to react also in case that receives an acknowledgment packet.

The steps for that procedure follow bellow.

� When the sender receive an acknowledgment packet releases the copy of that
corresponding packet from the buffer.

� If the sender reaches the timeout instead of receiving an acknowledgment
packet, it resends the packet and restarts the timer.

Receiver

 Message reception is in the receiver part of nodes network interface

� Network interface receives the packet from the physical layer, and puts it into

the input buffers of the network interface or system buffer.

� Checksum is calculated for each message. If the checksum matches the senders

checksum the receiver send and acknowledgment packet to the packet sender. If

not, deletes the packet assuming that the sender will resend the packet after the

associated time expiration.

� Once all packets pass the test, the system copies data to the system address

space and signals the corresponding application.

4.2.1.2 Packet

The packet is the basic unit of information that is sent from the sender part of

the source computation node to the receiver part of the destination computation

node. The structure of the packet must be able to carry several fields of

information to make easier the traverse of the packet inside network. The fields

that a packet is separated to are called flits. Each one of the flits can have

different size and can carry different types of information. Packets are formed

by 3 different types of flits. The header flit, the data flit and the tail flit.

The header flit carries basic informations like the source and destination id's, X

and Y coordinates of the destination, the type of the packet, the hops that make

between switches, the packet latency, and for our implementation an addition

flit in the header that will determine the VC number of the packet. This number

will be inserted in the packet header when the source computation node will

generate the fabric of the packet. The creation of the VC number can be through

a random number generator which will be limited in the number of virtual

channels that the switches use, or through a round robin generator. A

representation of the internal structure of the packet is shown below on image

29.

Some fields of the packet should not be changed for routing reasons like source

and destination id's, while some others have to be updated by the switches while

the packets traverses the network, like the vc the latency or the hops flit of the

packet.

Image 29 Packet Structure

81

4.2.1.3 Switch michroarchitecture

The subject that we have to deal with is the Deadlock avoidance inside a switch,

with the use of virtual channels. As we have referred in the theory chapter, we

need to eliminate any circular dependencies that exist from the packets to the

buffers. For that we have to focus on the switch architecture with which our

switch model is structured. We have to focus in the way that the switch provides

access to the agents over resources, meaning the packets over the buffers. Thus

our implementation is going to use virtual channels, it means that the number of

entrances and exits of the switch increases, and is now equal with the number of

ports that we use multiplied by the number of virtual channels that each port

hosts.

An example of the increased complexity inside the architecture of the switch

with the use of 2 virtual channels is shown at image 30. Each one of the input

and output ports now hosts 2 VC increasing with that way the number of input

Image 30 Pipelined Switch michroarchitecture with 2VC

buffers and the equal lines that connect them with the routing mechanism in

stage 2 and with the crossbar unit in stage 4. The same also happens and in stage

5 where equal output buffers are partioned in virtual channels.

Now the complexity of the routing mechanism increases thus the competing

packets for an exit port may also compete for the same virtual channel. We

should consider the complexity of the mechanism changing equally the central

routing mechanism, mean the routing, arbitration and crossbar units logic, so

that they can support the new architecture and avoid Deadlock.

The virtual channel switch and node models that have implemented are based on

the previous switch model that has explained in chapter 4.2 and uses single

input and output buffers. The logic in the virtual channel implementation is not

only the partioning of the input and output buffers in 4 virtual channels for one

buffer, but also the altered logic in the central routing mechanism of the switch

so that can respectively support the use of virtual channels. Based on the

internal architecture pipeline we will explain briefly the traversal of the packets

inside switch in stages, the port and VC allocation mechanisms and the

necessary actions in case of competing packets for the same output port and

virtual channel. In our case we make use of the virtual cut through switching,

means that the mechanism is applied in packet level and not in flit level.

Routing computation

Our virtual channel switch for the efficient allocation of an output port and

virtual channel for a newly incoming packet in the switch should make use of 2

state field tables. These tables are the input and output virtual channels state

tables, which contain information about the route computation and virtual

channel allocation of the switch. The first is 5-vector GROPC state table that

has informations for the input virtual channels state and the second is a 3-vector

GIC state table which has informations for the output virtual channels state.

83

Structure and explanation of these tables are shown equal in Table 2 for

GROPC and in Table 3 for GIC.

Field Name Description

G Global State (I) Idle
(R) Routing
(V) Wait output VC
(A) Active
(C) Wait for credits

R Route Stores the Output Port

O Output VC Stores the Output VC

P Pointers Size of packet in the input VC

C Credit count Empty packet buffer on output VC

Table 2 Input VC State Fields represented by a 5-vector GROPC

The input virtual channel GROPC state vector table consists of 5 fields. G field

keeps the global state of the input virtual channel. This field can be 5 different

states according to the routing logic, and these are the Idle, Routing, waiting for

an output VC, Active or waiting for credit states. After routing is complete R

field contains the output port information. O field has the virtual channel

number on the port R, after the VC allocation is complete. The P field pointers

into the input buffer and gets the size of the packet contained into the specific

virtual channel. Finally the last field C is the credit counter which contains the

number of available empty packet buffers for the selected output virtual channel

O in port R. The fields of the table are updated once per packet while the

routing process continues.

Field Name Description

G Global State (I) Idle
(A) Active
(C) wait for Credits

I Input VC Stores Input Port & Input VC

C Credit count Empty Buffer for packet in
output VC

Table 3 Output VC State Fields represented by a 3-vector GIC

The output virtual channel state vector GIC table consists of 3 fields. The global

state field has 3 different states for the output virtual channel buffer which are

the Idle, Active or waiting for Credits. The field I contain the number of the

input port and virtual channels that forward packets to this output virtual

channels. Finally the C field has the number of available free packet buffer for

the packet in the selected output virtual channel.

Stage 1

As shown in Image 4.5 in stage 1, the packets arrive to the switch from the

physical level and received by the receivers in the input ports. The packets

according to their virtual channel number which is stored in the VC header flit,

are directed and stored in the appropriate input virtual channels of the switch.

Now from stage 1 the input virtual channel informs the routing unit so that can

start the routing process and allocate an output port and an output virtual

channel for the packet. The global state (G) field of the GROPC table which

was Idle until now for the specific VC, turns to (G=R).

Stage 2

In stage 2 of the pipeline the information from the header of the packet is used

by the router to select an output port. The result of this computation updates the

route R field of the GROPC table with number of the selected output port and

advances the global state (G) of the packet in waiting for an output virtual

channel (G=V). Both actions happen at the start of Stage 3 in VC switch

pipeline.

Stage 3

During stage 3 the result of the routing computation information from the

packets header which was stored in the R field of the GROPC table, is used as

input on the Virtual Channel Allocator. If the insertion of the value is

successful, the VC allocator search and assign a single output virtual channel on

the output port specified on the R field of the table. The result of the virtual

85

channel allocation updates the (O) field of the GROPC table with the virtual

channel number and updates also the global state (G) field to the active A state

(G=A).

In stage 3 are also updated and the fields of the GIC table. The result of the

allocation updates the global state G field of the GIC table to an active A state

(G=A), thus until now was in the Idle state. After the channel turns active, the

(I) field is updated with the appropriate information, so that can identify the

input port and virtual channel of the packet. From now and until the release of

the input buffer by packet, the (C) field of the GIC table is also reflected in the

(C) field of the GROPC table.

For the purposes of Deadlock Avoidance, stage 3 where the virtual channel

allocation takes place, is the point at which a dependency is created from the

input virtual channel to the output virtual channel. “After a single output virtual

channel is allocated to the packet, the input virtual channel will not be freed

until the packet is able to move its entire content into the output virtual channel”

[1 ch16]

Stage 4

In the begging of the stage 4, all the “per packet processing” is complete and

remains the crossbar to establish a path between the input virtual channel on the

input port, and the output virtual channel on the output port. In this stage any

active virtual channel (G=A) that contains buffered packet inside of a certain

size, indicated by the field P on GROPC table, and has equal empty packet

buffer space on the output virtual channel (C>0 && C>=P), informs the

crossbar. The active virtual channel bids on crossbar for a connection between

its input virtual channel and the output port that contains its output virtual

channel. Depending on the configuration of the switch this allocation may

involve competition not only for the output port of the switch but also

competition for the specific output virtual channel.

Until the allocation process finish the packet staying stored inside the input

buffers of the switch, thus we don’t treat them as separated flits that progress

with the routing computation and the port and virtual channel allocation.

Stage 5

In that last stage the necessary information has reached the crossbar and the

allocation has performed. When the packet is successfully scheduled, releases

the virtual channel at the start of the stage and is setting the virtual channel state

(G) field of the GIC table to Idle (G=I). The same field (G) for the GROPC

table is also updated to Idle, if the input buffer is empty.

If the input buffer is not empty, information for the next packet that is waiting in

the buffer is issued. In that case the state transition to routing (G=R).

Analysis of Resource Dependencies for Deadlock Avoidance

The analysis for the resource dependencies is focusing on the arbitration unit of

the switch. Inside the arbitration unit are received the numbers of the input port

and input virtual channel that contain the packet and the requested output port

and output virtual channel. Our unit make use of a round robin arbiter which can

provide strong fairness to our switch.

The arbitration unit have to resolve the resource dependencies that occur when

multiple packets request the same resources. This process is done through the 5

stages of the pipeline architecture which is concentrated as control into the

arbitration unit. The arbitration unit passes information into the crossbar and

assures that the input virtual channel in which the packet is stored, will not let

free until the entire packet pass to the calculated output virtual channel and

output port.

87

Image 31 3 phase arbitration

The used arbitration is a 3 phase arbitration technique which consists by 3

phases, the Request, Grand and Acknowledgment phase. We need to make use

of 3 phase arbitration because the increased inputs and outputs of the switch

with the virtual channel implementation, increasing the probability of matching

requests. For an input output buffered switch which each input port has an

associated queue, the output port needs to have a local arbiter with a round robin

strategy. As it seen from the image 31 the arbitration technique starts by

submitting requests to the output port arbiters which receiving the messages and

through the round robin selecting one of the requests. The arbiters now in Grand

phase giving permission to the selected for Grand input port. Thus the requested

for Grand input ports may request for more than one output port, they may

receive more than one Grands. In the last phase, the input ports select one of the

responded output ports and send an Ack to confirm the selection of the output

port. The used 3 phase arbitration provides 75% efficiency thus the 3 of the 4

requests are granted to output ports, in comparison with a 2 phase arbitration

that provides only 50% efficiency.

To understand and solve deadlock, we have to see the possible routes that the

packet traffic inside network can have. As deadlock is created when packet

turns in other coordinate in order to reach its destination, we have to detect the

turn in the coordinate and increase the number of the virtual channel through

which the packet will be directed. As it shown on image 32 the cases 1, 2, 3 and

4 are packets that follow the coordinate X, directed by the DOR algorithm, and

make a turn to coordinate Y to reach their destinations. In this point is where

deadlock has possibilities to occur, thus multiple packets may require the same

output port.

Image 32 Cases of Packet Traffic

To detect the transitions from one coordinate to another, we need to know the

coordinate on the input port and the coordinate of the output port, which means

the position of the packet in comparison with its destination. With that way we

know from what coordinate the packet comes and to which is going

This calculation takes place inside the arbitration unit that has the local

coordinate informations and is informed also by the routing unit about the

coordinate of the input and output ports. The unit compares the entrance

coordinate value with the output coordination value and detects if there is a turn

on the coordinate. If the arbitration unit detect a change on the coordinates, pass

this information to the arbitration unit which will advance the packet to the next

class of virtual channel through the round robin policy. Now the packet follow

89

the next in class virtual channels, avoiding to enter in the first virtual channel

which can be used by a packet that travels in one coordinate. From the image 32

we create an offset table based on the offset values from the 3 switches that each

packet passes. With that strategy we avoid the possibility that will occur a

deadlock.

91

5 Design

The design of the switch and node model is through the Opnet network

simulator version 14.5.A. The basic model, in which our implementation is

based, has been created in version 14.0.A of the simulator. In this chapter, it

will be presented the several modules that create a virtual channel switch, how

these are connected between them and what is the function of each module

separately. The explanation of the design will follow the pipeline architecture of

a virtual channel switch, which has explained in the previous chapter of the

analysis. In our model, we make use of 4 virtual channels, providing with that

way 3 more alternative paths for the packets to pass through the switch.

5.1 General Switch Structure

In the virtual channel switch, the partition of the input buffers into virtual

channels cause the need of equal packet stream lines that will connect the input

buffers with the crossbar unit. The internal structure of the switch is presented in

the image 33.The switch architecture consists of several parts. First and basic is

the switch unit that initializes the functions of our switch like the ports. The

input unit, which is at the entrance of the switch, consists of the virtual channel

selection unit and the input virtual channel buffers. The central mechanism

consists of the routing, arbitration and crossbar units, that all together

accomplish the routing logic of our switch. In the exit of the switch, there are

the output buffers and the forward unit that sends our packets into network.

For the input unit of our switch, the virtual selection unit is connected to the

input virtual channels with four packet wires. This is because the virtual channel

selection unit recognise the vc header on the packet and according to the virtual

channel state sends the packet through the appropriate channel. The same design

in connections also follows the input virtual channel buffers which are

connected with the crossbar unit, through packet wires, equal with the virtual

channels.

In the exit ports of the switch the output virtual channel buffers are also

connected with the crossbar with equal packet lines as the output virtual

channels. They store and process the packet through equal number of channel to

the forward unit.

The switch module is the module with the highest priority in our switch because

it initializes all the input and output ports of the switch while making checks for

the switch neighbours and creates the topology through which are connected.

The switch module also is important because informs the routing unit with the

routing algorithm that runs for the simulation

Image 33 VC switch structure

93

In the central part of the switch the routing module is responsible to receive

information from the input virtual channel buffers about the packet that are

waiting to be routed. The routing unit have to calculate the appropriate output

port and inform the Virtual Channel Arbitration unit. The virtual channel

arbitration unit is receiving that informations and after the necessary

calculations that will resolve any resource dependencies which may occur, pass

the information to the crossbar. Now the crossbar using the information will

establish a link between the input and the output virtual channels, so that the

packet can pass.

5.1.1 Input Virtual Channel Buffers

The input virtual channel buffers are the unit that contains our virtual channels

into it. The module, for the representation of the virtual channels, provides the

advantage of having finite or infinite buffer size for our virtual channels. The

module is connected with the receiver of the switch so that can receive the

incoming packet from the physical layer and with the crossbar through packet

streams equal to the number of our subqueue, in our case four. The internal

states of the module are shown below in image 34.

Init

Unit starts with the init process where initialize the functions that will use. It

starts with registering the local statistic that is going to use for the

Image 34 Input virtual channel buffers

communication with the routing unit. Next the unit receive the input port and

the number of the subqueue in which is partitioned and allocates dynamically a

space on the memory to store the current outgoing packets. After the

initialization proceed to the next BRANCH state.

Branch

The module now pass through an empty condition to the Branch state where is

idle, waiting an interrupt to occur. Depending on the type of interrupt or the

value that the interrupt it carries, the module proceed to the corresponding state.

Ins_Tail

The first state that is enabled with a stream interrupt is the INS_TAIL. Here the

module receives the packet from the incoming stream and read its virtual

channel number from its header. Next the state receives the size of the packet

and the packet id and check if the subqueue which corresponds to the virtual

channel number is empty. If the subqueue is empty, the packet is inserted in the

tail of the subqueue and the module inform the routing unit, through a statistic

wire, that a packet has inserted in the specific port and the specific virtual

channel subqueue.

Send_Head

This state is the next that is enabled with an access interrupt by the crossbar.

Here the state makes a check in the subqueue, for the specific virtual channel

number, to see if it has a waiting packet in the head. If it is, the state making

access to the head of the subqueue to receive the packet while calculates the

latency of the buffer. The packet is removed from the head of the subqueue and

the size of it and its id are stored before the state send the packet to the crossbar

unit. The state here for simulation reasons and based on the internal bandwidth

of the switch, the switch delay and the packet size, it calculates the time that the

packet needs to entirely leave the subqueue. Based on this time causes a self

interrupt that passes the module to the next state.

PkSENT

The PkSENT state is enabled with the self interrupt of the Send_Head state after

the small time delay. Now a second check is made to the subqueue to see if new

packet has reached the Head of the subqueue while the last packet was leaving.

95

If in the head exist a packet the unit informs once more the routing unit through

a statistic for the input port and subqueue in which the packet is stored.

END_SIM

This state is inactive and is activated only if we need to, with an exit interrupt.

The state is used only to store simulation information into a text file.

5.1.2 Routing Unit

The routing unit is the responsible unit that will find an exit port to our packet

based on the current position of the switch, the destination information that the

packet carries and the routing algorithm that our switch uses. The unit is

connected with statistic wires with every input port of our switch to receive

information about the packets that waiting to be routed, with the arbitration unit

in which will pass the calculated output port number and finally with the switch

unit of our switch from which receives the forward tables that will use. The

internal structure of the routing unit is shown on the image 35.

Init

The routing unit begins its function by initializing the necessary variables in the

unforced state Init. Here the unit receives information about the connected to its

ports, the internal bandwidth of the switch. Here is also allocated and initialized

a structure that will be used with a round robin strategy to search between the

Image 35 Routing unit

connected ports to it to find in which port exists a packet that is waiting to be

routed. Before it proceed to the next state the module initialize the local

statistics which are going to inform the arbitration and AMR units with the

appropriate informations from each one. After the initialization, the module

expects an incoming interrupt by the switch info unit, to proceed to the next

state.

Store_FT

The Store_FT is enabled by an incoming interrupt from the switch info unit. The

state reads the incoming information like the supported virtual channels for each

port and receives a port configuration pointer with which will create the forward

table of the routing unit. Next make a check about the logical position of the

switch, based on its coordinates, and the routing algorithm that will be used by

the switch.

Idle

In this state the routing unit cleans the memory for the waiting to be routed

packets structure, that has initialized in the Init state, and waits for an incoming

by the input subqueues interrupt. If an interrupt occur, the state receives the

contained by the interrupt information, increases the number of the waiting to be

routed packets and proceeds to the Route state.

Route

The Route state receives the information by the incoming interrupt and with a

check on the destination field that the packet carries and the combination of the

routing algorithm; the unit finds the output port in which the packet should go.

After the routing process is complete, the state cleans the allocated memory that

has been used by the particular input port for the waiting to be routed packet and

decrease the number of the packets that are waiting to be routed. The state

checks the number of the output port given by the used routing algorithm and

updates specific information fields. Before the state exits, creates a self interrupt

based on the switch delay time and, after this time is passed, it proceeds to the

Routing state.

97

Routing

The routing state is an unforced state. Here the Routing state uses two self

transitions. The one is to clean the allocated memory structure and the other to

wait and receive an incoming interrupt by the input subqueues, for a packet that

is waiting to be routed. If an interrupt occur the state receives the incoming by

the interrupt information and proceeds to the Routed state to complete the

routing execution.

Routed

The Routed state checks if routing calculation was successful and if it is,

prepares the calculated information, including now and the calculated output

port and sends it to the arbitration unit of the switch, through a statistic wire.

The unit also sends a port map structure that relates the connected ports of the

switch with its coordinates, so that arbitration unit can detect a turn on the

coordinations.

Between the states Idle, Route, Routing and Routed is formed a cycle that

makes the routing module ready to receive and proceed to output port

calculation, for each packet that is waiting to be routed, until no packet is

waiting for the routing process.

5.1.3 Arbitration

The Arbitration unit is located between the routing unit and the crossbar unit.

Receives the calculated by the routing unit information through a statistic wire

and after the arbitration calculation passes the information also through a

statistic wire to the crossbar unit. The unit is responsible to resolve the Deadlock

phenomenon, providing the correct output virtual channel information to the

crossbar unit. This unit is shown in image 36

Init

Image 36 Arbitration unit

In Init state, the module initializes the local statistic that going to use, to pass its

calculated information to the crossbar unit. After the initialization, it proceeds to

the next state.

Idle

Here the module is waiting for an incoming interrupt by the routing unit. If an

interrupt occurs, the module pass to the next state where it will begin the

arbitration process.

ARBIT

In the Arbit state, the unit receives the incoming by the routing unit information.

The unit based on the input and output port numbers that have received,

calculates the streams through which the crossbar will receive the packets from

the input subqueues and through which stream will send them to the

corresponding output ports. In this state also the arbitration checks if between

the input and output ports exists a turn on the coordinations from X to Y or the

opposite. If the state detects a turn, changes the number of the virtual channel

providing with that way the deadlock avoidance policy that we need for our

Mesh models. The state prepare the information like the input and output

streams and the input and output virtual channels and send this information

through a statistic wire to the crossbar. The Deadlock Avoidance policy that

detects the turn on the coordinations is shown on the table 4.

// HERE DETECT A TURN ON THE COORDINATE
If((((output_port == y_negative) || (output_port == y_positive)) &&
 ((input_port == x_negative) || (input_port == x_positive))) ||
 ((output_port == x_negative) || (output_port == x_positive)) &&
 ((input_port == y_negative) || (input_port == y_positive))

)
 {
 if (input_vc==3) output_vc=0;
 else output_vc = input_vc++
 }

// NO TURN ON THE COORDINATE HAVE DETECTED
If(((output_port == y_negative) && (input_port == y_positive)) ||
 ((output_port == y_positive) && (input_port == y_negative)) ||
 ((output_port == x_negative) && (input_port == y_positive)) ||
 ((output_port == x_positive) && (input_port == x_negative)) ||

99

 {
 output_vc = input_vc;
 })

Table 4 Deadlock Avoidance Policy

In the Deadlock Avoidance policy that is shown on table 4, the unit receives the

coordinate values from the input port that the packet has entered inside switch

and compare that value with the coordinate value of the output port that the

packet needs. The unit now is able to detect the change on the coordinate and if

that happen, increase the class of the virtual channel field through a round robin

algorithm.

For the case of torus that we need the dateline policy. Here the module checks

the logical position of the switch and in case that the switch is in the dateline

limits of our network, the module provides the dateline policy that affect the

virtual channel fields. A sample of the code that is included in this module for

the dateline classes in the X an Y coordinates of a torus topology, follows below

on table 5.

op_ima_obj_attr_get (node, “X”, &x_label);

op_ima_obj_attr_get (node, “Y”, &y_label);

if ((x_label==0) || (y_label==0))

 { if (vc==3) {vc=0;}

 else vc++;

 }

Table 5 Dateline classes for Torus

In the code that is shown on table 5, the state receives the logical local

coordinates of the switch and checks if these coordinates mach with the dateline

coordinates of the topology, meaning the coordinate X=0 and Y=0. If the check

detects that the packet pass from those coordinates, make a check on the virtual

channel header flit of the packet and increase the virtual channel number

through a round robin calculation.

5.1.4 Crossbar

The crossbar unit is the last part of the routing logic. Crossbar unit is connected

with the arbitration unit with a statistic wire from which receive the information

calculated by the routing and arbitration units. The crossbar is also connected

with each subqueue of each input port through packet streams, counting totally

32 connections which is the result of the 8 input ports that our switch uses

multiplied by the 4 subqueues (virtual channels) that each port hosts. The same

number of packet streams exists also in the exit of the crossbar unit, to connect

the unit with the subqueue in the output ports. The internal structure of the

crossbar is shown in the image 37.

Init

In the Init state the module initialize the streams that will use for the receipt and

sending of the packet and the number of the virtual channel that each port hosts.

Idle

In the Idle state, the Crossbar unit expects an interrupt to occur caused by the

arbitration unit. When an interrupt occur the unit proceeds to the Crossing state

Crossing

In the Crossing state, the Crossbar unit receives the incoming by the arbitration

information, and based on that information acquires a packet from a specific

input port and input virtual channel. If the connection is established, the

Image 37 Crossbar unit

101

Crossbar unit that received the packet, reads the information carried by the

packet fields and if it is needed updates some fields. After this calculation, the

unit passes the packet to the corresponding output stream that will lead the

packet to the output port calculated by the routing algorithm and the output

virtual channel calculated by the arbitration unit.

5.1.5 Output Virtual Channel Buffers

The output virtual channel buffers are located in the last part of the switch after

the crossbar unit. The unit is connected with the crossbar with packet streams

equal to the number of the virtual channel subqueues that hosts, and has equal

packet stream connections with the forward unit after it. Also a statistic wire

from the output virtual channel buffers informs the next unit that a packet is

ready to be sent from the buffers to the physical layer. The internal structure of

the output virtual channel buffers is show at the image 38.

Init

In the Init state, the unit receives the number of the supported ports by the

switch, the number of the specific port in which it is and the number of the

subqueues hosted by the buffer. Before exit the Init state, the unit allocates a

space in the memory for the outgoing packets by the unit and initialize the local

statistic through which will inform the forward unit for an outgoing packet.

Image 38 Output virtual channel buffers

Ins_Tail

In the Ins_tail state, the unit receives the incoming packet by the input stream

and reads the virtual channel number that the packet carries in its VC field. The

unit obtains the packet size and checks if the subqueue with the same number as

the virtual channel field is empty. If the subqueue is empty, the unit insert the

packet to the tail of the subqueue and informs through a statistic wire the

forward unit that the specific subqueue has a packet. Then returns to the idle

state where waits for the next interrupt to occur and have access at the Head of

the subqueue.

Send_Head

In the Send_Head state, the unit receives the access request to access the

specific subqueue. The unit checks if the requested subqueue is empty and if it’s

not, it access the first packet that is on the Head of the subqueue, and gets the

size of that packet. Next the unit calculates the latency for the specific subqueue

and removes the packet from its Head. The unit sends the removed packet by

the subqueue and sends it to the forward unit without causing an interrupt,

because earlier had informed the forward unit through the statistic wire. The

unit based on the packet size and the bandwidth of its line, calculates the time

that the packet needs to entirely leave the subqueue and based on that time

creates a self interrupt that will lead the unit to the next state.

PkSENT

After the expiration time of the caused interrupt the unit enters the PkSENT

state. Here the unit makes a second check to the head of the subqueue to see if a

new packet has arrived in the Head of the subqueue while the last was leaving

the subqueue. If a new packet has reached the subqueue the unit informs once

more the forward unit through the statistic wire.

5.1.6 Forward unit
The forward unit is the last unit of the switch before the packets are sended to

the physical layer. The unit is connected with the output virtual buffers with four

packet wires through which will receive the packet and also with a statistic wire

from which is informed when a packet is entering or leaving a subqueue. The

unit is also connected with the transmitter of the switch through a packet stream

103

to pass the packets to the physical layer. The internal structure of the forward

unit is shown below in the image 39.

Init

In the Init state the unit makes the necessary initialization, by receiving the port

number in which the unit is located. Also in the init state is allocated a structure

on the memory so that can hold in each subqueue of the output virtual channel

buffers are packets that waiting to be forward. When the unit finish with the

initialization process, proceeds to the idle state where waits for the next

interrupt to occur.

Receiving

This state is enabled first by the statistic interrupt that connect the unit with the

output virtual channel buffers. The forward unit is informed that a packet exists

in the head of the subqueue and wants to be forward to the physical layer. Here

the unit informs the allocated structure table for the subqueue that has the packet

stored. The unit calculates the time that the packet needs to be forward and

makes a self interrupt based on this time delay, to proceed on the next state.

Send

After the small delay the unit enters the Send state. Here the unit make access to

the requested stream that caused the interrupt and after a small check to the

stream, to see if its empty, receive the packet from the specific subqueue and

forwards it to the physical layer.

Image 39 Forward unit

105

6 Experimentation and Simulation results

In the 6th chapter, we will view the experimentation design for the three

topologies and the strategy that we will follow to create and study the deadlock

phenomenon. Different configurations will be examined for the topologies of

Fat Tree, Torus and Mesh topologies. The collected results will be evaluated so

that we can see the efficiency of the inserted Deadlock avoidance mechanism, in

comparison with the increased latency that causes to the data traffic of the three

networks.

6.1 System Details

The simulation models and the simulation process have taken place in a

personal laptop that running an Ubuntu 8.04 operating system, with Opnet

modeller version 14.5.A installed.

In our Opnet switch models, we set the size of the input and output virtual

channels of the switch in the minimum size of packets that they can accept. In

detail, the size of each virtual channel is set to the minimum, so that can accept

only one packet of 1024 bits for each virtual channel. With that configuration

we increase the probability that more than one packet has the need for the same

buffer resources, and because it has the buffers at the minimum size, we force

the network to produce a deadlock on these resources.

Each simulation will run for packet load from 200 to 4000 Mbps / node with a

step of 200 Mbps / node for each topology. Through this we will observe how

each topology reacts for the same amount of load and in case of torus with

different deadlock configuration. The size of the Mesh and Torus topologies will

be 4x4, and for the Fat Tree we will use a tree with 16 end nodes.

6.2 Simulation models

6.2.1 Mesh

In the Mesh topology, it will be examined the configuration for deadlock

creation as it shows in the image 40. A cycle will be created on the packet

traffic, by assigning 4 distinct source nodes to send packets to equal destination

nodes in a cyclic manner. With that way provide to our network the ideal

conditions so that a deadlock can occur in the resources of the internal switches

of our network.

The source nodes S1, S2, S3 and S4 will send packets to the equal destinations

D1, D2, D3 and D4 of the network, respectively. A cycle on the packet traffic

will be created between the destination nodes and with the configuration of the

virtual channels to accept only one packet in their buffers will provide us the

deadlock.

We will examine the offered and the received data load on the network, so that

we can see if due to deadlock we lose packets inside the network. Also, we will

examine the latency of the packets as we increase the offered amount of packet

load to the network. We should see an increment on the value of the latency,

because the deadlock avoidance mechanism has to calculate now for more

Image 40 Mesh – Deadlock Configuration

107

requests for the inserted packets on the switch.

6.2.2 Torus

In torus topology, we will take advance of the wrap around links with the

combination of DOR algorithm to create deadlock in the end switches of the

network. In comparison with the Mesh topology were the effort of the traffic

load creates deadlock in the central switches of the topology.

Thus, the wrap around links provide extra paths to the traffic load, we use an

extra configuration on the switch mechanism for the dateline classes that the

virtual channel implementation need on the Torus topology. The below example

on image 41 will be examined so that we force deadlock to occur on the end

switches

Image 41 Torus Deadlock Configuration & Dateline Policy

The traffic is controlled so that we can send packets from the source nodes S1to

S8 to equal destination nodes D1 to D8, respectively. The configuration will be

tested with and without the dateline policy so that we can see the effect of it.

The dateline policy should change the number of virtual channel, through which

the packet will be directed, when the packet reach a switch on the coordinates

X=0 and Y=0. With that way we will break the circle that is created when the

packets will try to use the wrap around link.

If we see the example of image 41 separately for each one of the intermediate

switches that each packet has to travel from its source to each destination, we

will create the below tables. These tables map the path for each packet and

showing the change of virtual channel when the dateline policy is applied to the

switches. The selected dateline is the axis Y=0. When the packets pass from that

axis, they change virtual channel breaking with that way the circular

dependency.

Virtual
channel

at
Switch 1

Virtual
channel

at
Switch 2

Virtual
channel

at
Switch 3

Virtual
channel

at
Switch 4

Source 1 0 0 0 0 Destination 1

Source 2 0 0 0 0 Destination 2

Source 3 0 0 0 0 Destination 3

Source 4 0 0 0 0 Destination 4

Table 6 Torus without the use of VC

In table 6 we see that all the packet s that travel inside network use the virtual

channel 0, making with that way a dependency to create between the resources

that the packets want to access on the switches. This dependency cycle is

avoided with the use of the dateline policy.

Virtual
channel

at
Switch 1

Virtual
channel

at
Switch 2

Virtual
channel

at
Switch 3

Virtual
channel

at
Switch 4

Source 1 0 0 0 0 Destination 1

Source 2 0 0 0 1 Destination 2

Source 3 0 0 1 1 Destination 3

Source 4 1 1 1 1 Destination 4

Table 7 Torus with the use of VC

109

Now when the packets are passing from a switch in the axis Y=0, they change

the virtual channel class which are going to use through round robin. The result

of this is shown on table 7. The packets that have passed from the axis Y=0

have increased their class to one, breaking the dependency that can be created

and avoiding a deadlocked situation to occur. We can view now that our table

has created a small lower triangle of 1 and a bigger upper triangle of 0. That

change on virtual channels can provide us a deadlock free network.

6.2.2 Fat Tree

In the fat tree topology, we will examine a network of 16 end nodes. Thus the

topology does not have turns or wrap around links we should see that no

deadlock occurs and for that reason there is no packet loss due to deadlock on

that topology or increased latency due to extra calculation inside switches.

6.3 Result Evaluation

Mesh

In mesh topology we have created the deadlock configuration that has explained

in the previous section of the chapter. We forced the network with traffic load

and with the minimum size of packet buffers so that can make the deadlocked

configuration occur in the internal switches.

Image 42 Deadlock Avoidance with the use of DOR.

Formatted: Font: (Default) Times New
Roman, 12 pt

As we use the Dimension Order Routing (DOR), the traffic load is directed first

on the axis X and when it reaches the equal coordinate Y as the destination,

makes a turn to this axis. Based on the DOR algorithm, we have seen that we

cannot produce deadlock in mesh topology thus we put an order on the routing

of the packet traffic, eliminating the routing from axis Y to X as a first step. The

turns from Y to X and from X to Y make the traffic of the topology create a

circle and deadlock to occur. Therefore, this configuration has been tested

without the use of the virtual channels because they are not needed.

Torus

In the Torus topology, we forced the system with the deadlock configuration that

has explained on section 6.2.2. The packet buffers of the switch were limited to

the size for 1 packet, so that we can force the network to produce deadlock on

the end switches. The results collected by the simulation without the use of the

dateline policy are shown on the below table 7.

Load Global Offered
Load

(Mbps / node)

Global
Received Load
(Mbps / node)

Latency
(sec)

Global
Generated packets

(Mbps / node)

Global
Received packets

(Mbps / node)

Global
Load Difference
(Mbps / node)

200 1,00E+008 1,00E+008 1,58E-006 781256 781256 0

400 2,00E+008 2,00E+008 1,58E-006 1,56E+006 1,56E+006 0

600 3,00E+008 3,00E+008 1,58E-006 2,34E+006 2,34E+006 0

800 4,00E+008 4,00E+008 1,58E-006 3,13E+006 3,13E+006 10

1000 5,00E+008 5,00E+008 1,58E-006 3,91E+006 3,91E+006 10

1200 6,82E+008 3,41E+008 1,63E-006 24 12 12

1400 8,03E+008 4,01E+008 1,58E-006 16 8 8

1600 8,65E+008 2,16E+008 1,42E-006 16 4 12

1800 9,20E+008 2,30E+008 1,42E-006 16 4 12

2000 1,45E+009 2,42E+008 1,42E-006 24 4 20

2200 1,45E+009 2,42E+008 1,42E-006 24 4 20

2400 1,45E+009 2,42E+008 1,42E-006 24 4 20

2600 1,45E+009 2,42E+008 1,42E-006 24 4 20

2800 1,45E+009 2,42E+008 1,42E-006 24 4 20

3000 1,94E+009 2,42E+008 1,42E-006 32 4 28

3200 1,94E+009 2,42E+008 1,42E-006 32 4 28

3400 1,94E+009 2,42E+008 1,42E-006 32 4 28

3600 1,94E+009 2,42E+008 1,42E-006 32 4 28

3800 1,94E+009 2,42E+008 1,42E-006 32 4 28

4000 2,42E+009 2,42E+008 1,42E-006 40 4 36

Tablet 7 Deadlock configurations on torus without virtual channels

111

We can see that when the amount of traffic load passes the limit of 1000 the

system is fulfilled of packets and the generated packets that inserted inside

network are reduced to the minimum. Now we see that deadlock has occurred

and the network is paralysed without being able to progress the generated packet

traffic through it. The collected results by the Torus simulation for the values of

global latency, for various loads of packet traffic, are shown on the chart 1. We

see that the latency decreases significantly over the limit of 2000 Mbps / node

and stays in stable value, for all the loads over that value. That is caused because

the amount of traffic load produced by the nodes, has decreased significantly

and the received by the node packets have a stable reception rate.

Chart 1 Torus Load / Latency chart

Chart 2 Torus (Generated /Received Packets)/ Load

1,30E-006

1,35E-006

1,40E-006

1,45E-006

1,50E-006

1,55E-006

1,60E-006

1,65E-006

400 800 1200 1600 2000 2400 2800 3200 3600 4000

La
te

n
cy

Traffic Load

Torus Load / Latency

0

2000000

4000000

6000000

8000000

10000000

200 600 1000 1400 1800 2200 2600 3000 3400 3800

P
a

ck
e

ts

Traffic Loads

Generated / Received Packets

Received packets Generated packets

The detection of deadlock can be seen by the loss of packets in the network

traffic. When the network paralyse the amount of received by the node packets

is decreasing, thus many blocked packets are waiting in the buffers of the

switches. This difference between the generated and received amount of packets

is shown on the chart 2.

Chart 3 Packet loss on various traffic loads

As we increase the amount of traffic load we see that the packet loss increases

with a non normal rate. With more traffic load inside the network the packet loss

increases thus more packet are staying blocked inside the buffers of the

switches.

The dateline policy applied on our simulation models, have caused an

unexpected behavior on the switches. When the policy has applied and forced

the packets to change their virtual channel class, the switch was trying to reach

packets from the input buffers finding them empty. The incoming packets had

informed the central routing mechanism of the switch to find them an output

virtual channel and output port through the routing and arbitration unit. Even if

the crossbar received the information correctly and tried to access the packets in

the correct input and output port, found those buffers where recognized as

0

5

10

15

20

25

30

35

40

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

Lo
st

 P
a

ck
e

ts

Load

Load Difference

Load Difference

113

empty. This problem didn’t give us the opportunity to study in the torus

topology the dateline policy, through the collected simulation results. However,

from the analysis showed at section 6.2.2 we can see how deadlock should be

avoided and network could work normally at loads higher than 1000 Mbps /

node.

115

7 Conclusions

In this work, we have examined the problem of communication deadlock for

interconnection networks. This kind of networks is used in High Performance

Systems and they are a key component of them. Deadlock is one of the problems that

can appear and provokes network paralysation. Deadlock can appear when there is a

circular dependency of some of the resources of the network. In this case, network

buffer are the resources that can produce deadlock depending on the routes the

packets use as determined by the routing algorithm. In order to avoid deadlock, we

use the technique of virtual channels. Using this technique, each physical channel is

split into several virtual channels so several packet flows can use the physical channel

in a multiplexed way over the time. In order to create several virtual channels from a

physical channel, we need to split the buffer associated to this physical channel and

assign each part to a virtual channel.

For conclusions over the phenomenon of deadlock with the use of virtual channels, in

high speed interconnection networks, we can conclude on the below.

Deadlock can be avoided in Mesh topology with the use of DOR algorithm. The

algorithm restricts the packet traffic in specific order on accessing firstly the axis X

and then the axis Y, providing with that way a deadlock free configuration on the

network. DOR is putting an order to the traffic and eliminates the possibility of

dependency cycles between packets and buffers.

The deadlock phenomenon in torus can be avoided with the use of a dateline policy on

its axis. The policy has to be applied on both axis because the torus topology make

use of the wrap around links that form a ring to each one of its axis. The dateline

policy breaks the dependency on the buffers that the packets require, by increasing the

class on the virtual channels through the round robin policy.

Deadlock cannot occur in a topology like fat tree thus the topology is not a

geographically order topology with possibilities on turn between the axis X and Y

thus those axis does not exist. The fat tree manipulates the packet traffic by sending

the packet from the leaf nodes to the root and once more back to the leaf nodes. The

packets follow and order to their traversals over the network without having the

possibility due to network topology to turn and create with that way a cyclic

dependency.

117

8 Bibliography

[1] W. J. Dally and B. Towles, "Principles and practices of interconnection networks".

Amsterdam; San Francisco: Morgan Kaufmann Publishers, 2004, iD: 52902442.

[2] Timothy Mark Pinkston and Jose Duato. “Appendix E of Computer Architecture:

A Quantitative Approach”, 4th Ed., Elsevier Publishers, 2006.

[Online] Available : http://ceng.usc.edu/smart/slides/appendixE.html (July 2009)

[3] J. Duato, S. Yalamanchili, and L. M. Ni, "Interconnection networks. An

Engineering Approach". San Francisco, CA: Morgan Kaufmann, 2003, iD:

52616057.

[4] Chien-Chun Su and Kang G. Shin, "Adaptive Deadlock-Free Routing in

Multicomputers Using Only One Extra Virtual Channel", In International Conference

on Parallel Processing, volume I, Page(s):227 - 231

[5] Smit, Gerard J.M. and Havinga, Paul J.M. and Tibboel, Walter H. (1995) Virtual

lines, a deadlock-free and real-time routing mechanism for ATM networks.

Information Science : Informatics and Computer Science: An International Journal, 85

(1-3). pp. 29-42. ISSN 0020-0255

[6] Dobkin, R. Ginosar, R. Cidon, I. (2007). "QNoC Asynchronous Router with

Dynamic Virtual Channel Allocation". First International Symposium on Networks-

on-Chip, NOCS 2007. Page(s):218 - 218.

[7] Alzeidi N., Khonsari A., Ould-Khaoua M., Mackenzie L., "A new approach to

Field Code Changed

model virtual channels in interconnection networks"(2007) Journal of Computer and

System Sciences, Volume 73 , Issue 8, pp. 1121-1130.

[8] V. S. Adve, M. K. Vernon, "Performance Analysis of Mesh Interconnection

Networks with Deterministic Routing", IEEE Transactions on Parallel and Distributed

Systems, Volume 5 , Issue 3 (March 1994, Pages: 225 - 246

[9] Gerard J. M. Smit, Paul J. M. Havinga, Walter H. Tibboel: "Virtual Lines, a

Deadlock-Free and Real-Time Routing Mechanism for ATM Networks". Information

Sciences—Informatics and Computer Science: An International Journal 85(1-3):

pages 29-42 (1995)

[10] Mullins, R., West, A., and Moore, S. 2004. "Low-Latency Virtual-Channel

Routers for On-Chip Networks". In Proceedings of the 31st Annual international

Symposium on Computer Architecture (München, Germany, June 19 - 23, 2004)

Page(s): 188 - 197

