-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Diposit Digital de Documents de la UAB

UnB

Universitat Autbonoma
de Barcelona

Departament d'Arquitectura de
Computadors i Sistemes Operatius

Master en Computacio d'Altes Prestacions

Deadlock
Avoidance with
Virtual channels

Memoria del trabajo de investigacion
del “Master en Computacion de Altas
Prestaciones”, realizada por Fragkakis
Emmanouil, bajo la direccion de Daniel
Franco Puntes Presentada en la
Escuela Técnica Superior de Ingenieria
(Departamento de Arquitectura de
Computadores y Sistemas Operativos)

Barcelona Julio de 2009

https://core.ac.uk/display/13287111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

41746 - Iniciacié a la recerca i treball fi de master
Master en Computacion de Altas Prestaciones

Curso 2008-09

Titulo

Deadlock Avoidance with Virtual Channels

Autor
Fragkakis Emmanouil
Director

Daniel Franco Puntes

Departamento Arquitectura de Computadores y Sistemas Operativos
Escuela Técnica Superior de Ingenieria (ETSE)

Universidad Auténoma de Barcelona

Firmado

Autor Director

Abstract

High Performance Computing is a rapidly evolvingaaof computer science
which attends to solve complicated computationabfgms with the combination of
computational nodes connected through high spembnies.

This work concentrates on the networks problemsapgear in such networks
and specially focuses on the Deadlock problemadhatdecrease the efficiency of the
communication or even destroy the balance andyzagdhe network.

Goal of this work is the Deadlock avoidance with tise of virtual channels, in
the switches of the network where the problem afspddne deadlock avoidance
assures that will not be loss of data inside netwlaving as result the increased
latency of the served packets, due to the extrautzlon that the switches have to
make to apply the policy.

Keywords: HPC, High Speed Networking, Deadlock Avoidancitual Channels

Resumen

La computacion de alto rendimiento es una zonadgéa evolucion de la
informéatica que busca resolver complicados probsedeacélculo con la combinacion
de los nodos de cémputo conectados a través de dedata velocidad.

Este trabajo se centra en los problemas de las mpaeaparecen en este tipo de
sistemas y especialmente se centra en el probleshd'déadlock que puede
disminuir la eficacia de la comunicacion con lagtiaacion de la red.

El objetivo de este trabajo es la evitacion de lbe#dcon el uso de canales
virtuales, en los conmutadores de la red dondeeapaal problema. Evitar el deadlock
asegura que no se producird la pérdida de datesderteniendo como resultado el
aumento de la latencia de los paquetes, debideaeshead extra de célculo que los
conmutadores tienen que hacer para aplicar léqgaoli

Palabras clave: Computacion de altas prestaciones, Redes de dlib@idad,
Evitacion de “deadlock”, canales virtuales

Resum

La computacid d'alt rendiment és una area de rapidaucio de la informatica
que pretén resoldre complicats problemes de calmld la combinacié de nodes de
cOmput connectats a través de xarxes d'alta vatocit

Aquest treball se centra en els problemes de leegaue apareixen en aquest
tipus de sistemes i especialment se centra enoblgma del "deadlock” que pot
disminuir l'eficacia de la comunicacié amb la pigzatioé de la xarxa.

L'objectiu d'aquest treball és l'evitacié de deekllamb I'Us de canals virtuals,
en els commutadors de la xarxa on apareix el pmulé&vitar deadlock assegura que
no es produira la pérdua de dades en xarxa, tenmt a resultat I'augment de la
latencia dels paquets, degut al overhead extraltelaue els commutadors han de
fer per aplicar la politica.

Paraules clau:Computacio d'altes prestacions, Xarxes d'altacitalp evitacio
de "deadlock”, canals virtuals

To my family,
For all their efforts, and support
To Dani, Diego and Gonzalo,
For their precious help on this project
To CAOS department,

For the all the knowledge and experiences

Table of Contents

MASTER EN COMPUTACIO D'ALTES PRESTACIONS ...cuvveereestresseessesssessssssssssssssssssssssssenes 1
1 INTRODUCGTIONceeeiieiiiiiiiecirnsnnnnneetensesssessssssssssssssesssssssssssssnsssssssasssssssssssnssnnssssesssssssssssssnnnssnes 13
1.1 PARALLEL COMPUTERS. 1.1 uvteeetteeeutteetseesuseesassesssseesssssasnsessssesassssssssessssessssssessesssesessenesssessssssennns
1.2 NETWORK TOPOLOGIES.. .
1.3 NETWORK PROBLEMS ...eeuvteeiteeiitesieeesuteesnteeesutessuseeesuseessseesnseeesaeeessseesnssesssseesnseessseeesnsseesssseenns
14 VIRTUAL CHANNELSeeeutteetteesteeesteeesteeeueeassaassseesasseesssesaassesssssessssssssssssssessssessnsesssssesssssnnnses

1.5 NETWORK SIMULATOR = OPNET ...eiiuiiiiiiieiiiieesiee et ee sttt et e st eessteessite s sabeesta e snseeesaneesneeennseesans 26

2 STATE OF THE ART ...uuuiiiuiiieiiiiiiiiiininnnnenesiesiissssssssssssssssesssssssssssssssnssssssssssssssssssssssnsssssssssssssssssss 31
2.1 IN WHICH LEVEL IS SITUATED OUR PROBLEM .

2.2 WHAT ARE THE EXISTING PROPOSALS FOR THE PROBLEMvvtteeuiviiesssiireeessireeeessasssessssssssseesssnnssesens 33

2.3 RELATED WORKS «.vttttteeuuttteeesauureeeeausseeesssussaeessassssssesesassseessssssseessnsssssesssssseesssssssseesssssssseeessssssesesnnnns 37

3 THEORETICAL BACKS eneeeeereiriecensesnnneneeesessesssssssssnnssessssssssssssssssnssssnsessssssssssssssnnnnssssssssass 39

3.1 THEORY vttt e ettt e ee ittt ee e s sttt e e s s etttaeeesaab e abe e e e s saetaeeesabbaeesea s aeeeeassbeeeeaaasbbeeaeessusaaeeeanansteesssnnsaees 39

3.1.1 Deadlock Avoidance. .39

2 B [1 1o | @ o 1 T2 =T SRS 43

2 B T 0/ |V SRR 47

A ANALYSIS ...eiccccceeneereteeeseesessessnnseseeeeessesasssssnssesssessssasassssssssnnntessssesssssssssnnnnesesssesssssssssnnnnsesnsnsssss 61

4.1 PREVIOUS IMODEL w.tteeiuittteessstteeseeitteeessiuuseeeesssteeseesssasseesessassaeessasssseesssssseesssnssssessnssssseessssnsenes 61

B.1.D SWITCH ettt ettt et e sttt e s at e e st e s ate s s eatesasaenasassaseaenneens 62

B.1.2 NODE........oooeeeeeee ettt ettt sat et et et e et e e et e e s e et e e e s e e taaeanee s 71

4.2 DESCRIPTION OF THE PROPOSITION ..vtuvvveeuteeeaseeesseesuseessseessseesssseassssesesssssssssessssssnssessssessssssssssessnns 72

4.2, NEEWOIK EIEMENTS......eoceeeeeeeeeeee et e et e ee e et e e e e e e e taestaestaae e e assassasessaasnseaen 78

B DESIGN ... iciicecreneeeeteeeeeeseeccssesnnneeeeeeeeseesassessssnenseeesesasssssssssnnnseeseesessssasssssnsnenneenessssssssssssnnnneennsnsssss 91

5.1 GENERAL SWITCH STRUCTURE «.uuvtteeeiuuttteesssitreessesssseeeesssssesssssssssesassssssessssasesesssisssesssssssssessssssessesnsnns 91

5.2.1 Input Virtual CRGNNE| BUSFEIS.......ccveeeeeeeiesieeiiesieeiesteesitetaeieste st esieesse e stassessaassesssesssases 93

5.1.2 ROULING Uit ...ueeeiiaiiiiiieeeiee ettt ettt ettt e st e e et s s s ssnea e s ssneeees 95

I B Yy oY 1 14 Lo OSSR 97

5.1.4 Crossbarcccoueeveveeecuaacraannn, ..100

5.1.5 Output Virtual CROANNE| BUSFEIS.......ccuveeueesiieiieiieieeetesiesttesieitesestaesse s tassaesasessesssaesaanes 101

I N oY 4T e [e Y] S SRS 102

6 EXPERIMENTATION AND SIMULATION RESULTScccieeiiiicrnnnneeeeeeseesssessnsnnsneensesssssssssnsnnnnsssnsanss 105

6.1 SYSTEM DETAILS «..vtteeeeititeeeeeittte e ettt eesstte e e s s satabateeessateeeessattaeeesssbbaeesasabaeeeaessbaaeaeessnntbaeeesnsssneeann 105

6.2 SIMULATION MODELS... ...106

[I =X £ ISR 106

B.2.2 TOITUS ..ttt ettt e et e e s ettt e sttt e st e e e e sttt e s et e e e e ettt s e e arae s 107

B.2.2 FOL TIOE ..ottt ettt e e e e e e ettt e e e ettt e e et e e aaaenatbabesesassaaaesassneaaeasssaees 109

6.3 RESULT EVALUATION e uttteteeeittteeesittteesssiteeesssteseeeesssausteeesssstsseesssssssessssasseeessnsssseesssssnssseessnsssenens 109

7 CONCLUSIONScuieeeeeeenteiesiesessnsnnenneesssassssssssssnnnnsassssssssssssssnsnssassssssssssssssssssnnnsasssssssssssnns 115

8 BIBLIOGRAPHY.....cuuuuiiiiiiiiiiiiiiinnnnnentsiississssssssssssssssssssssssssssssssnssnsnses 117

Index of Images and Tables

IMAGE 1 MESH TORUS AND FAT TREE TOPOLOGIES....

IMAGE2 CAUSES OF UNDELIVERED PACKETS.. .34

IMAGE3 DEADLOCKED CONFIGURATION.vv.vvvvveansessssssssesssssssssesssssssssssssssnsensses 3% |- { Formatted: Font: 10 pt, English
IMAGE4 STAGES OF TRAVERSING PACKET.........convvveensseesessssssesssssessssssssssssssssssesssssssssssssssssssossssssansons a1 V. ((US.) Small caps

IMAGE 6 WAIT FOR ANDHOLD GRAPH.........oocovveareesessessssssssessssssssssssssessssssssssassssessssssssssssssssessssssssssones 42 \‘\\Lf; { Deleted: 39

IMAGES DEPENDENCE GRAPH.c.e.vveeeeeeeseeseeeeessseeeseseessssesseesesseesessesssssaseseesesesssseseeseeseessseseseseasseses 42 \\\‘[Field Code Changed

IMAGE7 DEPENDENCE GRAPH WITR VC. 43 N { Formatted: Font: 10 pt, English
IMAGE8 SMPLE BUFFER& BUFFER WITHVC ' [(U.S.), Small caps

IMAGE9 COMMUNICATION LINES WITH/C [Formatted: English (U.S.)

AMAGEL3PROCESSOR MODULEocvvevsesssssiiseise s

IMAGE 14 QUEUE MODULE
IMAGE 15 SUBQUEUE REPRESENTATIQN.
IMAGE 16 RECEIVER— TRANSMITTER
IMAGE 17 PACKET STREAM........cvvueviiuieessstsessessesesssssesasssssssesaesesssssssssessssassesssssssssassssssssssassesssssssssesassans
IMAGE 18 STATISTIC STREAM.......vuevteueersieseesessesessessesessssesesassesssssssssessssassesasssssesasssssssssssssssssssssesassans
IMAGE 19 UNFORCED ANDFORCED STATES OF THE PROCESSES......ovvtrveeeeessresseesnsessssessessssssssesssens 57
IMAGE20 TRANSITIONS BETWEEN STATES...
IMAGE214X4MESHTOPOLOGY...
IMAGE 22 MICHROARCHITECTURIPIPELINE OF ANINPUT-OUTPUT SWITCH
TABLE1 INTERNAL MODULES OF PREDEFINED SWITCH MODEL.......ocvurvvereeceeeesssreeeeesssssssssssssssssssesseenes
IMAGE 23 ORIGINAL SWITCHSTRUCTURE.......ecvoveevectseesessessessesssesessssesssssssssessessssasssssssssssssssssssssssssnans
IMAGE 24 ORIGINALNODE STRUCTUREvucvitvertesasnssaesessessssesssssesessssssssessessssassssasssssessessssessesssnans
IMAGE25 TOPOLOGIES OFMESH TORUS ANDFAT TREEcucvuevueuieeveeieeeseessassessesaessssessssesaesssessssesassans
IMAGE26 DEADLOCK AVOIDANCE IN 4x4 MESH.
IMAGE27 DORONTORUS TOPOLOGY.........c..ove...
IMAGE28 DATELINE CLASSES ITORUS........cvueveveerereeseessssaesissessssessessssessssssssssssssssassssasssssessessssessesssnans
IMAGE29 PACKETSTRUCTUREvueveevieeseetessssessessssssssassissssesssssssessssssssssssssssssassssssssssassessssosssssssans
IMAGE 30 PIPELINED SMITCH MICHROARCHITECTURE WITRBVC ..ot esesaenn s 81
TABLE2 INPUTVC STATEFIELDS REPRESENTED BYSAVECTORGROPC.........oovieieereerercereisee e 83
TABLE3 OUTPUTVC STATEFIELDS REPRESENTED BYSXWECTORGIC.....oovvvverceeeveeevee e 83
IMAGE313 PHASE ARBITRATION....
IMAGE 32 CASES OFPACKETTRAFFIC....

IMAGE33VC SWITCH STRUCTURE ...c..cttttettrteeieettetetteieste st e st esteste b seensessesaesbessesaessessenbessseseenseeseens
IMAGE 34 INPUT VIRTUAL CHANNEL BUFFERS.......ceitttttetentintestestesieseesseeesstesesaessesseenteseessessensansessessense 93
IMAGE 35 ROUTING UNIT...cuiiuiiiieieiietetentestestesie it sutsteestestessesbesateseesteseesse st ansassensassensessensesssensessensessessanes 95
IMAGE36 ARBITRATION UNIT.....cccvervenmenenne

TABLE4 DEADLOCKAVOIDANCEPOLICY..
TABLES DATELINE CLASSES FORORUS

IMAGE 37 CROSSBAR UNIT......ceuiiiiuietertentestesteeiesueeeastentesesstsseesseseensaseessestansessessessessessessesnsessessessesseeses 100
IMAGE38 OUTPUT VIRTUAL CHANNEL BUFFERS....c.ceottitetertirtentintesiteteeseestesse st et et estestessesbessessesessesnes 101
IMAGE 39 FORWARD UNIT....cuiiuteteiietetententesteesesue et et et steestsseesseseetess e b stesestenaesbesbessebeesbensessenbesaeenes 103
IMAGE4OQMESH— DEADLOCKCONFIGURATION.eitiuttstetestirteetirteestereeseestenseseessseseessensensessensessessessesses 106
IMAGE41 TORUSDEADLOCKCONFIGURATION& DATELINEPOLICY... .107
TABLEG TORUS WITHOUT THE USE OFC.......ouiiiiiiiiniieieniteesie ettt ettt ettt st sne s 108
TABLE7 TORUS WITH THE USE OFC ...ttt h sttt ettt se et sbetansenne 108
IMAGE42 DEADLOCKAVOIDANCE WITH THE USE OBOR.......cuiiiiiiieiieiertee e s 109

11

o A

Deleted: 53

(U.S.), Small caps

Formatted: Font: 10 pt, English

\\\\; B { Formatted: Font: 10 pt, English
\\
\ | (U.S.), Small caps

{Formatted: English (U.S.)

[Field Code Changed

o

1Introduction

In the ' chapter we will see the world of High Performa@mnputing and the
various elements that HPC consists of. We willrrédethe significance of the
HPC and the complex problems that attends to sbharigh parallel
programming. Important elements of HPC will be redd as some of the
different kinds of parallel computers that are ufsedhat reason and some of
the interconnection networks that support the cexipt of those machines. As
problems can occur on the interconnection netwasksvill refer on the most
basic of them and what are the possible solutieimally we will refer on some
of the most known network simulators and how thiotigem we can study and

propose a solution for a problem on an interconoectetwork.

HPC is a term that describes the High Performance QCdingp an area that is
mostly related with the scientific research. HP@agally refers to the
engineering applications that run on a parallel poter or on a cluster based
computer system. These systems work closely sarthmaény respects they
form a single computer. Computers of that formaagable of processing /
calculating with speed big amounts of data. Inléibest years the need for more
computation power has increased and in other @haasscience, like data

warehouses, online applications or transactionge®ees.

For the efficient control and processing of all #mount of data produced, has
been evolved also the areapafrallel computing. Parallel computing is the
form of computation, in which many calculations eagried out simultaneously,
operating with the principle that large problems oéten divided in smaller
ones. This calculation can be done concurrentlgaiallel, through the
combination of a parallel computer, a high speéeraonnection network and a

big storage base.

Due to the technological evolution and the way thatlives evolve, new grand
challenges have arise@rand challenge problemis one problem that cannot
be solved in a reasonable amount of time with tsdagmputers. Some of them

are listed below.

13

e Applied Fluid Dynamics

e Meso to macro-scale environmental modelling
e Ecosystem simulations

e Biomedical imaging and biomechanics

e Molecular design and process optimization

e Cognition

e Fundamental computation

¢ Nuclear power and weapons simulations

e Strong Artificial Intelligence

e Robust, Predictive macroeconomic simulations

Fundamental scientific problems currently beinglesgal generate increasingly
complex data, require more realistic simulationthefprocesses under study,
and demand greater and more intricate visualizatidrihe results. These
problems often require numerous large-scale calonksand collaborations
between people with multiple disciplines and lomasi. Also the time of the
calculations is a very important factor, thus imsgproblems like weather
prediction, the result of the calculation has tadsolved before a predefined

time. These calculations are done by machinesccpleallel computers.

1.1 Parallel Computers

Parallel computerscan be classified according to the level at whieh
hardware supports parallelism with multi-core andtixprocessor computers
having multiple processing elements within a singkechine, while clusters,
MPPs, and Grids use multiple computers to workhensame task. In all the
times a very good interconnection network is neegi#u architecture that will
support respectively the computer. Specializedlighi@mputer architectures
are sometimes used alongside traditional procedsuoraccelerating specific

tasks.

Type of parallel computers

e multicore computing

e symmetric multiprocessing
e distributed computing

e cluster computing

e massive parallel computing

e grid computing

Multicore computing

A multicore computer is a machine which includedtiple execution units,
cores. Multicore computer can execute multipleriregtons per cycle from
multiple instruction streams. Each core in a maléccomputer can potentially
be a superscalar core, meaning that on every egtle core can execute

multiple instructions by a single stream.

Symmetric multiprocessing

A symmetric multiprocessing system is a computstesy with multiple
identical processors that share the same memorthagdare connected through

a bus. The caused bus contention in these systeessndt provide scalability.

Distributed computing

A distributed computing system is a distributed rogyrsystem with multiple
computing and storage elements which are conndletedgh an

interconnection network. Cluster computers execateurrent processes under
a loose or strict policy. Distributed systems halg® the advantage of high

scalability.

15

Cluster computing

A cluster system is a machine that consists byiptelcomputers connected
through an interconnection network. The elements dfister computer work
so closely so that in many respects we can saytibgtwork as a single
computer. Most known type of a cluster computer Beowulf computer which
consists by several high-end commercial computamsected through a high

performance TCP/IP local area network (LAN).

Massive parallel computing

A massive parallel computer is a term that dessrihe computer architecture
of a system with many independent computationdktthat run in parallel. The
term massive means the use of hundreds or thowsenplutational units. The

computing units are connected through a netwodatarg with that way a very

large scale system.

Grid computing

A Grid system is the most known type of a distrdslsystem. Grid architecture
makes use of several computational units, usualymiters, connected through
internet that work together to solve a scientifitechnical problem. Because of
the low bandwidth and the high latency of thosenemtions the Grid systems

are usually occupied with small amount of calcolagi

Specialized Parallel Computers
e Reconfigurable computing with field programmabléegarrays
e General purpose computing on graphics processiitg ((BPGPU)
e Applications specific integrated circuits

e \ector processors

Reconfigurable computing with field programmable gate arrays

Reconfigurable computing is the use of a field ppogmable gate array
(FPGA) as a co-processor to a general purpose dempAn FPGA is a

computer chip that can rewire itself for a giveskta

General purpose computing on graphics processing units (GPGPU)

General purpose computing on graphics processiig (BPGPU) is a fairly
recent trend in computer engineering research. GiP&Jso-processors that
have been heavily optimized for computer graphicgg@ssing. Computer

graphics processing is a field dominated by datallghoperations such as

linear algebra matrix operations.

Applications specific integrated circuits

Application specific integrated circuit (ASIC) halieen used for dealing with
parallel applications. An ASIC is an integratectgit (IC) customized for a

particular use, rather than intended for genergdqse use.

Vector processors

A vector processor is a computer system dedicateddcute the same
instruction over large sets of data. Vector preceshave the ability of high
level operations, over linear arrays of numbensurshber or vectors. Cray

system was the first known for its vector procegsin

1.2 Network Topologies

Theinterconnection network plays a central role in determining the overall
performance of all above parallel computers systdings the computation
nodes do all the data process and calculations€eltaculations are based on
the interconnection network for the communicatiomoag them or with some
data storage base. Any given node in the netwdllhave one or more links to
one or more other nodes in the network and the mgpyd these links and
nodes onto a graph results in a geometrical stregteletermines the physical

topology of the network. The interconnection netvoinaracterized by the

17

topology, therouting algorithm, theswitching strategy and thifow control
mechanism. Routing is responsible for the pathctiele that the network traffic
has to follow inside a network. Switching is thewmark communication
strategy that defines how are established the ations inside a network and
the flow control mechanism is responsible to marthgeate of data
transmission. All these characteristics are contbfoe the proper functionality
and the high speed of the network. If the netwahot provide adequate
performance, for a particular application, nodes frequently be forced to wait
for data to arrive. Important for the proper funaotlity and quality of the
network service, is the topology that describeSdme of the most known

network topologies are listed below.

e Fully connected all-to-all
e Mesh

e Rings

e Hypercube

e Torus

e Fat-tree

e Bultterflies

e Benes network

Fully connected all-to-all

In a fully connected network each node on the gsysseconnected with all the

others nodes through point to point links. This egkossible the simultaneous

transmition of data from one node to all the others

Mesh

In a Mesh network all the nodes in each dimensiomfa linear array. Mesh
and torus topologies consist of N=hodes in a N dimensional cube with k
nodes along each dimension. The mesh topologypocates a unique network
design in which each computer on the network cotsnecevery other, creating
a point-to-point connection between every devicéhennetwork. The purpose

of the mesh design is to provide a high level duredancy. Mesh networks

have two groups, Full-Mesh and Partial-Mesh.

The Full-Mesh Topology connects every single nadgether. This will create
the most redundant and reliable network aroundeaafby for large networks.

If any link fails, we (should) always have anothiek to send data through. The
Partial-Mesh Topology is much like the full-meshjyowe don’t connect each
device to every other device on the network. Irst@a only implement a few

alternate routes.

Rings

Ring is the type of network topology in which eaxhhe nodes of the network
is connected to two other nodes in the networkadsa the first and last nodes
being connected to each other, forming a ring. Dedie ring are transmitted
from one node to the next node in a circular maanerthe data generally

flows in a single direction only.

Hypercube
A special kind of mesh, limiting the number of hdggtween two nodes, is

Hypercube.

Hypercube is a configuration of nodes in whichltwations of the nodes
correspond to the vertices of a mathematical hymr@nd the links between
them correspond to its edges. A Hypercube netwask?hnodes, and each of
these nodes is arranged on cube shape, having ofdetks for interconnecting

other nodes, so as to form an n-dimensional hyplee type network.

Torus

Torus network consists of N2kodes arranged in a N dimensional cube with k
nodes along each dimension. In torus topology ttes in each dimension

form a ring topology. A torus is a mesh topologyhwirap around links and

with the double number of bisection channels, liersame radix and

dimension.

Fat-tree
Fat tree topology is the type of network in whicbeatral root node in the
higher level of hierarchy is connected to one orevather nodes that are in the

lower level of the hierarchy. These nodes in thein are connected with one or

19

more nodes that are in one lower level on the hibga That structure gives us
the hierarchy tree. The nodes on the lower levéhetftree, are the leafs of the

tree.

Butterflies

A butterfly network is a quintessential indirectwerk with two characteristics.
Firstly a butterfly has no path diversity which medhat there is only one route
for each source node to its destination node. Stganbutterfly network needs
long wires at least equal with the half of the maeldiameter, thing that
decreases the speed of the wire quadraticallysdsrigth increase. This makes

butterfly unattractive for large interconnectiortwerks.

Benes network
A Benes network is a rearrangeably nonblocking ngtwwidely used in
telecommunication networks. Consists of n inputegeh output nodes and in

the middle has switches wired together.

Network topology refers to the static arrangement of channels adésin an
interconnection network, characterizing the avé@adaths that the packets have
to travel to reach their destinations. The netwogology is the first step in the
design of a network, becausmiting mechanismand theflow control method
will be heavily based on the topology. Whereasttipology determines the

ideal performance of a network, routing and flowtrol are the two factors that
determine how much of its potential is realizeghadhway is needed before
every route can be selected and the traversahbfdite scheduled. The
network topology not only specifies the type of tlework but also the radix of
the switch, meaning the maximum number of possibleected devices to it,

the number of stages and the width and bit ragmoh channel.

Usually, we choose the topology based on its audtperformance. Theostis
determined by the number and the complexity ofrélogiired machines for the
network realization and the density and lengtthefinterconnections between
those machine®erformanceis described by two components, bandwidth and
latency. Bandwidth is the measurement of the abklar consumed data

communication resources expressed in bit/s or plediof it, Kbit/s or Mbit/s.

Latency is the synonym expression of delay in netaidRefer to the amount of
time that a packet makes from its source to itsinkgtion. Both these
components are determined by factors other thamamkttopology, like flow
control, routing mechanism and traffic pattern.

A way of connecting more than two devices is eitheough a shared media

network or with a switched media network.

Shared media networkis the most traditional way of interconnectionvibetn
devices. In half-duplex mode data can be carriedtiver dimension over the
network that connects the machines, but withouirttpthe possibility of

simultaneous transmission and reception by the saashine. In full-duplex

mode it can be simultaneous reception and tran&misy the same machine.

Switched media networksis the alternative approach that does not share th
entire network path at once, but progressively adgawitching between
disjoint portions of the network. These portions point-to-point links,

between active switch components. As the packettsas through the network,
it establishes communication between sets of sandedestination pairs.
These passive and active components make up tveretwitch fabric or

network fabric.

Main advantage of the switched media networksas ttie amount of network
resources implemented scales with the number addhaected devices,
increasing the aggregate network bandwidth. Thesgarks allow multiple

pair of nodes to communicate simultaneously allgwituch higher effective
bandwidth than that provided by the shared mediaaor&s. Also the system in
switch media networks can scale to a very largebarrof nodes, thing which is

not feasible in shared media networks.

In switch-based networks as these we are gointytty spacket traverses inside
network using several switches before it reacteétsination. The packets have
to pass through the communication lines and thiches. A switch acts as
interface for communication between communicaticireuits in a networked

environment. In addition, most modern switches hategrated network

21

managing capabilities and may operate on nhumeeyesd. Some of the
integrated mechanisms that are implemented insiiteles are routing,

arbitration and switching.

Routing is defined as the set of operations that neee foebbformed to compute
a valid path from the packet source to its destnaRouting is setting the

question “Which of the possible paths are allowdbiegackets.”

Arbitration is required to resolve a conflict, when severakp#s compete for
the same resources in the same time. Arbitratigetiéng the question “When

are paths available for packets.”

Switching is the mechanism that provides a path for a packatlvance to its
destination, when the requested resources areegraBivitching is setting the

question “How are paths allocated to packets”

1.3 Network Problems

Although when the exchange of information increasesthe number of the
participating nodes is big is more often for a peabto appear. Problems occur
due to failures or limitations on the hardware vgses of the network. These
can destroy the balance, or reduce the speed arfdribtionality of the

network. Some of the most important problems tpaear in the

interconnections network are listed below.

e Deadlock
e Livelock

e Starvation

Deadlock is a very common problem that happens in diffecembtmunication
levels, in our case in the interconnection netwair High Performance
Computer. It is the situation that occurs whenelléht processes wait one
another to release specific resources. With thgtthvare is cyclic dependency
between these different processes for the samanms) creating like that a

circular chain.

Livelock is a condition that occurs when two or more preessontinually
change their state in response to changes in lttee ptocesses. The result is
that none of the processes will complete. An anaisgvhen two people meet
in a hallway and each tries to step around therdihethey end up swaying

from side to side getting in each other's way ay tty to get out of the way.

Starvation is similar in effect to deadlock. Starvation imaltitasking-related
problem, where a process is perpetually deniedssacg resources. Without

those resources, the program can never finishsts t

In High Performance Computing, networking is a viemportant issue, and that
is because the interconnection network is the kayent in the structure of a
parallel computer. A well structured network campiove the performance of
the computer minimizing the time that a packet sdikem its source to its
destination and as a sequence decrease the coiopuitat. We have to
implement several techniques that will solve ovpre problems that appear in
such networks. Some solution proposals for the mgsbrtant of the

interconnection problems are listed below (Detaiits done in the next chapter).

23

e Deadlock
= Prevention
= Avoidance
= Recovery
e Livelock
= Minimal Paths
= Restricted non minimal paths
= Probabilistic Avoidance
e Starvation

= Resource assignment scheme

One of the most serious problems that occur anblave to deal with, in this
specific project, is Deadlock. Thus deadlock cardtastrophic and paralyze
the network, is very important to eliminate any gibgity that a deadlock will
occur. There are four necessary conditions foraalldek to occur, knows as

Coffman conditions. These conditions are listed¥el

Mutual exclusion
Hold and wait condition

No pre-emption condition

P WD P

Circular wait condition

Deadlock can be avoided if certain information ghmocesses is available in
advance of resource allocation. For every resouegeest, the system sees if
granting the request will mean that the systemaviter arunsafestate,

meaning a state that could result in deadlock.Skiséem then only grants
requests that will lead teafestates. In order for the system to be able taréigu
out whether the next state will be safe or ungafaust know in advance at any
time the number and type of all resources in emt#eavailable, and requested.
One known algorithm that is used for deadlock aao@ is the Banker's
algorithm, which requires resource usage limitedhown in advance.
However, for many systems it is impossible to knpwadvance what every

process will request. This means that deadlockdavie is often impossible.

A total ordering on a minimal set of resources imitsach dimension is
required, if we would like to use these resourodsiii capacity. In contrary
some resources along the dimension links haveaofgte so that can remain
below the full capacity and avoid deadlock. Towlfll access to the network
resources of the network, we have either to duidittze physical links or
duplicate the logical buffers associated with dadh This results respectively

to physical channels or virtual channels.

Routing algorithms based on this technique, cdlladto’s protocol, can be
defined that allow alternative paths provided by tibpology, to be used for a
given pair of source-destination nodes in additethe escape resource set.

One of those allowed paths must be selected, pidfethe most efficient one.

1.4 Virtual Channels

Virtual channels are the representation of the partitioned bufterug inside a
switch. Buffers can exist in the input and the otitpf a switch, characterizing
with that way the type of the switch. Buffers canddaced in the input port of a
switch and give us thiaput buffered switch, centrally within the switch which
give us aentrally buffered switch and finally at both input and output ports of

the switch which give us a@nput-output buffered switch.

The packets traverse through the network usingdinge communication lines,
and use the switches as intermediate stops uatildiestination. With the
structure of virtual channels is provided to theoiming packets of a switch, an
alternative path to select in case that a preiae&et is blocked inside a
buffer. This alternative path is selected throughftow control mechanism that
is implemented in the switch, with the use inforimathat each packet carries

in its header, so that can properly directed tdéstination.

25

For the proper construction and the effective regméation of all those elements
that structure an interconnection network, is neggsthe use of a tool like a
network simulator. Network simulator is a tool tieah provide us detail in
multiple layers of the interconnection network donstion and allow us to

make changes in all those layers.

1.5 Network Simulator — OPNET

Network simulators serve a variety of needs. Corgb&w the cost and time
involved in setting up an entire test bed contajmirultiple networked
computers, routers and data links, network simedagoe relatively fast and
inexpensive. They allow engineers to test scendnatsmight be particularly
difficult or expensive to emulate using real hardwvdor instance, simulating
the effects of a sudden burst in traffic or a D&t&ck on a network service.
Networking simulators are particularly useful itoaling designers to test new
networking protocols or changes to existing prot®@o a controlled and

reproducible environment.

Network simulators, as the name suggests are ysegbbarchers, developers
and Quality Assistants to design various kindsaifvworks, simulate and then
analyze the effect of various parameters on theor&tperformance. A typical
network simulator encompasses a wide range of mkimgtechnologies and
helps the users to build complex networks fromdhbsilding blocks like
variety of nodes and links. With the help of simiaia one can design
hierarchical networks using various types of ndi&scomputers, hubs,
bridges, routers, optical cross-connects, multicasters, mobile units, MSAUs

etc.

There is a wide variety of network simulators, iaggrom the very simple to

the very complex. Minimally, a network simulator shenable a user to

represent a network topology, specifying the namethe network, the links
between those nodes and the traffic between thesnddiore complicated
systems may allow the user to specify everythinguakthe protocols used to
handle network traffic. Graphical applications allasers to easily visualize the
workings of their simulated environment. Text-baaeglications may provide
a less intuitive interface, but may permit moreatbed forms of customization.
Others, such as GTNets, are programming-orientedjging a programming
framework that the user then customizes to creasgpalication that simulates
the networking environment to be tested. A listhaf most important network

simulators is listed below.

e ns2/ns3

o Opnet

e Cisco Packet Tracer

e Cisco NetworkSims

e GloMoSim

¢ OMNeT++ and Simulation Software based on Omnet++
e Simmcast

e GTNets

OPNET Modeler, a network modeling and simulatioftvgare solution, is one
of OPNET Technologies, Incflagship solutions and also its oldest product.
Opnet Modeller includes many predefined and reaeyse models of switches,
routers or servers, supports a variety of protoants provides intervention in

various levels of construction with the use of CK¥ogramming language.

What is our proposal for the problem?

Proposal for the study of the Deadlock problenmésimplementation through a
network simulator, in our case the Opnet netwankudator, of switch and node
models that will form our preferred network topdlegywhich are the Mesh,
Torus and Fat tree. These models will make uskeo¥irtual channels in their

hardware level, in the input and output buffersthiis structure will be also

27

applied an efficient flow control method for packdh a manner that the
network can avoid to enter in a deadlock situatiorihe below image 1 we can
see the topologies of Mesh, Torus and Fat treeener circles represent the

switches.

O

(O
O
O
O

L

10
SeeT

('r'

Image 1 Mesh, Torus, and Fat Tree topologies

Through this implementation on the network simul&pnet and the evaluation
of the result collection, we will view the efficiey and the functionality of the
created models. We will examitierough the simulation proceéshe

Deadlock avoidance policy has achieved and ladso our models react, with
variable network sizes and with different packeids, for each one of our

examined topologies.

What is the addition that the project makes tovtbhdd of HPC and

interconnection networks.

This project will be made through the use of Opredtvork simulator. That
means that we can see fast and easy the restitis applied techniques, which
we will make to our models. Having this way of espeenting we reduce the
cost to minimum, avoiding in contrary the usingaakal parallel computer with

its high speed interconnection network.

The addition that this project has to offer in HR@nmunity is the elimination
of a serious network problem, through an impleméneaon a network

simulator. That can work as a base so that we waémefr examine other

problems and techniques in high speed intercororecttworks, and conclude

to a proper network architecture that can servepatposes.

As a conclusion to the first chapter we can sayttieneed for HPC in our
times is very important so that we can give answemportant questions and
solve complex problems. Thus the complexity of ghHPerformance Computer
must be supported by an equal robust high spe&rigtproblems that appear
on those machines and to the networks that sugpent are important to solve.
We need to pay attention on the details of sualtstres, like the network
switches or the interconnection lines that supportsystems, depending

always on the different purposes and use for whielmeed such machines.

29

2 State of the art

In this 2 chapter we will situate the position of our prablexplaining the
related areas of interest for our work. We willereto the proposed actions that
exist and can handle deadlock, focusing speciallthe deadlock avoidance
concept and its possible solutions. In the finatisa we are going to refer the
relative with our project previous works that hatadied the deadlock problem

and its solution through the use of the virtualrotels.

2.1 In which level is situated our problem

The HPC area is a rapidly evolving area of investon which attends to help
on the solution of complex problems. To succeesl iarpose High
Performance Computing has to make use of a conibinat sophisticated
hardware computing infrastructures with high sp@éerconnection networks.
The hardware or network infrastructures may vapeteing on the needs of
the HPC designer. HPC hardware structures makiagfiparallel
programming techniques to solve the complex probldethniques that need
continuous and high speed data exchange betwe@othgutational nodes. As
the complexity of a problem increases and the pmogning technique acquire
more data exchange to achieve the solution of thielgm, the interconnection
network is some times unable to handle all thiswmhof data due to finite

hardware resources.

The interconnections networks are used nowadaysefaral applications and
for different purposes. The type of the interconiogcnetwork varies
depending on the goal that we want to achieve@sytstem architecture that is

going to be applied. Different types of networks ksted below.

e Backplane buses and system networks
e Processor to memory interconnections
e Internal networks for asynchronous transfer modeMA

e Multicomputer networks

31

e High Performance Computing interconnection networks
e Distributed shared-memory multiprocessor intercatina
e LAN's, MAN's, WAN's

e Industrial application networks

In our case we will focus on the interconnectiotwaek of High Performance
Computers. Thus the demand for bigger computgttover is always
increasing, it create needs for the reliability #mg accuracy of the
interconnection network. The communication betwetessors in a
computational node of an HPC system is done thrdugles. These
connections have small length which is limitedhia tength of few millimeters
and due to their construction materials can prosigall communication
latency. This latency compared with the communacatatency on an
interconnection network is almost zero, thus tmgtle of a communication line
can exceed in some meters or tens of meters armbtistructional material of
the communication wire can cause extra latenciigqtcket delivery. Having
in mind that the network is the slowest form of coumication between
processors, we would like to make the communicaiioe as smaller as
possible and eliminate communication problems. fidtavork has to support
respectively the transition of the information, waitit causing delays or

rejection of packets, due to several problemsdhatappear.

For the design of the interconnection network weehta consider the network
infrastructure that will form the network and wétbnnect the nodes between
them. The type of communication wires, the switahveouters and their
combination with the routing techniques that wedhdmve to be examined in
detail so that we can have a robust interconnecigwork and avoid the

problems that can appear under a heavy commuriciaial.

To understand the causes of an interconnectiorlg@mlwe have to focus on
the way that the intermediate hardware infrastmestuthat our network uses,
work. The switches on an interconnection netwody @ serious role in the

transition of packet from their source to theirtdegions, thus they manage and

provide a path for the traversed packet. In the ¢lagt a problem occurs or the
heavy load makes these infrastructures unablerte see network, we need to
focus our interest on the internal architectura efvitch and examine the
pipeline with which it functions. We need to stutig different elements from
which a switch is structured, how they are combitoggbther to work and what
are the necessary alterations that we need to madladware and logic level to

solve a network problem.

For the purposes of the deadlock avoidance withuieeof virtual channels is
necessary to examine in this lower level, how thekpts enter and make use of
the switch hardware resources, how the problemeapphile the traffic load
increases and what are the possible changes thatode made in hardware

and software level, to eliminate the possibilitatta deadlock will occur.

While the amount of traffic load increases, inceealso and the possibility of
simultaneous need by the packets to have accestheveame hardware
resources, such as the input and output buffettsso$witch. Because of that we
have to use a technique such as virtual chanreis#m provide alternative
ways of access on these resources and will notostdplay significantly the

packet traversal on the network.

For the investigation of such a problem, we wikde& tool that can provide us
access to the various levels of the network strectllowing us to alter the
internal logic and components of our network eletmeRroper tool for that
purpose can be a network simulator that will suppbanges in that level and
can give us results, through which we can exantiaeeffects of our alterations

and if needed improve the structural logic.

2.2 What are the existing proposals for the problem

As the big delays on the packets transition canifsggintly reduce the

calculation ability of an HPC structure, the undeted packets can have

33

catastrophic sequences for the ability of such ehina to produce the correct
amount of work, due to lack of information exchan§eme of the most serious
problems that can cause undelivered packets insidaetwork are listed below

in image 2 with their proposed solutions.

Undeliverable Packets

—— Deadlock
Prevention
—— Avoidance
—— Recovery
—— Livelock
—— Minimal Paths
—— Restricted Nonminimal Paths
Probabilistic Avoidance
\—— Starvation

Resource Assignment Scheme

Image 2 Causes of undelivered packets

Phenomena like deadlock, livelock or starvatiomesp in interconnection
networks due to the finite number of resourcesaamcreate the problem of
undelivered packets or even paralyze the netwdrls i€ caused because of
conflicts between agents and resources, in ourgadaets and packet buffers.

An explanation for each one of the phenomena falow

Deadlock

Deadlock is the situation where two or more conmgetigents waiting each one
for the other to release critical resources. Tidl@m occurs because none of
the agents is able to progress due to the denatather agent to release its

resources or to reach in a compromise.

Livelock

Livelock is the condition when two or more agents @ntinually changing

their state in response with the state of othen@geausing a continuous loop.

Result of that is that none of the agents can haeess to the resources.
Livelock is similar with deadlock thus no progréssnade over the resources,
and differs in the way that none of the agentdasked or waiting for a

resource.

Starvation

Starvation is the situation that the competing égaray never be granted to the
requested resources falling in the situation thaagent is starved. A network
falls in starvation when the requests by the agemtesources are coming

more frequently that they can been handled.

For our case, we will examine the deadlock phenamgewhich is the most
serious of all the above. Deadlock may occur dudeuo conditions which are
the Mutual exclusion, the Hold and Wait conditiamo pre-emption condition
or due to circular wait condition. A small explaoatfor each one of them

follows.

Mutual exclusion condition is when a resource is either assignemh&agent
oritis available.

Hold and wait condition is when an agent which already holding resources
may request new resources.

Non preemption condition is when only an agent who holds a resource may
release it

Circular wait condition is the condition where two or more agents form a
circular chain where each agent waits for a resotirat the next agent in the

chain holds.

For Deadlock there are three known solution teasg Prevention, Recovery
and Avoidance. Each one of them refers to a diffieapproach for the
deadlock.

35

Prevention

The system itself is built in such a way that thene@ no deadlocks. That means
that the system makes sure, that at least oneafdbessary for deadlock
conditions will never occur. This is done for exdenin circuit switching where
the resources are granted before the transmistsids.dt is very conservative

approach and may lead to very low resource utibpat

Recovery

Deadlock recovery does not impose any restrictioriee routing mechanism,
but rather allows deadlock to occur. Deadlock recpattends to give a
solution to the problem after that has causedjrigrthe agents that hold
resources to release them, allowing with that whgagents to use those

resources and break the deadlock.

Avoidance

Deadlock avoidance is the technique where centddnration about agents is
available in advance of resource allocation. Fergvesource request, the
system sees if granting the request will meantti@tystem will enter an
unsafe state, meaning a state that could resdéadlock. The system then only
grants request that will lead to safe states. dieiofor the system to be able to
figure out whether the next state will be safe msafe, it must know in advance
at any time the number and type of all resourceistence, available, and
requested. One known algorithm that is used fodide& avoidance is the
Banker's algorithm. However, for many systemsiiitripossible to know in
advance what every process will request. This memigleadlock avoidance is

often impossible.

In our project we will focus specially on the demak avoidance technique and
how this is achieved with the use of virtual chdan€he virtual channels will
provide to our system extra alternative resourcasdan be used by the agents,

meaning packets, to avoid other blocked resouncdswéth that way avoid

2.3

deadlock. Changes in the mechanism of the switeh tabe done so that can
support this new structure and avoid resource dbgrenes to occur. The logic
of the mechanism now has to put a specific ordghemesources and
restrictions on the way that these resources drggo be accessed by the
packets. The implementation and the examinatidhaifproposal will be
studied through the network simulator in which wi#t implement and test our

models.

Related works

Previous implementations for the deadlock refeh#solution of the problem

in different levels and with various ways. Deadlgckblem appears from
processor to processor communications, to diffelsgres of networks, deadlock
on chip level or most often in databases and niuldaded applications.
Deadlock occurs in software where a shared resasifoeked by one thread
and another thread is waiting to access it and gonteoccurs so that the thread
holding the locked item is waiting for the othergad to execute. Another case
where deadlock can occur is in databases wherampigcation has asked for a
lock on a table. It then requires a second tablebather application has locked

the second table and is waiting to get a lock erfitist.

Some of the related with our project implementatiefier to various approaches
like the use of adaptive routing using only onéuét channel [4], virtual lanes
for ATM networks [5] or the implementation on QN@@uter with a dynamic
virtual channel allocation [6]. In these researdsetudied the effect and the
utilization of the virtual channels and the appraig number of them for the

deadlock solution but with different types of networ routing strategy.

None of the previous implementations or approathése problem is referring
to the solution of deadlock avoidance through auation process, for the

specific network models that we are going to staahy] the comparison of the

37

results between these tree topologies. In our ¢hse the construction of a
network with the appropriate policy needs furthearaination and
implementation we are using a network simulatois Hpproach offers the
ability to change the numbers of virtual channeld the buffer capacity that
each one of they contains. Also we can experiméthttive deadlock avoidance
policy and see how we can implement it to our nefviopologies, with the

minimum cost on resources while having the degiesdilt.

3Theoretical backs

In the 3 chapter we will focus on the problem of deadlog# &s possible
solutions. We will see the reasons that causeehdldck and how we can avoid
it by the use of virtual channels. The definitidnvistual channels will be given
next and the possible uses that the virtual chartreale. At the last part of the
chapter will be described the parts of the Opnatokk simulator that our
implementation is going to uses and important ¢egdiout their use and

functionality.

3.1 Theory

3.1.1 Deadlock Avoidance

A deadlockis a situation where in two or more competingattiare waiting
for the other to finish, and thus neither ever ddids often seen in a paradox

like 'the chicken or the egg'.

In computer science deadlock refers to a specific condition when twanore
processes are each waiting for each other to eekeassource, or more than two
processes are waiting for resources in a circilamc Deadlock is a common
problem in multiprocessing where many processeeshapecific type of

mutually exclusive resources known as a softwarspfi, lock.

Image 3 Deadlocked configuration 39

Deadlock occurén an interconnection networkwhen a group of agents,
usually packets are unable to make progress betlaeg@re waiting on one
another to release resources, usually buffers anrddis. If a sequence of
waiting agents forms a cycle, as it shown in imagehen the network is
deadlocked. This can have catastrophic sequencéssfmetwork. When some
resources of the network are been occupied withldeled packets other
packets that coming block on these resources ambtaroceed to their

destination[1 ch.14]

For Deadlock handlingthere are three known techniques that has beeh use

and these are

1. Deadlock Prevention,
2. Deadlock Avoidance
3. Deadlock Recovery

To prevent this situation, networks must eitherdsadlock avoidance, method
that guarantee that a network cannot deadlockeadldck recovery in which
deadlock is detected and corrected. As in almb#h@lmodern networkia

ch.14], our project will make use of the Deadlock Avoidanechnique.

Deadlock appears because the network resourceaswdtannels and buffers
are limited. We have to focus that in the switchaded networks, like these we
are going to study, where each switch is connegtttda processor. The
switches that are connected with a processor gaha®d receive messages
from the processor.. Due to the similarity betwtendirect networks and the
switch based networks we can apply that policyttierdeadlock avoidancg.
ch.1]

To achieve th®eadlock Avoidance the routing mechanism applied has to
restrict the allowed paths for the packets thaplaeadlock free the global
network state. An approach for the solution of thik put an order on the
resourcesthat want to be accessed by the packets, in thimaim way for
having network full access. Assigning the resoupaasially or totally to the
packets, so that cannot exist the possibility éheircular dependency will
appear. With that way we are applying escape pattiee packets, no matter
where they are inside the network, avoiding thévahbidlity that they will come

in a deadlock situation.

Critical resources on the deadlock avoidance, in network level, hee t
connection lines and the bufferassociated with them. There must be an order
in the access of the resources by the packet, Wieke are travelling from their

source to the destination.

node node

5wif;ch 5wif;ch swi;‘.ch swi;‘.ch
PhaseDi Phase 1 Phase 2 Phase 3 Phase 4

Image 4 Stages of traversing packet

When a packet inserted in the network at the pAasentering in a switch.
Through the communication lines goes to the phagbere the next switch is,
and continues until it reach its destination. Winib¢ exist recirculation of
packets, once a packet have reserved an outputelsanom the first phase, it
cannot request any other output channel from threegzhase, thus there are no
dependencies between the output channels of the ghase. Similarly a packet
that has reserved an output channel on a giverepbasnot request for an

output channel at a previous phase. With that waymly have dependencies

41

from this phase to the next phase. Sequence oisthizt we don't have cyclic

dependency between channels and we avoid deadlock.

While using a flow control method, likstore and forward or virtual cut
through, the agents are packets and the resources gradket buffers. At any
given time each packet can only occupy one paakieih When a packet
request for a new packet buffer, it should reléheeold packet buffer a short
time later. In our case the resources will be i@l channels that will replace

the packet buffers as entities.

The lines (agents) and the virtual channels (ress)rare related with “Wait
for” and “Hold” relations. If a line holds a buffethen that buffer is waiting

from the line to be released. If that not happesteadlock occur.

()
!

Image 5 Dependence graph Image 6 Wait for and Hold graph

A representation of the relations between agerdsesources can be done
through thedependence graptand thewait-for graph. In both above images 5
an 6, we can see how connections A and B occuppgnte resources while
they are waiting for some othess.occupies channelsandv and waits for
channelw which is occupied by the connectiBn Similarly the connectioB

holds channelss andx and waits for channei.

If we focus on the Hold relations that lead to lfersu andw from the lines

A andB in Image 6.a, and we redraw these lines to the sifgdirection as

Wait for relations we have the Image 6.b. Here are see, from the dotted
arrows that appear a circulation between the ressuiThis circulation shows

us that the configuration is deadlocked.

In order to occur deadlock, the lines have to aeqoiffer resources and wait
on others, with a way that creates a cycle in thi for graph. This cycle is a
necessary nut not sufficient condition for a deeklldf we can manage to
eliminate the cycles from the resource dependeragghgve can we eliminate
the possibility of a circular dependence on thet fagigraph and as a sequence

we avoid to deadlock the network.

If the above scheme we replace the buffer resowvitbshe two equal virtual
channels (explained in next section), we will hawdependence graph like the

one below, in Image 7.

Image 7 Dependence graph with 2 VC

3.1.2 Virtual Channels

To avoid Deadlock to our network we have to appllpwa control method to
allocate the appropriate for the packet resoutogsortant resources for the
interconnection network are the communicationssliaied the buffers. Buffers

are storage inside nodes and switches, with the &fra memory. In this

43

memory is where the packets are temporarily stasbile traversing to their
destination through the communication lines. Depenon the switching
technique and flow control that we use, we mayeesio the packets either as
entire packets or as flits. Flits or flow contraiits, are the smaller units from
which the packet consists and create the headeradd tail sections of the
packet. The flits are also divided in smaller ucétied phits (phase digits)

which are the binary representation of a flit.

While the topology of the network determines thegilole ways that a packet
has to reach its destination, the flow controhis tnethod applied to the
network that organizes the network traffic. Flomtrol determines when and
how a travelling packet inside the network can oware network problems and
advance itself until destination. This applied tetgg must avoid resource

conflicts between packets, keeping with that waydhannels idle.

As an analogy to the real world, we should prowtiernative pathways if it
occurs a problem in a highway road, so that thenmng traffic can overcome
the accident and continue its way. Having this @gyain mind, at hardware
level, if a packet gets blocked in a buffer whil@ecting other resources to get
free, incoming packets should not get blocked lg/lacket. The flow control
mechanism should provide them an escape path ifotireof an alternative
buffer, so that the packet can proceed. The imphiatien of this in hardware is

the partition of the used buffer in several pietteg we call virtual channels.

If we consider that the buffer is a (FIFBifst In First Out queue, Virtual
Channels is the partitioned representation on aéseraller parts of memory,
called or else subqueues. These subqueues areliabssed as escape paths
for the packets. The implementation can be in hardwr software level. In
hardware can be in form of separated buffers withauit flow control
mechanism. In software level the unique bufferaéated as partitioned,
applying the flow control policy through a softwaneplementation over the

virtual channels. To make our job easier for thigopse we will use the Opnet

network simulator, partitioning virtually a predeéid model of a FIFO buffer

queue as it shown below on image 8.

Simple Buffer Buffer with V.C.

Tail Head Tail : ' J Head

Image 8 Simple buffer & Buffer with VC

Buffers are commonly operated as FIFO queues. Tdrereonce a message
occupies a buffer for a channel, no other messageccess the physical
channel, even if the message is blocked. Alterabtia physical channel may
support several logical or virtual channels mudtygld across the physical
channel. Each unidirectional virtual channel idizeal by an independently
managed pair of message buffers. Logically, eathalichannel operates as if
each were using a distinct physical channel opegatt half the speed. This
representation can be seen in Image 9. Virtualrelarwere originally
introduced to solve the problem of deadlock in wioofe-switched networks
ch2]. Deadlock is a network state where no messageadamce because each

message requires a channel occupied by anotheageess

1|l|r|: D .""."""""""""".J". U[’: [}
ve 1| H= i Ve 1
VC3 Communication Ve 3
Link
Node A Node B

Image 9 Communication lines with VC

45

Virtual channels can also be used to improve medatgncy andnetwork
throughput. By allowing messages to share a physical chanmedsages can
make progress rather than remain blocked. For ebegrimpimage 10 we see
two messages crossing the physical channel betwegers R1 and R2. With
no virtual channels, message A will prevent mes&ffem advancing until the

transmission of message A has been completed.

Partitioning the buffer in virtual channels, botlessages continue to make
progress. The rate at which each message is foedaschominally one-half the
rate achievable when the channel is not shareefféct, the use of virtual
channels decouples the physical channels from medzéfers, allowing
multiple messages to share a physical channekisdime manner that multiple
programs may share a CPU. The overall time a mesgagnds blocked at a
router waiting for a free channel is reduced, legdo an overall reduction in

individual message latency.

B
l R] R, R_;
" .
. K;H 5 H
| 4

Image 10 Packets advances with the use of VC's

A o

This approach described, does not place any reéstricon the use of the virtual
channels. Therefore, when used in this manner theers are referred to as
virtual laness]. Virtual channels were originally introduced amechanism

for deadlock avoidance in networks with physicalleg, and as such routing
restrictions are placed on their use. Virtual cledsalso can have different
classes, meaning that each virtual channels camitown type of priority
dependent on the characteristics that we wantaeigie them. Those classes

may restrict the use of the virtual channels farlge#s, dependent on the virtual

channel buffer utilization or the priority type ®fpacket. For examplpackets
may be prohibited from being transferred between cdain classes of virtual
channelsto prevent cyclic waiting dependencies for buffeace. Thus, in
general we have virtual channels that may in t@rmiade of multiple lanes.
While the choice of virtual channels at a routerba restricted, it does not
matter which lane within a virtual channel is ubgca message, although all of

the flits within a message will use the same laiteiwa channel.

Acknowledgment traffic is necessary to regulatefitv of data and to ensure
the availability of buffer space on the receiveckAowledgments are necessary
for each virtual channel or lane, increasing thiewe of such traffic across the
physical channel. Furthermore, for a fixed amodriufer space within a
router, the size of each virtual channel or lankdbus now smaller. Therefore,
the effect of optimizations such as the use of ashedgments for a block of
flits or phits is limited. If physical channel bamidth is allocated in a demand-
driven fashion, the operation of the physical clehmow includes the
transmission of the virtual channel address toewly identify the receiving
virtual channel, or to indicate which virtual chahhas available message

buffers.

For the recognition of the packets and their cpwasing direction to the
virtual channels, has to be added a flit more ¢éohtbader of each packet. That
flitis inserted in the source node and will contdie number with the desired
virtual channel for the packet. With that way, itlle described the preferred
route that the packet will follow through the netoand will be applied the
necessary flow control mechanism on the input dpwiwvirtual channels of a

switch.

3.1.3 OPNET

For our project, the implementation will be basedfte Opnet network
simulator. Opnet network simulator is a simulatioal equipped with many

predefined models of nodes, servers, switches aminuinication lines, which

47

exist in the market. Also supports a wide rangprofocols, and allows altering
on the predefined characteristic models. The sitoukdlows user intervention
in 4 different levels that start from the networksabnetwork level, to the
module level, the process level and in the lower isahe code level. Here
Opnet network simulator supports the use of exterm@mands based in the
programming language of C/C++.With that we way \&a manage the existing

models and protocols, or desigh and create a neviasrour purposes.

3.1.3.1 Network

The network defines the overall scope of the systenare going to simulate.
It's a representation of the objects that partitd@pa the network construction.
The network model specifies the objects insidentigvork, as well as their
physical locations, interconnections and configoret. It can contain
subnetworks and nodes, connected through sevekal lgiving a more complex
structure to the network. This supported complegityvides us easiness to
design networks similar to the appearance and ifumsstwith the real ones that

we want to simulate.

The interprocessor communications as in High Perémce Computing can be
viewed as a hierarchy of services. These serviegmtiorm a higher level, the
application layer, in which are performed actiomsthe preparation of the
packets and the data encryption and data compressitil the physical layer
which is responsible for the transition of the petskhat come from a higher
layer. We can view such a layering in the commuiooa services, especially
for the Local and Wide Area Networks (LAN's and WANThis layering can

be characterized in three layers, and these ametfie lower to the higher.

Physical layer

The physical layer is responsible for packet trangfrough the physical

channel from switch to switch.

Switching layer

Switching layer make use of the physical layer,lamgenting mechanisms so

that can forward the messages to their destination.

Routing layer

At the routing layer are taken the routing decisior the output channels that
can provide a path, so that the packet can contimoeigh the network to its

destination.

The routing mechanisms and their properties (de&dbo livelock freedom) are
determined mostly by the switching layer. The shiitg techniques that are
implemented inside the switching layer are resgmado set the switch inputs
and outputs and the appropriate time that the padeds to travel the path
inside the switch[3 ch.3]

These switching techniques make use of flow comtrethanisms that are
responsible for the packet transfer synchronizabietaveen the switches. The
flow control mechanisms are related with the mansage of the packet buffers.
Determine how the buffers are accessed and reldgsnd packets and which

is the appropriate policy when exist blocked paskeside these bufferg ch3]

49

node 2§ 'nod;'_?;ll !

Image 11 Network Domain

In Image 11 we can view the network representaifofx4 Mesh. We see the
similarity with the real topology of a mesh, hove ttomputation node that
insert the packets in the network, are connectdl the switches, and how the

connections of the switches forms our topology.

3.1.3.2 Nodes

A communication node exists within a subnetwork eetesents a network
device with a wide range of possible capabilitiédse actual function and
behaviour of a node is determined by its node madeich is specified by the
node's "node model" attribute. A node model israfiin the Node Editor and
specifies the internal structure of the node. Aeadhy refer to a derived node

model rather than an actual node model specifiegdarNode Editor.

Switch node model

The Switch node model supports large numbers afiricg and outgoing data
links and performs packet routing at high speedthivwthe model are defined

the characteristics that we want to provide, imfaf a sequence of modules

Computation node model

Can generate and receive transfers of files ossgagickets, also depend on the

architecture and the functionality that we wanapply to our network.

Communication lines

Links allow communication of information betweerdes in the form of
structured messages called packets. When a packabmitted to a transmitter
in a source node, the packet is conveyed ovekadima receiver in a destination
node. A transmitter may support multiple outgoihgrmrnels into a link and,
similarly, a receiver may support multiple incomictzgannels from a link as it

shown below in the image 12.

I _Il. III
[§ —{i Communication Channel || ;—Ir [I
[l

Receiver

Transmitter Link

Image 12 Communication channels

51

A link is actually composed of one or more commatian channels, each of
which defines a connection between a transmittansbl and a receiver
channel. A communication channel can be thoughsd pipe, where packets
are placed in one end by a transmitter channetetndved at the other end by a
receiver channel. If a link has multiple communimatchannels, it can be
thought of as a "bundle" of pipes, each one comgepackets from the source

node to the destination node.

Simplex and Duplex Point-to-Point Links

A point-to-point link can be thought of as a bundle of one or more
communication channels between the transmitten@yeceiver(s) that it
connects. Within a point-to-point link, the numieéicommunication channels is
static, because there is one communication chdrateleen each transmitter
channel and receiver channel of the same indexePaeent by transmitter
channel in the source node will be received byr¢teeiver channel with same
index in the destination node. Each communicatitanoel acts independently
of the others in the same link, as though it wesfneéd in a separate and

parallel point-to-point link.

A simplex point-to-point link defines a connection from a transmitter ia th
source node to a receiver in the destination nBdekets are conveyed in that
one direction. A duplex point-to-point link, howeydefines a pair of
connections between two nodes, connecting a traiesrini each node to a
receiver in the other. Packets can flow in botledtions, from each node to the
other.

For a point-to-point link to be operable, it mustdttached to point-to-point
transmitters and receivers in the nodes that ibeots. The transmitter and
receiver of a simplegoint-to-point link are designated using its "transmitter"
and "receiver" object attributes. For duplex linksjr attributes (“transmitter a",

"receiver a", "transmitter b", and "receiver b"jaeto identify the modules

within the nodes to which the link is attached.

3.1.3.3 Node modules

The internal structural complexity of network no@esl their scope of activity
can vary greatly depending on the system whichddetied. For this purpose

exist several modules that can help us achievietled of complexity we want.

Processor modules

L]

Image 13 Processor module

Processor modules are the primary general-purpasding blocks of node
models. This process model can respond to extekmsglts or interrupts as
desired to model a specific function. Processonsbeaconnected to other

modules to send and receive packets via any nuoflpercket streams.

Processor modules are used to do general procesfsitaga packets. A typical
processor might receive a packet on an input strdarsome processing, and
send the packet out again on an output streamoiitpait packet might be
delayed for a short time, or it might be modifiettharespect to the input

packet.

Queue Modules

m)

Image 14 Queue module

Node models may employ both processor modules aedegmodules to
implement general processing of packets. Normalfytocessor module would
be used in cases where a packet can be completalggsed in response to the

interrupt associated with its arrival or generatidithis is not the case, and it is

53

necessary to buffer the packet while awaiting @rlavent to complete
processing, then a queue module, with its additibnfiering resources, is
likely to be more correct. This is particularlyérii multiple packets must be

buffered simultaneously.

Queue modules provide a superset of the functitynafliprocessor modules.
Like processors, they can execute an arbitraryge®model that describes the
behaviour of a particular process or protocol, el be connected via packet
streams to other modules, allowing them to sendreceive data packets. The

process model can also affect the queue objestt'sflattributes.

The primary difference between processors and goeiles is that queues
contain additional internal resources called subgeeSubqueues facilitate
buffering and managing a collection of data pack#éfiile it is possible to
implement this functionality with ordinary processoodules, the use of
subqueues, provide greater flexibility and easenplementation of a variety of
queuing disciplines. Moreover, subqueues autoniticampute a number of

statistics about their operation

'
subgueue 0 | packet ng - 1 | packet ng -2 | see | packet 1 | packet 0 |
subgueue 1 | packet ny -1 | packetn, -2 | LR | packet 1 | packet 0 |
-
L]
buffer subqueue (k - 3) | packet ng.z -1 | packet n.5 -2| see | packet 1 | packet 0 |
subgueue (k - 2) | packet nga -1 | packet n . —2| see | packet 1 | packet 0 |
L subqueue[k—1]| packet n, -1| packet n, -2| eee | packet 1 | packet 0 |
j i 2
tail of subqueue &4 head of subqueue 4

Image 15 Subqueue representation

Each queue module contains a definable numbermfugues as we see on
image 15. A subqueue is an object which is subatdito the queue object and
which has its own attributes used to configuréliie capacity of each subqueue
to hold data is unlimited by default, but a limiaynbe set on the number of
packets or the total size of all packets (or batithin a subqueue. It is up to the
processes in the queue to determine what actitakéeowhen subqueues become
full: packets may be removed to create space farareivals, or the new

arrivals may be discarded. Because the user ceritrelprocess model executed
by a queue, it is possible to model any queuingogia by defining the manner

in which the subqueues are accessed and managed.

Transmitters — Receivers

Transmitter modules serve as the outbound intetiab®een packet streams
inside a node and communication links outside ttdenThere are two types of
transmitter modules, corresponding to the diffetgpes of communication

links: point-to-point and bus.

B b2

Image 16 Receiver — Transmitter

Several of the parameters controlling transmisefgmackets from point-to-
point and bus transmitter modules are actuallyifipdas attributes of the link.
Within a node model, a transmitter module is comi®d to be a data sink.
Therefore, although they may have many input pastkeams, transmitter
modules do not have output packet streams. Fromdim of view of the
network model, a transmitter module acts as the'sazlitput port, to which a
communication link of the corresponding type maybenected: simplex and

duplex links to point-to-point transmitters and fings to bus transmitters.

55

3.1.3.4 Connections

Packet streams

| m

sal_proc bypass_q
Facket Stream

Image 17 Packet stream

Packet streams are connections that carry dat@saitkm a source module to
a destination module. They represent the flow ¢d daross the hardware and
software interfaces within a communication nodesréhare three different
methods for transferring a packet over a streammatiflying the destination

module of its arrival: scheduled, forced, or quiet.

Statistic wires

queue_8 q_monitar
Statistic Wire

Image 18 Statistic stream

Statistic wires carry data from a source modula destination module. Unlike
packet streams, which convey packets, statistiesgonvey individual values.
They are generally used as an interface by whietstturce module can share
certain values with the destination module, andeting provide information

regarding its statd&cach module within a node has a set of local owfaiistics
whose values are updated at correct times durimgithulation. It is this set of

statistics that can act as the sources of statistas.

Logical associations

Logical associationsire special connections that to not actually cdatga
between modules. In fact, logical associationsateerist during simulation,

but are used purely as specification devices. Tipgse of a logical association
is to indicate that a relationship exists betweem thodules in a node model.

The existence of this relationship is used to pretrthe node model's structure.

3.1.3.5 Process

States

Opnet modeller defines two types of states, cdtdexbdandunforced that

differ in execution-timing. Each state is splithimo executives, called enter
executives and exit executives. As the names itglieastate's enter executives
are executed when a process enters the statesamdtiexecutives are executed
when the process leaves to follow one of the oatytiansitions. Forced states
are graphically represented as green circles, afutaed states are drawn as

red circles.

Image 19 Unforced and Forced states of the prosesse

The process completes the enter executives uperirggnan unforced state and
then blocks until a new invocation occurs. Wherirnaacation occurs the
process executes the exit executives and proceadediately to the next stage
to also complete the enter executives there, aamlitocks again. These actions
comprise a complete process invocation and requitime delay. Transitions
guide the process to a new state or possibly lmathketsame one depending

upon the applicability of their conditions.

57

Unforced statesallow a pause between the enter executives anh@x@gutives,
and thus can model true states of a system. Ajpeoeess has completed the
enter executives of an unforced state, it blockkraturns control to the

previous context that invoked it.

Forced statesare so called because they do not allow the psacewait. They
therefore cannot be used to represent modes gf/tem that persist for any
duration. In other words, the exit executives tdraed state are executed by a
process immediately upon completion of the entecetives. Therefore the exit
executives of a forced state are generally leftlgldecause they are equivalent
to the same statements placed at the end of tbe exdcutives. Because forced
states cannot represent actual system statesatbeyt generally used as much
as unforced states. However they are useful iricecases to graphically
separate actions or control flow decisions thatcaramon to several unforced
states; graphically separating out definitions @fidions or actions this way can
sometimes provide better modularity of specifioatias well a more visually

informative state transition diagram.

Transitions

Transitions describe the possible movement of agg®from state to state and
the conditions under which such changes may taeepiThere are four
components to a transition's specification: a sostate, a destination state, a
condition expression, and an executive expres3ioa.specification may be
read as follows: when in the source state, if tihradion is true, implement the
executive expression and transfer control to tistiniation state. The types of

the conditions are shown in image 20.

Mon empty condition

Empty condition

>

Transition retum
tothe same state

Image 20 Transitions between states

Non Empty Condition

A non empty condition is caused by an interrupthdf interrupt value is true the
process goes from the source state to the destinstite. If its needed, while
the non empty transitions is true, can executenatfon before reach the
destination state. The condition and the execuiyression are declared as

attributes of the transition.

Empty Condition

An empty condition simply transfers one state toter, after the first stage
has completed its work on the exit executives. din@ty condition does not
need an interrupt to occur to be enabled, and ragg hlso as the non empty

condition an executive in its transfer betweendtwrce and destination states.

Transition to the same stage

A transition to the same stage is the loop actiat Opnet provides, and may be
either a non empty condition or either an emptyditiom. This type of
transitions is used to have executive expresstuatscin be used for checks or

alternations on the used by the process variables.

59

3.1.3.6 Source code

Opnet modeller inside the process level uses cdus.code is responsible for
all the actions we want to make in code level. Whils code we can have
actions like receive and send packets, cause eiveemnterrupts, interface
control informations (ICI's) and update statistithese actions carry important
informations about the routing and switching med$ras of our switch. Opnet
uses these integrated functions for all the basgs like internal
communications inside module and communication betwseveral modules.
The integrated code of Opnet supports the use@+€vith the use of the
internal compiler. This support gives us the opaity to alter functionality in
even lower level of the constructed module and miegabetter our

programming structure.

In the 3° chapter we have seen the theoretical base in wiichre going to be
based for the analysis of our project. We have eedefinition of deadlock
and the reasons that cause the problem. Has beemthie definition and the
usage of the virtual channels and has been explaireeapproach of the
deadlock avoidance with the use of virtual chanrglslly in the last section
we have seen the theoretical approach of the eksntieett we need to use on

our network simulator, Opnet, to implement theuattchannels.

4 Analysis

In this chapter we will focus on the theoreticattfghat encloses the solution of
the Deadlock avoidance policy with virtual chanpatsd how the theory has to
be used in practical level for our models. The ysialfor the Deadlock
avoidance, has been based on the theory that pksred on chapter 3. Also
ideas about deadlock avoidance policy in diffetem¢ls and memory
partioning for use as virtual channels have bedrated from the books and
the papers of the bibliography. This analysis catreges in the architecture of
existing models, specifically node and switch medbkat will explained fin the
start of the subject. These models are construt&pnet network simulator,
version 14.0.A, that the CAOS department is udimgxamine various network
topologies, problems that appear in high perforrearetworks and fault
tolerance. The pre-existing model is implemente@®kago Lugones, doctoral

student of the Department.

4.1 Previous model

The network model that has been used as base tfimplementation was a
previous implementation of switches and nodes utffitdhe Opnet simulator.
This implementation was an ATM switch based netvatrigctured in a 4x4
MESH topology with 16 switches and 16 compute naglshown in Image 21.
That means that the packets from their sourceeio ttestination are travelling
through the switches. Each one of the nodes isexiad through a
communication line with a switch. Diagram of the $fidopology is shown

below, where switches are indicated by “S” and cormodes by “N”.

61

N @g n_

(o)
@

.

.ﬁﬁf fj:
Sr—18—8

Image 21 4X4 MESH Topology

The nodes produce and send packets inside netwtirkhe use of the
switches. Each switch is reading information thasts in the header of the
packets and directs the packet to the necessgoytquirt, so that it can
continue its trip inside network until its destiiwat We will focus in the
internal architecture of the models, the packetstha conditions that have to
exist inside the models, so that we can undergtantbgic with witch the
network functions. We will give special attentianthe switch architecture that
is responsible for the deadlock and how we candaiw@inplementing a routing

mechanism.

4.1.1 SWITCH

The theoretical model of the switch model in whiod will be based, is an
input-output buffer switch. The michroarchitectpipeline of the model is
show on the Image 22. The pipeline is separatédstages. Stages 1 and 2 are
the input and output buffers that characterizeroadel. Stages 2, 3 and 4 are
the modules that create the central routing meshani the switch.
Respectively stage 2 is the routing mechanismesidag the arbitration and

finally stage 4 is the crossbar.

Stage 1

Physical layer

— >

Stage 2

Stage 3

Stage 5

Physical layer

Physical layer

— i

Physical layer

(il
()

EE

1

1

: Routing Control
Unit

1 1 1

1 1 1

1 1 1

: Arbitration : :

L] I unit i

: Forwarding : y Sieabe :

1 table 1| Output) control

1 port # 1 1

1 1 1 1

1 1 1 1

------------ I----------I----_-----I--_----I-------.
Input 1 Route 1 Switch 1 Switch 1 Output

Buffering : Computation : Arbitration : traversal : buffering

Image 22 Michroarchitecture Pipeline of an Inputifut Switch

The packets are inserted from the physical laytertime switch, with the
receivers (R) of the switch. In stage 1, packetsstored in the input buffers
while informing the routing mechanism with theirstiaation information. In
stage 2 the routing mechanism creates and updetdsrivard table, with witch
will find an appropriate port to send the packetdalestination. This is
information is sended in stage 3, in the arbitratioit which in its turn
determines when the requested port for the congpetickets is available.
When the port is available arbitration sends tocttossbar unit, in stage 4
information to establish a path inside switch. Tlo the path that crossbar
creates, the stored in the input buffers packet$aaward to stage 5, in the
output buffers. Here in stage 5, packets are storéue output buffers of their
preferred port, before they transmitted throughttaesmitters (T) to the

physical layer and to their destination.

As in the theoretical model, in the Image 23 igespnted the structure of the
Opnet Switch model. As we can see the switch misdath input-output
buffered switched. The internal data path of thi#échwprovides connectivity

among the input and output ports, through the mguthechanism. Our model

63

has 8 receivers and 8 transmitters. Each pairogfiver and transmitter
represents a bidirectional input-output port. Téxeeivers are connected through
stream wires with the input buffers that receivd haost the incoming packets.
The incoming packets are stored inside the inpfiels) while waiting to be
routed by the routing mechanism. With the use fafrmation stored inside the
header of packets, the mechanism finds the apjatepoutput port for the

packet and allows it to pass to an output buffiatee with the requested port.
Output buffer with its turn informs the forward tfor an outcomming packet,

and send it so that can be inserted inside theanktw

Port Configurationlinput Port ~ Routing unitAMR_sw_handlerOutput Port

Switch Info Receiver Routing AMR_sw_handlerOutput Buffer
Input Buffer| Arbitration Forward Unit
Crossbar Transmitter

Table 1 Internal modules of predefined switch model

In the below Image 23 appear the internal struaditbe switch and all of its
modules. We see the distinct parts of Port Conéitian, Input and Output
buffers, ACK unit and finally the Routing structutet is the combination of
routing, arbitration and crossbar modules. Theriratieparts of the switch are
shown with detail at Table 4.1. The modules arenected between them with
communication wires. The red ones represent thistitastreams and the blue

ones the packet stream.

b ms | e

ng—1— buffer ind switch info
switch
configuratidn

Routi

crosshar
Iconf].
a5
rhitffation]
| part.
fonnd
rmlf;'rm'
monitor
Y |
BX 4 Dbuffer in I:I AME,_sw Handler nffer ontd fowardd TX. 4
i
N [
L
m —{C—E&
Tt & buffer int buffer outS fowardS % c
1)
EA_& Dbuffer_iné buffer_outt fow £ TX_6
== m—{]
BX_7 buffer in? | (buffer ont? fo TE 7
B (== (il
r® 8 buffer ind buffer outd fowards T 8

Image 23 Original Switch Structure

4.1.1.FPort Configuration - Switch Info

The switch info unit is the first unit that is assed inside the switch. It has the
biggest priority from all the modules of the swit@witch info in first step
initializes the network. Receives information fbe thumber of the nodes and
characterizes them in nodes and switches givinig tiaenes and coordinates.
Also the switch info allocates memory for the notlegt have found, for the
initialization of the simulation process, finds therts in each network node and
give them a port number and checks the connegctkdrithe switch and names
them also. The unit also discovers the neighbadscanstructs the topology
while understanding the logical position of thetstiand the geographical
position of the neighbors. Finally switch info uiriforms the routing unit,

through a statistic wire, for the ports and dealtes the memory that has used.

65

4.1.1.Routing Logic

The central part of the switch which contains tgting logic is the
combination of 3 units. These units are the routinig, the arbitration unit and
the crossbar. The functions that each units pedpso that the packets can find

an appropriate output port, are explained below.

Routing

Routing unit is the first step for the routing mantsm that the switch uses.
Routing unit is receiving information through st wires, firstly from the
switch info unit that informs the routing mechanigith information about the
switch situation. And from each one of the inputférs, that represent equal
input ports. Unit is also connected through statisires to send information,

with the AMR_sw_handler and with the arbitratioritun

The routing process starts by receiving the nurobére input ports that is
connected with and allocating the appropriate mgrapace, for equal number
of packets that waiting to be routed. Then registiee statistics with which is
going to inform the Arbitration and AMR units. Hemkso initialized variable for

a Round robin approach to search between the ghaurnels.

In the next state the routing unit receives fromgtvitch info information,
through the statistic wire, in order to arbitrakae information received is the
port configuration, with witch checks if the switbhs a valid logical position,
the routing algorithm that is used for the packatérsal and the low and high
values of the threshold. In this part also the ardkes pair the input port

number with the equivalent input buffer.

Now the routing unit comes in a "pause” situatibare waits to clean the

memory for waiting packets if simulation termingtadd also waits for

incoming interrupt by one of the connected inputdng. When an interrupt
occur the unit receives all the information frore thterrupt, increases the

number of waiting packets by one and goes in thé state to route the packet.

The unit now searches in all ports, using roundmadio find a waiting packet
which needs to be routed. When it finds it, is gy the routing algorithm that
gives the appropriate output port, clearing thetimgipackets memory for the
specified input and decreasing the number of tloigqta that waiting to be
routed by one. Before it exits from the state, med@e checks for the received
output port, and sets that routing has completewtiruing with a self interrupt

proceeds to the next state.

Here the routing unit comes once more in a “paggeaation where it waits for
interrupt of a packet that waiting to be routedrdim the previous state is
declared that the routing has been done it proceetti® next state where
prepares information to be sended in the Arbitratiait, informing that the

sender module has a packet in the queue.

Arbitration

The arbitration unit is a connection between thding unit and the crossbar
unit. Arbitration receives information from the towg unit and passes it to the
crosshar. Given the input and the output portuthiefinds the correct stream to

forward the packet to that port.

Crossbar

Crossbar unit is responsible to receive incomintkpes from the input buffers
and forward them to the requested output buffeatwlhil lead them to a
predetermined output port. The Crossbar unit isrined from the Arbitration
unit by an interrupt, which declares that a spedifput port has requested an

output port. The unit checks in the informationeiged by the arbitration unit,

67

if its necessary update specific packet headersamérds the packet to the

requested output port.

4.1.1.3nput Port

The input port is characterized from two units. Téeeiver and the input
buffer. While the receiver accepts an incoming padkforwards it to the

connected input buffer.

Receiver

Each receiver unit is representing the input pbthe bidirectional channel.
The receiver is passing the incoming packet froenpthiysical layer of the

channel to the input buffers of the switch.

Input Buffer

The input buffer is connected between the receingy from where it receives
any incoming packet, with the routing unit whiclfioinms that a packet needs to
be routed and with the crossbar unit where its séimel packet so that can find

its requested output buffer and port.

Input buffer starts by initializing the statistleat will inform the routing unit,
receives the input port number and the internatliagdth of the buffer. Before

exit the state declares that has no outcomminggtack

When the unit receives an interrupt for incomingked, receive the packet and
sees if the buffer is empty. If it is, inserts thacket in the tail of the FIFO
gueue, and informs the routing unit by a statisfie that it has a packet

waiting to be routed, in the specified port.

When the module is having access to the interhagithias appeared continues
to the next state. Now the module searches indld bf the queue, and if the
gqueue is not empty and contains a packet, modilavig access to that
packet. The module next is getting the latencyhefacket and update the
average occupation of the buffer, while removing placket from the head of
the queue and receiving its size. In sequence ttla send the packet through
a packet stream to the crossbar without causirigtarrupt, thus earlier has
informed the routing mechanism through a statistie. The module computes
a delay based on the packet size, the internaMadifdand delay of the switch
and when this time pass creates a self interrupthwiakes the module

proceed to the last state.

In this last state the module checks for the buffiss empty, to find if any new
packet has reached the head of the queue whilaghpacket was exiting from
the queue. If a new packet has appeared the mizdgégting once more access
to the head of the queue. Before it exits fromsttate takes the information
from the new arrived packet and informs once mioeerouting unit through a

statistic wire.

4.1.1.utput Port

Output Buffer

The output buffer module is connected with the sio@s unit from which
receives packets through a packet stream. Thesualso connected and
sending information, with the forward unit, througlstatistic and a packet

stream.

Output buffer module, after initialize the necegsariables, proceeds to the
next state to receive a packet. Here the unitvesghrough an interrupt stream
the packet arrived. Checks if the tail of the quisuempty, and if it is, it inserts

the packet inside the tail. While there are no offaekets that waiting to exit or

69

occupying the link, the unit informs the sender medhat there is a packet

inside the queue.

In the next state, the unit receives a requesttess the queue. If the queue is
not empty and contains packets, receive the fasket that is in the head of the
gqueue and calculates the buffer latency. After thiatoves the packet from the
queue, receiving its size and send it to the fodwarit without causing an
interrupt because it has already informed the i statistic wire. Thus the
packet will occupy the link for some time, the uraiculates that time based on
the bandwidth of the switch and the packet sizéer&Ahat time expires the unit

causes a self interrupt that makes it proceedetméixt state.

In this last state after the last packet has cotelyléeft from the queue, the unit
searches in the head of the packet once moraafita new packet, and if it is

informs once more the forward unit through a stiatisire.

Transmitter

Each transmitter unit is representing the output pbthe bidirectional channel.
The transmitter is passing the incoming packet ftoenoutput buffers to the

physical layer of the channel.

4.1.2 NODE

The internal structure of the Node model is showthe image 24. The node
model is separated in the node processor and threinterface. These two
parts are connected through statistic and paciesrss, and with the

intermediate action of the AMR_handler.

Processor Node Network Interface
"Application Layer" "Physical Layer"

pk to receive

————————————

[| i)

dst receliver CEC_guens

pk to send

: -+
[] L) il L B
=re AME_handler zend_guens zender TX

Image 24 Original Node Structure

The node processor consists by the dst and srclesdithe src module is
responsible for the creation of the packets andnbertion of the necessary
information in their headers fields. Src moduletoois also the number of the
injected packets inside the network. The dst modedeives the incoming
packets and is responsible for the calculatiomefaffered and received load
that has travelled inside network and also foraberage global latency of those

packets.

The AMR_handler is situated between these the poateessor and the network
interface of the node . AMR_handler is respondibleeceive the packets from
the input port and recognize their type and alseix@ the packets that come
from the src module and forward them to the senuwmtule that will insert

them to the network.

71

The network interface of the node is composed hymidules. These are the
transmitter (TX) and receiver (RX) units that gaecess to the physical layer,
the input and output buffers which are rec_queuksamd_queue modules
respectively and the receiver and sender moduléshvene settled after the
buffers. When a packet is received by the netwannfthe RX unit, is passing
into the rec_queue module tail, which works siniylavith the switch buffers,
and informs through a statistic wire the receivedmie that a packet is inside

the queue.

When the packet reach the head of the queue i®dehtbugh a packet stream
to the receiver module. The receiver module afw@mnall time delay receives
the incoming packet and depended on the type gfdbket, data or ack, gets
the latency values for each one of the packetgrAlfftat informs the
AMR_handler through a statistic wire and sendspiieket to its destination, the
dst unit, through a packet stream. The same haggsnswhen a packet needs
to exit from the node. The packet is received lgysbnd_queue and stored in
the tail of the queue. The send_queue informsehder module with a statistic
and when the packet reaches the head of the gsiseaded to the sender

module where after a small delay is sended to hiysipal layer.

4.2 Description of the proposition

Network Topologies

Starting from the network level, we will see how tietwork topologies are
structured, how a deadlock occurs and how a routiaghanism with the
support of virtual channels in the switch architeetcan avoid the deadlock.

Beginning from that level will make easier the urstiending of the problem

and the approach of the solution with a new intermating and arbitration

logic.

The area of network topologies that we will focas lan orthogonal topology. A
network topology is an orthogonal topology if amdyoif the nodes can be
arranged in an orthogonal n-dimensional spacegaad, link can be arranged
in such way so that can produce a displacemensinghe dimension. The
orthogonal topologies are separated in weakly gdhal topologies and strictly
orthogonal topologies. In strictly orthogonal tapgies, each node have at least
one link in each dimension and in weakly orthogsmathe nodes may not have

any link in some dimension.

The most interesting property of strictly orthogbtagologies is that routing is
very simple, thus the routing algorithm can be ienpénted in hardware. Our
examined network topologies in which we would likehave the deadlock
avoidance are the Mesh, Torus which are direcicbwietworks with
orthogonal topology. Another popular topology that will study is the Fat-tree
which belongs also to the direct switch networksiduot an orthogonal
topology. Fat-tree has a root node connected &tain number of descent
nodes. Each one of these nodes in its turn is adeddo a certain number of
descendant nodes. A node with no descendantg#f.alhe geographical

representation of these topologies is shown betoimage 25.

(OO,
IO
IO
SIBL

Image 25 Topologies of Mesh, Torus and Fat Tree

IO’

CRRR

73

Thus in our examination we will see that dealing dleadlock avoidance with
the use of virtual channels, the complexity of iheting mechanism
implemented inside switches increases. For th&t washave to consider the
possibilities and the limitations that appear, Hrelefficient ways with which
we will approach them. In mesh and Fat tree topge®the deadlock avoidance
approach is the same. In Torus topologies thug ther no end nodes, because
of the existence of wrap around links, the compyeaf the mechanism

increases allowing to the packets recirculate ssietwork in all dimensions.

A mesh network has the same node degree but h#lédfisectional channels
as a torus with the same radix and dimension. AlfthoMesh has a natural 2D
geographical representation that keeps channethestprt it gives up the edge
symmetry of torus. This can cause imbalance in niific patterns, as the
demand from the packets on the resources can seggnificantly in the

central channels that the edge channels.

A small analysis follows on a simple 4x4 Mesh nakvdn image 26a several
source nodes indicated by S, sending packets @ dgstination nodes
indicated by D. The routing mechanism provided dfragthe routing
directions on the packets from XY to YX routingueang in the central part of
the network deadlock to occur. Blocked packetbiéiuffers of the switches,
do not allow upcoming packets to pass and readhdhstinations. Now the
network is paralyzed and the packets cannot advduneédo previous blocked

packets.

On contrary in image 26b, is shown the same 4x4h\beswork but only this
time using Dimension Order routing (DOR) with theewf virtual channels.
Packets are sended by their source nodes to tieat destination nodes
following this time DOR. That means that the paslkaet forwarded by the
switches in one dimension, and they change thatirrg function from XY to
YX or the opposite, only when the reach the coatilim of their destination

node. The use of the virtual channels in the iralestructure of the switches

helps the traversal of the packets which move énstime coordinates of the

network.
N - R P T 52 - --q4 51 S2 L..
- : : : :
Jd 0 b » D3 o D4 ... ss .. .1 |---] D3 f..._] D4 |....] ps [..
¥ [y : . [y [y '.‘
: | : .
L] " L] 2
Jos [D2 | D1 | B I I D2 [.-..] D1 ...
i F Y ' A . 3 A .It
s P [PR N s3 [, L] sa ~ B I s3 [..
2 B
(a) (3]
Deadlock in a 2D Mesh Deadlock Avoidance in a 2D Mesh

Image 26 Deadlock avoidance in a 4x4 Mesh

Our switch model is using the dimension Order Rau{DOR). Based on that we
have to see how the DOR works and what makes thesaance of Deadlock. DOR is
a deterministic routing algorithm, meaning thatlisays choose the same path x and
y, even there are multiple possible paths. Therdlgo ignores the path diversity of
the underlying topology and because of that makes job on balancing the load of
packets. Despite this t is very common in pradfiees it's easy to implement and

easy to make it deadlock free.

The functionality of DOR in Mesh and Hypercube tlmgges is to establish an order
on all the resources based on network dimensiomofas and Rings which are
topologies with wrap around links, DOR has to egthtan order on all resources
between and within each dimension, and also applyipte virtual channels for each
physical channel. An alternative approach is toaém the resources along each

dimension, from reaching their full capacity by erisg the existence of bubbles.

75

One of the strategies that exist for deadlock samie is the approach with
Dimensional Order Routing. DOR affects both the Masd Torus topologies. For
Meshes DOR has to establish an order on all ressurased on network dimension.
In Torus DOR comes in 2 different approaches tolvesthe problem. Has either to
order all the resources between and within eacleion, applying multiple virtual
channels (VCs) per physical channel. An alterndtvte keep the resources in along
each dimension from reaching full capacity, by eimguthe existence of bubble. The

functionality of DOR on torus topology appearsritage 27.

| | Destination
. ol
» ol
» o
— ———2) B =
b » » D
R
FY Y)Y F YY) F Y ——3 Pemmissible Paths

Restricted Paths

Dimension Order Routing (DOR} on Torus

Image 27 DOR on Torus topology

A packet is sended by the source S to the desim&ti As packet traverses through
the network following DOR routing can choose mudétipaths, thus the torus
topology provides also the wrap around links. Paakes the selected VC, from
which have been entered inside the network andvalithat VC while traversing in X
coordinate. It can start from the +X coordinatelmoose the minimal path starting by
the -X coordinate. When the packet reach the Ydioate of its destination the
routing function changes from X to Y, giving novethossibility to the packet to
follow alternative VCs to reach its destination.

Restricting the use of resources in classes, orifgpdatelines, while making the

resource graph acyclic can have as a result lobdlance on the network. Most of

the packets will go to the VC 0 having as resulefbidle the other virtual channels.
An approach to reduce this load imbalance is toiceshe use of virtual channels
with datelines. This approach reduces the causatifobalance by allowing most of
the packets to be used by buffers that requirettaer @lass. It is important to notice
that in the case of overlapping datelines, we nallew a packet waiting for a busy
resource in an overlapping region. An approacthefdatelines and the overlapping

classes in Torus network is shown below in image 28

Duy@@@

E Source
' /'\ LT
A N W (S - —
LA d

oJelele

,"Dateline ;
Dateline x

(a) Dateline Resource class (b} Dateline classes in Torus

Image 28 Dateline classes in Torus

The use of dimension order routing in Torus carehdasadlock avoidance by
applying a dateline to each dimension X and Y. fidsailt of that action is that the
dateline classes turn the Torus network into a Mieakiing in mind the resource
dependency that can appear. Now in the resultinghhdetwork the dimension order

routing, routes the deadlock avoidance.

As a packet inserted inside network it uses theQVIE the packet crosses the
predefined coordination dateline, for each dimemsithanges to the class of VC 1.
When a packet finish with the routing process ie dimension, X for example, it
always has to enter in the VC 0 of the next dim@m3. This continues until the

packet is consumed by the computation node.

77

4.2.1 Network Elements

Important network elements in which we have alsfmtos and will complete
our network construction are the compute nodestlagacket structure. The
compute nodes are the elements that produce, censnditaking information
from the packets. For the packet we will examingctvlare the parts that
complete the structure of the packet and what mdditwve have to make in

order the packets to follow our routing decisiosmg the virtual channels.

4.2.1.XCompute Node

Our compute node models are responsible to gengaatests inserting in their
header the appropriate informations like a paaketdceiving the id of the
packet and calculating the latency of the packietisTthese computational node
models will work as senders and receivers thersevreral steps that we need to
follow. Important steps for the creation of the a@hd its functionality, so that

can send a packet to a destination node over th@rieare listed below.

Sender

The application layer of the node executes a sys@hwhich copies data to be
sent, into a network interface buffer, and compadksedeader and trailer of the

packet.

The checksum is calculated and inserted also ihéla€er or trailer of the

packet.

The timer starts and the packet is inserted thrdlngmetwork hardware

interface into the physical layer.

The sender has to react also in case that recaivasknowledgment packet.

The steps for that procedure follow bellow.

When the sender receive an acknowledgment padkeises the copy of that
corresponding packet from the buffer.

If the sender reaches the timeout instead of reggan acknowledgment
packet, it resends the packet and restarts the.time

Receiver

Message reception is in the receiver part of nogésork interface

Network interface receives the packet from the laydayer, and puts it into

the input buffers of the network interface or systeuffer.

Checksum is calculated for each message. If theksbhien matches the senders
checksum the receiver send and acknowledgment pecitee packet sender. If
not, deletes the packet assuming that the sendleesénd the packet after the

associated time expiration.

Once all packets pass the test, the system copiagalthe system address

space and signals the corresponding application.

4.2.1.Packet

The packet is the basic unit of information thageéat from the sender part of

the source computation node to the receiver pahedtiestination computation

79

node. The structure of the packet must be ablany several fields of
information to make easier the traverse of the gtitlside network. The fields
that a packet is separated to are called flitshieae of the flits can have
different size and can carry different types obmfiation. Packets are formed
by 3 different types of flits. The header flit, tHata flit and the tail flit.

The header flit carries basic informations like soeirce and destination id's, X
and Y coordinates of the destination, the typéefacket, the hops that make
between switches, the packet latency, and forraptementation an addition
flitin the header that will determine the VC numbéthe packet. This number
will be inserted in the packet header when thec®oomputation node will
generate the fabric of the packet. The creatiah®VC number can be through
a random number generator which will be limitedhia number of virtual
channels that the switches use, or through a roadsid generator. A
representation of the internal structure of thekpais shown below on image
29.

Destination id
Packet type

[Source id
|— I_VC Checksum -

DATA

]] (] []
- S} S} [
o et et il
] (] (]
(] (]

' Header Payload v Tail

Image 29 Packet Structure

Some fields of the packet should not be changetbfting reasons likeource
anddestinationid's, while some others have to be updated bgwiehes while
the packets traverses the network, likevbéhelatencyor thehopsflit of the

packet.

4.2.1.3witch michroarchitecture

The subject that we have to deal with is the Deddivoidance inside a switch,
with the use of virtual channels. As we have ref@in the theory chapter, we
need to eliminate any circular dependencies thiat &om the packets to the
buffers. For that we have to focus on the switchigecture with which our
switch model is structured. We have to focus invlag that the switch provides
access to the agents over resources, meaningtketpaver the buffers. Thus
our implementation is going to use virtual channigélsieans that the number of
entrances and exits of the switch increases, anavisequal with the number of

ports that we use multiplied by the number of \dttchannels that each port

hosts.
Stage 1 Stage 2 : Stage 3 : Stage 4 : Stage 5
1 1 1
1 1 1
Physical layer D : : : D Physical layer
1 1 1
—{r]> i : . iy —{T—
1 1 1
1 1 1
1 1 1
Physical layer 1 ! 1 Physical layer
= [: . — Shca b
— o | 1 g
' ' '
Routing Control | ! e 1 !
Unit ! Arbitration | ! T !
1 A 1 1
f unit 1
= o : : Crosshar :
orwardin
tabia 9 i | output Port # 4 control
7 OutputVC #) !
______________________ I_________I______I_______.
1 1 1
VC Input Route 1 SW Arbitration « Switch 1 VC Output
Buffering Computation : WC Arbitration : traversal ' buffering

Image 30 Pipelined Switch michroarchitecture witH2

An example of the increased complexity inside tlohigecture of the switch
with the use of 2 virtual channels is shown at imm8@. Each one of the input

and output ports now hosts 2 VC increasing with teay the number of input

81

buffers and the equal lines that connect them thighrouting mechanism in
stage 2 and with the crossbar unit in stage 4.s@inee also happens and in stage

5 where equal output buffers are partioned in girthannels.

Now the complexity of the routing mechanism incesathus the competing
packets for an exit port may also compete for #reesvirtual channel. We
should consider the complexity of the mechanisrmghrey equally the central
routing mechanism, mean the routing, arbitratioth @wossbar units logic, so

that they can support the new architecture anddabeadlock.

The virtual channel switch and node models thathaplemented are based on
the previous switch model that has explained ipt#rad.2 and uses single
input and output buffers. The logic in the virteaknnel implementation is not
only the partioning of the input and output buffergl virtual channels for one
buffer, but also the altered logic in the centaalting mechanism of the switch
so that can respectively support the use of vithahnelsBased on the

internal architecture pipeline we will explain blyethe traversal of the packets
inside switch in stages, the port and VC allocati@thanisms and the
necessary actions in case of competing packethéossame output port and
virtual channel. In our case we make use of theaircut through switching,

means that thmechanism is applied in packet level and not tridiiel

Routing computation

Our virtual channel switch for the efficient all¢ice of an output port and
virtual channel for a newly incoming packet in gveitch should make use of 2
state field tables. These tables are the inpubarglt virtual channels state
tables, which contain information about the roudmputation and virtual
channel allocation of the switch. The first is tgr GROPC state table that
has informations for the input virtual channeldestnd the second is a 3-vector

GIC state table which has informations for the atifprtual channels state.

Structure and explanation of these tables are slemual in Table 2 for
GROPC and in Table 3 for GIC.

Field |Name Description
G Global State (1) Idle
(R) Routing
(V) Wait output VC
(A) Active
(C) Wait for credits
R Route Stores the Output Port
O Output VC Stores the Output VC
P Pointers Size of packet in the input VC
C Credit coun Empty packet buffer on output

Table 2 Input VC State Fields represented by adevéGROPC

The input virtual channel GROPC state vector tablesists of 5 fields. G field
keeps the global state of the input virtual chanfikis field can be 5 different
states according to the routing logic, and thesdte Idle, Routing, waiting for
an output VC, Active or waiting for credit statédter routing is complete R
field contains the output port information. O fiddds the virtual channel
number on the port R, after the VC allocation imptete. The P field pointers
into the input buffer and gets the size of the packntained into the specific
virtual channel. Finally the last field C is thedit counter which contains the
number of available empty packet buffers for tHeaed output virtual channel
O in port R. The fields of the table are updatedeoper packet while the

routing process continues.

Field Name Description
G Global State(1) Idle
(A) Active

(C) wait for Credits
I Input VC Stores Input Port & Input V

C Credit coun Empty Buffer for packet i
output VC

Table 3 Output VC State Fields represented by aciev GIC

83

The output virtual channel state vector GIC taloliesists of 3 fields. The global
state field has 3 different states for the outpatial channel buffer which are
the Idle, Active or waiting for Credits. The field¢ontain the number of the
input port and virtual channels that forward pasketthis output virtual
channels. Finally the C field has the number oflalsée free packet buffer for

the packet in the selected output virtual channel.

Stage 1

As shown in Image 4.5 in stage 1, the packetsatduhe switch from the
physical level and received by the receivers inintpat ports. The packets
according to their virtual channel number whicktisred in the VC header flit,
are directed and stored in the appropriate inptal channels of the switch.
Now from stage 1 the input virtual channel inforting routing unit so that can
start the routing process and allocate an outpuatgma an output virtual
channel for the packet. The global state (G) figlthe GROPC table which

was ldle until now for the specific VC, turns to<).

Stage 2

In stage 2 of the pipeline the information from treader of the packet is used
by the router to select an output port. The resuhis computation updates the
route R field of the GROPC table with number @& felected output port and
advances the global state (G) of the packet inimgafor an output virtual
channel (G=V). Both actions happen at the sta8tafle 3 in VC switch

pipeline.

Stage 3

During stage 3 the result of the routing computatidormation from the
packets header which was stored in the R fielth@fGROPC table, is used as
input on the Virtual Channel Allocator. If the imden of the value is
successful, the VC allocator search and assignghesoutput virtual channel on

the output port specified on the R field of theléal he result of the virtual

channel allocation updates the (O) field of the GRQable with the virtual
channel number and updates also the global statie{@ to the active A state
(G=A).

In stage 3 are also updated and the fields of et&ble. The result of the
allocation updates the global state G field of {€ table to an active A state
(G=A), thus until now was in the Idle state. Aftee channel turns active, the
() field is updated with the appropriate inforneettj so that can identify the
input port and virtual channel of the packet. Froomw and until the release of
the input buffer by packet, the (C) field of theGXhble is also reflected in the
(C) field of the GROPC table.

For the purposes d@eadlock Avoidance, stage 3 where the virtual channel
allocation takes place, is the point at which aetelency is created from the
input virtual channel to the output virtual chanriéifter a single output virtual
channel is allocated to the packet, the input akizchannel will not be freed

until the packet is able to move its entire conteta the output virtual chanriel
[1 ch16]

Stage 4

In the begging of the stage 4, all the “per pagketessing” is complete and
remains the crossbar to establish a path betweeinplt virtual channel on the
input port, and the output virtual channel on thigpat port. In this stage any
active virtual channel (G=A) that contains buffepatket inside of a certain
size, indicated by the field P on GROPC table, lzesslequal empty packet
buffer space on the output virtual channel (C>0 &&=P), informs the
crossbar. The active virtual channel bids on crasilr a connection between
its input virtual channel and the output port thantains its output virtual
channel. Depending on the configuration of the cdwihis allocation may
involve competition not only for the output porttoe switch but also

competition for the specific output virtual channel

85

Until the allocation process finish the packet stgystored inside the input
buffers of the switch, thus we don’t treat thensegarated flits that progress

with the routing computation and the port and \@tchannel allocation.

Stage 5

In that last stage the necessary information hechesl the crossbar and the
allocation has performed. When the packet is ssfelyg scheduled, releases
the virtual channel at the start of the stage arsiting the virtual channel state
(G) field of the GIC table to Idle (G=I). The saffiredd (G) for the GROPC

table is also updated to Idle, if the input buffeempty.

If the input buffer is not empty, information fdre next packet that is waiting in

the buffer is issued. In that case the state tiangdo routing (G=R).

Analysis of Resource Dependencies for Deadlock Avoidance

The analysis for the resource dependencies isifugos the arbitration unit of
the switch. Inside the arbitration unit are recdittee numbers of the input port
and input virtual channel that contain the packet the requested output port
and output virtual channel. Our unit make use mfuand robin arbiter which can

provide strong fairness to our switch.

The arbitration unit have to resolve the resoueggeddencies that occur when
multiple packets request the same resources. Toiegs is done through the 5
stages of the pipeline architecture which is cotreéed as control into the
arbitration unit. The arbitration unit passes infation into the crossbar and
assures that the input virtual channel in whichptheket is stored, will not let
free until the entire packet pass to the calculatggut virtual channel and

output port.

[M—-—_0 {0
s

0
[M—-—_ [OI—0

Image 31 3 phase arbitration

The used arbitration is a 3 phase arbitration tigglenwhich consists by 3
phases, the Request, Grand and Acknowledgment phaseeed to make use
of 3 phase arbitration because the increased igmat®utputs of the switch
with the virtual channel implementation, increasthg probability of matching
requests. For an input output buffered switch wieiabh input port has an
associated queue, the output port needs to haaakdrbiter with a round robin
strategy. As it seen from the image 31 the arlitnatechnique starts by
submitting requests to the output port arbiterscviieceiving the messages and
through the round robin selecting one of the retgudse arbiters now in Grand
phase giving permission to the selected for Grapdtiport. Thus the requested
for Grand input ports may request for more thanautput port, they may
receive more than one Grands. In the last phasenpiut ports select one of the
responded output ports and send an Ack to confierselection of the output
port. The used 3 phase arbitration provides 75%ieffcy thus the 3 of the 4
requests are granted to output ports, in compaxistina 2 phase arbitration

that provides only 50% efficiency.

87

To understand and solve deadlock, we have to seeassible routes that the
packet traffic inside network can have. As deadisakreated when packet
turns in other coordinate in order to reach itdidaton, we have to detect the
turn in the coordinate and increase the numbérefirtual channel through
which the packet will be directed. As it shown orage 32 the cases 1, 2, 3 and
4 are packets that follow the coordinate X, dirddig the DOR algorithm, and
make a turn to coordinate Y to reach their destinat In this point is where
deadlock has possibilities to occur, thus multgdekets may require the same

output port.

Tum cases
[1L[21.[3].[4]

[8].. N) { Mo Turn cases
[5L[6LI71.[81

Image 32 Cases of Packet Traffic

To detect the transitions from one coordinate wmlaer, we need to know the
coordinate on the input port and the coordinatdefoutput port, which means
the position of the packet in comparison with gstihation. With that way we

know from what coordinate the packet comes andhiciwis going

This calculation takes place inside the arbitratioit that has the local
coordinate informations and is informed also byrihgting unit about the
coordinate of the input and output ports. The oaihpares the entrance
coordinate value with the output coordination vadne detects if there is a turn
on the coordinate. If the arbitration unit detechange on the coordinates, pass
this information to the arbitration unit which watlvance the packet to the next

class of virtual channel through the round robitigyo Now the packet follow

the next in class virtual channels, avoiding tceeirt the first virtual channel
which can be used by a packet that travels in opedinate. From the image 32
we create an offset table based on the offset gdtoen the 3 switches that each
packet passes. With that strategy we avoid thelgbigsthat will occur a
deadlock.

89

5 Design

The design of the switch and node model is thrabhghOpnet network
simulator version 14.5.A. The basic model, in whicin implementation is
based, has been created in version 14.0.A of thelaior. In this chapter, it
will be presented the several modules that cresidal channel switch, how
these are connected between them and what isrieédo of each module
separately. The explanation of the design willdalithe pipeline architecture of
a virtual channel switch, which has explained i pihevious chapter of the
analysis. In our model, we make use of 4 virtuargtels, providing with that

way 3 more alternative paths for the packets ts ga®ugh the switch.

5.1 General Switch Structure

In the virtual channel switch, the partition of fheut buffers into virtual
channels cause the need of equal packet streasthiatwill connect the input
buffers with the crossbar unit. The internal stuoetof the switch is presented in
the image 33.The switch architecture consists wérse parts. First and basic is
the switch unit that initializes the functions afreswitch like the ports. The
input unit, which is at the entrance of the switobrsists of the virtual channel
selection unit and the input virtual channel bidférhe central mechanism
consists of the routing, arbitration and crosslratisythat all together
accomplish the routing logic of our switch. In #rdt of the switch, there are
the output buffers and the forward unit that semaispackets into network.

For the input unit of our switch, the virtual selen unit is connected to the
input virtual channels with four packet wires. Thisecause the virtual channel
selection unit recognise the vc header on the paaicaccording to the virtual
channel state sends the packet through the apptemtiannel. The same design
in connections also follows the input virtual chahbuffers which are

connected with the crossbar unit, through packetsyiequal with the virtual

channels.

91

In the exit ports of the switch the output virteabknnel buffers are also
connected with the crossbar with equal packet lasesthe output virtual
channels. They store and process the packet thregugd number of channel to

the forward unit.

Port number gwitch Fort nuomber 1
....... 1 Toput . sonfiguration oukput A A
i Fort send
pk_receivEd TR _ﬁ____ -
s —
B m=]&
Bx_1 i syritch_info Wi _ontl fowardl Tx_ 1

Eounting
Logic

Ti_out? fowardZ TI_2

Ti_outd fowardd

conbing

Criionitor]

e e _
=l [=&

AME_=w_Handler wi_ontd fowardd T,

Ti_oukth fowards

===

-
.fﬁ,
n

!
2
HH

i 6 wo_ing ve_outs fowardf

1
i
m

1
|
7 we_in? | vCc_ouk? foward? T 7
|
[—1_._L FEeml ﬁ
—
B —{ll— —t[ll=x_|— =
RE 3 VC_ind ve_ontd fowardd T¥ &

Image 33 VC switch structure

The switch module is the module with the highegirfiy in our switch because
it initializes all the input and output ports oktbwitch while making checks for
the switch neighbours and creates the topologwtiravhich are connected.
The switch module also is important because infdimregouting unit with the

routing algorithm that runs for the simulation

In the central part of the switch the routing medisl responsible to receive
information from the input virtual channel buffedsout the packet that are
waiting to be routed. The routing unit have to adte the appropriate output
port and inform the Virtual Channel Arbitration tiifhe virtual channel
arbitration unit is receiving that informations aafter the necessary
calculations that will resolve any resource depaoiss which may occur, pass
the information to the crossbar. Now the crossisargithe information will
establish a link between the input and the outptial channels, so that the

packet can pass.

5.1.1 Input Virtual Channel Buffers

The input virtual channel buffers are the unit thattains our virtual channels
into it. The module, for the representation of ¢ireual channels, provides the
advantage of having finite or infinite buffer sime our virtual channels. The
module is connected with the receiver of the switghhat can receive the
incoming packet from the physical layer and witd tnossbar through packet
streams equal to the number of our subqueue, icame four. The internal

states of the module are shown below in image 34.

VIRTUAL CHANNEL
INPUT EUFFERS

07 A0

Image 34 Input virtual channel buffers

Init
Unit starts with the init process where initialtbe functions that will use. It

starts with registering the local statistic thag@éng to use for the

93

communication with the routing unit. Next the ur@teive the input port and
the number of the subqueue in which is partitioaed allocates dynamically a
space on the memory to store the current outgoaicleis. After the
initialization proceed to the next BRANCH state.

Branch

The module now pass through an empty conditiohédBranch state where is
idle, waiting an interrupt to occur. Depending ba type of interrupt or the

value that the interrupt it carries, the modulecpeal to the corresponding state.

Ins Tail

The first state that is enabled with a stream roferis the INS_TAIL. Here the
module receives the packet from the incoming straathread its virtual
channel number from its header. Next the statewvesehe size of the packet
and the packet id and check if the subqueue wtadtesponds to the virtual
channel number is empty. If the subqueue is entipgypacket is inserted in the
tail of the subqueue and the module inform theinguanit, through a statistic
wire, that a packet has inserted in the specifit @od the specific virtual

channel subqueue.

Send Head

This state is the next that is enabled with an ssagerrupt by the crossbar.
Here the state makes a check in the subqueuddapiecific virtual channel
number, to see if it has a waiting packet in thadhdf it is, the state making
access to the head of the subqueue to receivatkefpwhile calculates the
latency of the buffer. The packet is removed frbmhead of the subqueue and
the size of it and its id are stored before theesdand the packet to the crossbar
unit. The state here for simulation reasons anddaa the internal bandwidth
of the switch, the switch delay and the packet, sizealculates the time that the
packet needs to entirely leave the subqueue. Bas#us time causes a self

interrupt that passes the module to the next state.

PKSENT
The PKSENT state is enabled with the self interaipghe Send_Head state after
the small time delay. Now a second check is madiegt@ubqueue to see if new

packet has reached the Head of the subqueue \wkilagt packet was leaving.

If in the head exist a packet the unit informs omzere the routing unit through

a statistic for the input port and subqueue in Whie packet is stored.

END_SIM
This state is inactive and is activated only if med to, with an exit interrupt.

The state is used only to store simulation inforamainto a text file.

5.1.2 Routing Unit

The routing unit is the responsible unit that iiild an exit port to our packet
based on the current position of the switch, traidation information that the
packet carries and the routing algorithm that exitch uses. The unit is
connected with statistic wires with every inputtpafrour switch to receive
information about the packets that waiting to beted, with the arbitration unit
in which will pass the calculated output port numéed finally with the switch
unit of our switch from which receives the forwaathles that will use. The

internal structure of the routing unit is showntba image 35.

{RECEIVE_FORT_IHF0}

B e o e i
: ; :
98 /0 5340 EEAN LY “/
hS ¥ -
E‘UPW:%RF[‘EBLE \\ /,/ (END_SIM)/clean_men_routing()
i} ' RS

Ny // {COMPLETED}

Image 35 Routing unit

I nit

The routing unit begins its function by initializjihe necessary variables in the
unforced state Init. Here the unit receives infaroraabout the connected to its
ports, the internal bandwidth of the switch. Heralso allocated and initialized

a structure that will be used with a round robmatstyy to search between the

95

connected ports to it to find in which port exiatpacket that is waiting to be
routed. Before it proceed to the next state theuteoititialize the local
statistics which are going to inform the arbitratend AMR units with the
appropriate informations from each one. After thidlization, the module
expects an incoming interrupt by the switch infdt,uie proceed to the next

State.

Store FT

The Store_FT is enabled by an incoming interrupinfthe switch info unit. The
state reads the incoming information like the supggbvirtual channels for each
port and receives a port configuration pointer witkich will create the forward
table of the routing unit. Next make a check alibatlogical position of the
switch, based on its coordinates, and the routiggrishm that will be used by

the switch.

Idle

In this state the routing unit cleans the memonitlie waiting to be routed
packets structure, that has initialized in the $téte, and waits for an incoming
by the input subqueues interrupt. If an interrupiu, the state receives the
contained by the interrupt information, increasesrtumber of the waiting to be

routed packets and proceeds to the Route state.

Route

The Route state receives the information by theriring interrupt and with a
check on the destination field that the packetieamnd the combination of the
routing algorithm; the unit finds the output partwhich the packet should go.
After the routing process is complete, the statarcs the allocated memory that
has been used by the particular input port formta#ing to be routed packet and
decrease the number of the packets that are waitibhg routed. The state
checks the number of the output port given by geduouting algorithm and
updates specific information fields. Before thdesgxits, creates a self interrupt
based on the switch delay time and, after this Bymassed, it proceeds to the

Routing state.

Routing

The routing state is an unforced state. Here thdiRgp state uses two self
transitions. The one is to clean the allocated mgrsioucture and the other to
wait and receive an incoming interrupt by the inputbqueues, for a packet that
is waiting to be routed. If an interrupt occur #tate receives the incoming by
the interrupt information and proceeds to the Ribstate to complete the

routing execution.

Routed

The Routed state checks if routing calculation siacessful and if it is,
prepares the calculated information, including rema the calculated output
port and sends it to the arbitration unit of thétchy through a statistic wire.
The unit also sends a port map structure thatezlie connected ports of the
switch with its coordinates, so that arbitrationt @wan detect a turn on the

coordinations.

Between the states Idle, Route, Routing and Rastatmed a cycle that
makes the routing module ready to receive and pbt® output port
calculation, for each packet that is waiting tordsated, until no packet is

waiting for the routing process.

5.1.3 Arbitration

The Arbitration unit is located between the routingt and the crossbar unit.
Receives the calculated by the routing unit infdrorathrough a statistic wire
and after the arbitration calculation passes tf@rimation also through a
statistic wire to the crossbar unit. The unit isp@nsible to resolve the Deadlock
phenomenon, providing the correct output virtuaratel information to the

crossbar unit. This unit is shown in image 36

(ARETTERATE)

Image 36 Arbitration unit 97

In Init state, the module initializes the localtistic that going to use, to pass its
calculated information to the crossbar unit. Aftex initialization, it proceeds to

the next state.

Idle
Here the module is waiting for an incoming intetrbyp the routing unit. If an
interrupt occurs, the module pass to the next stheye it will begin the

arbitration process.

ARBIT

In the Arbit state, the unit receives the incomtyghe routing unit information.
The unit based on the input and output port numthexishave received,
calculates the streams through which the crossihilareeeive the packets from
the input subqueues and through which stream iltighem to the
corresponding output ports. In this state alsaatibération checks if between
the input and output ports exists a turn on thedioations from X to Y or the
opposite. If the state detects a turn, changesuhwer of the virtual channel
providing with that way the deadlock avoidance ppthat we need for our
Mesh models. The state prepare the informationthkeinput and output
streams and the input and output virtual chanrmedssand this information
through a statistic wire to the crossbar. The Dealdhvoidance policy that

detects the turn on the coordinations is showrhertable 4.

/I HERE DETECT A TURN ON THE COORDINATE

If((((output_port == y_negative) || (output_port == y_positive)) &&
((input_port == x_negative) || (input_port == x_positive))) ||
((output_port == x_negative) || (output_port == x_positive)) &&
((input_port == y_negative) || (input_port ==y_positive))

)

{

if (input_vc==3) output_vc=0;
else output_vc = input_vc++

}

/I NO TURN ON THE COORDINATE HAVE DETECTED

If(((output_port == y_negative) && (input_port == y_positive)) ||
((output_port == y_positive) && (input_port == y_negative)) ||
((output_port == x_negative) && (input_port == y_positive)) ||
((output_port == x_positive) && (input_port == x_negative)) ||

{

output_vc = input_vc;

)

Table 4 Deadlock Avoidance Policy

In the Deadlock Avoidance policy that is shown ablé 4, the unit receives the
coordinate values from the input port that the patlas entered inside switch
and compare that value with the coordinate valubebutput port that the
packet needs. The unit now is able to detect thagd on the coordinate and if
that happen, increase the class of the virtualméldield through a round robin

algorithm.

For the case of torus that we need the datelineypdliere the module checks
the logical position of the switch and in case thatswitch is in the dateline
limits of our network, the module provides the diatepolicy that affect the
virtual channel fields. A sample of the code tlsatcluded in this module for
the dateline classes in the X an Y coordinatestofws topology, follows below

on table 5.

op_ima_obj_attr_get (node, “X”, &x_label);
op_ima_obj_attr_get (node, “Y”, &y_label);
if ((x_label==0) || (y_label==0))

{if (vc==3) {vc=0;}

else vc++;

Table 5 Dateline classes for Torus

In the code that is shown on table 5, the stateives the logical local
coordinates of the switch and checks if these dnates mach with the dateline
coordinates of the topology, meaning the coordiXat@ and Y=0. If the check
detects that the packet pass from those coordimagdse a check on the virtual
channel header flit of the packet and increaseittal channel number

through a round robin calculation.

99

5.1.4 Crossbar

The crossbar unit is the last part of the routogjd. Crossbar unit is connected
with the arbitration unit with a statistic wire frowhich receive the information
calculated by the routing and arbitration unitse Thossbar is also connected
with each subqueue of each input port through gastkeams, counting totally
32 connections which is the result of the 8 inputethat our switch uses
multiplied by the 4 subqueues (virtual channels} tach port hosts. The same
number of packet streams exists also in the extietrossbar unit, to connect
the unit with the subgueue in the output ports. ifiternal structure of the

crossbar is shown in the image 37.

Image 37 Crossbar unit

I nit
In the Init state the module initialize the streahmet will use for the receipt and

sending of the packet and the number of the vithahnel that each port hosts.

Idle
In the Idle state, the Crossbar unit expects arrmpt to occur caused by the

arbitration unit. When an interrupt occur the yoritceeds to the Crossing state

Crossing
In the Crossing state, the Crossbar unit recelvegnicoming by the arbitration
information, and based on that information acquargacket from a specific

input port and input virtual channel. If the conti@e is established, the

Crossbar unit that received the packet, readsfoemation carried by the
packet fields and if it is needed updates somddidifter this calculation, the
unit passes the packet to the corresponding ostpam that will lead the
packet to the output port calculated by the rousitgprithm and the output

virtual channel calculated by the arbitration unit.

5.1.5 Output Virtual Channel Buffers

The output virtual channel buffers are locatechmlast part of the switch after
the crossbar unit. The unit is connected with tlossbar with packet streams
equal to the number of the virtual channel subgsi¢iugt hosts, and has equal
packet stream connections with the forward unéraft Also a statistic wire
from the output virtual channel buffers informs tiext unit that a packet is
ready to be sent from the buffers to the physegét. The internal structure of

the output virtual channel buffers is show at thage 38.

Image 38 Output virtual channel buffers

Init

In the Init state, the unit receives the numbehefsupported ports by the
switch, the number of the specific port in whiclsiaind the number of the
subqueues hosted by the buffer. Before exit thestate, the unit allocates a
space in the memory for the outgoing packets byttieand initialize the local

statistic through which will inform the forward wrfior an outgoing packet.

101

Ins Tail

In the Ins_tail state, the unit receives the incagrpacket by the input stream
and reads the virtual channel number that the pasekees in its VC field. The
unit obtains the packet size and checks if the seibg with the same number as
the virtual channel field is empty. If the subqué&iempty, the unit insert the
packet to the tail of the subqueue and informsutjinca statistic wire the
forward unit that the specific subqueue has a gadkesn returns to the idle
state where waits for the next interrupt to ocawd have access at the Head of

the subqueue.

Send Head

In the Send_Head state, the unit receives the sicegaest to access the
specific subqueue. The unit checks if the requestibdueue is empty and if it's
not, it access the first packet that is on the H#dtle subqueue, and gets the
size of that packet. Next the unit calculates #tericy for the specific subqueue
and removes the packet from its Head. The units#émremoved packet by
the subqueue and sends it to the forward unit witbausing an interrupt,
because earlier had informed the forward unit tghothe statistic wire. The

unit based on the packet size and the bandwiditis 6ihe, calculates the time
that the packet needs to entirely leave the sulard based on that time

creates a self interrupt that will lead the unithte next state.

PKSENT

After the expiration time of the caused interrup tinit enters the PKSENT
state. Here the unit makes a second check to tha dfethe subqueue to see if a
new packet has arrived in the Head of the subquiile the last was leaving
the subqueue. If a new packet has reached the subdie unit informs once

more the forward unit through the statistic wire.

5.1.6 Forward unit
The forward unit is the last unit of the switch drefthe packets are sended to
the physical layer. The unit is connected withdligut virtual buffers with four
packet wires through which will receive the packed also with a statistic wire
from which is informed when a packet is enterindgeaving a subqueue. The

unit is also connected with the transmitter ofshdtch through a packet stream

to pass the packets to the physical layer. Theriatestructure of the forward

unit is shown below in the image 39.

{ENABELED}

{,
1
|

Image 39 Forward unit

I nit

In the Init state the unit makes the necessarializiation, by receiving the port
number in which the unit is located. Also in th# gtate is allocated a structure
on the memory so that can hold in each subquetleajutput virtual channel
buffers are packets that waiting to be forward. Wthee unit finish with the
initialization process, proceeds to the idle statere waits for the next

interrupt to occur.

Receiving

This state is enabled first by the statistic intptithat connect the unit with the
output virtual channel buffers. The forward unitriformed that a packet exists

in the head of the subqueue and wants to be forteatte physical layer. Here
the unit informs the allocated structure tabletfar subqueue that has the packet
stored. The unit calculates the time that the pao&eds to be forward and

makes a self interrupt based on this time delagrdéceed on the next state.

Send

After the small delay the unit enters the Sendestdere the unit make access to
the requested stream that caused the interrupdféerda small check to the
stream, to see if its empty, receive the packen fiie specific subqueue and

forwards it to the physical layer.

103

6 Experimentation and Simulation results

In the 6" chapter, we will view the experimentation designthe three
topologies and the strategy that we will followcteate and study the deadlock
phenomenon. Different configurations will be exaeuror the topologies of
Fat Tree, Torus and Mesh topologies. The colleedits will be evaluated so
that we can see the efficiency of the inserted ekdvoidance mechanism, in
comparison with the increased latency that caus#eetdata traffic of the three

networks.

6.1 System Details

The simulation models and the simulation process li@ken place in a
personal laptop that running an Ubuntu 8.04 opagatiystem, with Opnet

modeller version 14.5.A installed.

In our Opnet switch models, we set the size ofripat and output virtual
channels of the switch in the minimum size of p&skieat they can accept. In
detail, the size of each virtual channel is sehéominimum, so that can accept
only one packet of 1024 bits for each virtual crenWwith that configuration

we increase the probability that more than one gidels the need for the same
buffer resources, and because it has the bufféreahinimum size, we force

the network to produce a deadlock on these ressurce

Each simulation will run for packet load from 2@04000 Mbps / node with a
step of 200 Mbps / node for each topology. Throtinggkwe will observe how
each topology reacts for the same amount of loddranase of torus with
different deadlock configuration. The size of thes¥l and Torus topologies will

be 4x4, and for the Fat Tree we will use a treé i@ end nodes.

105

6.2 Simulation models

6.2.1 Mesh

In the Mesh topology, it will be examined the cgnufiation for deadlock
creation as it shows in the image 40. A cycle béllcreated on the packet
traffic, by assigning 4 distinct source nodes tadseackets to equal destination
nodes in a cyclic manner. With that way provideuo network the ideal
conditions so that a deadlock can occur in theunress of the internal switches

of our network.

Image40 Mesh — Deadlock Configuration

The source nodes S1, S2, S3 and S4 will send matkéte equal destinations
D1, D2, D3 and D4 of the network, respectively.y&le on the packet traffic
will be created between the destination nodes attdthe configuration of the
virtual channels to accept only one packet in thaffers will provide us the

deadlock.

We will examine the offered and the received dasal lon the network, so that
we can see if due to deadlock we lose packetsdrtkig network. Also, we will

examine the latency of the packets as we incréeseftered amount of packet
load to the network. We should see an incremerthewalue of the latency,

because the deadlock avoidance mechanism hastdatalnow for more

requests for the inserted packets on the switch.

6.2.2 Torus

In torus topology, we will take advance of the weaipund links with the
combination of DOR algorithm to create deadlockni@ end switches of the
network. In comparison with the Mesh topology wire effort of the traffic

load creates deadlock in the central switchesefdpology.

Thus, the wrap around links provide extra pathb¢otraffic load, we use an
extra configuration on the switch mechanism fordh&line classes that the
virtual channel implementation need on the Torpekngy. The below example
on image 41 will be examined so that we force deadio occur on the end

switches

i Y Dateline
] «-

(S) Source Nodes (D) Destination Nodes X Dateline

Image 41 Torus Deadlock Configuration & DatelindiByp

The traffic is controlled so that we can send peck®m the source nodes S1to
S8 to equal destination nodes D1 to D8, respegtifdéle configuration will be
tested with and without the dateline policy so thatcan see the effect of it.
The dateline policy should change the number @afialrchannel, through which
the packet will be directed, when the packet reastvitch on the coordinates
X=0 and Y=0. With that way we will break the cirdleat is created when the

packets will try to use the wrap around link.

107

If we see the example of image 41 separately fon eae of the intermediate
switches that each packet has to travel from isceto each destination, we
will create the below tables. These tables map#tle for each packet and
showing the change of virtual channel when thelidatgolicy is applied to the
switches. The selected dateline is the axis Y=0eflMthe packets pass from that

axis, they change virtual channel breaking with thay the circular

dependency.

Virtual Virtual Virtual Virtual

channel channel channel channel

at at at at

Switch 1 Switch 2 Switch 3 Switch 4
Source 0 0 0 0 Destination
Source 2 0 0 0 0 Destination 2
Source . 0 0 0 0 Destination :
Source 4 0 0 0 0 Destination 4

Table 6 Torus without the use of VC

In table 6 we see that all the packet s that trangédle network use the virtual
channel 0, making with that way a dependency taterbetween the resources
that the packets want to access on the switchés dépendency cycle is

avoided with the use of the dateline policy.

Virtual Virtual Virtual Virtual
channel channel channel channel
at at at at

Switch 1 Switch 2 Switch 3 Switch 4
Source 1 0 0 0 0 Destination 1
Source . 0 0 0 1 Destination :
Source 3 0 0 1 1 Destination 3
Source - 1 1 1 1 Destination -

Table 7 Torus with the use of VC

Now when the packets are passing from a switcharakis Y=0, they change
the virtual channel class which are going to useuh round robin. The result
of this is shown on table 7. The packets that assed from the axis Y=0
have increased their class to one, breaking thertlgmcy that can be created
and avoiding a deadlocked situation to occur. Weview now that our table
has created a small lower triangle of 1 and a liggeer triangle of 0. That

change on virtual channels can provide us a deladitee network.

6.2.2 Fat Tree

In the fat tree topology, we will examine a netwofkl6 end nodes. Thus the
topology does not have turns or wrap around lingsstwould see that no
deadlock occurs and for that reason there is nkapdass due to deadlock on

that topology or increased latency due to extrautation inside switches.

6.3 Result Evaluation

Mesh

In mesh topology we have created the deadlock gorgtion that has explained
in the previous section of the chapter. We foréedrntetwork with traffic load
and with the minimum size of packet buffers so ttaat make the deadlocked

configuration occur in the internal switches.

| Formatted: Font: (Default) Times New
Roman, 12 pt

Deadlock Configuration DOR

Image 42 Deadlock Avoidance with the use of DOR.
109

As we use the Dimension Order Routing (DOR), th#fitrload is directed first

on the axis X and when it reaches the equal coatelivi as the destination,

makes a turn to this axis. Based on the DOR algoritve have seen that we

cannot produce deadlock in mesh topology thus weupwrder on the routing

of the packet traffic, eliminating the routing fraris Y to X as a first step. The

turns from Y to X and from X to Y make the traffi€ the topology create a

circle and deadlock to occur. Therefore, this apunfation has been tested

without the use of the virtual channels becausg &ne not needed.

Torus

In the Torus topology, we forced the system with dlieadlock configuration that

has explained on section 6.2.2. The packet budfetise switch were limited to

the size for 1 packet, so that we can force thevaré&tto produce deadlock on

the end switches. The results collected by thelsitiom without the use of the

dateline policy are shown on the below table 7.

Load Global Offered Global Latency Global Global Global
Load Received Load (sec) Generated packets Received packets Load Difference
(Mbps / node) (Mbps / node) (Mbps / node) (Mbps / node) (Mbps / node)
200 1,00E+008 1,00E+008 1,58E-006 781256 781256 0
400 2,00E+008 2,00E+008 1,58E-006 1,56E+006 1,56E+006 0
600 3,00E+008 3,00E+008 1,58E-006 2,34E+006 2,34E+006 0
800 4,00E+008 4,00E+008 1,58E-006 3,13E+006 3,13E+006 10
1000 5,00E+008 5,00E+008 1,58E-006 3,91E+006 3,91E+006 10
1200 6,82E+008 3,41E+008 1,63E-006 24 12 12
1400 8,03E+008 4,01E+008 1,58E-006 16 8 8
1600 8,65E+008 2,16E+008 1,42E-006 16 4 12
1800 9,20E+008 2,30E+008 1,42E-006 16 4 12
2000 1,45E+009 2,42E+008 1,42E-006 24 4 20
2200 1,45E+009 2,42E+008 1,42E-006 24 4 20
2400 1,45E+009 2,42E+008 1,42E-006 24 4 20
2600 1,45E+009 2,42E+008 1,42E-006 24 4 20
2800 1,45E+009 2,42E+008 1,42E-006 24 4 20
3000 1,94E+009 2,42E+008 1,42E-006 32 4 28
3200 1,94E+009 2,42E+008 1,42E-006 32 4 28
3400 1,94E+009 2,42E+008 1,42E-006 32 4 28
3600 1,94E+009 2,42E+008 1,42E-006 32 4 28
3800 1,94E+009 2,42E+008 1,42E-006 32 4 28
4000 2,42E+009 2,42E+008 1,42E-006 40 4 36

Tablet 7 Deadlock configurations on torus withowtual channels

We can see that when the amount of traffic loaggmthe limit of 1000 the
system is fulfilled of packets and the generatezkets that inserted inside
network are reduced to the minimum. Now we seedbatllock has occurred
and the network is paralysed without being ablertmress the generated packet
traffic through it. The collected results by theU® simulation for the values of
global latency, for various loads of packet trafiice shown on the chart 1. We
see that the latency decreases significantly dnelimit of 2000 Mbps / node

and stays in stable value, for all the loads owat value. That is caused because
the amount of traffic load produced by the nodes, tecreased significantly

and the received by the node packets have a stat#ption rate.

Torus Load / Latency
1,65E-006 -
1,60E-006 - /A
1,55E-006 - \
1,50E-006 -
1,45E-006 - \
1,40E-006 -

1,35E-006 -
1,30E-006

Latency

400 800 1200 1600 2000 2400 2800 3200 3600 4000

Traffic Load

Chart 1 Torus Load / Latency chart

Generated / Received Packets

10000000

8000000
6000000 /A\
4000000 \

2000000 —#
0 71-0-0-0-0-0-0-0-0-0-0-0-0-0-«

200 600 1000 1400 1800 2200 2600 3000 3400 3800

Packets

Traffic Loads

Received packets = —#=—Generated packets

Chart 2 Torus (Generated /Received Packets)/ Load

111

The detection of deadlock can be seen by the ogaakets in the network
traffic. When the network paralyse the amount céieed by the node packets
is decreasing, thus many blocked packets are waitithe buffers of the
switches. This difference between the generatedes®ived amount of packets

is shown on the chart 2.

Load Difference
40
35 /
530 ,/
%25 /
8 20 7
% 15 4
3 10 —\
’ /
0
O O O O O O O O O O O O O O O oo o o o o
O O O O O O O O O O O O O O o O o O o o
N < O 00 O N < O 00 O N < W 0 O N < O 0 O
™ 4+ A 4 N N NN ANOO OO O 0O S
Load
Load Difference

Chart 3 Packet loss on various traffic loads

As we increase the amount of traffic load we segtte packet loss increases
with a non normal rate. With more traffic load phsithe network the packet loss
increases thus more packet are staying blockederibe buffers of the

switches.

The dateline policy applied on our simulation magakve caused an
unexpected behavior on the switches. When theyphhs applied and forced
the packets to change their virtual channel cligsswitch was trying to reach
packets from the input buffers finding them emptye incoming packets had
informed the central routing mechanism of the switcfind them an output
virtual channel and output port through the routangl arbitration unit. Even if
the crossbar received the information correctly tiedl to access the packets in

the correct input and output port, found thosedrsfivhere recognized as

empty. This problem didn't give us the opporturidgystudy in the torus
topology the dateline policy, through the collecsgdulation results. However,
from the analysis showed at section 6.2.2 we carhew deadlock should be
avoided and network could work normally at loadghleir than 1000 Mbps /

node.

113

7 Conclusions

In this work, we have examined the problem of comitation deadlock for
interconnection networks. This kind of networksiggd in High Performance
Systems and they are a key component of them. Belad one of the problems that
can appear and provokes network paralysation. Deldlan appear when there is a
circular dependency of some of the resources ofitiwork. In this case, network
buffer are the resources that can produce deadieg&nding on the routes the
packets use as determined by the routing algorithratder to avoid deadlock, we
use the technique of virtual channels. Using théhhique, each physical channel is
split into several virtual channels so several paflows can use the physical channel
in a multiplexed way over the time. In order teate several virtual channels from a
physical channel, we need to split the buffer assed to this physical channel and

assign each part to a virtual channel.

For conclusions over the phenomenon of deadlodk thié use of virtual channels, in

high speed interconnection networks, we can comctudthe below.

Deadlock can be avoided in Mesh topology with tee aof DOR algorithm. The
algorithm restricts the packet traffic in specificler on accessing firstly the axis X
and then the axis Y, providing with that way a deeklfree configuration on the
network. DOR is putting an order to the traffic alaninates the possibility of

dependency cycles between packets and buffers.

The deadlock phenomenon in torus can be avoidddthét use of a dateline policy on
its axis. The policy has to be applied on both &risause the torus topology make
use of the wrap around links that form a ring toheane of its axis. The dateline
policy breaks the dependency on the buffers trepttkets require, by increasing the

class on the virtual channels through the roundhrpblicy.

Deadlock cannot occur in a topology like fat tieestthe topology is not a

geographically order topology with possibilities tomn between the axis X and Y

115

thus those axis does not exist. The fat tree méatigaithe packet traffic by sending
the packet from the leaf nodes to the root and omme= back to the leaf nodes. The
packets follow and order to their traversals oternetwork without having the
possibility due to network topology to turn andateewith that way a cyclic
dependency.

8Bibliography

[1] W. J. Dally and B. Towles, "Principles and prees of interconnection networks".
Amsterdam; San Francisco: Morgan Kaufmann Publstafi04, iD: 52902442,

[2] Timothy Mark Pinkston and Jose Duatdppendix Eof Computer Architecture:
A Quantitative Approach”, 4th EdElsevier Publishers, 2006.

[Online] Available :http://ceng.usc.edu/smart/slides/appendixE. f{fuly 2009)

[3] J. Duato, S. Yalamanchili, and L. M. Ni, "Intennection networks. An
Engineering Approach"”. San Francisco, CA: Morgauthann, 2003, iD:
52616057.

[4] Chien-Chun Su and Kang G. Shin, "Adaptive DeektFree Routing in
Multicomputers Using Only One Extra Virtual Charinéh International Conference

on Parallel Processing, volume |, Page(s):227 - 231

[5] Smit, Gerard J.M. and Havinga, Paul J.M. anob®el, Walter H. (199Yirtual
lines, a deadlock-free and real-time routing medlanfor ATM networks.
Information Science : Informatics and Computer Boge An International Journal, 85
(1-3). pp. 29-42. ISSN 0020-0255

[6] Dobkin, R. Ginosar, R. Cidon, I. (2007). "QN@&Gynchronous Router with
Dynamic Virtual Channel AllocationFirst International Symposium on Networks-
on-Chip, NOCS 2007Page(s):218 - 218.

[7] Alzeidi N., Khonsari A., Ould-Khaoua M., Mackae L., "A new approach to

117

[Field Code Changed

model virtual channels in interconnection netwo¢(R807) Journal of Computer and

System Sciences, Volume 73, Issue 8, pp. 1121-1130

[8] V. S. Adve, M. K. Vernon, "Performance AnalysiEMesh Interconnection
Networks with Deterministic Routing”, IEEE Trangaos on Parallel and Distributed
Systems, Volume 5, Issue 3 (March 1994, Pais: 246

[9] Gerard J. M. Smit, Paul J. M. Havinga, WalterTibboel: "Virtual Lines, a
Deadlock-Free and Real-Time Routing Mechanism folMANetworks". Information
Sciences—Informatics and Computer Science: An tatigsnal Journal 85(1-3):
pages 29-42 (1995)

[10] Mullins, R., West, A., and Moore, S. 2004. Vizdatency Virtual-Channel
Routers for On-Chip Networks". In Proceedings & 81st Annual international
Symposium on Computer Architecture (Minchen, Gegmanne 19 - 23, 2004)
Page(s): 188 - 197

