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POSITIVE SOLUTIONS OF NONLINEAR PROBLEMS
INVOLVING THE SQUARE ROOT OF THE LAPLACIAN

XAVIER CABRE AND JINGGANG TAN

ABSTRACT. We consider nonlinear elliptic problems involving a mnonlocal
operator: the square root of the Laplacian in a bounded domain with zero
Dirichlet boundary conditions. For positive solutions to problems with power
nonlinearities, we establish existence and regularity results, as well as a priori
estimates of Gidas-Spruck type. In addition, among other results, we prove a
symmetry theorem of Gidas-Ni-Nirenberg type.

1. INTRODUCTION

This paper is concerned with the study of positive solutions to nonlinear
problems involving a nonlocal positive operator: the square root of the Lapla-
cian in a bounded domain with zero Dirichlet boundary conditions. We look for
solutions to the nonlinear problem

Aipu= f(u) in €,
u=0 on 09, (1.1)
u>0 in €,

where ) is a smooth bounded domain of R™ and A,/ stands for the square root
of the Laplacian operator —A in ) with zero Dirichlet boundary values on 0f).
To define Ay s, let { A, pr}72, be the eigenvalues and corresponding eigenfunc-
tions of the Laplacian operator —A in €2 with zero Dirichlet boundary values on
09,
—App = My in €
{ Pr = 0 on Qa
normalized by ||¢x||r2(@) = 1. The square root of the Dirichlet Laplacian, that
we denote by Ay /s, is given by

u = Z Ckgok — Al/gu = Z Ck>\]1c/2§0k7 (12)
k=1 k=1

which clearly maps H}(2) = {u =7, ckpr | Dopey AeCh < 00} into L2(2).
The fractions of the Laplacian, such as the previous square root A/, are
the infinitesimal generators of Lévy stable diffusion processes and appear in
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anomalous diffusions in plasmas, flames propagation and chemical reactions in
liquids, population dynamics, geophysical fluid dynamics, and American options
in finance.

Essential to the results in this paper is to realize the nonlocal operator A/,
in the following local manner. Given a function u defined in €2, we consider its
harmonic extension v in the cylinder C := Q x (0, 00), with v vanishing on the
lateral boundary 9;C := 9Q x [0,00). Then, Ay, is given by the Dirichlet to
Neumann map on §2, u — % lax oy, of such harmonic extension in the cylin-
der. In this way, we transform problem to a local problem in one more
dimension. By studying this problem with classical local techniques, we establish
existence of positive solutions for problems with subcritical power nonlinearities,
regularity and an L*-estimate of Brezis-Kato type for weak solutions, a priori es-
timates of Gidas-Spruck type, and a nonlinear Liouville type result for the square
root of the Laplacian in the half-space. We also obtain a symmetry theorem of
Gidas-Ni-Nirenberg type.

The analogue problem to for the Laplacian has been investigated widely
in the last decades. This is the problem

—Au= f(u) in €Q

u=20 on 0%, (1.3)
u >0 in
see [24] and references therein.  Considering the minimization problem

min{||ul g1 (q) | [[ullzr+1(@) = 1}, one obtains a positive solution of in the case
flu) =uP, 1 <p< Z—fg, since the Sobolev embedding is compact. Ambrosetti
and Rabinowitz [I] introduced the mountain pass theorem to study problem ([1.3))
for more general subcritical nonlinearities. Instead, for f(u) = u%g, Pohozaev
identity leads to nonexistence to if ) is star-shaped. In contrast, Brezis
and Nirenberg [4] showed that the nonexistence of solution may be reverted by
adding a small linear perturbation to the critical power nonlinearity.

For the square root A/, of the Laplacian, we derive the following result on
existence of positive solutions to problem ([1.1]).

n

Theorem 1.1. Let n > 1 be an integer and 2F = % when n > 2. Suppose
that Q is a smooth bounded domain in R™ and f(u) = uP. Assume that 1 < p <
2—1="ifn>2 orl<p<ooifn=1.

Then, problem admits at least one solution. This solution (as well as
every weak solution) belongs to C**(Q) for some 0 < a < 1.

As mentioned before, we realize problem through a local problem in one
more dimension by a Dirichlet to Neumann map. This provides a variational
structure to the problem, and we study its corresponding minimization problem.
Here the Sobolev trace embedding comes into play, and its critical exponent
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28 = 2 > 2 is the power appearing in Theorem . We call p critical

n—1’
(respectively, subcritical or supercritical) when p = 2f — 1 = Z—ﬂ (respectively,

p < 2! —1orp>2f—1). In the subcritical case of Theorem the compactness
of the Sobolev trace embedding in bounded domains leads to the existence of
solution. Its regularity will be consequence of further results presented later in
this introduction.

Remark 1.2. In [20] the second author J. Tan establishes the non-existence of
classical solutions to with f(u) = u” in star-shaped domains for the critical
and supercritical cases. In addition, an existence result of Brezis-Nirenberg type
[M] for f(u) = u” + pu, > 0, is also established.

Gidas and Spruck [I4] established a priori estimates for positive solutions of
problem when f(u) = w? and p < Z—J_rg Its proof involves the method
of blow-up combined with two important ingredients: nonlinear Liouville type
results in all space and in a half-space. The proofs of such Liouville theorems
are based on the Kelvin transform and the moving planes method or the moving
spheres method. Here we establish an analogue: the following a priori estimates

of Gidas-Spruck type for solutions of problem (]1.1).

Theorem 1.3. Let n > 2 and 2! = 22 Assume that @ C R" is a smooth

n—1

bounded domain and f(u) =uP, 1 <p<2f—1= Z—ﬂ

Then, there exists a constant C(p,<Y), which depends only on p and ), such
that every weak solution of (1.1) satisfies

|ul[ 2 < C(p, Q).

To prove this result, we combine the blow-up method and two useful ingredi-
ents: a nonlinear Liouville theorem for the square root of the Laplacian in all of
R”, and a similar one in the half-space R’} with zero Dirichlet boundary values
on OR’. The first one in the whole space was proved by Ou [22] using the moving
planes method and by Y.Y. Li, M. Zhu and L. Zhang [I§], [I7] using the moving
spheres method. Its statement is the following.

Theorem 1.4. ([18], [22], [I7]) Forn >2 and 1 < p < 2*—1 = 52 there exists
no weak solution of problem

{(—A)l/Qu:up in  R™,

14
u >0 m  R"™. (1.4)

As we will see later, here (—A)Y/2 is the usual half-Laplacian in all of R", and
problem is equivalent to problem Av = 0 and v > 0 in Rf‘fl, d,v = vP on
OR". The corresponding Liouville theorem for the square root of the Laplacian
in R? = {z € R" | z,, > 0} was not available and we establish it in this paper
for bounded solutions.
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Theorem 1.5. Let n > 2, 2f = %, and 1 <p <28 —1= Z—ﬂ Then, there
exists no bounded solution u of

Ajpu=uf in RY,

u=0 on ORY, (1.5)
u >0 in RY,
where Ay is the square root of the Laplacian in R} = {z, > 0} with zero

Dirichlet boundary conditions on OR.
In an equivalent way, let

qujrl ={z=(x1,29, + ,xp,y) | z, > 0,y > 0}.
Ifn>2and1 <p <280 —1 = Z—J_r}, then there exists no bounded solution
ve CARE) N ORTY) of

Av=0 in R
v=0 on {x, =0,y >0},

ov

1.6
Se=vP on {x, >0,y =0}, (16)

- +1
v>0 in R
where v is the unit outer normal to R' at {z, > 0,y = 0}.

The proof of this result combines the Kelvin transform, the moving planes
method, and a Hamiltonian identity for the half-Laplacian found by Cabré and
Sola-Morales [5]. The result of Theorem [1.5]is still open without the assumption
of boundedness of the solution.

Gidas, Ni, and Nirenberg [I3] established symmetry properties for solutions
to problem (|1.3)) when f is Lipschitz continuous and €2 has certain symmetries.
The proof of these symmetry results uses the maximum principle and the moving
planes method. The moving planes method was introduced by Alexandroff to
study a geometric problem, while in the framework of problem was first used
by Serrin. In the improved version of Berestycki and Nirenberg [3], it replaces
the use of Hopf’s lemma by a maximum principle in domains of small measure.

Here we proceed in a similar manner and obtain the following symmetry result

of Gidas-Ni-Nirenberg type for (1.1).

Theorem 1.6. Assume that €2 is a bounded smooth domain of R™ which is convex
in the xy direction and symmetric with respect to the hyperplane {x; = 0}. Let f
be Lipschitz continuous and u be a C*(Q) solution of .

Then, w is symmetric with respect to xy, i.e., u(—z1,2") = u(xy,2’) for all
(x1,2") € Q. In addition, % < 0 for xz; > 0.

In particular, if @ = Bg(0) is a ball, then u is radially symmetric, u = u(|z|) =
u(r) forr = x|, and it is decreasing, i.e., u, <0 for 0 <r < R.
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We prove this symmetry result by using the moving planes method combined
with the following maximum principle for the square root A;/, of the Laplacian
in domains of small measure (see Proposition for a more general statement in
nonsmooth domains).

Proposition 1.7. Assume that u € C%(Q) satisfies
Appu+c(x)u>0 in
u=>0 on 051,

where € is a smooth bounded domain in R™ and ¢ € L>*(S2). Then, there exists
d > 0 depending only on n and ||c”||L=(q), such that if [QN {u < 0} < § then
u >0 in Q.

The above maximum principle in “small” domains replaces the use of Hopf’s
lemma to prove symmetry results for A/, in Lipschitz domains. We point out
that Chipot, Chlebik, Fila, and Shafrir [9] studied a related problem:

—Av=g(v) in Bf={zeR"™||z] <R,z >0}

v=0 on 9B} N{z1 > 0}, )
g—"lj = f(v) on 9B} N{z,1 =0}, '
v >0 in B,

where f,g € C'(R) and v is the unit outer normal. They proved existence, non-
existence, and axial symmetry results for solutions of . Following one of
their proofs, we establish Hopf’s lemma for A; /5, Lemma below. Finally, let
us mention that singular solutions and extremal solutions of similar problems to
have been considered by Davila, Dupaigne, and Montenegro [10], [11].

As we mentioned, crucial to our results is that A;/, is a nonlocal operator in
Q2 but which can be realized through a local problem in 2 x (0,00). To explain
this, let us start with the square root of the Laplacian (or half-Laplacian) in R™.
Let u be a bounded continuous function in all of R™. There is a unique harmonic
extension v of u in the half-space RTFI =R" x (0,00). That is,

Av=0 in R?" ={(z,9) € R" x (0,00)},
v=u on R"=0JR}"

Consider the operator T": u — —d,v(+,0). Since 9,v is still a harmonic function,
if we apply the operator T' twice, we obtain

(T oT)u = Oyyv |ymo= —Au0 |ymo= —Au in R".

Thus, we see that the operator 7" mapping the Dirichlet data u to the Neumann
data —d,v(-,0) is actually a square root of the Laplacian. Indeed it coincides
with the usual half-Laplacian, see [16].

Here we introduce a new analogue extension problem in a cylinder C :=
2 x (0,00) in one more dimension to realize by a local problem in C. More
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precisely, we look for a function v with v(-,0) = w in R" satisfying the following
mixed boundary value problem in a half-cylinder:

Av=0 in C=Qx(0,00),
v=0 on 0rC := 90 x [0,00),

2 f(u) on Qx {0}, (18)
v>0 in C,

where v is the unit outer normal to C at Qx {0}. If v satisfies (1.8), then the trace
u on Q x {0} of v is a solution of problem (L.I). Indeed, since d,v is harmonic
and also vanishes on the lateral boundary 092 x [0, 00), we see as before that the
Dirichlet to Neumann map u +— —d,v(-,0) is the unique positive square root A
of the Dirichlet Laplacian in €.

The generators of Lévy symmetric stable diffusion processes are the fractional
powers of the Laplacian (—A)® in all of R”, 0 < s < 1. Fractional Laplacians
attract nowadays much interest in physics, biology, finance, as well as in math-
ematical nonlinear analysis (see [2]). One of the few nonlinear results which is
not recent is due to Sugitani [25], who proved blow up results for solutions of
heat equations dyu + (—A)*u = f(u) in R™, for all 0 < s < 1. It is important
to note that the fundamental solution of the fractional heat equation has power
decay (or heavy) tails, in contrast with the exponential decay in case of the clas-
sical heat equation. Lévy processes have also been applied to model American
options [2]. As recent nonlinear works for fractional diffusions, let us mention
the following. Caffarelli and Silvestre [7] have given a new local realization of the
fractional Laplacian (—A)®, for all 0 < s < 1, through the Dirichlet-Neumann
map of an appropriate degenerate elliptic operator. The regularity of the obsta-
cle problem for the fractional powers of the Laplacian operator was proved by
Silvestre [23]. The optimal regularity for such Signorini problem was improved
in [6]. Moreover, the operator (—A)® plays an important role in the study of
the quasi-geostrophic equations in geophysical fluid dynamics; see the important
recent paper [§] by Caffarelli and Vasseur. Cabré and Sola-Morales [5] studied
layer solutions (solutions which are monotone with respect to one variable) of
(—A)2y = f(u) in R", where f is of balanced bistable type.

To prove Theorem , in view of being a local realization of , we

consider the Sobolev space

Hy (C)={ve H'(C)|v="0ae on 9.,C=00x[0,00)},

equipped with the norm [jv]| = ([, |[Vv]? dady) 2 Since problem |D has vari-

ational structure, we consider its corresponding minimization problem

Iy = inf {/ \Vo(z,y)[*dzdy | v € H&L(C),/ lv(z,0)[Pdr =1 } :
c Q
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We will prove that, for subcritical powers, there is a minimizer for this problem.
Its trace on  x {0} will provide with a weak solution of (L.1J).

Thus, it is important to characterize the space Vy(2) of all traces on Q2 x {0} of
functions in Hj ;(C). This is stated in the following result —which corresponds
to Proposition of next section.

Proposition 1.8. Let Vy(2) be the space of all traces on Q x {0} of functions in
H; 1 (C). Then, we have

Vo(Q) := {u =trqu |v e Hy (C)}

:{ueH1/2 |/ (x) d:c<+oo}

— {u € L* Q) |u= Zbkgpk satisfying Zb2 A% < 4oo }

k=1 k=1

where d(z) = dist(z,0Q), and {\g, pr} is the Dirichlet spectral decomposition of
—A in Q as above, with {p} an orthonormal basis of L*().
Furthermore, V() equipped with the norm

AR
lolbaier = { Nl + [ %} (19)

The fact that d~'/?u € L*(Q) if u is the trace of a function in Hg (C)
follows from a trace boundary Hardy inequality, originally due to Nekvinda [21];
see Lemma in next section for a simple proof. Thus, in next section we
need to consider the operator A;,, defined as in but now mapping
A2 Vo(Q) — V5 (), where Vi () is the dual space of Vo(2). Foru = >".° | brpr
€ Vo(), we will have Ay 5(32°, begor) = 3200, bidy/ >0 Moreover, there will be
a unique harmonic extension v € H&y .(C) in C of u, and it is given by the expres-
sion

1s a Banach space.

Z brpr(x) exp( )\k/Qy) for all (x,y) € C.

Thus, the operator Ay /s : VO(Q) — VO () is given by the Dirichlet-Neumann map

Ayppu = — |Q><{0}— Zbk/\k/ Dk

Note that A;/; o A5 is equal to —A in Wlth zero Dirichlet boundary value
on d€). More precisely, we will have that the inverse B/, = Al_/12 —which maps
Vi (Q) into itself, and also L?(f2) into itself— is the unique square root of the

inverse Laplacian (—A)~! in Q with zero Dirichlet boundary values on 9Q; see
next section for details.
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To establish the regularity of weak solutions to ([1.1)) obtained by the previous
minimization technique, we establish the following results of Calderén-Zygmund
and of Schauder type for the linear problem

Ay jpu = g(x) in €,
inu=20 on 0§

see Proposition [3.1] for more details.
Theorem 1.9. Let u € Vo(R2) be a weak solution of (1.10), where g € Vi(Q2) and

Q is a C** bounded domain in R™, for some 0 < o < 1.
If g € L*(Q2), then u € H} ().
If g € Hy(2), then u € H*(Q) N H ().
If g € L>®(Q), then u € C%(Q).
If g € C*(Q) and glosg = 0, then u € CH(Q).
If g € CY*(Q) and glog =0, then u € C**(Q).

(1.10)

In this paper we will give full —and rather simple— proofs of these regularity
results, specially since we could only find references for some of them and, besides,
in close statements to ours but not precisely ours. Our proof of Theorem uses
the extension problem in € x (0,00) related to (L.10)), and transforms it to a
problem with zero Dirichlet boundary in © x {0} by using an auxiliary function
introduced in [5]. Then, by making certain reflections and using classical interior
regularity theory for the Laplacian, we prove Holder regularity for u and its
derivatives.

To apply the previous Holder regularity linear results to our nonlinear
problem (1.1]), we first need to prove that g:= f(u) is bounded, i.e., u is bounded.
We will see that boundedness of weak solutions holds for subcritical and crit-
ical nonlinearities; we establish this result in section [} We will follow the
Brezis-Kato approach bootstrap method. In this way, we establish the following
(see Theorem [5.2)).

Theorem 1.10. Assume that gy is a Carathéodory function in Q0 X R satisfying
lgo(z,8)| < C(1+|sP) for all(x,s) € Q xR,

for some constant C', 1 < p < Z—ﬂ ifn>2orl<p<ooifn=1, where () is a
smooth bounded domain in R™. Let u € Vo(2) be a weak solution of

Aippu = go(z,u) in Q,
u=0 on Of).

Then, u € L*(Q).

The paper is organized as follows. In section [2, we study the appropriate
function spaces Hj ;(C) and Vo(2), and we give the proof of Proposition
and other related results. The regularity results of Theorem [1.9 can be founded
in section Maximum principles, Hopf’s lemma, and the maximum principle
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in “small” domains of Proposition[I.7are proved in section[dl The complete proof
of Theorem is given in section [5| by studying the minimization problem and
applying the previous results on regularity and maximum principles. We prove
Theorem [1.10] also in section [5, while Theorems [I.3] and are established in
section [0 and Theorem [I.6]in section [7]

2. PRELIMINARIES: FUNCTION SPACES AND THE OPERATOR A

In this section we collect preliminary facts for future reference. First of all,
let us set the standard notations to be used in the paper. We denote the upper
half-space in R"! by

Ry ={z=(z,y) = (21, - ,20,y) R |y > 0}

Denote by H*(U) = W#?%(U) the Sobolev space in a domain U of R" or of R’
Letting U C R™ and s > 0, H*(U) is a Banach space with the norm

u(@) —u@P / 2 5 M2
) ) = U!()I
Let €2 be a bounded smooth domain in R™. Denote the half-cylinder with base
Q by

|

C=0x(0,00)
and its lateral boundary by
0rC = 98 x [0, 00).

To treat the nonlocal problem (|1.1]), we will study a corresponding extension
problem in one more dimension, which allows us to investigate by studying
a local problem via classical nonlinear variational methods. We consider the
Sobolev space of functions in H*(C) whose traces vanish on 9;C:

Hy (C)={ve H'(C)|v=0ae on 9.C}, (2.1)

equipped with the norm
1/2
lv|| = (/ Vo[ dxdy) : (2.2)
c

We denote by trq the trace operator on Q x {0} for functions in Hj ;(C):
trou == v(-,0), for v € Hy 1 (C).

We have that trqu € HY2(Q), since it is well known that traces of H' functions
are H'/? functions on the boundary.

Recall the well known spectral theory of the Laplacian —A in a smooth bounded
domain €2 with zero Dirichlet boundary values. We repeat each eigenvalue of —A
in 2 with zero Dirichlet boundary conditions according to its (finite) multiplicity:

D<hi< < <A< —>00, as k— oo,
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and we denote by ¢, € Hj(2) an eigenfunction corresponding to A, for k =
1,2,---. Namely,

{ —Apr = A\, in

2.3
wr =0 on . (2:3)

We can take them to form an orthonormal basis {¢x} of L?(€2), in particular,

/(pidle,
Q

and to belong to C2(€2) by regularity theory.
Now we can state the main results which we prove in this section.

Proposition 2.1. Let V() be the space of all traces on Q2 x {0} of functions in
H; ;1 (C). Then, we have

Vo(Q) := {u=trqu | v e Hy(C)}

_{ueH1/2 |/ 2(;) d:c<+oo}

— {u €L |u= Zbkgok satisfying sz A2 < +oo}

k=1 k=1

where d(x) = dist(z, 09Q), and { A, ¢x} is the Dirichlet spectral decomposition of
—A in Q as above, with {¢} an orthonormal basis of L*(Q).
Furthermore, Vo(Q2) equipped with the norm

u? 1/2
ol = { Vil + [ %} 2.0)

Proposition 2.2. If u € Vy(Q2), then there exists a unique harmonic extension
v in C of u such that v € H&,L(C). In particular, if the expansion of u is written
by u="> 1" bppr € Vo(Q), then

18 a Banach space.

Zbkgpk x) exp( /\k/ y) for all (z,y) € C,

where { A, ¢r} is the Dirichlet spectral decomposition of —A in £ as above, with
{or} an orthonormal basis of L*(Q).
The operator Ay js: Vo(2) — Vi () is given by
ov

A = —
124 v

Qx{0} 7
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where Vi(Q) is the dual space of Vo(§2). We have that
Ayou =3 b,
k=1

and that Ay, 0 Ay s (when Ay is acting, for instance, on smooth functions with
compact support in Q) is equal to —A in Q with zero Dirichlet boundary values
on ). More precisely, the inverse By := A1_/12 1s the unique positive square root

of the inverse Laplacian (—A)~" in Q with zero Dirichlet boundary values on 0S).

The proofs of these two propositions need the development of several tools.
First let us give some properties of the space Hé’ (C). Denote by DY2(RH) the

closure of the set of smooth functions compactly supported in ]Rﬁ“ with respect

1/2
to the norm of [|w|piagny = (fRiﬂ |Vwl|? dxdy) . We recall the well known

Sobolev trace inequality that for w € DV2(RH),

(n—1)/2n 1/2
(/rwumWWW”m) sc(/ Ve, y)dedy) ", (25)
n Ri+1

where C' depends only on n.
Denote for n > 2,

9 |
" oand 2_1="T

2% = :
n—1 n—1

We say that p is subcritical if 1 <p<2ﬁ—1:Z—ﬂforn22, and 1 < p <
for n = 1. We also say that p is critical if p = 2f — 1 = Z—ﬂ for n > 2, and that p
is supercritical if p > 28 — 1 = Z—f} for n > 2.

Lions [19] showed that

w1 |Vw(z, y)|?dxd
- {J§+ Vw(z,y)|*drdy } 2.6

— 1,2 n+1
~I U ot oy |0 PTES

is achieved. Escobar [12] prove that the extremal functions have all the form
g(n=1)/2
|(z — zo,y + )"V
where o € R™ and € > 0 are arbitrary. In addition, the best constant is
(n—1oy/"
2 9
where o,, denotes the volume of n-dimensional sphere S* C R™*!,

The Sobolev trace inequality leads directly to the next three lemmas. For
v € H}(C), its extension by zero in R} \ C can be approximated by functions

compactly supported in ]R’}FH. Thus the Sobolev trace inequality 1) leads to:

So =
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Lemma 2.3. Letn > 2 and 2' = % Then there exists a constant C, depending

only on n, such that, for all v € H&L(C),

of 1/2¢ ) 1/2
(/ |v(z,0)] dx) < C(/ Vou(z,y)] d:vdy) : (2.8)
Q c
By Holder’s inequality, since €2 is bounded, the above lemma leads to:

Lemma 2.4. Let 1 < g < 2% for n > 2. Then, we have that for allv € H; . (C),

(/Q|U(x,0)|qu)l/q < C(/C|Vv(x,y)|2dxdy> 1/2, (2.9)

where C' depends only on n,q, and the measure of Q2. Moreover, (2.9) also holds
forl1<g<ooifn=1.

This lemma states that tro(H) (C)) € LI(2), where 1 < ¢ < 2% for n > 2
and 1 < ¢ < oo for n = 1, (see the proof of Lemma for the case n = 1). In
addition, we also have the following compact embedding.

Lemma 2.5. Let 1 §q<2ﬁ:%f0rn22 and 1 < q < oo forn=1. Then
tro(Hp, (C)) is compactly embedded in LI(Q).

Proof. It is well known that trq(Hj ,(C)) € H'*(Q) and that H'/*(Q) cC L*(Q)
When1§q<2ﬁ:%forn22and1§q<ooforn:1. Here CC denotes
the compact embedding. This completes the proof of the lemma. However, if one
wants to avoid the use of the fractional Sobolev space H'/%(Q2), the following is
an alternative simple proof.

Considering the restriction of functions in C to © x (0,1), it suffices to show
that the embedding is compact with C replaced by € x (0,1). To prove this, let
Um € Hy 1 (2% (0,1)) :=={v e H'(Q2x (0,1)) |[v= 0ae on 992 x (0,1)} such
that v,, — 0 weakly in Hj;(Q x (0,1)), as m — co. We may assume by the
classical Rellich’s theorem in © x (0, 1) that v,, — 0 strongly in L*(Q x (0,1)),
as m — o0o. We introduce the function w,, = (1 — y)uv,,. It is clear that

wm’QX{O} = Um, wm’Qx{l} = 0.

By direct computations we have

/]vm(x O)\de—/\wm(x 0))? do = — / / )) dzdy
<2 / / (z,) d:cdy)12 / /|Vwm z y)]dedy> v

Therefore, since w,, = (1 — y)uv,, is bounded in H'(2 x (0,1)) and w,, — 0
strongly in L?(Q x (0, 1)), we find that, as m — oo,

Up(7,0) — 0 strongly in L?(€2) and hence also in L'().
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On the other hand, since ¢ is subcritical, the following interpolation inequality,

[om (-, Ol oy < om (- O)l[21 e [[vm (- O 2

for some 0 < € < 1 completes the proof since we already know that v,, converges
strongly to zero in L'((Q). O

We also need to establish a trace boundary Hardy inequality, which already
appeared in a work of Nekvinda [21].

Lemma 2.6. We have that
tro(Hy ,(C)) € H'?(Q)

is a continuous injection. In addition, for every v € Hy (C),

[o(@, 0P . o P
/Q i) " ﬁC/C\V(,y)! dudy, (2.10)

where d(x) = dist(z, dQ) and the constant C' depends only on €.

Proof. The first statement is clear since the traces of H'(C) functions belong to
H'/2(9C). Regarding the second statement, we prove it in two steps.

Step 1. Assume first that n = 1 and 2 = (0,1). For 0 < xy < 1/2, consider the
segment from (0, x) to (z9,0) in C = (0,1) x (0,00). We have

v(g,0) = v(t,xg — 1) [{20= / (00 — Oyv)(t, zo — t) dt.
0

Then
o
olan,OF <20 [ 2Vu(t,zo - ) de.
0

Dividing this inequality by o and integrating in xy over (0,1/2), and making the
change of variables x =t, y = x¢ — t, we deduce

1/2 2 1/2 1/2
/ (o, OF ;. < 2/ dx/ dy| Vo2 < 2/ V|2 dzdy.
0 0 0 C

Zo

Doing the same on (1/2, 1), this establishes inequality (2.10]) of the lemma.

Step 2. In the general case, after straightening a piece of the boundary 02
and rescaling the new variables, we can consider the inequality in a domain
D={z = (a,z,) | |2/] <1, 0 < x, < 1/2} and assume that v = 0 on
{z, =0, |2'| < 1} x (0,00), since the flatting procedure possesses equivalent
norms. By the argument in Step 1 above, we have

1/2 2 1/2 roo
/ oz, OFF dx, < C/ / |Vo|? dz,dy,
0 Ln 0 0
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for all 2’ with |2/| < 1. From this, integrating in 2’ we have

2 1/2 2
/ ‘U(x70)‘ dx :/ / ‘U('x70)| dﬂf,dxn
D Tn D Jo Ln

go/ |Vo|* dody.
Dx(0,00)

Since after flattening of 09, x,, is comparable to d(z) = dist(x, 02), this is the
desired inequality ([2.10]). O
Recall that the fractional Sobolev space H'/?(Q) is a Banach space with the

norm )
u\xr
k2o _//' o u@F g, dx+/|u Vdr.  (211)

Note that the closure H, 0/ () of smooth functions with compact support, C°(€2),
in H'/2(Q) is all the space H'/2(2), (see Theorem 11.1 in [20]). That is, C°(€2)
is dense in H'/2(€Q). However, in contrast with this, the trace in Q of functions
in H& £(C) “vanish” on 0 in the sense given by ({2.10).

Recall that we have denoted by Vy(€2) the space of traces on Q2 x {0} of functions
in Hg ;(C):

Vo(Q) :={u = trqu | v € Hy,(C)} C HY2(Q), (2.12)
endowed with the norm (2.4) in Proposition The dual space of V() is
denoted by Vi (Q2), equipped with the norm

9llvs ) = sup{(u, 9) [ u € Vo(), [[ullvye) < 1}
Next we give the first characterization of the space Vy(2):

Lemma 2.7. Let Vo(Q) be the space of traces on Q x {0} of functions in Hy ;(C),
as in (2.12). Then, we have

Vo(Q2) = {u€H1/2 |/ dx<+oo}
where d(zx) = dist(x, 0).

Proof. The inclusion C follows Lemma 2.6l Next we show the other inclusion.
Let u € HY?(Q) satisfy [,u?/d < co. Let @ be the extension of  in all of R"
assigning @ = 0 in R™ \ 2. The quantity

’“ z)[? - ~ N2
") dxd d
|UHHl/2 R / /n = $|n+1 Tar + o [a(z)|” dx

can be bounded —using @ = 0 in R™ \ 2— by a constant times

2 1/2
2 u? ()
d
{1+ [ o)
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that we assume to be finite. Hence, & € HY?(R") and thus @ is the trace in
R™ = OR"*! of a function & € HY(R"™).

Next, we use a partition of the unity, and local bi-Lipschitz maps (defined
below) sending R’ into Q x [0,00) = C being the identity on  x {0} and
mapping R" \ Q = (ORTT) \ Q into 9Q x [0,00). By composing these maps
with the function (cutted off with the partition of unity) o, we obtain an H ;(C)
function with u as trace on Q x {0}, as desired.

Finally we give a concrete expression for one such bi-Lipschitz maps. First,
consider the one dimensional case 2 = (0, c0). Then simply take the bi-Lipschitz
map

(z,) € (0,50) x (0,00) = © x (0, 00)
2% — 2 2xy
— (\/x2+y2, \/;C2—|—y2> € R x (0,00),

whose Jacobian can be checked to be identically 2. In the general case, we can
flatten the boundary 0f) and use locally the previous map. O

Next we consider, for a given function u € Vy(2), the minimizing problem:

inf {/ Vol dedy | v € HL(C),0(-0) = uin Q} | (2.13)
C

By the definition of Vy(£2), the set of functions v where we minimize is non
empty. By lower weak semi-continuity and by Lemma [2.5] we see that there
exists a minimizer v. We will prove next that this minimizer v is unique. We call
v a weak solution of the problem

Av=0 in C,
v=0 on 0J.C, (2.14)
v=u on x{0}.

That is, we have

Lemma 2.8. For u € Vy(), there exists a unique minimizer v of [2.13). The

function v € Hj;(C) is the harmonic extension of u (in the weak sense) to C
vanishing on OrC.

Proof. By the definition of V,(2), we have that, for every u € V,(2), there exists
at least one w € Hj ;(C) such that tro(w) = u. Then the standard minimization
argument gives (using lower semi-continuity and Lemma the existence of a
minimizer. The uniqueness of minimizer follows automatically from the identity
of the parallelogram used for two possible minimizers v; and vy,
V1 — Vg 1 1 U1 + U9

0<J =—J —J —J <0

<7 (M5) = 3o+ a0 - (252 <o,

where J(v) = [, |Vv|* dzdy, which leads to v = vs. ]
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By Lemma , there exists a unique function v € Hy ;(C) which is the har-
monic extension of u in C vanishing on 0;C, and that we denote by

v := h-ext(u).

It is easy to see that for every n € C*°(C) N H'(C) and n = 0 on 9,C,

0
/VvVn dxdy = / —Un dzx. (2.15)
C QO al/
By Lemma there exists a constant C' such that for every u € V,(Q2),
[ullvo) < Cllh-ext(w)||my , c)- (2.16)

Next, note that the h-ext operator is bijective from Vy(€2) to the subspace H of
Hj ;(C) formed by all harmonic functions in Hj ;(C). Since both Vo(Q2) and H
are Banach spaces, the open mapping theorem gives that we also have the reverse
inequality to , i.e., there exists a constant C' such that

[[h-ext(u)l|my ) < Cllullvo@) (2.17)

for all u € V5 (€2). From this we deduce the following. Given a smooth £ € V,y(2),
consider the h-ext(§) and call it . Now, we use ([2.15) and (2.17)) (for u and &)
to obtain ‘fQ Qoe dx‘ < Cllullvo@ll€llvo- That is, 22 [g€ V() and there is
the bound:

‘ 2h—ext(u)

ov

< Cllullve)-
Vi (@)

Hence we have
Lemma 2.9. The operator Ayz: Vo(2) — V() defined by

ov
A1/2U = =

o (2.18)

Qx{0} ’

where v = h-ext(u) € Hy 1 (C) is the harmonic extension of u in C vanishing on
01C, is linear and bounded from Vo(Q2) to V().

We now give the spectral representation of A/, and the corresponding struc-
ture of the space V().

Lemma 2.10. (i) Let {¢} be an orthonormal basis of L*(Q2) forming a spectral
decomposition of —A in Q with Dirichlet boundary conditions as in (2.3)), with
{Ak} the corresponding Dirichlet eigenvalues of —A in Q. Then, we have

Vo(Q) = {u = bor € Q) | Y BN? < +oo} .
k=1 k=1
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(ii) Let uw € Vo(2). Then we have, if u =" - bpps,

Arpu =Y b € V5 ().

k=1

Proof. Let u € Vy(Q2), which is contained in L?*(f2). Let its expansion be written
by u(x) = >"72, bipr(z). Consider the function

mepk x) exp( )\k/ Y), (2.19)

which is clearly smooth for y > 0. Observe that v(z,0) = u(z) in Q and, for
y >0,

7,) = 3 be{ = Awpn (@) exp(=N ") + Mepi(r) exp(=2"y)} = 0.

Thus, v is a harmonic extension of u. We will have that v = h-ext(u), by
uniqueness, once we find the condition on {b} for v to belong to Hj ;(C). But
such condition is simple. Using and that {¢;} are eigenfunctions of —A
and orthonormal in L?(€)), we have

/ / |Vo|* dedy :/ /{|Vgcv|2 + 10,v|*} dzdy
o Ja

_2Zbk)\k/ exp( 2A,1€/2y)dy
—2Zb2Ak 1/2 Zzﬂ N2

This means that v € Hj (C) if and only if Y77, bz)\}f < oo. Therefore, this
condition on {b;} is equivalent to u € V().
Assertion (ii) follows from the direct computation of —g—; |y—o using 1) O

In functional analysis, the classical spectral decomposition holds for self-adjoint
compact operators, such as the Dirichlet inverse Laplacian (—A)~!: L?(Q) —
L?(Q). This is the reason why we now define, with the aid of the Lax-Milgram
theorem, a compact operator B/, which will be the inverse of A 5.

Definition 2.11. Define the operator By/o: Vi(2) — Vo(Q2), by g — trqu, where
v is found by solving the problem:

Av =0 in C,

v=0 on 0rC, (2.20)
2 _g(x) on 9x {0},

as we indicate next.



18 XAVIER CABRE AND JINGGANG TAN

We say that v is a weak solution of (2.20) whenever v € H& .(C) and

/CVUV§ dzxdy = (g,&(+,0)) (2.21)

for all £ € Hj ;(C). We see that there exists a unique weak solution of (2.20) by
the Lax-Milgram theorem, via studying the corresponding functional in Hy ;(C):

1) = 5 [ Vo dady = (9.0 0),

where g € V;(Q) is given. Observe that the operator B/, is clearly the inverse
of the operator Aj ;.

On the other hand, let us compute By o By \ r2(q)- Here note that since
Vo(R2) € L*(Q), we have L*(Q2) C Vi(Q). For a given g € L*(Q), let ¢ €
H}(Q) N H?(Q) be the solution of Poisson’s problem for the Laplacian

—Ap=g in €,
p=0 on 0f).

Since Hj(2) C Vo(Q) (for instance, by Lemma [2.10]), there is a unique harmonic
extension 1) € Hy ;(C) of ¢ in C such that

AYp=0 in C,
1/) =0 on 8LC,
v=¢ on Qx{0}.

Moreover, 1)(z,y) := ¥ (x,y) — ¢(x) solves
~AY=Ap=—g(z) in C

v =0 on 0rC,

=0 on 2 x{0}.

Considering the odd reflection {/;od of zZ across €2 x {0}, and the function

glx), ¥y =0,
swte) = { 20 020

we have
—Athog = —goa In xR,
{/;od =0 on 0f) x R.
Therefore, since gog € L2(Qx (—2,2)), we deduce g € H2(2x(—1,1)) and hence

€ H*(2%(0,1)). We deduce, by the smoothness of the harmonic function v for
y > 0 and by its exponential decay in y —see (2.19)—, that ¢ € Hj ;(C)NH?(C).
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It follows that —d,v € Hy 1(C) solves

A(=9,0) =0 in C,
—00=0  on 9C,

and
0
5(—6@1/}) =0y = Ay = —-Ap =g on Qx{0}.
Since Vy(2) C L?(2), we have that g € L?(Q) = L?(Q2)* C V;(Q2), and we deduce
that the solution v € V,(Q2) of (2.20) is v = —J,1), because of the uniqueness of
Hj ;(C) solution of (2.20). In particular, Bysg = v(-,0) = —9,1(-,0). On the
other hand, since ¢ € H 1 (C) solves
Ay =0 in C,
¢ =0 on 8LC,

P = —0,0(-,0) =v(-,0) = Bijog on Qx {0},
we conclude that
(Bl/z o B1/2)9 = B1/2U('a 0) =29(,0)=p= (‘A)_lg-
Summarizing the above argument, we have:

Proposition 2.12. By 0 Byps|r2)= (—A) 7' L*(Q) — L*(Q2), where (—A)7!
1s the inverse Laplacian in ) with zero Dirichlet boundary conditions.

Note that Bjj: L*(Q2) — L*(2) is a self-adjoint operator. In fact, since for
U1,V € H&L<C),

/C(ngvl — v1Avy) dxdy = /Q(UQ% — vl%) dz,
we see
/ Bij2g2 - g1dx = / Bij2g1 - g2 dx
Q Q
and

/vg(x,O)Al/gvl(:U,O) dx—/vl(a:,O)Al/Qvg(x,O) dx.
Q 0

On the other hand, by using with ¢ = v and Lemma , we obtain that
By s is a positive compact operator in L?(€2). Hence by the spectral theory for
self-adjoint compact operators, we have that all the eigenvalues of B/, are real,
positive, and that there are corresponding eigenfunctions which make up an or-
thonormal basis of L?(2). Furthermore, such basis and eigenvalues are explicit in
terms of those of the Laplacian with Dirichlet boundary conditions, since (—A)~!
has By, as unique, positive and self-adjoint square root, by Proposition [2.12]
Summarizing:
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Proposition 2.13. Let {i} be an orthonormal basis of L*(Q) forming a spectral
decomposition of —A in 0 with Dirichlet boundary conditions, as in (2.3)), with
{Ax} the corresponding Dirichlet eigenvalues of —A in Q. Then, for all k > 1,

o =10 on OSd. '

In particular, {pr} is also a basis formed by the eigenfunctions of Ajjs, with

eigenvalues {)\,16/2}.
Proof of Proposition It follows from Lemma [2.7] and Lemma [2.10] O

Proof of Proposition It follows from Lemma [2.8] Lemma [2.10] and its
proof, and Propositions and [2.13] O

3. REGULARITY OF SOLUTIONS

In this section we study the regularity of weak solutions for linear and nonlinear
problems involving A, ;. First we consider the linear problem
Aippu=g(x) in
u=>0 on 09,
where g € Vi(£2) and 2 is a smooth bounded domain in R”. By the construction
of the previous section, the precise meaning of (3.1)) is that u = trquv, where the
function v € Hy ;(C) with v(-,0) = u € Vy(Q) satisfies

Av =10 in C,
v=0 on 0rC, (3.2)
P —g(z) on Qx{0}.

We will say then that v is a weak solution of and that u is a weak solution
of .

Most of this section contains the proof of the following analogues of the W?2»-
estimates of Calderén-Zygmund and of the Schauder estimates.

Proposition 3.1. Let o € (0,1), Q be a C** bounded domain of R™, g € Vi(Q),
v E H&L(C) be the weak solution of , and u = trqu be the weak solution of
(3.1). Then,

(i) If g € L*(QY), then u € Hg(9).

(ii) If g € Hy(Q), then u € H*(Q) N H} ().

(iii) If g € L>=(Q), then v € WH(Q x (0, R)) for all R >0 and 1 < q < co.

In particular, v € C*(C) and u € C%(Q).
(iv) If g € C*(Q) and glog =0, then v € CH¥(C) and u € CH*(Q).
(v) If g € CY¥(Q) and glag = 0, then v € C**(C) and u € C*%(Q).
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As a consequence, we deduce the regularity of bounded weak solutions to the
nonlinear problem

Al/QU = f(u) in Q,
3.3

{ u=70 on Of. (3:3)

As before, the precise meaning for (3.3)) is that v € H&L(C), v(+,0) = u, and v is

a weak solution of

Av =0 in C,
v=20 on 8LC, (34)
% = f(v(-,0)) on Q x {0}.

Here the weak solution w is assumed to be bounded. Regularity results for weak
solutions not assumed a priori to be bounded, of subcritical and critical problems
will be proved in section

By Cy(2) we denote the space of continuous functions in 2 vanishing on the
boundary 0f). In the following result note that f(0) = 0 is required to have
C'(82) regularity of solutions of (3.3).

Proposition 3.2. Let a € (0,1), Q be a C** bounded domain of R™, and f be a
CLe function such that f(0) = 0. If u € L>®(Q) is a weak solution of (3.3), and
thus v € Hy ;(C) N L>(C) is a weak solution of , then u € C%*(Q) N Cy(Q).
In addition, v € C?%(C).

Proof. By (iii) of Proposition we have that u € C%(Q). Next, by (iv) of
Proposition and since on 99 x {0}, g := f(v(-,0)) = f(0) = 0, we have
u € OV*(Q). Finally, v € C?>*(C) and u € C**(Q) from (v) of Proposition
since g = f(u) vanishes on 9 and it is of class C®, since both f and u are
Cl,oc' 0

Proof of Proposition (i) and (ii). Both statements follow immediately
from Propositions and [2.2] Simply use that {¢} is an orthonormal basis of
L?(Q2) and that {cpk/)\,lc/z} is an orthonormal basis of H}(€). For part (ii), note
that if A;pu =g € Hg(Q), then we have Au € L*(Q).

(iii) Let v be a weak solution of (3.2). We proceed with a useful method,
introduced by Cabré and Sola Morales in [5], which consists of using the auxiliary
function

w(x,y) = /Oyv(m,t) dt for (z,y) € C. (3.5)

Since (Aw), = 0 in C, we have that Aw is independent of y. Hence we can
compute it on {y = 0}. On {y = 0}, since w = 0, we have Aw = w,, = v,. Thus
w is a solution of the Dirichlet problem

{—Aw(w,y)—g(x) in C,

w=20 on OC. (3.6)



22 XAVIER CABRE AND JINGGANG TAN
We extend w to the whole cylinder 2 x R by odd reflection:
wie,y)  for y>0,
Wod(®,Y) = { —w(z,—y) for y<O0.
Moreover, we put
g(z) for y >0,
gou(,y) = { —g(x) for y<O.
Then we obtain

{ —Awyg = gog in QX R, (3.7)

Wog = 0 on 0 x R.
Since goq € LI(Q2 X (—2R,2R)) for all R > 0 and 1 < ¢ < oo, regularity for
the Dirichlet problem (3.7) gives w,q € W4(Q x (=R, R)) for all R > 0 and

1 < ¢ < oo. In particular, w € CY*(C). Therefore, v = w, € C%C) and
u € C(Q). B
(iv) Choose a smooth domain H such that @ C H, and let
[ g in Q,
JH=V0 in H\Q

We have that gy € C%(H), since g|ao= 0, by assumption. Consider the weak
solution vy of

Avyg =0 in H x (0,00),

vg =0 on OH x |[0,00),

agf =gu(x) on H x {0}.
Consider also the auxiliary function

y —_—
wy(x,y) :/ vg(z,t)dt in H x[0,00),
0

which solves problem (3.6) with 2 and g replaced by H and gp.

Using boundary regularity theory (but away from the corners of H x [0, 00))
for this Dirichlet problem, we see that wy is C**(H x (0,00)) (again, here we do
not claim regularity at the corners 9H x {0}). Thus, wy € C?*(C) (here instead
we include the corners 02 x {0} of C).

Consider the difference ¢ = wy — w in C, where w is defined by . It is

clear that
Ap=0 in C,
p=wy on JrC,
=0 on Qx{0}.
We extend ¢ to the whole cylinder €2 x R by odd reflection:
o(z,y) for y >0,
PoalT,Y) = { —p(x,—y) for y<O0.
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Moreover, we put

wi(z,y) for y>0,

wH,od(xv ?J) = {

—wy(x,—y) for y<O0.
Then we have
Apog =0 in xR,
{ Pod w (3.8)

Pod = WH,od ON 00 x R.

Since wy € C>*(C), wy = 0 on IQ x {0}, and Oyywy = Oyvg = —gy = —g =0
on 9Q x {0}, we deduce that wy.y € C**(9Q x R). It follows from elliptic
regularity for that poq € C%*(Q x R). Thus, p € C**(C), w € C**(C) and
v =09,w e CH(C).

(v) Choose a smooth bounded domain B such that Q@ C B. B could be the
same as H in (ii), for instance a ball, but we change its name for notation clarity.
Since g € C1%(Q), there exists an extension gg € C1*(B); see [15]. Consider the
solution vp of

Avg=0 in B x(0,00),
vg =0 on 0B x [0,00),

ag—f:gB on B x {0}.

Consider the auxiliary function
y —
wp(z,y) :/ vp(x,t)dt in B x|[0,00).
0

As before, from interior boundary regularity for the Dirichlet problem of the
type satisfied by wp, we obtain that wg € C**(B x [0,00)) since gp €
CY*(B) (away from the corners OB x {0}). Thus, vz € C**(B x [0,00)). Thus,
vg € C**(C). Consider the difference 1) = v —v in C, where v is a weak solution
of . We have that ¢ = vg — v satisfies

AYp =0 in C,
w =vp On 8LC,
g—:f = on € x {0}.

We extend 1 to the whole cylinder Q x R now by even reflection:

Y(w,y) for y >0,
w(l‘a _y) for Y < 0.

Veo(@,y) = {

Moreover, we put

vp(z,y) for y>0,

UB.eo(T,Y) = {

UB(:L‘a_y) for QSO
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Then, since g—f =0 on 2 x {0}, we have

A, =0 in Q xR,
Yey = VBew on 02 X R,

Since vy € C?*(C), —d,vp = gg = g = 0 on 9N x {0}, we deduce that
UBev € C’Q""(GQ x R). Therefore, it follows from classical regularity that 1),
€ C?2(Q x R). Thus, ¥ € C*2(C), and v € C?%(C). O

4. MAXIMUM PRINCIPLES

In this section we establish several maximum principles for A;,,. We denote
by Co(Q) the space of continuous functions in Q vanishing on the boundary 9.
For convenience, we state the results for functions in Co(Q) N C?(Q) (a space
contained in Hg(Q2) C Vo(Q2)), but this can be weakened.

The first statement is the weak maximum principle.

Lemma 4.1. Assume that u € C%*(Q) satisfies
Ajpu+c(r)u>0 in Q,
u=20 on 0f),

where €) is a smooth bounded domain in R™ and ¢ > 0 in Q. Then, u > 0 in €.

Proof. Consider the extension v = h-ext(u). If we prove that v > 0 in C,
then u > 0 in . Suppose by contradiction that v is negative somewhere in
C. Then, since Av = 0 in C and v = 0 on 9.C, we deduce that v is negative
somewhere in ©Q x {0} and that infcv < 0 is achieved at some point (z¢,0) €
2 x {0}. Thus, we have
irclfv = v(z0,0) < 0.
By Hopf’s lemma,
vy (z0,0) > 0.

It follows
ov

M

Therefore, since ¢ > 0,

= —'Uy<flf(], 0) = Al/Q'U(.CCo, 0) < 0.

Ay jov(x0,0) + c(xo)v(z0,0) < 0.
This is a contradiction with the hypothesis Ay pu + c(z)u > 0. O

The next statement is the strong maximum principle for A, .

Lemma 4.2. Assume that u € C%(Q) satisfies

Aipu+clx)u>0 in Q,
u >0 m €,
u=>0 on 0f),
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where € is a smooth bounded domain in R™ and ¢ € L>(Q2). Then, either u > 0
m ), oru =0 in Q.

Proof. The proof is similar to that of Lemma [4.1] Consider v = h-ext(u).
We observe that v > 0 in C. Suppose that v # 0 but v = 0 somewhere in
Q2. Then there exists a minimum point (z(,0) € 2 x {0} of v where v(x¢,0) = 0.
Then by Hopf’s lemma we see that A;jou(xg) = —vy(2,0) < 0. This implies
that Ay pu(xo) + c(zo)u(z) < 0, because of v(zg,0) = u(xg) = 0. O

Next we establish a Hopf lemma for A, /5, following a proof from [9].

Lemma 4.3. Let 2 be a bounded domain in R"™ and ¢ € L>().
(i) Assume that € is smooth and that 0 # u € C%*(Q) satisfies

Ajpu+c(r)u>0 in Q,
u>0 m €,
u=20 on ON.

Then, % < 0 on 0N, where vy is the unit outer normal to OS).
(i) Assume that P € OS2 and that OS2 is smooth in a neighborhood of P. Let
0% veC?*C)NL>(C), where C=Q x (0,00), satisfy

Av =0 mn C,
v>0 on 0;C,
& te(z)v>0 on Qx {0}
If v(P,0) =0, then %ﬁ;o) < 0, where vy is the unit outer normal in R™ to 0f).

Proof. We follow the proof given in [0]. Note that statement (i) is a particular
case of (ii). Thus, we only need to prove (ii).

Step 1. We shall first prove the lemma in the case ¢ = 0. Without loss of
generality we may assume that (P,0) = P, = (b1,0,---,0) € 02 x {0}, by > 0
and vy = (1,0,---,0). Hence we need to prove

a’U(Pl)
B < 0.
Since (2 is smooth in a neighborhood of P, there is a half-ball in R’ included
in the domain C, such that P; is the only point in the closed half-ball belonging
also to 9rC. Let P, € Q x {0} and r > 0 be the center and radius of such ball.
Then we have Py = (b2,0,---,0) € Q x {0}. Denote

BHP) :={z2=(z,y) | |z — P3| <|P, — P| =1,y >0} CC,
Blo(P) = {z=(v,y) | [z = P| <|P1 — P2|/2,y > 0},

A= BHP)\B,(P).
Recall that P, € OB, (P2) N (02 x {0}).
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Consider the function on A:
p(2) = exp(=Alz — Pof*) — exp(=AlPy — Po[?),
with A > 0 to be determined later. Note that
Ap = exp(=A|z — Bo?) {4X?|z — P> —2(n + 1)A}.

We can choose A > 0 large enough such that Ap >0 in A.
On the other hand, by Lemma , we see that v > 01in A\ {P;}. Hence, since
@ =0o0n 0B} (P) N{y > 0}, we can take £ > 0 such that

v—ep>0 on JAN{y>0}.
Since —A(v —ep) >0 in A, and

0
—0y(v —ep) = a_v >0 on 0AN{y=0},
v
(recall that ¢ = 0) by the maximum principle as in Lemma we obtain
v—ep>0 in A.

Thus, from v —ep = 0 at P, we see that 0., (v — ep)(P) < 0. Therefore,
Op,v(Py) < 0y, 0(P1) = —2A(by — bg)e_A'Pl_P?‘2 < 0. Thus we have the desired
result.

Step 2. In the case ¢ # 0, we define the function w = vexp(—/py) for some
G > 0 to be determined. From a direct calculation, we see that

—Aw — 280w = fPw>0 in C
and, choosing 8 > ||c||=(q),
—0yw > [ —c(z)]lw >0 on Qx{0}.

Now we can apply to w the same approach as in Step 1, with A replaced by
A +230,, and obtain the assertion. ]

Finally, we establish a maximum principle for A4, in domains of small measure.
Note that in part (ii) of its statement, the hypothesis on small measure is made
only on the base of €2 of the cylinder C.

Proposition 4.4. (i) Assume that u € C?(Q) satisfies

Aipu+c(x)u>0 in €,
u=20 on 0f),
where Q is a smooth bounded domain in R™ and ¢ € L>*(2). Then, there exists

§ > 0 depending only on n and |c™||L=(q), such that if QN {u < 0} <9, then
u >0 in Q.
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(i1) Assume that € is a bounded (not mecessary smooth) domain of R™ and

c€ L>(Q). Letv € C*C) N L>(C), where C = Q x (0,00), satisfy

Av =0 i C,
v>0 on 0rC,
& te(x)v>0 on Qx{0}.

Then, there exists & > 0 depending only on n and ||c”||L=(q), such that if [N
{v(-,0) <0} <0 thenv >0 inC.

Proof. For part (i) of the theorem, consider v = h-ext(u). We see that v satisfies
the assumptions on part (ii) of the theorem. Hence, it is enough to prove part
(ii). For this, let v~ = max{0, —v} > 0. Since v~ = 0 on 9 x [0, 00), we see

O:/U_Avdxdy:/ v —dm+/|Vv ? dzdy.
c Qx{0}

Then,

/|Vv_|2da:dy:—/ v @d:ﬁ
C Qx{0} v
§/ vcvdx:/—c(v)de
Qx{0} Q

g/ (v (-, 0))2 do
Qn{v—(-,0)>0}
<12 {7 0) > O} e o 0™ (2 0) o

Thus, extending v~ by 0 outside C we obtain an H*(R"™") function and thus we
have

0 < 5, < Vo dudy Je IVv™ |? dady
) < _
o= (-, )HLG/(n 1) (R Hv_('ao)Hizn/(n—l)(Q)

<[ {7 (-0) > O} [le || (o)

where S is the best constant of the Sobolev trace inequality in ]RTI. If
2N {v=(-,0) > 0} is small enough, we arrive at a contradiction. O

5. SUBCRITICAL CASE AND L ESTIMATE OF BREZIS-KATO TYPE

In this section, we study the nonlinear problem (|I.1)) with f(u) = u” in the
subcritical and critical cases. In the subcritical case we look for a function v(x, y)
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satisfying for x € Q and y € R,
Av=0 in C=x(0,00),
v=0 on J9,C=00x]0,00),
P~ on Qx {0},
v>0 in C,

(5.1)

where v is the unit outer normal to C at @ x {0} and 1 <p <2 —1ifn >2 or
1 <p<ooifn=1. Ifvis asolution of (5.1, then v(x,0) = u(x) is a solution
of with the nonlinearity f(u) = u”.

In order to find a solution of as stated in Theorem , we consider the

following minimization problem:

Iy = inf {/ \Vou(z,y)[*dzdy | v € H&L(C),/ lv(z,0)[PTdr =1 } :
c Q
We show that I is achieved.

Proposition 5.1. Assume that 1 <p <2 —1ifn>2o0rl<p<oo ifn=1.
Then Iy is achieved in Hj 1 (C) by a nonnegative function v.

Proof. First, there is a function v € Hj (C) such that

/]Vv(x,y)\zdxdy < oo and / |v(z,0)[PTdr = 1.
¢ Q

In fact, it suffices to take any C*° function with compact support in 2x [0, 00) and
not identically zero on €2 x {0}, and multiply it by an appropriate constant. Next
we complete the proof by weak lower semi-continuity of the Dirichlet integral and
by the compact embedding property in Lemma [2.5, Finally, note that |v| > 0 is
a nonnegative minimizer if v is a minimizer. O

To establish the regularity of the minimizer just obtained, we prove an
L*>-estimate of Brezis-Kato type by the technique of bootstrap for subcritical
or critical nonlinear problems. Let gy be a Carathéodory function in € x R
satisfying the growth condition
lgo(z,s)] < C(1+s|P) forall (z,s) € Q xR, (5.2)
where (2 is a smooth domain in R", 1 < p < Z—ﬂifn22, orl<p<oifn=1.
We consider the problem
Av =0 in C=x(0,00),
v=20 on J;,C = 99 x [0, 00), (5.3)
% = go(-,v) on Qx {0}.

Theorem 5.2. Letv € H ;(C) be a weak solution of (5.3)) and assume the growth

condition 1} for go, with 1 < p < Z—ﬂ ifn>2 0orl<p<ooifn=1. Then,
v(-,0) € L>(2).
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Proof. The proof follows the one of Brezis-Kato for the Laplacian. First of all,
let us rewrite the condition on gy as

[90(, v)| < a(2)(1 + [v(z,0)])

with a function
CL(]?) — |g0(l’,?](l’,0))|
1+ |v(z,0)]

which satisfies
0<a<C(l+-0)P"eL™Q),
<A

since v € Hy ;(C), v(-,0) € L%(Q) and p — 1
Denote
Bf = {(z,9) | [(z,9)] < rand y > 0},

For 3> 0and T > 1, let g = vvi € Hj 1 (C) with vy = min{|v|, T'}. Denote
Dy = {(z,9) €C | Ju(z.9)| < T}.

By direct computation, we see
/ IV (00)|? dady = /v%ﬁ|VUl2 dxdy + / (26 + B84)|v|*’|Vv|? dxdy.
C C Dr
Multiplying (5.3)) by ¢z r and integrating by parts, we obtain

/U%6|VU|2dxdy+ 203 [v*?|Vo|? dedy = /VUV(UU%B) dxdy
c c

Dr

= / go(z, v)vv? da
Qx{0}

IN

/ a(z)(1 + |v])*3’ du.
Qx{0}

Combining these facts, we have
/ |V (vl | dady <C(B + 1)/ a(x)(1+ [v|*)v3 da,
c Qx{0}

where C' denotes different constants independent of T" and of 3. By Lemma [2.4)
we deduce

gt \¥¥ 2y, 28
([ wila)™ <c@an) [ a@a+ P 6
Qx{0} Qx{0}

Assume that |v(-,0)["*! € L2(Q) for some B > 0. Then we obtain that
Joxio) w03 do and [, ) v’ dx are bounded uniformly in T. In what follows,
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let C' denote constants independent of 7' —but that may depend on ( and
||U('70)’6H||L2(Q). Given M, > 0, we have

/ alv|v? do < MO/ |v|2v%’8dx+/ a|v|?v’ da
Qx{0} Qx{0} {a>Mo}

1/n 528 2/2¢
< CMy+ </ a" d:z:) (/ lovip| dx)
{a>Mo} Qx{0}

g2t \¥¥
< CMy+ €(M0)< |vur| dx) :

Qx{0}
where (M) = (f{a>M0} a™dz)'/" — 0 as My — oo. Note that we can deal with

fo 0 av%ﬁ dx in the analogue procedure. Therefore, we deduce from the last
inequalities and (5.4)), taking My large enough so that C(3 + 1)e(My) = %, that

52t 2/2t
(/ lovlp|? da:) < C(1+ M,y). (5.5)
Qx{0}

Thus letting T — oo, since C' is independent of T', we obtain that |v(-,0)|°* €
L#(0). This conclusion followed simply from assuming |v(-,0)|?+! € L3(Q).
Hence, by iterating o = 0, 3 +1 = (Bi-y + 1);2%5 if ¢ > 1 in (5.5), we
conclude that v(-,0) € L%(Q) for all ¢ < oo. Finally, the proof of part (iii) in
Proposition —Which only uses g € L4(Q) for all ¢ < oo and not g € L>(Q2)—
applied with g(z) = go(z,v(x,0)), which satisfies |g| < C(1 + |v(+,0)?) € LI(Q)
for all ¢ < oo, leads to v(-,0) € C*(Q2) C L>(Q). O
Proof of Theorem (1.1} Proposition [5.1] gives the existence of a weak nonneg-
ative solution v to after multiplying the nonnegative minimizer of Iy by a
constant to take care of the Lagrange multiplier. Then, Theorem gives that
v(-,0) € L*®(Q). Next, Proposition [3.2] gives that u € C*%(Q), since f(s) = |s|?
is a C1 function for some o € (0,1). Finally, the strong maximum principle,
Lemma [.2] leads to v > 0 in €. O

6. A PRIORI ESTIMATES FOR POSITIVE SOLUTIONS

In this section we prove Theorem [I.3] Namely, we establish a priori estimates
of Gidas-Spruck type for weak solutions of

Av=0 in C=Qx(0,00) CR,
v=0 on 0.C=090x]|0,00),

% — P on Qx{0},

v>0 in C,

where 2 C R is a bounded smooth domain, n > 2, and 1 < p < 24,

n—1
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For this, we need two nonlinear Liouville theorems for problems involving the
square root of the Laplacian in unbounded domain —one in the whole space,
another in the half-space. The first one was proved by Y.Y. Li, Zhang and Zhu
in [I8], [I7] and Ou in [22]. Its statement is the following —and it is equivalent
to Theorem [L.4] in the Introduction.

Theorem 6.1. ([18], [17], [22]) Forn >2 and 1 < p < 2! —1 = 252 there exists
no weak solution of problem

Av=0 in R

g—z =P on OR"M, (6.2)
v>0 in R}

We need to prove an analogue nonlinear Liouville type result involving the
square root of —A with Dirichlet boundary value in the half-space. This is The-
orem of the Introduction and Proposition [6.3]in this section. As we will see,
this nonlinear Liouville theorem in R} will be first reduced to the one dimensional
case R, by using the moving planes method. After this, we prove that there ex-
ists no positive bounded solution for the nonlinear Neumann boundary problem
in the quarter R%r +» which corresponds to the nonlinear Liouville theorem involv-
ing the square root of —A with Dirichlet boundary value in the half-line; see
Proposition 6.4, To complete the proof of Theorem we will use the following
Liouville theorem in dimension n + 1 = 2.

Proposition 6.2. ([9]) Suppose that v weakly solves
—Av>0 in R3,
% >0 on ORZ, (6.3)
v>0 in R2.

Then, v is a constant.

As usual, very strong Liouville theorems (but quite simple to prove) hold in
low dimensions, but not in higher ones. Compare in low dimensions for
supersolutions of the homogeneous linear problem with for solutions of a
precise nonlinear problem. The proof of Proposition in [9) compared in an
appropriate way the solution v with log(| - |). For completeness, we give here an
alternative proof.

Proof of Proposition . Replacing v by v — infgz v > 0, we may assume
infRi v = 0. Letting w = 1 — v, we have
—Aw <0 in R%,
v <0  on ORZ, (6.4)
w <1 in Ri.
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In addition, SUPg2 W = 1. Let £ € C*°(R?) be a function with compact support
in Bygr(0), equal to 1 in Bg(0), and with |VEg| < %. Let

Df o ={(z,y) € R*| R < |(z,y)| < 2R, y0}.

Multiplying the first equation in (6.4) by w'&%, integrating in R? and using the
Neumann condition and w™ < 1, we see that

[ aiverr<e [ Vet ver (6.5)
Ri D;;,QR
1/2 1/2
<C (/ IV£R|2> (/ géyvzﬁy?)
DEQR D};zR
1/2
gc(/ §§|Vw+]2> | (6.6)
D}, or

This leads, letting R T 00, to [z, |[Vw™|* < co. As a consequence of this, the
+
integral in tends to zero as R — oo. Thus, by (6.5)),
/ IVt = 0.
"
Thus, w™ is constant, and since SUPg2 W = 1, we conclude w = 1. O
Proposition 6.3. Letn > 2 and
]RTJFI ={z=(x1,29, + ,xp,y) | T, >0,y > 0}.
Assume that v is a classical solution of
. n+1
Av=0 in R}
v=20 on {zx, =0,y >0},
% =v? on {x,>0,y=0},
. n+1
v>0 in R
where 1 < p < Z—fi Then, v depends only on x,, and y.

Proof. We shall follow the steps of [14]. Let e, = (0,---,0,1,0) and N =n+ 1.
Consider the conformal transformation

z+e,
> p— T I e
: (2) |z + en|?
and the Kelvin transformation w of v
w(Z) = |z + en| N 20(2) = |27 No(2).
Denote BY,(%) := {7 = (7,9) | |2~ 3ea| < 3,9 >0}, S7,,(%) := 0B/ ,(5) N

{g > 0}, F0,1/2 = 8Bir/2(%") N {g = 0}
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Note that, through 7', R ' = {x > 0,y > 0} gets mapped into the half-ball
B, (%), the boundary {z, > 0,y = 0} becomes the half-ball To/2, {z, = 0,
y > 0} goes to the half-sphere Sfr/z(%"), and the infinity goes to z = 0.

We see that w satisfies

Aw =0 in Bf/g(%"),

w = on S;L/Z(%”),

ow(z - _9)— _

81(/ ) = |Z|p(N 2) pr<2’) on F071/2,

w >0 in B, (%).
Since |z[P(=Y=(*+1) i nonincreasing in the z; direction for alli = 1,--- ,n—1 (in
fact, in any direction orthogonal to the z,-axis), the moving planes method used
as in [9] gives that w is symmetric about all the z;-axis fori = 1,--- ;n—1. This
leads to w = w(|Z'|, Z,, ), where z’ = (z1,--- ,Z,_1) and hence v = v(|2'|, z,,, y).

Now, since we may perform the Kelvin’s transform with respect to any point
(—xp, —1,0) —and not only with respect to x = 0 as before— we conclude that
v =v(x,,y) as claimed. O

Proposition 6.4. Assume that f is a CY* function for some a € (0,1), such
that f > 0 in (0,00) and f(0) = 0. Let C' be a positive constant. Then there is
no bounded solution of problem

Av =0 in R2, ={z>0,y>0},

v=20 on {x =0,y >0},
. { y = 0} (6.9)
g =1Jf(@) on {x>0,y=0}

0<v<C in R%,.

Proof. We use some tools developed in [5].

Suppose by contradiction that there is such solution v. First, we claim that
v(z,0) — 0 as  — oo. Suppose by contradiction that there exists a sequence
Ay — 00 (m — o00) such that v(am,0) — a > 0. Let vy,(x,y) = v(x + am,y).
It is clear that v, is a solution of in Uy, = {(z,y) | * > —am,y > 0}.
Moreover, v,,(0,0) = v(ay,,0) — «a. Therefore there exists a subsequence, still

denoted by v,,, such that v,, — v in Cﬁ)c(@) as m — 00, and v is a solution of

Oz + Oyyv =0 in RZ ={(z,y) | y > 0},
a=ft)=0 on {y=0} (6.9)
0<v<C in {y>0}.
Notice that
v(0,0) = a > 0.
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On the other hand, by Proposition[6.2] we know that v is identically constant. This
is impossible due to the nonlinear Neumann condition, since f > 0 in (0, c0) and
f(v(0,0)) = f(a) > 0. We conclude the claim, that is, v(x,0) — 0 as * — +o0.
Note that we can reflect the function v with respect to {x = 0,y > 0},
0(x,y) = —v(—=x,y) for x < 0, and obtain a bounded harmonic function o in all
= {y > 0}, since v = 0 on {z = 0,y > 0}. Applying interior gradient
estimates to the bounded harmonic function ¢ in the ball By(z,t) C R%, we
obtain

CHvHoo

1
[Vo(z,t)] < §7, for all ¢ > §,x>0.
5

On the other hand, by the results of [5] applied to the solution ¢ in R%r (or
equivalently by the proof of Proposition of this paper; note that f(0) = 0),
we have that |Vo| and |D?v| are bounded in R2, N{0 <y < 1}. We conclude
that |Vo| and | D?v| are bounded in R2 and

C
|Vou(z,t)] < ——, forallt >0,z > 0.
t+1

Using interior estimates for harmonic functions as before, but now with the partial
derivatives of v instead of v, it follows that

|D?v(z,t)| < TR for allt > 0,2 > 0.

Moreover, we have

’ﬁ |00 (x,t)]? —
ox 2

By these facts, we see that the function
+o0 az t 2 a t 2
o) = [ AR e

is well defined and ® is also.
Using the hm |Vv(:v t)| = 0, we obtain, for F(v) = [ f(s)ds,

|0, v(x, t)|? C
—t3+1

%[@(Z‘) + F(v(z,0))] = /o Oo[amvﬁxv — 0,0y v)(x,t) dt + [f(v)0,v](x,0)
= [ayvﬁxv + f(v)axva’ 0) =0,

thanks to the harmonicity of v and the Neumann boundary condition. This leads
to the Hamiltonian-type identity

®(-) + F(v(+,0)) is identically constant in (0, +00).
Furthermore, using that h? v(x,0)=0, and that lir+n v(x,y)=0 uniformly

in compact sets in y (we can prove this by the same previous argument leading
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to lim wv(x,0) = 0), together with the above bounds for |Vu(z,y)| for y large,

Tr——+0c0
we deduce

lim ®(z) = 0.

T——+400

From all these we obtain
®(z) + F(v(x,0)) =0, for x> 0.

Since v = 0 and thus d,v = 0 along the y-axis, we see by the definition of ®(0)

that

0 = &(0) + F(v(0,0)) = ®(0) %/Om 10,0[2(0, 1) dt.

This implies that d,v = 0 on {x = 0,y > 0}, which contradicts Hopf’s lemma.
Thus, the contradiction means that there is no positive bounded solution of the
problem. O

Before proving Theorems [I.5] and [1.3] let us make some comments.

Remark 6.5. Theorem (1.5 is still open without the boundedness assumption
on v.

In this respect, let us give some examples of problems in the quarter plane
R? .. The function v(z,y) = z is an unbounded solution of problem

~Av=0,v>0 in R?

o
v=20 on {z=0,y >0},
P~ on {zx>0,y=0}

This tells us that the result of Proposition (which did not require boundedness
of the solution in the half-plane) does not hold in the quarter plane.

On the other hand, it is clear that v(z,y) = 5 arctan 2= satisfies Av = 0

and —0yv |y—o= 57 L ) > 0 for x > 0. Hence, there exists a bounded harmonic

1+x2
function in the quarter plane R? . such that

~Av=0,v>0 in R?

++
v=0 on {x=0,y >0},
>0 on {z>0,y=0}

Thus the nonlinear condition % =P on {y = 0} is important in Theorem .

Proof of Theorem [1.5] It follows from Propositions [6.3 and [6.4] O

Proof of Theorem We know by Theorem and Proposition that
all weak solutions u of (1.1)) belong to C?(€2) N Cy(Q). Assume by contradiction
that the theorem is not true and hence that there is a sequence u,, of solutions

of (1) with
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Since v, = h-ext(u,,) is a positive harmonic function in C vanishing on 0.C,
we have that v,, has also K, as maximum in C and that it is attained at a point
(Tm,0) € 2 x {0}. Let

Q,, = Kfn_l(Q — Tp)
and define
Om(2,y) = K (2, + K27Pw, KPy), 2 € Qp,y > 0.
We have that ||Op, || Lo (0, x (0,00)) < 1 and

Ab, =0, in  Cp:=Q, x (0,00),

Uy =0 on 9Q, x (0,00), (6.10)
Pm = gb on Oy, x {0},
U, > 0 in C,.
Notice that
0, (0,0) = 1.

Let
dy, = dist(z,, 092).
Two cases may occur as m — o0o; either case (a):
KP~'d,, — oo
for a subsequence still denoted as before, or case (b):
K*~'d,, is bounded.

If case (a) occurs, we have that By, (0) = KB 'Bg, (0) C Q,, and that
KP~'d,, — oco. By local compactness (Arzela-Ascoli) of bounded solutions to
(6.10) (recall ||V, | Loo(e,,) < 1), through a subsequence, we obtain a solution @
of problem in all of R = R" x (0,00) —note that @,,(0,0) = 1 leads to
9(0,0) = 1 and hence © # 0 & 0 > 0. This is a contradiction to Theorem [6.1]

Assume now that case (b), KP~'d,, is bounded, occurs. Note first that since
the right-hand side of problem (/6.1)) for v, satisfies |v,,|? = vP, < KP  we deduce
from the proofs of Proposition (iii) and (iv) that ||Vi,||re@) < CKP, for a
constant C' independent of m. Now, since u,,|so= 0 (where u,, = v,(+,0)), we
get

K = 0 (T, 0) < ||V, || Lo (dist (2, 0Q) < CKP d,,.
We deduce that
0<c< KPP,
for some positive constant ¢. Thus, in this case (b), we may assume that, up to
a subsequence,
KP'd,, — a € (0,00) (6.11)

for some constant a > 0.
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We deduce that, up to a certain rotation of R" for each index m, since we have
, KP~! — oo, d,, — 0, and that BKypnqdm(O) is tangent to 0f2,,, the domains
Q,,, converge to the half-space R = {z,, > —a}. Thus, through a subsequence
of ¥,,, we obtain a solution ¥ of problem in RM! = {2, > —a,y > 0} with
0 bounded by 1 and © > 0 (since ©,,(0,0) = 1 for all m). This is a contradiction
with Theorem [L.5l O

Remark 6.6. From Theorem we have a priori bounds for solutions of prob-
lem (1.1) with f(u) = uP, 1 < p < 2. As a consequence, by using blow-up
techniques and topological degree theory, one can obtain existence of positive
solutions for related problems —for instance, for nonlinearities f(x,u) of power
type, as well as other boundary conditions. See Gidas-Spruck [14] for some of

these applications when the operator is the classical Laplacian.

7. SYMMETRY OF SOLUTIONS

The goal of this section is to prove a symmetry result of Gidas-Ni-Nirenberg
type for positive solutions of nonlinear problems involving the operator A, o, as
stated in Theorem [I1.6] by using the moving planes method. For this, we work
with the equivalent local problem and derive the following.

Theorem 7.1. Assume that Q) is a bounded smooth domain of R™ which is con-
ver in the xy direction and symmetric with respect to the hyperplane {x; = 0}.
Let f be Lipschitz continuous and let v € C*(C) be a solution of , where
C=Qx(0,400). Then, v is symmetric with respect to 1, i.e., v(—x1,2',y) =
v(zy, 2 y) for all (—z1,2",y) € C. In addition, g—;’l <0 for xz; > 0.

Proof of Theorems and It suffices to prove Theorem [7.1] From it,
Theorem [L.6] follows immediately.
Let z = (z1,2') € Q and A > 0. Consider the sets

Yo ={(x,2) € Q| xy >A} and T\ = {(z1,2") € Q |z =N}

For z € ¥, define z) = (2\ — z1,2). By the hypotheses on the domain {2 we see
that

{z\ ]z € X} CQ.
Recall that v € C?(C) is a solution of
Av=0 in C=Qx(0,00),
v=>0 on 0rC =09 x [0,00),
P — fv) on Qx{0},
v>0 in C.

For (z,y) € ¥\ x [0, 00), let us define
uA(z,y) = v(zs, y) = v(2A — 21,2, y)
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and
w)\(-fE, y) = (’UA - ’U)('Ta y)
Note that v, satisfies

Avy =0 in X, x (0,00),

Vy > 0 on (89 ﬂi)\) X (O, C)O)7
%Llj = f(vy) on X, x {0}.
Thus, since 9%, = (902N EA) U T\ and wy = 0 on Ty, we have that w, satisfies
Awy =0 in X, x (0,00),
wy >0 on (0%y) x (0,00), (7.1)
% +ex(z)wy =0 on X, x {0},
where
c)\(x,O) _ _f(/U)\) - f(U)
Uy — U

Note that c)(x,0) € L®(%,).

Let A* = sup{\ | X\ # 0} and let € > 0 be a small number. If A € (A\* — e, \*),
then X, has small measure and we have, by part (ii) of Proposition (applied
with € replied with ), that

wy >0 in Xy x (0,00).

Note here that X, is not a smooth domain but that part (ii) of Proposition
does not require smoothness of the domain. By the strong maximum principle,
Lemma , for problem we see that w) is identically equal to zero or strictly
positive in Xy x (0,00). Since A > 0, we have w,0 in (92 N 0X,) x (0,00), and
hence we conclude that w,0 in ¥ x (0, 00).

Let A\g = inf{A\ > 0] wy > 0 in X, x (0,00)}. We are going to prove
that \g = 0. Suppose that \y > 0 by contradiction. First, by continuity, we have
wy, > 01in Xy, x(0,00). Then, as before, we deduce wy, > 01in 3, x (0, 00). Next,
let § > 0 be a constant and K C X, be a compact set such that |2, \ K| < 6/2.
We have w),(-,0) > n > 0 in K for some constant 7, since K is compact. Thus,
we obtain that wy,—-(-,0) > 0 in K and that |X,,_. \ K| < for € small enough.

Now we apply again part (ii) of Proposition4.4/in ¥, . X (0, 00) to the function
Wxy—e. We know that wy,—.(-,0) > 0 in K, and hence {wy,—. < 0} C Xy, \ K,
which has measure at most . We take 6 to be the constant of part (ii) of
Proposition [£.4, We deduce that

Wr—e >0 in Xy, x (0,00).

This is a contradiction to the definition of \y. Thus, Ay = 0.
We have proved, letting A | Ay = 0 that

v(—zy, 2 y) > v(x, 2 y) in (2N {x; > 0}) x (0,00)
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and, since wy = 0 on T},

1 8w>\
Op, v =—=—2-<0 for x>0,
! 2 8.73'1 !
by Hopt’s lemma. Finally replacing x; by —x1, we deduce the desired symmetry
U(_xlvxluy) :U(l’l,,’]ﬁ/,y). U
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