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Abstract. We consider nonlinear elliptic problems involving a nonlocal
operator: the square root of the Laplacian in a bounded domain with zero
Dirichlet boundary conditions. For positive solutions to problems with power
nonlinearities, we establish existence and regularity results, as well as a priori
estimates of Gidas-Spruck type. In addition, among other results, we prove a
symmetry theorem of Gidas-Ni-Nirenberg type.

1. Introduction

This paper is concerned with the study of positive solutions to nonlinear
problems involving a nonlocal positive operator: the square root of the Lapla-
cian in a bounded domain with zero Dirichlet boundary conditions. We look for
solutions to the nonlinear problem

A1/2u = f(u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω,

(1.1)

where Ω is a smooth bounded domain of Rn and A1/2 stands for the square root
of the Laplacian operator −∆ in Ω with zero Dirichlet boundary values on ∂Ω.

To define A1/2, let {λk, ϕk}∞k=1 be the eigenvalues and corresponding eigenfunc-
tions of the Laplacian operator −∆ in Ω with zero Dirichlet boundary values on
∂Ω, {

−∆ϕk = λkϕk in Ω,

ϕk = 0 on Ω,

normalized by ‖ϕk‖L2(Ω) = 1. The square root of the Dirichlet Laplacian, that
we denote by A1/2, is given by

u =
∞∑
k=1

ckϕk 7−→ A1/2u =
∞∑
k=1

ckλ
1/2
k ϕk, (1.2)

which clearly maps H1
0 (Ω) = {u =

∑∞
k=1 ckϕk |

∑∞
k=1 λkc

2
k <∞} into L2(Ω).

The fractions of the Laplacian, such as the previous square root A1/2, are
the infinitesimal generators of Lévy stable diffusion processes and appear in

Key words and phrases. Fractional Laplacian, critical exponent, nonlinear mixed boundary
problem, a priori estimates, nonlinear Liouville theorems, moving planes method.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13285505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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anomalous diffusions in plasmas, flames propagation and chemical reactions in
liquids, population dynamics, geophysical fluid dynamics, and American options
in finance.

Essential to the results in this paper is to realize the nonlocal operator A1/2

in the following local manner. Given a function u defined in Ω, we consider its
harmonic extension v in the cylinder C := Ω × (0,∞), with v vanishing on the
lateral boundary ∂LC := ∂Ω × [0,∞). Then, A1/2 is given by the Dirichlet to

Neumann map on Ω, u 7→ ∂v
∂ν
|Ω×{0}, of such harmonic extension in the cylin-

der. In this way, we transform problem (1.1) to a local problem in one more
dimension. By studying this problem with classical local techniques, we establish
existence of positive solutions for problems with subcritical power nonlinearities,
regularity and an L∞-estimate of Brezis-Kato type for weak solutions, a priori es-
timates of Gidas-Spruck type, and a nonlinear Liouville type result for the square
root of the Laplacian in the half-space. We also obtain a symmetry theorem of
Gidas-Ni-Nirenberg type.

The analogue problem to (1.1) for the Laplacian has been investigated widely
in the last decades. This is the problem

−∆u = f(u) in Ω,

u = 0 on ∂Ω,

u > 0 in Ω;

(1.3)

see [24] and references therein. Considering the minimization problem
min{‖u‖H1

0 (Ω) | ‖u‖Lp+1(Ω) = 1}, one obtains a positive solution of (1.3) in the case

f(u) = up, 1 < p < n+2
n−2

, since the Sobolev embedding is compact. Ambrosetti
and Rabinowitz [1] introduced the mountain pass theorem to study problem (1.3)

for more general subcritical nonlinearities. Instead, for f(u) = u
n+2
n−2 , Pohozaev

identity leads to nonexistence to (1.3) if Ω is star-shaped. In contrast, Brezis
and Nirenberg [4] showed that the nonexistence of solution may be reverted by
adding a small linear perturbation to the critical power nonlinearity.

For the square root A1/2 of the Laplacian, we derive the following result on
existence of positive solutions to problem (1.1).

Theorem 1.1. Let n ≥ 1 be an integer and 2] = 2n
n−1

when n ≥ 2. Suppose
that Ω is a smooth bounded domain in Rn and f(u) = up. Assume that 1 < p <
2] − 1 = n+1

n−1
if n ≥ 2, or 1 < p <∞ if n = 1.

Then, problem (1.1) admits at least one solution. This solution (as well as
every weak solution) belongs to C2,α(Ω) for some 0 < α < 1.

As mentioned before, we realize problem (1.1) through a local problem in one
more dimension by a Dirichlet to Neumann map. This provides a variational
structure to the problem, and we study its corresponding minimization problem.
Here the Sobolev trace embedding comes into play, and its critical exponent
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2] = 2n
n−1

, n ≥ 2, is the power appearing in Theorem 1.1. We call p critical

(respectively, subcritical or supercritical) when p = 2] − 1 = n+1
n−1

(respectively,

p < 2]−1 or p > 2]−1). In the subcritical case of Theorem 1.1, the compactness
of the Sobolev trace embedding in bounded domains leads to the existence of
solution. Its regularity will be consequence of further results presented later in
this introduction.

Remark 1.2. In [26] the second author J. Tan establishes the non-existence of
classical solutions to (1.1) with f(u) = up in star-shaped domains for the critical
and supercritical cases. In addition, an existence result of Brezis-Nirenberg type
[4] for f(u) = up + µu, µ > 0, is also established.

Gidas and Spruck [14] established a priori estimates for positive solutions of
problem (1.3) when f(u) = up and p < n+2

n−2
. Its proof involves the method

of blow-up combined with two important ingredients: nonlinear Liouville type
results in all space and in a half-space. The proofs of such Liouville theorems
are based on the Kelvin transform and the moving planes method or the moving
spheres method. Here we establish an analogue: the following a priori estimates
of Gidas-Spruck type for solutions of problem (1.1).

Theorem 1.3. Let n ≥ 2 and 2] = 2n
n−1

. Assume that Ω ⊂ Rn is a smooth

bounded domain and f(u) = up, 1 < p < 2] − 1 = n+1
n−1

.
Then, there exists a constant C(p,Ω), which depends only on p and Ω, such

that every weak solution of (1.1) satisfies

‖u‖L∞(Ω) ≤ C(p,Ω).

To prove this result, we combine the blow-up method and two useful ingredi-
ents: a nonlinear Liouville theorem for the square root of the Laplacian in all of
Rn, and a similar one in the half-space Rn

+ with zero Dirichlet boundary values
on ∂Rn

+. The first one in the whole space was proved by Ou [22] using the moving
planes method and by Y.Y. Li, M. Zhu and L. Zhang [18], [17] using the moving
spheres method. Its statement is the following.

Theorem 1.4. ([18], [22], [17]) For n ≥ 2 and 1 < p < 2]− 1 = n+1
n−1

, there exists
no weak solution of problem{

(−∆)1/2u = up in Rn,

u > 0 in Rn.
(1.4)

As we will see later, here (−∆)1/2 is the usual half-Laplacian in all of Rn, and
problem (1.4) is equivalent to problem ∆v = 0 and v > 0 in Rn+1

+ , ∂νv = vp on
∂Rn+1

+ . The corresponding Liouville theorem for the square root of the Laplacian
in Rn

+ = {x ∈ Rn | xn > 0} was not available and we establish it in this paper
for bounded solutions.
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Theorem 1.5. Let n ≥ 2, 2] = 2n
n−1

, and 1 < p ≤ 2] − 1 = n+1
n−1

. Then, there
exists no bounded solution u of

A1/2u = up in Rn
+,

u = 0 on ∂Rn
+,

u > 0 in Rn
+,

(1.5)

where A1/2 is the square root of the Laplacian in Rn
+ = {xn > 0} with zero

Dirichlet boundary conditions on ∂Rn
+.

In an equivalent way, let

Rn+1
++ = {z = (x1, x2, · · · , xn, y) | xn > 0, y > 0}.

If n ≥ 2 and 1 < p ≤ 2] − 1 = n+1
n−1

, then there exists no bounded solution

v ∈ C2(Rn+1
++ ) ∩ C(Rn+1

++ ) of
∆v = 0 in Rn+1

++ ,

v = 0 on {xn = 0, y > 0},
∂v
∂ν

= vp on {xn > 0, y = 0},
v > 0 in Rn+1

++ ,

(1.6)

where ν is the unit outer normal to Rn+1
++ at {xn > 0, y = 0}.

The proof of this result combines the Kelvin transform, the moving planes
method, and a Hamiltonian identity for the half-Laplacian found by Cabré and
Solà-Morales [5]. The result of Theorem 1.5 is still open without the assumption
of boundedness of the solution.

Gidas, Ni, and Nirenberg [13] established symmetry properties for solutions
to problem (1.3) when f is Lipschitz continuous and Ω has certain symmetries.
The proof of these symmetry results uses the maximum principle and the moving
planes method. The moving planes method was introduced by Alexandroff to
study a geometric problem, while in the framework of problem (1.3) was first used
by Serrin. In the improved version of Berestycki and Nirenberg [3], it replaces
the use of Hopf’s lemma by a maximum principle in domains of small measure.

Here we proceed in a similar manner and obtain the following symmetry result
of Gidas-Ni-Nirenberg type for (1.1).

Theorem 1.6. Assume that Ω is a bounded smooth domain of Rn which is convex
in the x1 direction and symmetric with respect to the hyperplane {x1 = 0}. Let f
be Lipschitz continuous and u be a C2(Ω) solution of (1.1).

Then, u is symmetric with respect to x1, i.e., u(−x1, x
′) = u(x1, x

′) for all
(x1, x

′) ∈ Ω. In addition, ∂u
∂x1

< 0 for x1 > 0.

In particular, if Ω = BR(0) is a ball, then u is radially symmetric, u = u(|x|) =
u(r) for r = |x|, and it is decreasing, i.e., ur < 0 for 0 < r < R.
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We prove this symmetry result by using the moving planes method combined
with the following maximum principle for the square root A1/2 of the Laplacian
in domains of small measure (see Proposition 4.4 for a more general statement in
nonsmooth domains).

Proposition 1.7. Assume that u ∈ C2(Ω) satisfies{
A1/2u+ c(x)u ≥ 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn and c ∈ L∞(Ω). Then, there exists
δ > 0 depending only on n and ‖c−‖L∞(Ω), such that if |Ω ∩ {u < 0}| ≤ δ then
u ≥ 0 in Ω.

The above maximum principle in “small” domains replaces the use of Hopf’s
lemma to prove symmetry results for A1/2 in Lipschitz domains. We point out
that Chipot, Chleb́ık, Fila, and Shafrir [9] studied a related problem:

−∆v = g(v) in B+
R = {z ∈ Rn+1 | |z| ≤ R, zn+1 > 0},

v = 0 on ∂B+
R ∩ {zn+1 > 0},

∂v
∂ν

= f(v) on ∂B+
R ∩ {zn+1 = 0},

v > 0 in B+
R ,

(1.7)

where f, g ∈ C1(R) and ν is the unit outer normal. They proved existence, non-
existence, and axial symmetry results for solutions of (1.7). Following one of
their proofs, we establish Hopf’s lemma for A1/2, Lemma 4.3 below. Finally, let
us mention that singular solutions and extremal solutions of similar problems to
(1.7) have been considered by Davila, Dupaigne, and Montenegro [10], [11].

As we mentioned, crucial to our results is that A1/2 is a nonlocal operator in
Ω but which can be realized through a local problem in Ω × (0,∞). To explain
this, let us start with the square root of the Laplacian (or half-Laplacian) in Rn.
Let u be a bounded continuous function in all of Rn. There is a unique harmonic
extension v of u in the half-space Rn+1

+ = Rn × (0,∞). That is,{
∆v = 0 in Rn+1

+ = {(x, y) ∈ Rn × (0,∞)},
v = u on Rn = ∂Rn+1

+ .

Consider the operator T : u 7→ −∂yv(·, 0). Since ∂yv is still a harmonic function,
if we apply the operator T twice, we obtain

(T ◦ T )u = ∂yyv |y=0= −∆xv |y=0= −∆u in Rn.

Thus, we see that the operator T mapping the Dirichlet data u to the Neumann
data −∂yv(·, 0) is actually a square root of the Laplacian. Indeed it coincides
with the usual half-Laplacian, see [16].

Here we introduce a new analogue extension problem in a cylinder C :=
Ω× (0,∞) in one more dimension to realize (1.1) by a local problem in C. More
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precisely, we look for a function v with v(·, 0) = u in Rn satisfying the following
mixed boundary value problem in a half-cylinder:

∆v = 0 in C = Ω× (0,∞),

v = 0 on ∂LC := ∂Ω× [0,∞),
∂v
∂ν

= f(v) on Ω× {0},
v > 0 in C,

(1.8)

where ν is the unit outer normal to C at Ω×{0}. If v satisfies (1.8), then the trace
u on Ω × {0} of v is a solution of problem (1.1). Indeed, since ∂yv is harmonic
and also vanishes on the lateral boundary ∂Ω× [0,∞), we see as before that the
Dirichlet to Neumann map u 7→ −∂yv(·, 0) is the unique positive square root A1/2

of the Dirichlet Laplacian in Ω.
The generators of Lévy symmetric stable diffusion processes are the fractional

powers of the Laplacian (−∆)s in all of Rn, 0 < s < 1. Fractional Laplacians
attract nowadays much interest in physics, biology, finance, as well as in math-
ematical nonlinear analysis (see [2]). One of the few nonlinear results which is
not recent is due to Sugitani [25], who proved blow up results for solutions of
heat equations ∂tu + (−∆)su = f(u) in Rn, for all 0 < s < 1. It is important
to note that the fundamental solution of the fractional heat equation has power
decay (or heavy) tails, in contrast with the exponential decay in case of the clas-
sical heat equation. Lévy processes have also been applied to model American
options [2]. As recent nonlinear works for fractional diffusions, let us mention
the following. Caffarelli and Silvestre [7] have given a new local realization of the
fractional Laplacian (−∆)s, for all 0 < s < 1, through the Dirichlet-Neumann
map of an appropriate degenerate elliptic operator. The regularity of the obsta-
cle problem for the fractional powers of the Laplacian operator was proved by
Silvestre [23]. The optimal regularity for such Signorini problem was improved
in [6]. Moreover, the operator (−∆)s plays an important role in the study of
the quasi-geostrophic equations in geophysical fluid dynamics; see the important
recent paper [8] by Caffarelli and Vasseur. Cabré and Solà-Morales [5] studied
layer solutions (solutions which are monotone with respect to one variable) of
(−∆)1/2u = f(u) in Rn, where f is of balanced bistable type.

To prove Theorem 1.1, in view of (1.8) being a local realization of (1.1), we
consider the Sobolev space

H1
0,L(C) = {v ∈ H1(C) | v = 0 a.e. on ∂LC = ∂Ω× [0,∞) },

equipped with the norm ‖v‖ =
(∫
C |∇v|

2 dxdy
)1/2

. Since problem (1.8) has vari-
ational structure, we consider its corresponding minimization problem

I0 = inf

{∫
C
|∇v(x, y)|2dxdy | v ∈ H1

0,L(C),
∫

Ω

|v(x, 0)|p+1dx = 1

}
.
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We will prove that, for subcritical powers, there is a minimizer for this problem.
Its trace on Ω× {0} will provide with a weak solution of (1.1).

Thus, it is important to characterize the space V0(Ω) of all traces on Ω×{0} of
functions in H1

0,L(C). This is stated in the following result —which corresponds
to Proposition 2.1 of next section.

Proposition 1.8. Let V0(Ω) be the space of all traces on Ω×{0} of functions in
H1

0,L(C). Then, we have

V0(Ω) :=
{
u = trΩv | v ∈ H1

0,L(C)
}

=

{
u ∈ H1/2(Ω) |

∫
Ω

u2(x)

d(x)
dx < +∞

}
=

{
u ∈ L2(Ω) | u =

∞∑
k=1

bkϕk satisfying
∞∑
k=1

b2
kλ

1/2
k < +∞

}
,

where d(x) = dist(x, ∂Ω), and {λk, ϕk} is the Dirichlet spectral decomposition of
−∆ in Ω as above, with {ϕk} an orthonormal basis of L2(Ω).

Furthermore, V0(Ω) equipped with the norm

‖u‖V0(Ω) =

{
‖u‖2

H1/2(Ω) +

∫
Ω

u2

d

}1/2

(1.9)

is a Banach space.

The fact that d−1/2u ∈ L2(Ω) if u is the trace of a function in H1
0,L(C)

follows from a trace boundary Hardy inequality, originally due to Nekvinda [21];
see Lemma 2.6 in next section for a simple proof. Thus, in next section we
need to consider the operator A1/2 defined as in (1.2) but now mapping
A1/2 : V0(Ω)→ V∗0 (Ω), where V∗0 (Ω) is the dual space of V0(Ω). For u =

∑∞
k=1 bkϕk

∈ V0(Ω), we will have A1/2(
∑∞

k=1 bkϕk) =
∑∞

k=1 bkλ
1/2
k ϕk Moreover, there will be

a unique harmonic extension v ∈ H1
0,L(C) in C of u, and it is given by the expres-

sion

v(x, y) =
∞∑
k=1

bkϕk(x) exp(−λ1/2
k y) for all (x, y) ∈ C.

Thus, the operator A1/2 : V0(Ω)→ V∗0 (Ω) is given by the Dirichlet-Neumann map

A1/2u :=
∂v

∂ν
|Ω×{0}=

∞∑
k=1

bkλ
1/2
k ϕk.

Note that A1/2 ◦ A1/2 is equal to −∆ in Ω with zero Dirichlet boundary value
on ∂Ω. More precisely, we will have that the inverse B1/2 = A−1

1/2 —which maps

V∗0 (Ω) into itself, and also L2(Ω) into itself— is the unique square root of the
inverse Laplacian (−∆)−1 in Ω with zero Dirichlet boundary values on ∂Ω; see
next section for details.
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To establish the regularity of weak solutions to (1.1) obtained by the previous
minimization technique, we establish the following results of Calderón-Zygmund
and of Schauder type for the linear problem{

A1/2u = g(x) in Ω,

in u = 0 on ∂Ω;
(1.10)

see Proposition 3.1 for more details.

Theorem 1.9. Let u ∈ V0(Ω) be a weak solution of (1.10), where g ∈ V∗0 (Ω) and
Ω is a C2,α bounded domain in Rn, for some 0 < α < 1.

If g ∈ L2(Ω), then u ∈ H1
0 (Ω).

If g ∈ H1
0 (Ω), then u ∈ H2(Ω) ∩H1

0 (Ω).
If g ∈ L∞(Ω), then u ∈ Cα(Ω).
If g ∈ Cα(Ω) and g|∂Ω ≡ 0, then u ∈ C1,α(Ω).
If g ∈ C1,α(Ω) and g|∂Ω ≡ 0, then u ∈ C2,α(Ω).

In this paper we will give full —and rather simple— proofs of these regularity
results, specially since we could only find references for some of them and, besides,
in close statements to ours but not precisely ours. Our proof of Theorem 1.9 uses
the extension problem in Ω × (0,∞) related to (1.10), and transforms it to a
problem with zero Dirichlet boundary in Ω× {0} by using an auxiliary function
introduced in [5]. Then, by making certain reflections and using classical interior
regularity theory for the Laplacian, we prove Hölder regularity for u and its
derivatives.

To apply the previous Hölder regularity linear results to our nonlinear
problem (1.1), we first need to prove that g :=f(u) is bounded, i.e., u is bounded.
We will see that boundedness of weak solutions holds for subcritical and crit-
ical nonlinearities; we establish this result in section 5. We will follow the
Brezis-Kato approach bootstrap method. In this way, we establish the following
(see Theorem 5.2).

Theorem 1.10. Assume that g0 is a Carathéodory function in Ω× R satisfying

|g0(x, s)| ≤ C(1 + |s|p) for all (x, s) ∈ Ω× R,
for some constant C, 1 ≤ p ≤ n+1

n−1
if n ≥ 2, or 1 ≤ p <∞ if n = 1, where Ω is a

smooth bounded domain in Rn. Let u ∈ V0(Ω) be a weak solution of{
A1/2u = g0(x, u) in Ω,

u = 0 on ∂Ω.

Then, u ∈ L∞(Ω).

The paper is organized as follows. In section 2, we study the appropriate
function spaces H1

0,L(C) and V0(Ω), and we give the proof of Proposition 1.8
and other related results. The regularity results of Theorem 1.9 can be founded
in section 3. Maximum principles, Hopf’s lemma, and the maximum principle
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in “small” domains of Proposition 1.7 are proved in section 4. The complete proof
of Theorem 1.1 is given in section 5 by studying the minimization problem and
applying the previous results on regularity and maximum principles. We prove
Theorem 1.10 also in section 5, while Theorems 1.3 and 1.5 are established in
section 6, and Theorem 1.6 in section 7.

2. Preliminaries: function spaces and the operator A1/2

In this section we collect preliminary facts for future reference. First of all,
let us set the standard notations to be used in the paper. We denote the upper
half-space in Rn+1 by

Rn+1
+ = {z = (x, y) = (x1, · · · , xn, y) ∈ Rn+1 | y > 0}.

Denote by Hs(U) = W s, 2(U) the Sobolev space in a domain U of Rn or of Rn+1
+ .

Letting U ⊂ Rn and s > 0, Hs(U) is a Banach space with the norm

‖u‖Hs(U) =
{∫

U

∫
U

|u(x)− u(x̄)|2

|x− x̄|n+2s
dxdx̄+

∫
U

|u(x)|2 dx
}1/2

.

Let Ω be a bounded smooth domain in Rn. Denote the half-cylinder with base
Ω by

C = Ω× (0,∞)

and its lateral boundary by

∂LC = ∂Ω× [0,∞).

To treat the nonlocal problem (1.1), we will study a corresponding extension
problem in one more dimension, which allows us to investigate (1.1) by studying
a local problem via classical nonlinear variational methods. We consider the
Sobolev space of functions in H1(C) whose traces vanish on ∂LC:

H1
0,L(C) = {v ∈ H1(C) | v = 0 a.e. on ∂LC }, (2.1)

equipped with the norm

‖v‖ =

(∫
C
|∇v|2 dxdy

)1/2

. (2.2)

We denote by trΩ the trace operator on Ω× {0} for functions in H1
0,L(C):

trΩv := v(·, 0), for v ∈ H1
0,L(C).

We have that trΩv ∈ H1/2(Ω), since it is well known that traces of H1 functions
are H1/2 functions on the boundary.

Recall the well known spectral theory of the Laplacian−∆ in a smooth bounded
domain Ω with zero Dirichlet boundary values. We repeat each eigenvalue of −∆
in Ω with zero Dirichlet boundary conditions according to its (finite) multiplicity:

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · → ∞, as k →∞,
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and we denote by ϕk ∈ H1
0 (Ω) an eigenfunction corresponding to λk for k =

1, 2, · · · . Namely, {
−∆ϕk = λkϕk in Ω,

ϕk = 0 on Ω.
(2.3)

We can take them to form an orthonormal basis {ϕk} of L2(Ω), in particular,∫
Ω

ϕ2
k dx = 1,

and to belong to C2(Ω) by regularity theory.
Now we can state the main results which we prove in this section.

Proposition 2.1. Let V0(Ω) be the space of all traces on Ω×{0} of functions in
H1

0,L(C). Then, we have

V0(Ω) :=
{
u = trΩv | v ∈ H1

0,L(C)
}

=

{
u ∈ H1/2(Ω) |

∫
Ω

u2(x)

d(x)
dx < +∞

}

=

{
u ∈ L2(Ω) | u =

∞∑
k=1

bkϕk satisfying
∞∑
k=1

b2
kλ

1/2
k < +∞

}
,

where d(x) = dist(x, ∂Ω), and {λk, ϕk} is the Dirichlet spectral decomposition of
−∆ in Ω as above, with {ϕk} an orthonormal basis of L2(Ω).

Furthermore, V0(Ω) equipped with the norm

‖u‖V0(Ω) =

{
‖u‖2

H1/2(Ω) +

∫
Ω

u2

d

}1/2

(2.4)

is a Banach space.

Proposition 2.2. If u ∈ V0(Ω), then there exists a unique harmonic extension
v in C of u such that v ∈ H1

0,L(C). In particular, if the expansion of u is written
by u =

∑∞
k=1 bkϕk ∈ V0(Ω), then

v(x, y) =
∞∑
k=1

bkϕk(x) exp(−λ1/2
k y) for all (x, y) ∈ C,

where {λk, ϕk} is the Dirichlet spectral decomposition of −∆ in Ω as above, with
{ϕk} an orthonormal basis of L2(Ω).

The operator A1/2 : V0(Ω)→ V∗0 (Ω) is given by

A1/2u :=
∂v

∂ν

∣∣∣∣
Ω×{0}

,
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where V∗0 (Ω) is the dual space of V0(Ω). We have that

A1/2u =
∞∑
k=1

bkλ
1/2
k ϕk,

and that A1/2 ◦A1/2 (when A1/2 is acting, for instance, on smooth functions with
compact support in Ω) is equal to −∆ in Ω with zero Dirichlet boundary values
on ∂Ω. More precisely, the inverse B1/2 := A−1

1/2 is the unique positive square root

of the inverse Laplacian (−∆)−1 in Ω with zero Dirichlet boundary values on ∂Ω.

The proofs of these two propositions need the development of several tools.
First let us give some properties of the space H1

0,L(C). Denote by D1,2(Rn+1
+ ) the

closure of the set of smooth functions compactly supported in Rn+1
+ with respect

to the norm of ‖w‖D1,2(Rn+1
+ ) =

( ∫
Rn+1

+
|∇w|2 dxdy

)1/2

. We recall the well known

Sobolev trace inequality that for w ∈ D1, 2(Rn+1
+ ),(∫

Rn
|w(x, 0)|2n/(n−1)dx

)(n−1)/2n

≤ C
(∫

Rn+1
+

|∇w(x, y)|2dxdy
)1/2

, (2.5)

where C depends only on n.
Denote for n ≥ 2,

2] =
2n

n− 1
and 2] − 1 =

n+ 1

n− 1
.

We say that p is subcritical if 1 < p < 2] − 1 = n+1
n−1

for n ≥ 2, and 1 < p < ∞
for n = 1. We also say that p is critical if p = 2] − 1 = n+1

n−1
for n ≥ 2, and that p

is supercritical if p > 2] − 1 = n+1
n−1

for n ≥ 2.
Lions [19] showed that

S0 = inf

{∫
Rn+1

+
|∇w(x, y)|2dxdy

(
∫

Rn |w(x, 0)|2]dx)2/2]
| w ∈ D1,2(Rn+1

+ )

}
(2.6)

is achieved. Escobar [12] prove that the extremal functions have all the form

Uε(x, y) =
ε(n−1)/2

|(x− x0, y + ε)|n−1
, (2.7)

where x0 ∈ Rn and ε > 0 are arbitrary. In addition, the best constant is

S0 =
(n− 1)σ

1/n
n

2
,

where σn denotes the volume of n-dimensional sphere Sn ⊂ Rn+1.
The Sobolev trace inequality leads directly to the next three lemmas. For

v ∈ H1
0,L(C), its extension by zero in Rn+1

+ \ C can be approximated by functions

compactly supported in Rn+1
+ . Thus the Sobolev trace inequality (2.5) leads to:
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Lemma 2.3. Let n ≥ 2 and 2] = 2n
n−1

. Then there exists a constant C, depending

only on n, such that, for all v ∈ H1
0,L(C),(∫

Ω

|v(x, 0)|2]dx
)1/2]

≤ C
(∫
C
|∇v(x, y)|2dxdy

)1/2

. (2.8)

By Hölder’s inequality, since Ω is bounded, the above lemma leads to:

Lemma 2.4. Let 1 ≤ q ≤ 2] for n ≥ 2. Then, we have that for all v ∈ H1
0,L(C),(∫

Ω

|v(x, 0)|qdx
)1/q

≤ C
(∫
C
|∇v(x, y)|2dxdy

)1/2

, (2.9)

where C depends only on n, q, and the measure of Ω. Moreover, (2.9) also holds
for 1 ≤ q <∞ if n = 1.

This lemma states that trΩ(H1
0,L(C)) ⊂ Lq(Ω), where 1 ≤ q ≤ 2] for n ≥ 2

and 1 ≤ q < ∞ for n = 1, (see the proof of Lemma 2.5 for the case n = 1). In
addition, we also have the following compact embedding.

Lemma 2.5. Let 1 ≤ q < 2] = 2n
n−1

for n ≥ 2 and 1 ≤ q < ∞ for n = 1. Then

trΩ(H1
0, L(C)) is compactly embedded in Lq(Ω).

Proof. It is well known that trΩ(H1
0,L(C)) ⊂ H1/2(Ω) and thatH1/2(Ω)⊂⊂ Lq(Ω)

when 1 ≤ q < 2] = 2n
n−1

for n ≥ 2 and 1 ≤ q < ∞ for n = 1. Here ⊂⊂ denotes
the compact embedding. This completes the proof of the lemma. However, if one
wants to avoid the use of the fractional Sobolev space H1/2(Ω), the following is
an alternative simple proof.

Considering the restriction of functions in C to Ω × (0, 1), it suffices to show
that the embedding is compact with C replaced by Ω× (0, 1). To prove this, let
vm ∈ H1

0,L(Ω× (0, 1)) := {v ∈ H1(Ω× (0, 1)) | v = 0 a.e. on ∂Ω× (0, 1)} such

that vm ⇀ 0 weakly in H1
0,L(Ω × (0, 1)), as m → ∞. We may assume by the

classical Rellich’s theorem in Ω × (0, 1) that vm → 0 strongly in L2(Ω × (0, 1)),
as m→∞. We introduce the function wm = (1− y)vm. It is clear that

wm|Ω×{0} = vm, wm|Ω×{1} = 0.

By direct computations we have∫
Ω

|vm(x, 0)|2 dx =

∫
Ω

|wm(x, 0)|2 dx = −
∫ 1

0

∫
Ω

∂y(w
2
m(x, y)) dxdy

≤ 2
(∫ 1

0

∫
Ω

w2
m(x, y) dxdy

)1/2(∫ 1

0

∫
Ω

|∇wm(x, y)|2 dxdy
)1/2

.

Therefore, since wm = (1 − y)vm is bounded in H1(Ω × (0, 1)) and wm → 0
strongly in L2(Ω× (0, 1)), we find that, as m→∞,

vm(x, 0)→ 0 strongly in L2(Ω) and hence also in L1(Ω).



THE SQUARE ROOT OF THE LAPLACIAN 13

On the other hand, since q is subcritical, the following interpolation inequality,

‖vm(·, 0)‖Lq(Ω) ≤ ‖vm(·, 0)‖θL1(Ω)‖vm(·, 0)‖1−θ
L2] (Ω)

for some 0 < θ < 1 completes the proof since we already know that vm converges
strongly to zero in L1(Ω). 2

We also need to establish a trace boundary Hardy inequality, which already
appeared in a work of Nekvinda [21].

Lemma 2.6. We have that

trΩ(H1
0,L(C)) ⊂ H1/2(Ω)

is a continuous injection. In addition, for every v ∈ H1
0,L(C),∫

Ω

|v(x, 0)|2

d(x)
dx ≤ C

∫
C
|∇v(x, y)|2 dxdy, (2.10)

where d(x) = dist(x, ∂Ω) and the constant C depends only on Ω.

Proof. The first statement is clear since the traces of H1(C) functions belong to
H1/2(∂C). Regarding the second statement, we prove it in two steps.

Step 1. Assume first that n = 1 and Ω = (0, 1). For 0 < x0 < 1/2, consider the
segment from (0, x0) to (x0, 0) in C = (0, 1)× (0,∞). We have

v(x0, 0) = v(t, x0 − t) |x0
t=0=

∫ x0

0

(∂xv − ∂yv)(t, x0 − t) dt.

Then

|v(x0, 0)|2 ≤ x0

∫ x0

0

2|∇v(t, x0 − t)|2 dt.

Dividing this inequality by x0 and integrating in x0 over (0, 1/2), and making the
change of variables x = t, y = x0 − t, we deduce∫ 1/2

0

|v(x0, 0)|2

x0

dx0 ≤ 2

∫ 1/2

0

dx

∫ 1/2

0

dy|∇v|2 ≤ 2

∫
C
|∇v|2 dxdy.

Doing the same on (1/2, 1), this establishes inequality (2.10) of the lemma.

Step 2. In the general case, after straightening a piece of the boundary ∂Ω
and rescaling the new variables, we can consider the inequality in a domain
D = {x = (x′, xn) | |x′| < 1, 0 < xn < 1/2} and assume that v = 0 on
{xn = 0, |x′| < 1} × (0,∞), since the flatting procedure possesses equivalent
norms. By the argument in Step 1 above, we have∫ 1/2

0

|v(x, 0)|2

xn
dxn ≤ C

∫ 1/2

0

∫ ∞
0

|∇v|2 dxndy,
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for all x′ with |x′| < 1. From this, integrating in x′ we have∫
D

|v(x, 0)|2

xn
dx =

∫
D

∫ 1/2

0

|v(x, 0)|2

xn
dx′dxn

≤C
∫
D×(0,∞)

|∇v|2 dxdy.

Since after flattening of ∂Ω, xn is comparable to d(x) = dist(x, ∂Ω), this is the
desired inequality (2.10). 2

Recall that the fractional Sobolev space H1/2(Ω) is a Banach space with the
norm

‖u‖2
H1/2(Ω) =

∫
Ω

∫
Ω

|u(x)− u(x̄)|2

|x− x̄|n+1
dxdx̄+

∫
Ω

|u(x)|2 dx. (2.11)

Note that the closure H
1/2
0 (Ω) of smooth functions with compact support, C∞c (Ω),

in H1/2(Ω) is all the space H1/2(Ω), (see Theorem 11.1 in [20]). That is, C∞c (Ω)
is dense in H1/2(Ω). However, in contrast with this, the trace in Ω of functions
in H1

0,L(C) “vanish” on ∂Ω in the sense given by (2.10).
Recall that we have denoted by V0(Ω) the space of traces on Ω×{0} of functions

in H1
0,L(C):

V0(Ω) := {u = trΩv | v ∈ H1
0,L(C)} ⊂ H1/2(Ω), (2.12)

endowed with the norm (2.4) in Proposition 2.1. The dual space of V0(Ω) is
denoted by V∗0 (Ω), equipped with the norm

‖g‖V∗0 (Ω) = sup{〈u, g〉 | u ∈ V0(Ω), ‖u‖V0(Ω) ≤ 1}.

Next we give the first characterization of the space V0(Ω):

Lemma 2.7. Let V0(Ω) be the space of traces on Ω×{0} of functions in H1
0,L(C),

as in (2.12). Then, we have

V0(Ω) =

{
u ∈ H1/2(Ω) |

∫
Ω

u2(x)

d(x)
dx < +∞

}
,

where d(x) = dist(x, ∂Ω).

Proof. The inclusion ⊂ follows Lemma 2.6. Next we show the other inclusion.
Let u ∈ H1/2(Ω) satisfy

∫
Ω
u2/d < ∞. Let ũ be the extension of u in all of Rn

assigning ũ ≡ 0 in Rn \ Ω. The quantity

‖ũ‖2
H1/2(Rn) =

∫
Rn

∫
Rn

|ũ(x)− ũ(x̄)|2

|x− x̄|n+1
dxdx̄+

∫
Rn
|ũ(x)|2 dx

can be bounded —using ũ ≡ 0 in Rn \ Ω— by a constant times{
‖u‖2

H1/2(Ω) +

∫
Ω

u2(x)

d(x)
dx

}1/2

,
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that we assume to be finite. Hence, ũ ∈ H1/2(Rn) and thus ũ is the trace in
Rn = ∂Rn+1

+ of a function ṽ ∈ H1(Rn+1
+ ).

Next, we use a partition of the unity, and local bi-Lipschitz maps (defined

below) sending Rn+1
+ into Ω × [0,∞) = C being the identity on Ω × {0} and

mapping Rn \ Ω = (∂Rn+1
+ ) \ Ω into ∂Ω × [0,∞). By composing these maps

with the function (cutted off with the partition of unity) ṽ, we obtain an H1
0,L(C)

function with u as trace on Ω× {0}, as desired.
Finally we give a concrete expression for one such bi-Lipschitz maps. First,

consider the one dimensional case Ω = (0,∞). Then simply take the bi-Lipschitz
map

(x, y) ∈ (0,∞)× (0,∞) = Ω× (0,∞)

7→

(
x2 − y2√
x2 + y2

,
2xy√
x2 + y2

)
∈ R× (0,∞),

whose Jacobian can be checked to be identically 2. In the general case, we can
flatten the boundary ∂Ω and use locally the previous map. 2

Next we consider, for a given function u ∈ V0(Ω), the minimizing problem:

inf

{∫
C
|∇v|2 dxdy | v ∈ H1

0,L(C), v(·, 0) = u in Ω

}
. (2.13)

By the definition of V0(Ω), the set of functions v where we minimize is non
empty. By lower weak semi-continuity and by Lemma 2.5, we see that there
exists a minimizer v. We will prove next that this minimizer v is unique. We call
v a weak solution of the problem

∆v = 0 in C,
v = 0 on ∂LC,
v = u on Ω× {0}.

(2.14)

That is, we have

Lemma 2.8. For u ∈ V0(Ω), there exists a unique minimizer v of (2.13). The
function v ∈ H1

0,L(C) is the harmonic extension of u (in the weak sense) to C
vanishing on ∂LC.

Proof. By the definition of V0(Ω), we have that, for every u ∈ V0(Ω), there exists
at least one w ∈ H1

0,L(C) such that trΩ(w) = u. Then the standard minimization
argument gives (using lower semi-continuity and Lemma 2.5) the existence of a
minimizer. The uniqueness of minimizer follows automatically from the identity
of the parallelogram used for two possible minimizers v1 and v2,

0 ≤ J

(
v1 − v2

2

)
=

1

2
J(v1) +

1

2
J(v2)− J

(
v1 + v2

2

)
≤ 0,

where J(v) =
∫
C |∇v|

2 dxdy, which leads to v1 = v2. 2
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By Lemma 2.8, there exists a unique function v ∈ H1
0,L(C) which is the har-

monic extension of u in C vanishing on ∂LC, and that we denote by

v := h-ext(u).

It is easy to see that for every η ∈ C∞(C) ∩H1(C) and η ≡ 0 on ∂LC,∫
C
∇v∇η dxdy =

∫
Ω

∂v

∂ν
η dx. (2.15)

By Lemma 2.6, there exists a constant C such that for every u ∈ V0(Ω),

‖u‖V0(Ω) ≤ C‖h-ext(u)‖H1
0,L(C). (2.16)

Next, note that the h-ext operator is bijective from V0(Ω) to the subspace H of
H1

0,L(C) formed by all harmonic functions in H1
0,L(C). Since both V0(Ω) and H

are Banach spaces, the open mapping theorem gives that we also have the reverse
inequality to (2.16), i.e., there exists a constant C such that

‖h-ext(u)‖H1
0,L(C) ≤ C‖u‖V0(Ω), (2.17)

for all u ∈ V0(Ω). From this we deduce the following. Given a smooth ξ ∈ V0(Ω),
consider the h-ext(ξ) and call it η. Now, we use (2.15) and (2.17) (for u and ξ)

to obtain
∣∣∣ ∫Ω

∂v
∂ν
ξ dx

∣∣∣ ≤ C‖u‖V0(Ω)‖ξ‖V0(Ω). That is, ∂v
∂ν
|Ω∈ V∗0 (Ω) and there is

the bound: ∥∥∥∥ ∂∂ν h-ext(u)

∥∥∥∥
V∗0 (Ω)

≤ C‖u‖V0(Ω).

Hence we have

Lemma 2.9. The operator A1/2 : V0(Ω)→ V∗0 (Ω) defined by

A1/2u :=
∂v

∂ν

∣∣∣∣
Ω×{0}

, (2.18)

where v = h-ext(u) ∈ H1
0,L(C) is the harmonic extension of u in C vanishing on

∂LC, is linear and bounded from V0(Ω) to V∗0 (Ω).

We now give the spectral representation of A1/2 and the corresponding struc-
ture of the space V0(Ω).

Lemma 2.10. (i) Let {ϕk} be an orthonormal basis of L2(Ω) forming a spectral
decomposition of −∆ in Ω with Dirichlet boundary conditions as in (2.3), with
{λk} the corresponding Dirichlet eigenvalues of −∆ in Ω. Then, we have

V0(Ω) =

{
u =

∞∑
k=1

bkϕk ∈ L2(Ω) |
∞∑
k=1

b2
kλ

1/2
k < +∞

}
.
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(ii) Let u ∈ V0(Ω). Then we have, if u =
∑∞

k=1 bkϕk,

A1/2u =
∞∑
k=1

bkλ
1/2
k ϕk ∈ V∗0 (Ω).

Proof. Let u ∈ V0(Ω), which is contained in L2(Ω). Let its expansion be written
by u(x) =

∑∞
k=1 bkϕk(x). Consider the function

v(x, y) =
∞∑
k=1

bkϕk(x) exp(−λ1/2
k y), (2.19)

which is clearly smooth for y > 0. Observe that v(x, 0) = u(x) in Ω and, for
y > 0,

∆v(x, y) =
∞∑
k=1

bk{−λkϕk(x) exp(−λ1/2
k y) + λkϕk(x) exp(−λ1/2

k y)} = 0.

Thus, v is a harmonic extension of u. We will have that v = h-ext(u), by
uniqueness, once we find the condition on {bk} for v to belong to H1

0,L(C). But
such condition is simple. Using (2.19) and that {ϕk} are eigenfunctions of −∆
and orthonormal in L2(Ω), we have∫ ∞

0

∫
Ω

|∇v|2 dxdy =

∫ ∞
0

∫
Ω

{|∇xv|2 + |∂yv|2} dxdy

= 2
∞∑
k=1

b2
kλk

∫ ∞
0

exp(−2λ
1/2
k y) dy

= 2
∞∑
k=1

b2
kλk

1

2λ
1/2
k

=
∞∑
k=1

b2
kλ

1/2
k .

This means that v ∈ H1
0,L(C) if and only if

∑∞
k=1 b

2
kλ

1/2
k < ∞. Therefore, this

condition on {bk} is equivalent to u ∈ V0(Ω).
Assertion (ii) follows from the direct computation of −∂v

∂y
|y=0 using (2.19). 2

In functional analysis, the classical spectral decomposition holds for self-adjoint
compact operators, such as the Dirichlet inverse Laplacian (−∆)−1 : L2(Ω) →
L2(Ω). This is the reason why we now define, with the aid of the Lax-Milgram
theorem, a compact operator B1/2 which will be the inverse of A1/2.

Definition 2.11. Define the operator B1/2 : V∗0 (Ω)→ V0(Ω), by g 7→ trΩv, where
v is found by solving the problem: ∆v = 0 in C,

v = 0 on ∂LC,
∂v
∂ν

= g(x) on Ω× {0},
(2.20)

as we indicate next.
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We say that v is a weak solution of (2.20) whenever v ∈ H1
0,L(C) and∫

C
∇v∇ξ dxdy = 〈g, ξ(·, 0)〉 (2.21)

for all ξ ∈ H1
0,L(C). We see that there exists a unique weak solution of (2.20) by

the Lax-Milgram theorem, via studying the corresponding functional in H1
0, L(C):

I(v) =
1

2

∫
C
|∇v|2 dxdy − 〈g, v(·, 0)〉,

where g ∈ V∗0 (Ω) is given. Observe that the operator B1/2 is clearly the inverse
of the operator A1/2.

On the other hand, let us compute B1/2 ◦ B1/2 |L2(Ω). Here note that since
V0(Ω) ⊂ L2(Ω), we have L2(Ω) ⊂ V∗0 (Ω). For a given g ∈ L2(Ω), let ϕ ∈
H1

0 (Ω) ∩H2(Ω) be the solution of Poisson’s problem for the Laplacian{
−∆ϕ = g in Ω,

ϕ = 0 on ∂Ω.

Since H1
0 (Ω) ⊂ V0(Ω) (for instance, by Lemma 2.10), there is a unique harmonic

extension ψ ∈ H1
0,L(C) of ϕ in C such that

∆ψ = 0 in C,
ψ = 0 on ∂LC,
ψ = ϕ on Ω× {0}.

Moreover, ψ̃(x, y) := ψ(x, y)− ϕ(x) solves
−∆ψ̃ = ∆ϕ = −g(x) in C,
ψ̃ = 0 on ∂LC,
ψ̃ = 0 on Ω× {0}.

Considering the odd reflection ψ̃od of ψ̃ across Ω× {0}, and the function

god(x, y) =

{
g(x), y ≥ 0,

−g(x), y < 0,

we have {
−∆ψ̃od = −god in Ω× R,
ψ̃od = 0 on ∂Ω× R.

Therefore, since god ∈ L2(Ω×(−2, 2)), we deduce ψ̃od ∈ H2(Ω×(−1, 1)) and hence
ψ ∈ H2(Ω×(0, 1)). We deduce, by the smoothness of the harmonic function ψ for
y > 0 and by its exponential decay in y —see (2.19)—, that ψ ∈ H1

0, L(C)∩H2(C).
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It follows that −∂yψ ∈ H1
0,L(C) solves{
∆(−∂yψ) = 0 in C,
−∂yψ = 0 on ∂LC,

and
∂

∂ν
(−∂yψ) = ∂yyψ = −∆xψ = −∆ϕ = g on Ω× {0}.

Since V0(Ω) ⊂ L2(Ω), we have that g ∈ L2(Ω) ∼= L2(Ω)∗ ⊂ V∗0 (Ω), and we deduce
that the solution v ∈ V0(Ω) of (2.20) is v = −∂yψ, because of the uniqueness of
H1

0,L(C) solution of (2.20). In particular, B1/2g = v(·, 0) = −∂yψ(·, 0). On the

other hand, since ψ ∈ H1
0,L(C) solves

∆ψ = 0 in C,
ψ = 0 on ∂LC,
∂ψ
∂ν
≡ −∂yψ(·, 0) = v(·, 0) = B1/2g on Ω× {0},

we conclude that

(B1/2 ◦B1/2)g = B1/2v(·, 0) = ψ(·, 0) = ϕ = (−∆)−1g.

Summarizing the above argument, we have:

Proposition 2.12. B1/2 ◦ B1/2|L2(Ω)= (−∆)−1 : L2(Ω) → L2(Ω), where (−∆)−1

is the inverse Laplacian in Ω with zero Dirichlet boundary conditions.

Note that B1/2 : L2(Ω) → L2(Ω) is a self-adjoint operator. In fact, since for
v1, v2 ∈ H1

0,L(C),∫
C
(v2∆v1 − v1∆v2) dxdy =

∫
Ω

(v2
∂v1

∂ν
− v1

∂v2

∂ν
) dx,

we see ∫
Ω

B1/2g2 · g1 dx =

∫
Ω

B1/2g1 · g2 dx

and ∫
Ω

v2(x, 0)A1/2v1(x, 0) dx =

∫
Ω

v1(x, 0)A1/2v2(x, 0) dx.

On the other hand, by using (2.21) with ξ = v and Lemma 2.5, we obtain that
B1/2 is a positive compact operator in L2(Ω). Hence by the spectral theory for
self-adjoint compact operators, we have that all the eigenvalues of B1/2 are real,
positive, and that there are corresponding eigenfunctions which make up an or-
thonormal basis of L2(Ω). Furthermore, such basis and eigenvalues are explicit in
terms of those of the Laplacian with Dirichlet boundary conditions, since (−∆)−1

has B1/2 as unique, positive and self-adjoint square root, by Proposition 2.12.
Summarizing:
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Proposition 2.13. Let {ϕk} be an orthonormal basis of L2(Ω) forming a spectral
decomposition of −∆ in Ω with Dirichlet boundary conditions, as in (2.3), with
{λk} the corresponding Dirichlet eigenvalues of −∆ in Ω. Then, for all k ≥ 1,{

A1/2ϕk = λ
1/2
k ϕk in Ω,

ϕk = 0 on ∂Ω.
(2.22)

In particular, {ϕk} is also a basis formed by the eigenfunctions of A1/2, with

eigenvalues {λ1/2
k }.

Proof of Proposition 2.1 It follows from Lemma 2.7 and Lemma 2.10. 2

Proof of Proposition 2.2 It follows from Lemma 2.8, Lemma 2.10 and its
proof, and Propositions 2.12 and 2.13. 2

3. Regularity of solutions

In this section we study the regularity of weak solutions for linear and nonlinear
problems involving A1/2. First we consider the linear problem{

A1/2u = g(x) in Ω,

u = 0 on ∂Ω,
(3.1)

where g ∈ V∗0 (Ω) and Ω is a smooth bounded domain in Rn. By the construction
of the previous section, the precise meaning of (3.1) is that u = trΩv, where the
function v ∈ H1

0,L(C) with v(·, 0) = u ∈ V0(Ω) satisfies
∆v = 0 in C,
v = 0 on ∂LC,
∂v
∂ν

= g(x) on Ω× {0}.
(3.2)

We will say then that v is a weak solution of (3.2) and that u is a weak solution
of (3.1).

Most of this section contains the proof of the following analogues of the W 2,p-
estimates of Calderón-Zygmund and of the Schauder estimates.

Proposition 3.1. Let α ∈ (0, 1), Ω be a C2,α bounded domain of Rn, g ∈ V∗0 (Ω),
v ∈ H1

0,L(C) be the weak solution of (3.2), and u = trΩv be the weak solution of
(3.1). Then,

(i) If g ∈ L2(Ω), then u ∈ H1
0 (Ω).

(ii) If g ∈ H1
0 (Ω), then u ∈ H2(Ω) ∩H1

0 (Ω).
(iii) If g ∈ L∞(Ω), then v ∈ W 1,q(Ω × (0, R)) for all R > 0 and 1 < q < ∞.

In particular, v ∈ Cα(C) and u ∈ Cα(Ω).
(iv) If g ∈ Cα(Ω) and g|∂Ω ≡ 0, then v ∈ C1,α(C) and u ∈ C1,α(Ω).
(v) If g ∈ C1,α(Ω) and g|∂Ω ≡ 0, then v ∈ C2,α(C) and u ∈ C2,α(Ω).
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As a consequence, we deduce the regularity of bounded weak solutions to the
nonlinear problem {

A1/2u = f(u) in Ω,

u = 0 on ∂Ω.
(3.3)

As before, the precise meaning for (3.3) is that v ∈ H1
0,L(C), v(·, 0) = u, and v is

a weak solution of  ∆v = 0 in C,
v = 0 on ∂LC,
∂v
∂ν

= f(v(·, 0)) on Ω× {0}.
(3.4)

Here the weak solution u is assumed to be bounded. Regularity results for weak
solutions not assumed a priori to be bounded, of subcritical and critical problems
will be proved in section 5.

By C0(Ω) we denote the space of continuous functions in Ω vanishing on the
boundary ∂Ω. In the following result note that f(0) = 0 is required to have
C1(Ω) regularity of solutions of (3.3).

Proposition 3.2. Let α ∈ (0, 1), Ω be a C2,α bounded domain of Rn, and f be a
C1,α function such that f(0) = 0. If u ∈ L∞(Ω) is a weak solution of (3.3), and
thus v ∈ H1

0,L(C) ∩ L∞(C) is a weak solution of (3.4), then u ∈ C2,α(Ω) ∩ C0(Ω).

In addition, v ∈ C2,α(C).

Proof. By (iii) of Proposition 3.1 we have that u ∈ Cα(Ω). Next, by (iv) of
Proposition 3.1 and since on ∂Ω × {0}, g := f(v(·, 0)) = f(0) = 0, we have
u ∈ C1,α(Ω). Finally, v ∈ C2,α(C) and u ∈ C2,α(Ω) from (v) of Proposition 3.1
since g = f(u) vanishes on ∂Ω and it is of class C1,α, since both f and u are
C1,α. 2

Proof of Proposition 3.1. (i) and (ii). Both statements follow immediately
from Propositions 2.1 and 2.2. Simply use that {ϕk} is an orthonormal basis of

L2(Ω) and that {ϕk/λ1/2
k } is an orthonormal basis of H1

0 (Ω). For part (ii), note
that if A1/2u = g ∈ H1

0 (Ω), then we have ∆u ∈ L2(Ω).
(iii) Let v be a weak solution of (3.2). We proceed with a useful method,

introduced by Cabré and Solà Morales in [5], which consists of using the auxiliary
function

w(x, y) =

∫ y

0

v(x, t) dt for (x, y) ∈ C. (3.5)

Since (∆w)y = 0 in C, we have that ∆w is independent of y. Hence we can
compute it on {y = 0}. On {y = 0}, since w ≡ 0, we have ∆w = wyy = vy. Thus
w is a solution of the Dirichlet problem{

−∆w(x, y) = g(x) in C,
w = 0 on ∂C.

(3.6)
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We extend w to the whole cylinder Ω× R by odd reflection:

wod(x, y) =

{
w(x, y) for y ≥ 0,

−w(x,−y) for y ≤ 0.

Moreover, we put

god(x, y) =

{
g(x) for y > 0,

−g(x) for y < 0.

Then we obtain {
−∆wod = god in Ω× R,
wod = 0 on ∂Ω× R.

(3.7)

Since god ∈ Lq(Ω × (−2R, 2R)) for all R > 0 and 1 < q < ∞, regularity for
the Dirichlet problem (3.7) gives wod ∈ W 2,q(Ω × (−R,R)) for all R > 0 and
1 < q < ∞. In particular, w ∈ C1,α(C). Therefore, v = wy ∈ Cα(C) and
u ∈ Cα(Ω).

(iv) Choose a smooth domain H such that Ω ⊂ H, and let

gH =

{
g in Ω,
0 in H \ Ω.

We have that gH ∈ Cα(H), since g |∂Ω= 0, by assumption. Consider the weak
solution vH of 

∆vH = 0 in H × (0,∞),

vH = 0 on ∂H × [0,∞),
∂vH
∂ν

= gH(x) on H × {0}.
Consider also the auxiliary function

wH(x, y) =

∫ y

0

vH(x, t) dt in H × [0,∞),

which solves problem (3.6) with Ω and g replaced by H and gH .
Using boundary regularity theory (but away from the corners of H × [0,∞))

for this Dirichlet problem, we see that wH is C2,α(H× (0,∞)) (again, here we do
not claim regularity at the corners ∂H ×{0}). Thus, wH ∈ C2,α(C) (here instead
we include the corners ∂Ω× {0} of C).

Consider the difference ϕ = wH − w in C, where w is defined by (3.5). It is
clear that 

∆ϕ = 0 in C,
ϕ = wH on ∂LC,
ϕ = 0 on Ω× {0}.

We extend ϕ to the whole cylinder Ω× R by odd reflection:

ϕod(x, y) =

{
ϕ(x, y) for y ≥ 0,

−ϕ(x,−y) for y ≤ 0.
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Moreover, we put

wH,od(x, y) =

{
wH(x, y) for y > 0,

−wH(x,−y) for y ≤ 0.

Then we have {
∆ϕod = 0 in Ω× R,
ϕod = wH,od on ∂Ω× R.

(3.8)

Since wH ∈ C2,α(C), wH ≡ 0 on ∂Ω×{0}, and ∂yywH = ∂yvH = −gH = −g = 0
on ∂Ω × {0}, we deduce that wH,od ∈ C2,α(∂Ω × R). It follows from elliptic
regularity for (3.8) that ϕod ∈ C2,α(Ω×R). Thus, ϕ ∈ C2,α(C), w ∈ C2,α(C) and
v = ∂yw ∈ C1,α(C).

(v) Choose a smooth bounded domain B such that Ω ⊂ B. B could be the
same as H in (ii), for instance a ball, but we change its name for notation clarity.
Since g ∈ C1,α(Ω), there exists an extension gB ∈ C1,α(B); see [15]. Consider the
solution vB of 

∆vB = 0 in B × (0,∞),

vB = 0 on ∂B × [0,∞),
∂vB
∂ν

= gB on B × {0}.

Consider the auxiliary function

wB(x, y) =

∫ y

0

vB(x, t) dt in B × [0,∞).

As before, from interior boundary regularity for the Dirichlet problem of the
type (3.6) satisfied by wB, we obtain that wB ∈ C3,α(B × [0,∞)) since gB ∈
C1,α(B) (away from the corners ∂B × {0}). Thus, vB ∈ C2,α(B × [0,∞)). Thus,
vB ∈ C2,α(C). Consider the difference ψ = vB−v in C, where v is a weak solution
of (3.2). We have that ψ = vB − v satisfies

∆ψ = 0 in C,
ψ = vB on ∂LC,
∂ψ
∂ν

= 0 on Ω× {0}.

We extend ψ to the whole cylinder Ω× R now by even reflection:

ψev(x, y) =

{
ψ(x, y) for y ≥ 0,

ψ(x,−y) for y ≤ 0.

Moreover, we put

vB,ev(x, y) =

{
vB(x, y) for y > 0,

vB(x,−y) for y ≤ 0.



24 XAVIER CABRÉ AND JINGGANG TAN

Then, since ∂ψ
∂ν

= 0 on Ω× {0}, we have{
∆ψev = 0 in Ω× R,
ψev = vB,ev on ∂Ω× R.

Since vB ∈ C2,α(C), −∂yvB = gB = g = 0 on ∂Ω × {0}, we deduce that
vB,ev ∈ C2,α(∂Ω × R). Therefore, it follows from classical regularity that ψev
∈ C2,α(Ω× R). Thus, ψ ∈ C2,α(C), and v ∈ C2,α(C). 2

4. Maximum principles

In this section we establish several maximum principles for A1/2. We denote

by C0(Ω) the space of continuous functions in Ω vanishing on the boundary ∂Ω.
For convenience, we state the results for functions in C0(Ω) ∩ C2(Ω) (a space
contained in H1

0 (Ω) ⊂ V0(Ω)), but this can be weakened.
The first statement is the weak maximum principle.

Lemma 4.1. Assume that u ∈ C2(Ω) satisfies{
A1/2u+ c(x)u ≥ 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn and c ≥ 0 in Ω. Then, u ≥ 0 in Ω.

Proof. Consider the extension v = h-ext(u). If we prove that v ≥ 0 in C,
then u ≥ 0 in Ω. Suppose by contradiction that v is negative somewhere in
C. Then, since ∆v = 0 in C and v = 0 on ∂LC, we deduce that v is negative
somewhere in Ω × {0} and that infC v < 0 is achieved at some point (x0, 0) ∈
Ω× {0}. Thus, we have

inf
C
v = v(x0, 0) < 0.

By Hopf’s lemma,
vy(x0, 0) > 0.

It follows
∂v

∂ν
= −vy(x0, 0) = A1/2v(x0, 0) < 0.

Therefore, since c ≥ 0,

A1/2v(x0, 0) + c(x0)v(x0, 0) < 0.

This is a contradiction with the hypothesis A1/2u+ c(x)u ≥ 0. 2

The next statement is the strong maximum principle for A1/2.

Lemma 4.2. Assume that u ∈ C2(Ω) satisfies
A1/2u+ c(x)u ≥ 0 in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,
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where Ω is a smooth bounded domain in Rn and c ∈ L∞(Ω). Then, either u > 0
in Ω, or u ≡ 0 in Ω.

Proof. The proof is similar to that of Lemma 4.1. Consider v = h-ext(u).
We observe that v ≥ 0 in C. Suppose that v 6≡ 0 but u = 0 somewhere in
Ω. Then there exists a minimum point (x0, 0) ∈ Ω× {0} of v where v(x0, 0) = 0.
Then by Hopf’s lemma we see that A1/2u(x0) = −vy(x0, 0) < 0. This implies
that A1/2u(x0) + c(x0)u(x0) < 0, because of v(x0, 0) = u(x0) = 0. 2

Next we establish a Hopf lemma for A1/2, following a proof from [9].

Lemma 4.3. Let Ω be a bounded domain in Rn and c ∈ L∞(Ω).
(i) Assume that Ω is smooth and that 0 6≡ u ∈ C2(Ω) satisfies A1/2u+ c(x)u ≥ 0 in Ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω.

Then, ∂u
∂ν0

< 0 on ∂Ω, where ν0 is the unit outer normal to ∂Ω.

(ii) Assume that P ∈ ∂Ω and that ∂Ω is smooth in a neighborhood of P . Let
0 6≡ v ∈ C2(C) ∩ L∞(C), where C = Ω× (0,∞), satisfy ∆v = 0 in C,

v ≥ 0 on ∂LC,
∂v
∂ν

+ c(x)v ≥ 0 on Ω× {0}.

If v(P, 0) = 0, then ∂v(P,0)
∂ν0

< 0, where ν0 is the unit outer normal in Rn to ∂Ω.

Proof. We follow the proof given in [9]. Note that statement (i) is a particular
case of (ii). Thus, we only need to prove (ii).

Step 1. We shall first prove the lemma in the case c ≡ 0. Without loss of
generality we may assume that (P, 0) = P1 = (b1, 0, · · · , 0) ∈ ∂Ω × {0}, b1 > 0
and ν0 = (1, 0, · · · , 0). Hence we need to prove

∂v(P1)

∂x1

< 0.

Since Ω is smooth in a neighborhood of P , there is a half-ball in Rn+1
+ included

in the domain C, such that P1 is the only point in the closed half-ball belonging
also to ∂LC. Let P2 ∈ Ω × {0} and r > 0 be the center and radius of such ball.
Then we have P2 = (b2, 0, · · · , 0) ∈ Ω× {0}. Denote

B+
r (P2) := {z = (x, y) | |z − P2| < |P1 − P2| =: r, y > 0} ⊂ C,

B+
r/2(P2) := {z = (x, y) | |z − P2| < |P1 − P2|/2, y > 0},

A = B+
r (P2) \B+

r/2(P2).

Recall that P1 ∈ ∂B+
r (P2) ∩ (∂Ω× {0}).



26 XAVIER CABRÉ AND JINGGANG TAN

Consider the function on A:

ϕ(z) = exp(−λ|z − P2|2)− exp(−λ|P1 − P2|2),

with λ > 0 to be determined later. Note that

∆ϕ = exp(−λ|z − P2|2)
{

4λ2|z − P2|2 − 2(n+ 1)λ
}
.

We can choose λ > 0 large enough such that ∆ϕ ≥ 0 in A.
On the other hand, by Lemma 4.2, we see that v > 0 in A \ {P1}. Hence, since

ϕ ≡ 0 on ∂B+
r (P2) ∩ {y > 0}, we can take ε > 0 such that

v − εϕ ≥ 0 on ∂A ∩ {y > 0}.

Since −∆(v − εϕ) ≥ 0 in A, and

−∂y(v − εϕ) =
∂v

∂ν
≥ 0 on ∂A ∩ {y = 0},

(recall that c ≡ 0) by the maximum principle as in Lemma 4.1 we obtain

v − εϕ ≥ 0 in A.

Thus, from v − εϕ = 0 at P1 we see that ∂x1(v − εϕ)(P1) ≤ 0. Therefore,

∂x1v(P1) ≤ ε∂x1ϕ(P1) = −2λ(b1 − b2)e−λ|P1−P2|2 < 0. Thus we have the desired
result.

Step 2. In the case c 6≡ 0, we define the function w = v exp(−βy) for some
β > 0 to be determined. From a direct calculation, we see that

−∆w − 2β∂yw = β2w ≥ 0 in C

and, choosing β ≥ ‖c‖L∞(Ω),

−∂yw ≥ [β − c(x)]w ≥ 0 on Ω× {0}.

Now we can apply to w the same approach as in Step 1, with ∆ replaced by
∆ + 2β∂y, and obtain the assertion. 2

Finally, we establish a maximum principle for A1/2 in domains of small measure.
Note that in part (ii) of its statement, the hypothesis on small measure is made
only on the base of Ω of the cylinder C.

Proposition 4.4. (i) Assume that u ∈ C2(Ω) satisfies{
A1/2u+ c(x)u ≥ 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in Rn and c ∈ L∞(Ω). Then, there exists
δ > 0 depending only on n and ‖c−‖L∞(Ω), such that if |Ω ∩ {u < 0}| ≤ δ, then
u ≥ 0 in Ω.
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(ii) Assume that Ω is a bounded (not necessary smooth) domain of Rn and
c ∈ L∞(Ω). Let v ∈ C2(C) ∩ L∞(C), where C = Ω× (0,∞), satisfy

∆v = 0 in C,
v ≥ 0 on ∂LC,
∂v
∂ν

+ c(x)v ≥ 0 on Ω× {0}.

Then, there exists δ > 0 depending only on n and ‖c−‖L∞(Ω), such that if |Ω ∩
{v(·, 0) < 0}| ≤ δ then v ≥ 0 in C.

Proof. For part (i) of the theorem, consider v = h-ext(u). We see that v satisfies
the assumptions on part (ii) of the theorem. Hence, it is enough to prove part
(ii). For this, let v− = max{0,−v} ≥ 0. Since v− = 0 on ∂Ω× [0,∞), we see

0 =

∫
C
v−∆v dxdy =

∫
Ω×{0}

v−
∂v

∂ν
dx+

∫
C
|∇v−|2 dxdy.

Then,∫
C
|∇v−|2 dxdy =−

∫
Ω×{0}

v−
∂v

∂ν
dx

≤
∫

Ω×{0}
v−cv dx =

∫
Ω

−c(v−)2 dx

≤
∫

Ω∩{v−(·,0)>0}
c−(v−(·, 0))2 dx

≤|Ω ∩ {v−(·, 0) > 0}|1/n‖c−‖L∞(Ω)‖v−(·, 0)‖2
L2n/(n−1)(Ω).

Thus, extending v− by 0 outside C we obtain an H1(Rn+1
+ ) function and thus we

have

0 < S0 ≤

∫
Rn+1

+
|∇v−|2 dxdy

‖v−(·, 0)‖2
L2n/(n−1)(Rn)

=

∫
C |∇v

−|2 dxdy
‖v−(·, 0)‖2

L2n/(n−1)(Ω)

≤|Ω ∩ {v−(·, 0) > 0}|1/n‖c−‖L∞(Ω),

where S0 is the best constant of the Sobolev trace inequality in Rn+1
+ . If

|Ω ∩ {v−(·, 0) > 0}| is small enough, we arrive at a contradiction. 2

5. Subcritical case and L∞ estimate of Brezis-Kato type

In this section, we study the nonlinear problem (1.1) with f(u) = up in the
subcritical and critical cases. In the subcritical case we look for a function v(x, y)
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satisfying for x ∈ Ω and y ∈ R+,
∆v = 0 in C = Ω× (0,∞),

v = 0 on ∂LC = ∂Ω× [0,∞),
∂v
∂ν

= vp on Ω× {0},
v > 0 in C,

(5.1)

where ν is the unit outer normal to C at Ω× {0} and 1 < p < 2] − 1 if n ≥ 2, or
1 < p < ∞ if n = 1. If v is a solution of (5.1), then v(x, 0) = u(x) is a solution
of (1.1) with the nonlinearity f(u) = up.

In order to find a solution of (5.1) as stated in Theorem 1.1, we consider the
following minimization problem:

I0 = inf

{∫
C
|∇v(x, y)|2dxdy | v ∈ H1

0,L(C),
∫

Ω

|v(x, 0)|p+1dx = 1

}
.

We show that I0 is achieved.

Proposition 5.1. Assume that 1 < p < 2] − 1 if n ≥ 2 or 1 < p <∞ if n = 1.
Then I0 is achieved in H1

0,L(C) by a nonnegative function v.

Proof. First, there is a function v ∈ H1
0,L(C) such that∫

C
|∇v(x, y)|2dxdy <∞ and

∫
Ω

|v(x, 0)|p+1dx = 1.

In fact, it suffices to take any C∞ function with compact support in Ω×[0,∞) and
not identically zero on Ω×{0}, and multiply it by an appropriate constant. Next
we complete the proof by weak lower semi-continuity of the Dirichlet integral and
by the compact embedding property in Lemma 2.5. Finally, note that |v| ≥ 0 is
a nonnegative minimizer if v is a minimizer. 2

To establish the regularity of the minimizer just obtained, we prove an
L∞-estimate of Brezis-Kato type by the technique of bootstrap for subcritical
or critical nonlinear problems. Let g0 be a Carathéodory function in Ω × R
satisfying the growth condition

|g0(x, s)| ≤ C(1 + |s|p) for all (x, s) ∈ Ω× R, (5.2)

where Ω is a smooth domain in Rn, 1 ≤ p ≤ n+1
n−1

if n ≥ 2, or 1 ≤ p <∞ if n = 1.
We consider the problem

∆v = 0 in C = Ω× (0,∞),

v = 0 on ∂LC = ∂Ω× [0,∞),
∂v
∂ν

= g0(·, v) on Ω× {0}.
(5.3)

Theorem 5.2. Let v ∈ H1
0,L(C) be a weak solution of (5.3) and assume the growth

condition (5.2) for g0, with 1 ≤ p ≤ n+1
n−1

if n ≥ 2, or 1 ≤ p <∞ if n = 1. Then,
v(·, 0) ∈ L∞(Ω).
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Proof. The proof follows the one of Brezis-Kato for the Laplacian. First of all,
let us rewrite the condition on g0 as

|g0(x, v)| ≤ a(x)(1 + |v(x, 0)|)

with a function

a(x) :=
|g0(x, v(x, 0))|
1 + |v(x, 0)|

which satisfies

0 ≤ a ≤ C(1 + |v(·, 0)|p−1) ∈ Ln(Ω),

since v ∈ H1
0,L(C), v(·, 0) ∈ L

2n
n−1 (Ω) and p− 1 ≤ 2

n−1
.

Denote

B+
r = {(x, y) | |(x, y)| < r and y > 0}.

For β ≥ 0 and T > 1, let ϕβ, T = vv2β
T ∈ H1

0,L(C) with vT = min{|v|, T}. Denote

DT = {(x, y) ∈ C | |v(x, y)| < T}.

By direct computation, we see∫
C
|∇(vvβT )|2 dxdy =

∫
C
v2β
T |∇v|

2 dxdy +

∫
DT

(2β + β2)|v|2β|∇v|2 dxdy.

Multiplying (5.3) by ϕβ, T and integrating by parts, we obtain∫
C
v2β
T |∇v|

2 dxdy + 2β

∫
DT

|v|2β|∇v|2 dxdy =

∫
C
∇v∇(vv2β

T ) dxdy

=

∫
Ω×{0}

g0(x, v)vv2β
T dx

≤
∫

Ω×{0}
a(x)(1 + |v|)2v2β

T dx.

Combining these facts, we have∫
C
|∇(vvβT )|2 dxdy ≤C(β + 1)

∫
Ω×{0}

a(x)(1 + |v|2)v2β
T dx,

where C denotes different constants independent of T and of β. By Lemma 2.4,
we deduce(∫

Ω×{0}
|vvβT |

2] dx
)2/2]

≤C(β + 1)

∫
Ω×{0}

a(x)(1 + |v|2)v2β
T dx. (5.4)

Assume that |v(·, 0)|β+1 ∈ L2(Ω) for some β ≥ 0. Then we obtain that∫
Ω×{0} |v|

2v2β
T dx and

∫
Ω×{0} v

2β
T dx are bounded uniformly in T . In what follows,
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let C denote constants independent of T —but that may depend on β and
‖v(·, 0)β+1‖L2(Ω). Given M0 > 0, we have∫

Ω×{0}
a|v|2v2β

T dx ≤M0

∫
Ω×{0}

|v|2v2β
T dx+

∫
{a≥M0}

a|v|2v2β
T dx

≤ CM0 +
(∫
{a≥M0}

an dx
)1/n(∫

Ω×{0}
|vvβT |

2] dx
)2/2]

≤ CM0 + ε(M0)
(∫

Ω×{0}
|vvβT |

2] dx
)2/2]

,

where ε(M0) = (
∫
{a≥M0} a

n dx)1/n → 0 as M0 →∞. Note that we can deal with∫
Ω×{0} av

2β
T dx in the analogue procedure. Therefore, we deduce from the last

inequalities and (5.4), taking M0 large enough so that C(β + 1)ε(M0) = 1
2
, that(∫

Ω×{0}
|vvβT |

2] dx
)2/2]

≤ C(1 +M0). (5.5)

Thus letting T → ∞, since C is independent of T , we obtain that |v(·, 0)|β+1 ∈
L2](Ω). This conclusion followed simply from assuming |v(·, 0)|β+1 ∈ L2(Ω).

Hence, by iterating β0 = 0, βi + 1 = (βi−1 + 1) n
n−1

if i ≥ 1 in (5.5), we
conclude that v(·, 0) ∈ Lq(Ω) for all q < ∞. Finally, the proof of part (iii) in
Proposition 3.1 —which only uses g ∈ Lq(Ω) for all q <∞ and not g ∈ L∞(Ω)—
applied with g(x) = g0(x, v(x, 0)), which satisfies |g| ≤ C(1 + |v(·, 0)|p) ∈ Lq(Ω)
for all q <∞, leads to v(·, 0) ∈ Cα(Ω) ⊂ L∞(Ω). 2

Proof of Theorem 1.1. Proposition 5.1 gives the existence of a weak nonneg-
ative solution v to (5.1) after multiplying the nonnegative minimizer of I0 by a
constant to take care of the Lagrange multiplier. Then, Theorem 5.2 gives that
v(·, 0) ∈ L∞(Ω). Next, Proposition 3.2 gives that u ∈ C2,α(Ω), since f(s) = |s|p
is a C1,α function for some α ∈ (0, 1). Finally, the strong maximum principle,
Lemma 4.2, leads to u > 0 in Ω. 2

6. A priori estimates for positive solutions

In this section we prove Theorem 1.3. Namely, we establish a priori estimates
of Gidas-Spruck type for weak solutions of

∆v = 0 in C = Ω× (0,∞) ⊂ Rn+1
+ ,

v = 0 on ∂LC = ∂Ω× [0,∞),

∂v
∂ν

= vp on Ω× {0},
v > 0 in C,

(6.1)

where Ω ⊂ Rn is a bounded smooth domain, n ≥ 2, and 1 < p < n+1
n−1

.
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For this, we need two nonlinear Liouville theorems for problems involving the
square root of the Laplacian in unbounded domain —one in the whole space,
another in the half-space. The first one was proved by Y.Y. Li, Zhang and Zhu
in [18], [17] and Ou in [22]. Its statement is the following —and it is equivalent
to Theorem 1.4 in the Introduction.

Theorem 6.1. ([18], [17], [22]) For n ≥ 2 and 1 < p < 2]− 1 = n+1
n−1

, there exists
no weak solution of problem

∆v = 0 in Rn+1
+ ,

∂v
∂ν

= vp on ∂Rn+1
+ ,

v > 0 in Rn+1
+ .

(6.2)

We need to prove an analogue nonlinear Liouville type result involving the
square root of −∆ with Dirichlet boundary value in the half-space. This is The-
orem 1.5 of the Introduction and Proposition 6.3 in this section. As we will see,
this nonlinear Liouville theorem in Rn

+ will be first reduced to the one dimensional
case R+, by using the moving planes method. After this, we prove that there ex-
ists no positive bounded solution for the nonlinear Neumann boundary problem
in the quarter R2

++, which corresponds to the nonlinear Liouville theorem involv-
ing the square root of −∆ with Dirichlet boundary value in the half-line; see
Proposition 6.4. To complete the proof of Theorem 1.5 we will use the following
Liouville theorem in dimension n+ 1 = 2.

Proposition 6.2. ([9]) Suppose that v weakly solves
−∆v ≥ 0 in R2

+,

∂v
∂ν
≥ 0 on ∂R2

+,

v ≥ 0 in R2
+.

(6.3)

Then, v is a constant.

As usual, very strong Liouville theorems (but quite simple to prove) hold in
low dimensions, but not in higher ones. Compare (6.3) in low dimensions for
supersolutions of the homogeneous linear problem with (6.2) for solutions of a
precise nonlinear problem. The proof of Proposition 6.2 in [9] compared in an
appropriate way the solution v with log(| · |). For completeness, we give here an
alternative proof.

Proof of Proposition 6.2. Replacing v by v − infR2
+
v ≥ 0, we may assume

infR2
+
v = 0. Letting w = 1− v, we have

−∆w ≤ 0 in R2
+,

∂w
∂ν
≤ 0 on ∂R2

+,

w ≤ 1 in R2
+.

(6.4)
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In addition, supR2
+
w = 1. Let ξR ∈ C∞(R2) be a function with compact support

in B2R(0), equal to 1 in BR(0), and with |∇ξR| ≤ C
R

. Let

D+
R,2R := {(x, y) ∈ R2 | R ≤ |(x, y)| ≤ 2R, y0}.

Multiplying the first equation in (6.4) by w+ξ2
R, integrating in R2

+ and using the
Neumann condition and w+ ≤ 1, we see that∫

R2
+

ξ2
R|∇w+|2 ≤ 2

∫
D+
R,2R

ξR∇ξRw+∇w+ (6.5)

≤ C

(∫
D+
R,2R

|∇ξR|2
)1/2(∫

D+
R,2R

ξ2
R|∇w+|2

)1/2

≤C

(∫
D+
R,2R

ξ2
R|∇w+|2

)1/2

. (6.6)

This leads, letting R ↑ ∞, to
∫

R2
+
|∇w+|2 < ∞. As a consequence of this, the

integral in (6.6) tends to zero as R→∞. Thus, by (6.5),∫
R2

+

|∇w+|2 = 0.

Thus, w+ is constant, and since supR2
+
w = 1, we conclude w ≡ 1. 2

Proposition 6.3. Let n ≥ 2 and

Rn+1
++ = {z = (x1, x2, · · · , xn, y) | xn > 0, y > 0}.

Assume that v is a classical solution of
∆v = 0 in Rn+1

++ ,

v = 0 on {xn = 0, y ≥ 0},
∂v
∂ν

= vp on {xn > 0, y = 0},
v > 0 in Rn+1

++ ,

(6.7)

where 1 ≤ p ≤ n+1
n−1

. Then, v depends only on xn and y.

Proof. We shall follow the steps of [14]. Let en = (0, · · · , 0, 1, 0) and N = n+ 1.
Consider the conformal transformation

z̄ = T (z) =
z + en
|z + en|2

and the Kelvin transformation w of v

w(z̄) = |z + en|N−2v(z) = |z̄|2−Nv(z).

Denote B+
1/2( en

2
) := {z̄ = (x̄, ȳ) | |z̄ − 1

2
en| < 1

2
, ȳ > 0}, S+

1/2( en
2

) := ∂B+
1/2( en

2
)∩

{ȳ > 0}, Γ0,1/2 := ∂B+
1/2( en

2
) ∩ {ȳ = 0}.
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Note that, through T , Rn+1
++ = {x > 0, y > 0} gets mapped into the half-ball

B+
1/2( en

2
), the boundary {xn > 0, y = 0} becomes the half-ball Γ0,1/2, {xn = 0,

y ≥ 0} goes to the half-sphere S+
1/2( en

2
), and the infinity goes to z̄ = 0.

We see that w satisfies
∆w = 0 in B+

1/2( en
2

),

w = 0 on S+
1/2( en

2
),

∂w(z̄)
∂ν

= |z̄|p(N−2)−Nwp(z̄) on Γ0,1/2,

w > 0 in B+
1/2( en

2
).

Since |z̄|p(n−1)−(n+1) is nonincreasing in the z̄i direction for all i = 1, · · · , n−1 (in
fact, in any direction orthogonal to the z̄n-axis), the moving planes method used
as in [9] gives that w is symmetric about all the z̄i-axis for i = 1, · · · , n− 1. This
leads to w = w(|z̄′|, z̄n, ȳ), where z̄′ = (z̄1, · · · , z̄n−1) and hence v = v(|x′|, xn, y).
Now, since we may perform the Kelvin’s transform with respect to any point
(−x′0,−1, 0) —and not only with respect to x′0 = 0 as before— we conclude that
v = v(xn, y) as claimed. 2

Proposition 6.4. Assume that f is a C1,α function for some α ∈ (0, 1), such
that f > 0 in (0,∞) and f(0) = 0. Let C be a positive constant. Then there is
no bounded solution of problem

∆v = 0 in R2
++ = {x > 0, y > 0},

v = 0 on {x = 0, y ≥ 0},
∂v
∂ν

= f(v) on {x > 0, y = 0},
0 < v ≤ C in R2

++.

(6.8)

Proof. We use some tools developed in [5].
Suppose by contradiction that there is such solution v. First, we claim that

v(x, 0) → 0 as x → ∞. Suppose by contradiction that there exists a sequence
am → ∞ (m → ∞) such that v(am, 0) → α > 0. Let vm(x, y) := v(x + am, y).
It is clear that vm is a solution of (6.8) in Um := {(x, y) | x > −am, y > 0}.
Moreover, vm(0, 0) = v(am, 0) → α. Therefore there exists a subsequence, still

denoted by vm, such that vm → v in C2
loc(R2

+) as m→∞, and v is a solution of
∂xxv + ∂yyv = 0 in R2

+ = {(x, y) | y > 0},
∂v
∂ν

= f(v) ≥ 0 on {y = 0},
0 ≤ v ≤ C in {y > 0}.

(6.9)

Notice that

v(0, 0) = α > 0.



34 XAVIER CABRÉ AND JINGGANG TAN

On the other hand, by Proposition 6.2 we know that v is identically constant. This
is impossible due to the nonlinear Neumann condition, since f > 0 in (0,∞) and
f(v(0, 0)) = f(α) > 0. We conclude the claim, that is, v(x, 0)→ 0 as x→ +∞.

Note that we can reflect the function v with respect to {x = 0, y > 0},
ṽ(x, y) = −v(−x, y) for x < 0, and obtain a bounded harmonic function ṽ in all
R2

+ = {y > 0}, since v ≡ 0 on {x = 0, y > 0}. Applying interior gradient
estimates to the bounded harmonic function ṽ in the ball Bt(x, t) ⊂ R2

+, we
obtain

|∇v(x, t)| ≤ C‖v‖∞
t

≤ C

t
, for all t >

1

2
, x > 0.

On the other hand, by the results of [5] applied to the solution ṽ in R2
+ (or

equivalently by the proof of Proposition 3.2 of this paper; note that f(0) = 0),

we have that |∇v| and |D2v| are bounded in R2
++ ∩ {0 ≤ y ≤ 1}. We conclude

that |∇v| and |D2v| are bounded in R2
++ and

|∇v(x, t)| ≤ C

t+ 1
, for all t > 0, x > 0.

Using interior estimates for harmonic functions as before, but now with the partial
derivatives of v instead of v, it follows that

|D2v(x, t)| ≤ C

t2 + 1
, for all t > 0, x > 0.

Moreover, we have∣∣∣ ∂
∂x

{
|∂xv(x, t)|2 − |∂yv(x, t)|2

2

} ∣∣∣ ≤ C

t3 + 1
.

By these facts, we see that the function

Φ(x) :=

∫ +∞

0

|∂xv(x, t)|2 − |∂yv(x, t)|2

2
dt

is well defined and dΦ
dx

is also.

Using the lim
t→∞
|∇v(x, t)| = 0, we obtain, for F (v) =

∫ v
0
f(s) ds,

d

dx
[Φ(x) + F (v(x, 0))] =

∫ +∞

0

[∂xxv∂xv − ∂yv∂xyv](x, t) dt+ [f(v)∂xv](x, 0)

= [∂yv∂xv + f(v)∂xv](x, 0) = 0,

thanks to the harmonicity of v and the Neumann boundary condition. This leads
to the Hamiltonian-type identity

Φ(·) + F (v(·, 0)) is identically constant in (0,+∞).

Furthermore, using that lim
x→+∞

v(x, 0)=0, and that lim
x→+∞

v(x, y)=0 uniformly

in compact sets in y (we can prove this by the same previous argument leading
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to lim
x→+∞

v(x, 0) = 0), together with the above bounds for |∇v(x, y)| for y large,

we deduce
lim

x→+∞
Φ(x) = 0.

From all these we obtain

Φ(x) + F (v(x, 0)) ≡ 0, for x > 0.

Since v = 0 and thus ∂yv = 0 along the y-axis, we see by the definition of Φ(0)
that

0 = Φ(0) + F (v(0, 0)) = Φ(0) =
1

2

∫ +∞

0

|∂xv|2(0, t) dt.

This implies that ∂xv = 0 on {x = 0, y > 0}, which contradicts Hopf’s lemma.
Thus, the contradiction means that there is no positive bounded solution of the
problem. 2

Before proving Theorems 1.5 and 1.3, let us make some comments.

Remark 6.5. Theorem 1.5 is still open without the boundedness assumption
on v.

In this respect, let us give some examples of problems in the quarter plane
R2

++. The function v(x, y) = x is an unbounded solution of problem
−∆v = 0, v ≥ 0 in R2

++,

v = 0 on {x = 0, y > 0},
∂v
∂ν

= 0 on {x > 0, y = 0}.

This tells us that the result of Proposition 6.2 (which did not require boundedness
of the solution in the half-plane) does not hold in the quarter plane.

On the other hand, it is clear that v(x, y) = π
2

arctan x
y+1

satisfies ∆v = 0

and −∂yv |y=0= πx
2(1+x2)

≥ 0 for x > 0. Hence, there exists a bounded harmonic

function in the quarter plane R2
++ such that

−∆v = 0, v ≥ 0 in R2
++,

v = 0 on {x = 0, y > 0},
∂v
∂ν
≥ 0 on {x > 0, y = 0}.

Thus the nonlinear condition ∂v
∂ν

= vp on {y = 0} is important in Theorem 1.5.

Proof of Theorem 1.5. It follows from Propositions 6.3 and 6.4. 2

Proof of Theorem 1.3. We know by Theorem 5.2 and Proposition 3.2 that
all weak solutions u of (1.1) belong to C2(Ω) ∩ C0(Ω). Assume by contradiction
that the theorem is not true and hence that there is a sequence um of solutions
of (1.1) with

Km = ‖um‖L∞(Ω) →∞.
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Since vm = h-ext(um) is a positive harmonic function in C vanishing on ∂LC,
we have that vm has also Km as maximum in C and that it is attained at a point
(xm, 0) ∈ Ω× {0}. Let

Ωm = Kp−1
m (Ω− xm)

and define

ṽm(x, y) = K−1
m v(xm +K1−p

m x,K1−p
m y), x ∈ Ωm, y > 0.

We have that ‖ṽm‖L∞(Ωm×(0,∞)) ≤ 1 and
∆ṽm = 0, in Cm := Ωm × (0,∞),

ṽm = 0 on ∂Ωm × (0,∞),

∂ṽm
∂ν

= ṽpm on Ωm × {0},
ṽm > 0 in Cm.

(6.10)

Notice that

ṽm(0, 0) = 1.

Let

dm = dist(xm, ∂Ω).

Two cases may occur as m→∞; either case (a):

Kp−1
m dm →∞

for a subsequence still denoted as before, or case (b):

Kp−1
m dm is bounded.

If case (a) occurs, we have that BKp−1
m dm

(0) = Kp−1
m Bdm(0) ⊂ Ωm and that

Kp−1
m dm → ∞. By local compactness (Arzelà-Ascoli) of bounded solutions to

(6.10) (recall ‖ṽm‖L∞(Ωm) ≤ 1), through a subsequence, we obtain a solution ṽ
of problem (6.2) in all of Rn+1

+ = Rn × (0,∞) —note that ṽm(0, 0) = 1 leads to
ṽ(0, 0) = 1 and hence ṽ 6≡ 0 & ṽ > 0. This is a contradiction to Theorem 6.1.

Assume now that case (b), Kp−1
m dm is bounded, occurs. Note first that since

the right-hand side of problem (6.1) for vm satisfies |vm|p = vpm ≤ Kp
m, we deduce

from the proofs of Proposition 3.1 (iii) and (iv) that ‖∇um‖L∞(Ω) ≤ CKp
m for a

constant C independent of m. Now, since um|∂Ω≡ 0 (where um = vm(·, 0)), we
get

Km = vm(xm, 0) ≤ ‖∇um‖L∞(Ω)dist(xm, ∂Ω) ≤ CKp
mdm.

We deduce that

0 < c ≤ Kp−1
m dm

for some positive constant c. Thus, in this case (b), we may assume that, up to
a subsequence,

Kp−1
m dm → a ∈ (0,∞) (6.11)

for some constant a > 0.
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We deduce that, up to a certain rotation of Rn for each index m, since we have
(6.11), Kp−1

m →∞, dm → 0, and that BKp−1
m dm

(0) is tangent to ∂Ωm, the domains
Ωm converge to the half-space Rn

+ = {xn > −a}. Thus, through a subsequence
of ṽm, we obtain a solution ṽ of problem (6.7) in Rn+1

++ = {xn > −a, y > 0} with
ṽ bounded by 1 and ṽ > 0 (since ṽm(0, 0) = 1 for all m). This is a contradiction
with Theorem 1.5. 2

Remark 6.6. From Theorem 1.3 we have a priori bounds for solutions of prob-
lem (1.1) with f(u) = up, 1 < p < n+1

n−1
. As a consequence, by using blow-up

techniques and topological degree theory, one can obtain existence of positive
solutions for related problems —for instance, for nonlinearities f(x, u) of power
type, as well as other boundary conditions. See Gidas-Spruck [14] for some of
these applications when the operator is the classical Laplacian.

7. Symmetry of solutions

The goal of this section is to prove a symmetry result of Gidas-Ni-Nirenberg
type for positive solutions of nonlinear problems involving the operator A1/2, as
stated in Theorem 1.6, by using the moving planes method. For this, we work
with the equivalent local problem (1.8) and derive the following.

Theorem 7.1. Assume that Ω is a bounded smooth domain of Rn which is con-
vex in the x1 direction and symmetric with respect to the hyperplane {x1 = 0}.
Let f be Lipschitz continuous and let v ∈ C2(C) be a solution of (1.8), where
C = Ω × (0,+∞). Then, v is symmetric with respect to x1, i.e., v(−x1, x

′, y) =
v(x1, x

′, y) for all (−x1, x
′, y) ∈ C. In addition, ∂v

∂x1
< 0 for x1 > 0.

Proof of Theorems 1.6 and 7.1. It suffices to prove Theorem 7.1. From it,
Theorem 1.6 follows immediately.

Let x = (x1, x
′) ∈ Ω and λ > 0. Consider the sets

Σλ = {(x1, x
′) ∈ Ω | x1 > λ} and Tλ = {(x1, x

′) ∈ Ω | x1 = λ}.

For x ∈ Σλ, define xλ = (2λ−x1, x
′). By the hypotheses on the domain Ω we see

that

{xλ | x ∈ Σλ} ⊂ Ω.

Recall that v ∈ C2(C) is a solution of
∆v = 0 in C = Ω× (0,∞),

v = 0 on ∂LC = ∂Ω× [0,∞),
∂v
∂ν

= f(v) on Ω× {0},
v > 0 in C.

For (x, y) ∈ Σλ × [0,∞), let us define

vλ(x, y) = v(xλ, y) = v(2λ− x1, x
′, y)
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and

wλ(x, y) = (vλ − v)(x, y).

Note that vλ satisfies
∆vλ = 0 in Σλ × (0,∞),

vλ ≥ 0 on (∂Ω ∩ Σλ)× (0,∞),
∂vλ
∂ν

= f(vλ) on Σλ × {0}.

Thus, since ∂Σλ = (∂Ω ∩ Σλ) ∪ Tλ and wλ ≡ 0 on Tλ, we have that wλ satisfies
∆wλ = 0 in Σλ × (0,∞),

wλ ≥ 0 on (∂Σλ)× (0,∞),
∂wλ
∂ν

+ cλ(x)wλ = 0 on Σλ × {0},
(7.1)

where

cλ(x, 0) = −f(vλ)− f(v)

vλ − v
.

Note that cλ(x, 0) ∈ L∞(Σλ).
Let λ∗ = sup{λ | Σλ 6= ∅} and let ε > 0 be a small number. If λ ∈ (λ∗− ε, λ∗),

then Σλ has small measure and we have, by part (ii) of Proposition 4.4 (applied
with Ω replied with Σλ), that

wλ ≥ 0 in Σλ × (0,∞).

Note here that Σλ is not a smooth domain but that part (ii) of Proposition 4.4
does not require smoothness of the domain. By the strong maximum principle,
Lemma 4.2, for problem (7.1) we see that wλ is identically equal to zero or strictly
positive in Σλ × (0,∞). Since λ > 0, we have wλ0 in (∂Ω ∩ ∂Σλ) × (0,∞), and
hence we conclude that wλ0 in Σλ × (0,∞).

Let λ0 = inf{λ > 0 | wλ ≥ 0 in Σλ × (0,∞)}. We are going to prove
that λ0 = 0. Suppose that λ0 > 0 by contradiction. First, by continuity, we have
wλ0 ≥ 0 in Σλ0×(0,∞). Then, as before, we deduce wλ0 > 0 in Σλ0×(0,∞). Next,
let δ > 0 be a constant and K ⊂ Σλ0 be a compact set such that |Σλ0 \K| ≤ δ/2.
We have wλ0(·, 0) ≥ η > 0 in K for some constant η, since K is compact. Thus,
we obtain that wλ0−ε(·, 0) > 0 in K and that |Σλ0−ε \K| ≤ δ for ε small enough.

Now we apply again part (ii) of Proposition 4.4 in Σλ0−ε×(0,∞) to the function
wλ0−ε. We know that wλ0−ε(·, 0) ≥ 0 in K, and hence {wλ0−ε < 0} ⊂ Σλ0−ε \K,
which has measure at most δ. We take δ to be the constant of part (ii) of
Proposition 4.4. We deduce that

wλ0−ε ≥ 0 in Σλ0−ε × (0,∞).

This is a contradiction to the definition of λ0. Thus, λ0 = 0.
We have proved, letting λ ↓ λ0 = 0 that

v(−x1, x
′, y) ≥ v(x1, x

′, y) in (Ω ∩ {x1 > 0})× (0,∞)
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and, since wλ = 0 on Tλ,

∂x1v = −1

2

∂wλ
∂x1

< 0 for x1 > 0,

by Hopf’s lemma. Finally replacing x1 by −x1, we deduce the desired symmetry
v(−x1, x

′, y) = v(x1, x
′, y). 2
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