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Abstract. The microstructure and microhardness distribution in surface of low carbon Hardox 450 

steel coated with alloyed powder wires of different chemical compositions are studied. It is shown 

that the microhardness of 6-8 mm thickness surfaced layer exceeds that of base metal by more than 2 

times. The increased mechanical properties of surfaced layer are caused by the submicro and 

nanoscale dispersed martensite, containing the niobium carbides Nb2C, NbC and iron borides Fe2B. 

In the bulk plates a dislocation substructure of the net-like type with scalar dislocation density of 1011 

cm-2 is observed. The layer surfaced with the wire containing B possesses the highest hardness. The 

possible mechanisms of niobium and boron carbides formation in surfacing are discussed. 

 

Introduction 

Using of surface coatings opens up new possibilities to manipulate materials with requirable 

properties in particular environments. Protective coating layer can be achieved using thermal spraying, 

cladding and welding [1-3]. Among all the available methods, welding is considered to be an 

economical one as a variety of processes can be implemented to deposit the desired coatings. In most 

cases, a wire is used as an electrode or filler to form a protective layer on the surface of a base metal. 

 

Among the weld cladding procedures, gas tungsten arc (GTA) surfacing process is a costeffective 

approach applied when reactive materials (as coatings or substrates) are involved [4]. GTA surface 

modification by means of alloying is a process in which an alloy powder of a desirable composition 

and a thin surface layer of the substrate material are simultaneously melted, and then rapidly solidified 

to form a dense coating metallurgically bonded to the base material [5]. The solidification rate is very 

high during coating in this process. Moreover, the coated surface obtained by GTA technique has a 

potential to produce rapidly solidified fine microstructures that has high hardness and wear resistance 

synthesized on various traditional substrate materials [6]. The effects of GTA processing were used 

for developing wear resistance AISI 1020 steel substrate. Appropriate quantities of FeB powder and 

Hardox 450 steel were combined to create conditions that synthesize particles into reinforced Fe-

based composite surface coating [7]. The studies concluded that Hardox 450 steel + 40 wt % FeB 

composite coating was the most appropriate combination in terms of hardness and wear performance 

[7]. 

 

Hardox 450 steel is used in order to generate desirable wear resistance and excellent cold bending 

property and weldability. High hardness Hardox 450 steel is obtained by quenching a sheet with 

special composition to generate martensite structure. To improve its technological properties further, 
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the steel underwent additional modification including surface processing for obtaining the demanded 

properties [8-12]. 

 

The purpose of this research was to analyze the phase composition, defect substructure and 

mechanical properties of the layer surfaced on Hardox 450 steel with surfacing wire of different 

compositions. 

 

Material and Methods of Research 

Hardox 450 steel with composition listed in Table 1 was used as base material. The wires for 

surfacing have composition shown in Table 2.  

 
Table 1. Elemental composition of Hardox 450 steel (chemical composition of metal, wt%, balance Fe). 

 

Table 2. Elemental composition of electrode wire (wt%, balance Fe). 

 

The formation of surfaced layer was processed in atmosphere gas (98%Ar and 2%CO2), welding 

current 250-300 A and arc voltage 30-35 V. The mechanical properties of the surface layer were 

determined using microhardness (device PMT-3, Vickers method) at indenter load of 5 N. The 

microstructure of the material was studied by optical microscopy (OM, Microvisor μVizo-MET- 221) 

and scanning electron microscopy (SEM, SEM-515 Philips). The elemental composition of the 

surface layer was determined by X-ray micro-spectrum analysis (EDAX ECON IV attached to the 

SEM). The phase constitution of the surface layer was analyzed using X-ray diffraction (XRD- 7000s, 

Shimadzu, Japan). The defect substructure of Hardox 450 steel and the surfaced layer was analyzed 

using transmission diffraction electron microscopy (TEM), (EM-125). 

 

Results and Discussion. 

Hardox 450 steel – initial state. TEM reveals the presence of martensite lamellar crystals. It is a result 

of shear γ→α transformation [13]. α-phase is iron-based solid solution with bcc crystal lattice. The α-

phase crystals are fragmental and separated into weakly disoriented. A small amount of sub-grains is 

present in the material. Some secondary phases are found inside the plates and also around its 

boundaries, at boundaries of fragments and sub-grains. Those particles are Fe3C according to the 

indexing of micro-electron diffraction patterns. 

 

Mechanical properties of the surfaced layer. The microhardness profile of the steel surfaced layer was 

measured. The data plotted on Fig. 1 shows that as a result of surfacing formation (independent of 

surfacing wire grade) a high-strength surface layer not less than 6 mm thick with average value of 

microhardness ≈ 11.2 GPa is formed. When moving farther away from the surfaced layer the 

microhardness of the material drops quickly into a level of ≈5.8 GPa. Consequently, hardness of 

surfaced layer exceeds that of the base metal (Hardox 450 steel) by 1.9 times in a thickness of 6.0-8.0 

mm. The highest hardness is the layer surfaced with wire № 2 shown as the curve 1 in Fig. 3. In this 

case the hardened layer thickness is not less than 7.5 mm. Its microhardness varies between 10.5 and 

12.5 GPa. 
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Fig. 1. Microhardness profile of “surfaced layer/(Hardox 450 steel) substrate”; curve 1 – surfacing wire №2; 

curve 2 – surfacing wire №3; curve 3 – surfacing wire №1. Phase constitution of the defect substructure in 

surfaced layer. By analyzing of composition of surfacing wires presented in Table 2, it can be supposed that 

high strength properties of the layer surfaced with wire №2 are caused by hardening of the material with iron 

boride. Fe-B system contains the compounds of Fe2B, FeB and FeB2[14].  

 

The solid solution of boron in bcc (body-centered cubic) lattice of iron has microhardness of 3700 

MPa, modified structure α-Fe + Fe3B has 6300 MPa, eutectic structures of dendrite in commercially 

pure iron has 6000-16000 MPa and 40Cr steel 10000-16000 MPa. The boride structures in 40Cr steel 

have the following microhardness: Fe2B: 16800 MPa, Fe2B+FeB: 16800- 18900 MPa, FeB: 18900-

21000 MPa [15]. Therefore, the high strength properties of the layer surfaced on Hardox 450 steel 

with wire №2 may be caused by the formation of eutectic on the base of iron boride Fe2B. SEM study 

of the surfaced layer reveals the formation of lamellar type eutectic. The effect of boron on the 

properties of iron is similar to that of carbon but is several times stronger. The addition of boron in the 

quantity of 0.02% (at.) facilitates the refinement of iron grain and gives possibility to use thermal 

treatment (quenching) for increasing its properties [15]. The results in support of the given thesis were 

obtained by us when analyzing α-phase being formed in eutectic. Fig. 2 shows the characteristic 

image of surfaced layer metal demonstrating the structure of α-phase interlayer. The lamellar structure 

is clearly defined. The transverse size of plates varies between 30 and 70 nm. A dislocation 

substructure of net-like type is observed in the volume of plates. Judging from the size of dislocation 

net cells the dislocation scalar density amounts to 10
11

 cm-2. The high dislocation density and 

lamellar morphology of interlayer structure are indicative of the shear mechanism of α-phase 

formations with production of ultra-fine martensite structure. Notice for comparison that the average 

transverse sizes of plates of packet martensite vary within 150-200 nm in quenched steel, the 

transverse ones of lamellar martensite crystals reach units of micrometers [16]. The less strong 

structure of the surfaced layer is formed on Hardox 450 steel in application of surfacing wire №3. 

Hardness of surfaced layer exceeds ≈ 1.7 fold that of the base metal (Hardox 450 steel) with the 

thickness of surfaced layer up to 8.0 mm. When analyzing the data presented in Table 2, it may be 

supposed that the high strength properties of surfaced layer are caused by the strengthening of the 

material with niobium carbides. System Nb-C is characterized by the availability of Nb-based solid 

solution, two stable intermediate phases Nb2C and NbС, and meta-stable phase Nb3C2 [14]. 
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Fig. 2. Electron microscope image of structure of the layer surfaced with wire №2 on Hardox 450 steel. 

The studies of the layer surfaced with wire №1 and №2 showed that its high strength properties were 

caused by the formation of quenched structure (martensite) and precipitation of the second phase 

particles as well. The characteristic feature of the quenched structure is a coarsening (in comparison 

with the structure of the layer surfaced with wire №2) martensite structure. The transverse size of 

which varies within 100-200 nm. Indexing of micro-electron diffraction patterns obtained from 

martensite structure enabled to reveal the presence of retained austenite (γ-phase, solid solution on 

base of face-centered crystal lattice of iron). The retained austenite in the form of extended interlayers 

locates along the boundaries of martensite crystals. The main ordered phase of the layer surfaced with 

wire №1 is niobium carbide particles. The size of inclusions vary within 0.2-1.5 μm. The shape of 

niobium carbide particles is very diverse and it is determined by the place of particle location. In the 

volume of grains the niobium carbide particles have, largely, faceted shape (Fig. 3, a); along the 

boundaries the particles form the extended interlayers (Fig. 3, b); in the grain boundary junctions they 

are shaped into triple extended node (Fig. 4). In some cases, the reflections belonging to carbides of 

chromium and tungsten are revealed in micro-electron diffraction patterns. 

 

The layer formed with surfacing wire №3 contains carbides of complex composition M23C6 as a 

strengthening phase along with niobium carbide NbC. Following the results presented in Table 2. One 

might expect that carbide under discussion is formed by atoms of chromium, iron and tungsten and it 

has a composition (Cr, Fe, W)23C6.  

 
Fig. 3. Electron microscope image of surfacing structure applied with wire №1 on Hardox 450 steel; a – light 

field; b – dark field obtained in reflection [002] NbC (it is designated by the arrow in micro-electron diffraction 

pattern). In (b) niobium carbide is designated by arrows. 
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Fig. 4. Electron microscope image of surfacing structure applied with wire №1 on Hardox 450 steel; a – light 

field; b – dark field obtained in closely located reflections [002] NbC +[110]α-Fe (the reflections are designated 

with arrow in (c)); c – micro-electron diffraction pattern, the arrow designates the reflections in which dark field 

was obtained. 

 

Conclusion 

The investigation of phase composition, defect substructure and mechanical properties of the surface 

layer of Hardox 450 steel surfaced with surfacing wire №1, №2 and №3 in a single pass are 

performed. It is shown that the highest hardness is the one surfaced with wire №1. Its strengthened 

layer thickness is not less than 7.5 mm and its microhardness varies between 10.5 and 12.5 GPa. It is 

found that the increased mechanical properties of the surfaced layer are connected to the formation of 

multi-phase submicro and nanoscale structures. The strengthening is caused by the quenching-induced 

formation of ultra-fine martensite and the presence of the inclusions mainly of iron boride Fe2B of 

submicron size and the formation of the eutectic of the lamellar structure(surfacing wire N>2). 

Niobium carbides NbC, Nb2C and complex carbides are the strensthening particle for surface wires 1 

and 3. 
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