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Abstract

The novel research work presented in this thesis consists of an offline, iterated
particle filter to facilitate statistical inference in general state space hidden
Markov models. Given a model and a sequence of observations, the associated
marginal likelihood L is central to likelihood-based inference for unknown statis-
tical parameters. We define a class of “twisted” models: each member is specified
by a sequence of positive functions  and has an associated  -auxiliary particle
filter that provides unbiased estimates of L. We identify a sequence  ⇤ that is
optimal in the sense that the  ⇤-auxiliary particle filter’s estimate of L has zero
variance. In practical applications,  ⇤ is unknown so the  ⇤- auxiliary particle
filter cannot straightforwardly be implemented. We use an iterative scheme to
approximate  ⇤, and demonstrate empirically that the resulting iterated aux-
iliary particle filter significantly outperforms the most popular competitors in
some challenging settings. Applications include parameter estimation using a
particle Markov chain Monte Carlo algorithm. An adaptation of the iAPF for
statistical inference in the context of diffusion processes along with a number
of examples and applications in this setting is provided.
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Chapter 1

Introduction

Context

Since what is considered to be their first instance in Gordon et al. (1993),
sequential Monte Carlo methods (SMC), or particle filters, have become ex-
tremely popular and their application, initially limited to tracking and vision
problems, has spread to many areas such as finance and risk analysis, engineer-
ing and robotics, biology and molecular chemistry and other fields; see Doucet
et al. (2001) for a comprehensive review of the literature. Their most promi-
nent application is for the solution of optimal estimation problems in non-linear
non-Gaussian Bayesian dynamical systems. The common denominator of such
models is that a latent stochastic process, for instance a set of kinetic charac-
teristics of a moving target in a tracking application or the common underlying
volatility of a set of financial securities in a financial problem, is known only
through a sequence of noisy measurements, namely the observation process.
The main advantage of SMC methods is that in general they do not require the
imposition of any form of linearisation or crude approximation on the system
dynamic and that in principle their implementation is straightforward provided
some essential features of the inherent dynamic systems are available in a prob-
abilistic form. Their main drawback is their computational cost.

When the dynamic system under investigation possesses a strong memory
structure, future information can help sharpen the inference about the current
state of the latent process, or equivalently lighten the computational burden of
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a SMC algorithm. Look-ahead methods constitute a subset of SMC methods
that follows the basic principle of using future information for designing particle
filters. Literature on look-ahead methods is very prolific (Pitt & Shephard
(1999), Doucet et al. (2006), Lin et al. (2013), Zhang & Liu (2002)) and some
outstanding results have been achieved. However, the performance of most look-
ahead schemes depends critically on some form of algorithm tailoring which is
specific to the application and non trivial.

The main focus of this thesis is a novel look-ahead scheme, namely the iter-
ated auxiliary particle filter (iAPF) and its applications to state space models
and diffusion processes. Simulation results for these applications suggest that
in some interesting scenarios the iAPF can lead to significant improvements in
the precision of statistical estimates with respect to standard non look-ahead
schemes, thanks to an effective exploitation of future information. Its main ad-
vantage with respect to other existing look-ahead schemes is that it consists of
an automated iterative exploration procedure which directly applies in a rather
general setting without any tailoring apart from the choice of some precision
parameters for which general guidelines are provided.

Outline

This thesis is divided into four parts, each part consisting of a number of short
chapters. Novel methodology, examples and applications compose the last three
parts. The content of Part II and Part III includes, but is not limited to, the
work contained in the published journal article

Guarniero, P., Johansen, A. M. & Lee, A. (2016), ‘The iterated auxiliary
particle filter’, Journal of the American Statistical Association (just accepted).

Part I In Chapter 2 we define hidden Markov models (HMM) which are the
dynamic Bayesian systems with a particular independence structure
under investigation. Statistical inference for hidden Markov models
is the original motivating application for SMC methodologies and
still remains one of their most prominent applications. In Chapter
3 we present SMC methods, which involve the simulation over time
of an artificial particle system, under a rather general framework.
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Here we briefly introduce the basics of Monte Carlo methods and
Importance Sampling (IS). In SMC methods, IS is performed in an
iterative fashion and the feature of particle resampling is introduced
to address the degeneracy of importance weights problem. A basic
algorithm that encompasses a wide class of SMC techniques is pro-
vided along with an essential central limit theorem. In Chapter 4
we briefly review look-ahead methods, a subset of SMC methods
that aims at producing high precision SMC schemes by using future
information for designing the behaviour of the SMC particle system.
The iAPF algorithm which is the focus of this thesis belongs to this
class of methods. We also provide a brief description of particle
marginal Metropolis Hasting (PMMH), a powerful parameter esti-
mation method that combines standard Markov chain Monte Carlo
and SMC schemes, as we use it extensively in our simulations.

Part 2 In Chapter 5 we define a class of particle filters parametrised by an
appropriate sequence of functionals. Our interest in this family of
schemes is motivated by the fact that our main statistical quantity
of interest is common to the entire family. Many popular look-ahead
schemes can be retrieved from this class. In particular we provide an
optimal sequence of functionals which leads to a zero variance look-
ahead scheme, in an appropriate sense. Such an idealised particle
filter gives motivational ground for the iAPF algorithm of Chapter
6. The iAPF works in an iterative fashion, each iteration consist-
ing of a particle filter which belongs to the aformentioned family.
Through a completely automated procedure, at each iteration the
algorithm exploits the output of the previous iteration to define a
new sequence of functionals as close as possible, in an appropriate
sense, to the optimal sequence, possibly leading to a particle filter
with enhanced accuracy. A stopping rule based on the fluctuation of
subsequent estimates is given. In Chapter 7 some important imple-
mentation details are provided. In particular we discuss two possible
approaches to define the parametrising sequence of functionals: a
kernel density estimate approach and a parametric approach.
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Part 3 We perform simulations for different HMMs to showcase the iAPF
algorithm. In Chapter 8 we consider some linear Gaussian models
for which the quantities under investigation are known in an ana-
lytic form, facilitating comparisons with the Bootstrap particle filter
(BPF) and the fully adapted particle filter, two SMC competitors
of the iAPF. In these examples the benefits of our approach are
particularly significant in the case of extreme observations and high
dimensions. In Chapter 9 we use the iAPF for statistical inference
for stochastic volatility models, using some real world data. First we
consider the parameter estimation problem for a univariate stochas-
tic volatility model based on a sequence of pound/dollar exchange
rate time series. In this application the iAPF performs only slightly
better than the BPF, although results indicate that the iAPF esti-
mates are significantly less variable across the parameter range than
their BPF counterparts, and may therefore be more suitable in sim-
ulated maximum likelihood approximations. With the second most
challenging application we look at a multivariate stochastic volatil-
ity model, and the parameter estimation problem given monthly
returns for the exchange rate with respect to the US dollar of a
range of 20 different international currencies. In this scenario be-
cause of the relatively high dimensionality of the state space and
of the 79-dimensional parameter space the BPF systematically fails
to provide reasonable estimates in a feasible computational time.
The iAPF instead manages to produce reasonable and potentially
interesting results in this highly-challenging context.

Part 4 In this last part of the thesis we explore the potential of a version of
the iterated auxiliary particle filter to make inference on a diffusion
process setting. In the context of diffusion processes it is often con-
venient to introduce a discrete-time approximation that converges
in an appropriate sense to the continuous-path diffusion as the dis-
cretisation step tends to zero. When the continuous process is par-
tially or perfectly observed at discrete time steps, we can interpret
its discrete approximation as a state space model, for which sta-
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tistical inference through the iAPF becomes possible. In Chapter
10 we consider a general class of diffusion processes and we show
how the problem of estimating transition densities of a continuous
diffusion in this class through its Euler-Maruyama approximation
can be reformulated as an SMC estimation problem. In Chapter
11 we describe two modifications to the iAPF that can significantly
enhance its performance in this setting, especially when a fine Eu-
ler–Maruyama approximation is required. In Chapter 12 we present
simulation results for different diffusion processes to assess the per-
formance of the iAPF with respect to the BPF for the problem of
estimating transition densities and sampling from diffusion bridges.
We also review briefly the major competing methods for estimating
transition densities in the context of diffusion processes and perform
some simulations to compare the iAPF with the modified diffusion
bridge approach.
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Part I

Look-Ahead Methods for
Sequential Monte Carlo
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Chapter 2

Hidden Markov Models

2.1 Definition

A hidden Markov model (HMM) is a bivariate Markov chain (X
t

, Y
t

)

t�1

with a
particular conditional independence structure, where only the process (Y

t

)

t�1

is
observed (Künsch (2000)). The hidden process (X

t

)

t�1

is itself a Markov chain
evolving on the state space X and the observation process (Y

t

)

t�1

is defined on
the observation space Y. Each Y

t

is conditionally independent on all the other
random variables (i.e. {X

i

, Y
j

: i, j 6= t}) given X
t

. We fix a final time T 2 N
and we have

X
1

⇠ µ (·)
X

t

| {X
t�1

= x
t�1

} ⇠ f (x
t�1

, ·) for t 2 2 : T

Y
t

| {X
t

= x
t

} ⇠ g (x
t

, ·) for t 2 1 : T

where µ : X ! R
+

is the initial probability density function, f : X ⇥ X ! R
+

a transition density and g : X ⇥ Y ! R
+

an observation density. We call
such a construction a HMM (µ, f, g). In the following we treat the case where
(X,B (X)) =

�
Rd,B �Rd

��
and (Y,B (Y)) =

�
Rd

0
,B �Rd

0�� that is when X and
Y are real coordinate measurable spaces with the associated Borel ��algebra,
generated by the open sets. All the densities are with respect to the common
Lebesgue dominating measure. We use the notation k : T := {k, k + 1, . . . , T}
for all k  T and specify when the order of the elements matters only when it is
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not clear from the context. The generalisation to time-inhomogeneous transition
and observation distributions and time-dependent state and observation spaces
is straightforward. We choose this setting for a clearer exposition.

A general HMM can be illustrated with the diagram below.

Statistical inference is often conducted upon the basis of a realization y
1:T

of Y
1:T

, which we will consider to be fixed. A HMM defines a Bayesian model
where the prior density of the process of interest (X

t

)

t21:T is given by

p (x
1:T

) = µ (x
1

)

TY

t=2

f (x
t�1

, x
t

)

and the likelihood associated with a realisation of the observations process
Y
1:T

= y
1:T

is given by

p (y
1:T

| x
1:T

) =

TY

t=1

g (x
t

, y
t

) .

In this context the posterior density which is proportional to the product of the
prior density p (x

1:T

) and the likelihood function p (y
1:T

| x
1:T

) takes the form

p (x
1:T

| y
1:T

) =

p (x
1:T

, y
1:T

)

p (y
1:T

)

,

where p (x
1:T

, y
1:T

) = p (x
1:T

) p (y
1:T

| x
1:T

) and p (y
1:T

) =

R
XT p (x

1:T

, y
1:Y

) dx
1:T

.
We denote by P the law of the bivariate Markov chain (X

t

, Y
t

)

t21:T

P (X
1:T

2 A, Y
1:T

2 B) :=

Z

A⇥B

µ (x
1

) g (x
1

, y
1

)

TY

t=2

f (x
t�1

, x
t

) g (x
t

, y
t

) dx
1:T

dy
1:T
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for any Borel measurable set A ✓ XT and B ✓ YT , dx
1:T

= dx
1

dx
2

· · · dx
T

.
Letting E denote expectations w.r.t. P, for any sequence of observations y

1:T

the conditional path probability measure is given by

P (X
1:T

2 A | Y
1:T

= y
1:T

) =

E
h
I
A

(X
1:T

)

Q
T

t=1

g (X
t

, y
t

)

i

E
hQ

T

t=1

g (X
t

, y
t

)

i

for any Borel measurable A ✓ XT . In some applications the objects of inference
are the conditional distributions X

T

| Y
1:T

and X
1:T

| Y
1:T

which are called re-
spectively the filtering distribution and the smoothing distribution. Our main
statistical quantity of interest is L := E

hQ
T

t=1

g (X
t

, y
t

)

i
, the marginal likeli-

hood associated with y
1:T

. In most of our applications and examples, an un-
known statistical parameter ✓ 2 ⇥ governs µ, f and g, and in this setting the
map ✓ 7! L(✓) is the likelihood function. Other possible quantities of interest
are the so-called smoothing expectations, i.e. E [� (X

1:T

) | Y
1:T

= y
1:T

] for some
bounded continuous function � : XT �! R.

2.2 Examples

2.2.1 The linear Gaussian model

The linear Gaussian model is a HMM with state space X = Rd and observa-
tion space Y = Rd0 defined by the following initial, transition and observation
Gaussian densities:

µ (·) = N (·;m,⌃)

f (x, ·) = N (·;Ax,B)

g (x, ·) = N (·;Cx,D)

where m 2 Rd, ⌃, A,B 2 Rd⇥d, C 2 Rd⇥d

0 and D 2 Rd

0⇥d

0 . N (·;m,⌃) de-
notes a possibly multidimensional Gaussian distribution with vector mean m

and covariance matrix ⌃. We take into consideration this model because it
is possible to derive analytic expressions for its normalising constant L, fil-
tering distribution and smoothing distributions through a recursive algorithm
called the Kalman filter (see, for example, Ghahramani (1998)). For the Linear
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Gaussian model the predictive distribution X
t

| Y
1:t�1

and the filtering distri-
bution X

t

| Y
1:t

are Gaussian distributions for all t 2 1 : T . The Kalman filter
is based on a set of equations that determine the parameters of such Gaus-
sian distributions recursively. Let m

t|t�1

,m
t|t 2 Rd and ⌃

t|t�1

,⌃
t|t 2 Rd⇥d be

the means and variance/covariance matrices of the predictive and filtering dis-
tribution at time t respectively, so that X

t

| Y
1:t�1

⇠ N �
m

t|t�1

,⌃
t|t�1

�
and

X
t

| Y
1:t

⇠ N �
m

t|t,⌃t|t
�

for t 2 1 : T , with the convention X
1

| Y
1:0

= X
1

.
The predict equations allow one to determine the parameters of the predictive
distribution X

t

| Y
1:t�1

given the distribution X
t�1

| Y
1:t�1

. The update equa-
tions define the parameters of the filtering distribution X

t

| Y
1:t

at time t given
the predictive distribution X

t

| Y
1:t�1

. Starting from the predictive distribution
X

1

⇠ N �
m

1|0,⌃1|0
�

at time t = 0 which trivially corresponds to the distribu-
tion with density µ (·) ⇠ N (·;m,⌃), the Kalman filter alternates update and
predict steps determining the filtering distribution at each time t up to T . For
a fixed sequence of observations y

1:T

, and given the parameters m
t|t�1

, ⌃
t|t�1

of the predictive distribution at time t 2 1 : T the update step consists of the
following set of equations

S
t

= C⌃
t|t�1

Ct

+D

G
t

= ⌃

t|t�1

CtS�1

t

m
t|t = m

t|t�1

+G
t

(y
t

� ŷ
t

)

⌃

t|t = ⌃

t|t�1

�G
t

S
t

Gt

t

where
ŷ
t

= Cm
t|t�1

is the observation prediction, G
t

2 Rd⇥d

0 is the Kalman gain matrix and S
t

2
Rd

0⇥d

0 is the observation prediction covariance at time t. The prediction step
consists of the equations

m
t+1|t = Am

t|t

⌃

t+1|t = A⌃
t|tA

t

+B
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where the parameters m
t|t and ⌃

t|t are obtained from the update step at time
t.

From the Kalman equations it is also possible to derive the normalising
constants Z

t

for every t 2 1 : T . In particular we have that

p (y
t

| y
1:t�1

) = N (y
t

; ŷ
t

, S
t

)

for all t 2 1 : T and therefore Z
t

= p (y
1:T

) is straightforwardly derived as
p (y

1:T

) = p (y
1

)

Q
T

t=2

p (y
t

| y
1:t�1

). Quantities such as p (y
t+1:T

| x
t

), which ap-
pear in the idealised version of the algorithm we present in Part II of the thesis,
are also easily derived through the Kalman filter. It is sufficient to notice that
p (y

t+1:T

| x
t

) corresponds to the marginal likelihood p
�
y0
1:T�t

�
relative to the

sequence of observations y0
1:T�t

= y
t+1:T

from the linear Gaussian HMM with ini-
tial distribution µ (·) ⇠ N (·;Ax

t

, B), transition density f (x, ·) = N (·;Ax,B)

and observation density g (x, ·) = N (·;Cx,D). The fact that we can obtain
analytic expressions for these distributions and quantities facilitates the com-
parison between the algorithms presented in the following chapters.

2.2.2 Stochastic volatility models

Stochastic volatility models have been widely used in various areas of economics
and mathematical finance. They describe the dynamic of a set of financial
securities whose volatilities are themselves random processes. Some classical
models such as the Black–Scholes model make the simplifying assumption that
the underlying volatility of the market is constant. Under this assumption many
features of a realistic financial market dynamic cannot be modelled. Some of
these features, such as smile and skew of the implied stochastic volatility surface,
can instead be described by assuming that the volatility process underlying the
modelled financial securities is a stochastic process rather than a constant.

A classical example of a simple stochastic volatility model is defined by
µ (·) = N �·; 0, �2/ (1� ↵)2�, f (x, ·) = N (·;↵x, �2

) and g (x, ·) = N (·; 0, �2

exp (x))

where ↵ 2 (0, 1), � > 0 and �2 > 0 are statistical parameters (see, e.g. Kim
et al. (1998)).

In Part III we also consider a multivariate stochastic volatility model that
can also be found in Chib et al. (2009, Section 2). The model is defined for
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X = Rd by µ(·) = N (·;m,U
?

), f(x, ·) = N (·;m + diag(�) (x�m) , U) and
g(x, ·) = N (·; 0, exp (diag (x))), where m,� 2 Rd and the covariance matrices
U,U

?

2 Rd⇥d are statistical parameters.
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Chapter 3

Sequential Monte Carlo Methods

The Sequential Monte Carlo (SMC) methodology involves the simulation over
time of an artificial particle system (⇠i

t

: t 2 {1, . . . , T} , i 2 {1, . . . , N}) from
which we can derive weighted samples from a sequence of target probability
densities (⇡

t

)

t21:T of increasing dimension, where ⇡
t

is defined on the product
space Xt. We are normally able to evaluate ⇡

t

only up to an unknown normal-
ising constant that is we can evaluate pointwise the function �

t

where

⇡
t

(x
1:t

) =

�
t

(x
1:t

)

Z
t

for all t 2 1 : T . Given a density function ⇡
t

defined on the measurable space
(Xt,B (Xt

)) we say that a test function �
t

: Xt �! R is ⇡
t

�integrable if the
integral

R
Xt �t

(x
1:t

) ⇡
t

(x
1:t

) dx
1:t

exists and it is finite and we omit the ⇡
t

when
it is clear from the context. Depending on the application, the main focus
can be either to produce samples from the distribution densities (⇡

t

)

t21:T , or
to estimate the normalising constant Z

t

=

R
�
t

(x
1:t

) dx
1:t

, or to evaluate some
quantity of the form ⇡

t

(�
t

) :=

R
Xt �t

(x
1:t

) ⇡
t

(x
1:t

) dx
1:t

for some t 2 1 : T and
some integrable test function �

t

: Xt �! R. In any case SMC methods produce
a sequential approximation of the aforementioned quantities, for example first
an estimate of Z

1

then, after appropriately propagating the particle system, an
estimate of Z

2

and so on.
SMC methods were originally applied to statistical inference for hidden

Markov models (HMMs) by Gordon et al. (1993) under the name of particle fil-
ters, and this setting remains an important application. In this context we could

13



have �
t

(x
1:t

) = p (x
1:t

, y
1:t

) and thus the target densities ⇡
t

(x
1:t

) = p (x
1:t

| y
1:t

)

assume the form of conditional densities, and the normalising constants Z
t

=

p (y
1:t

) are interpreted as marginal likelihoods associated with the sequence of
observations y

1:t

. This is just a particular choice of target distributions. With
our approach described in Part II and involving twisted models, for example,
the final target distribution ⇡

T

(x
1:T

) = p (x
1:T

| y
1:T

) coincides with the full
conditional distribution given the observation sequence y

1:T

, but the intermedi-
ate distributions ⇡

t

for t 2 1 : T � 1 take the form of twisted distributions and
thus in general ⇡

t

(x
1:t

) 6= p (x
1:t

| y
1:t

).
Despite the broad class of applications, it is possible to present SMC meth-

ods under a general framework and notation, and with a basic algorithm we can
encompass a wide class of advanced SMC techniques. In the rest of this para-
graph we present such general framework following Doucet & Johansen (2011).
First we briefly introduce the basics of Monte Carlo methods and Importance
Sampling (IS). Then we see how, when an appropriate decomposition of the
proposal distribution is possible, IS can be applied in a sequential fashion: in
this case it takes the name of Sequential Importance Sampling (SIS). SMC is
a modification of SIS where particle resampling is introduced to address the
degeneracy of importance weights problem.

3.1 Basics of Monte Carlo methods

Monte Carlo methods are a broad class of computational algorithms that rely
on repeated random sampling with the aim of approximating measures and,
by extension, integrals. We consider the problem of approximating a generic
probability density ⇡

t

(x
1:t

) defined on the state space Xt. This description in
terms of t-dimensional distributions is functional to our specific HMM setting.
If it is possible to repeatedly sample from such distribution, we can construct a
Monte Carlo approximation of the distribution with density ⇡

t

as the empirical
probability measure

⇡N

t

(dx
1:t

) =

1

N

NX

i=1

�
⇠

i
1:t
(dx

1:t

)

14



where ⇠i
1:t

⇠ ⇡
t

are independent and identically distributed for i 2 1 : N ,
N � 1 and �

⇠

is the Dirac delta (i.e. a point mass) located at ⇠ 2 Xt. For any
integrable test function �

t

: Xt �! R we can approximate the integral ⇡
t

(�
t

) by
the Monte Carlo approximation ⇡N

t

(�
t

) :=

1

N

P
N

i=1

�
t

(⇠i
1:t

). It is easily checked
that ⇡N

t

(�) is an unbiased estimator of ⇡
t

(�) as

E
⇥
⇡N

t

(�
t

)

⇤
= E

⇥
�
t

�
⇠1
1:t

�⇤

because ⇠i
1:t

are independent and identically distributed according to ⇡
t

, and
the term on the right hand side is equal to ⇡

t

(�
t

) by definition. Furthermore
the law of large numbers ensures that ⇡N

t

(�
t

)

N�!1����! ⇡
t

(�
t

) almost surely for
any integrable �. The main advantage of the Monte Carlo estimator ⇡N

t

(�
t

) is
that its variance

Var

�
⇡N

t

(�
t

)

�
=

1

N

�
⇡
t

�
�2

t

�� (⇡
t

(�
t

))

2

�

decreases as N increases at a rate that does not depend on the dimensionality
of the state space Xt while other standard numerical approximations such as
quadrature rules have a convergence rate that degrades rapidly with higher
dimension: this is known as the curse of dimensionality. In most scenarios
and applications of interest sampling directly from the target distribution ⇡

t

is impossible or computationally unfeasible, a problem that can be addressed
with the introduction of an alternative proposal distribution q

t

.

3.2 Importance sampling

Importance Sampling relies on the introduction of a proposal density q
t

from
which we can easily sample and such that supp (q

t

) ◆ supp (⇡
t

), where supp (f) :=
{x 2 X : f (x) > 0} for any non negative real function f on X. The identity

⇡
t

(�
t

) =

Z

Xt

�
t

(x
1:t

) ⇡
t

(x
1:t

) dx
1:t

=

Z

supp(qt)

�
t

(x
1:t

)

⇡
t

(x
1:t

)

q
t

(x
1:t

)

q
t

(x
1:t

) dx
1:t

suggests an alternative procedure to derive estimates of the quantity ⇡
t

(�
t

) for
an integrable test function �

t

. We draw N independent identically distributed
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samples ⇠i
1:t

⇠ q
t

and we obtain the approximation

⇡N

t

(�
t

) =

1

N

NX

i=1

�
t

�
⇠i
1:t

� ⇡
t

(⇠i
1:t

)

q
t

(⇠i
1:t

)

.

The IS estimator ⇡N

t

(�
t

) shares with the Monte Carlo estimator of the previous
subsection the important properties of being an unbiased estimator of ⇡

t

(�
t

)

and again the strong law of large numbers ensures that it converges almost
surely to ⇡

t

(�
t

) as N �!1. In many non trivial cases we are able to evaluate
⇡
t

only up to an unknown normalising constant Z
t

, and when this is the case
even this method turns out to be inapplicable.

A possible solution is the introduction of a set of self-normalised weights.
The idea is to approximate separately the numerator and the denominator in
the decomposition of the target distribution density ⇡

t

(x
1:t

) =

�t(x1:t)

Zt
. First we

approximate the denominator Z
t

exploiting the identity

Z
t

=

Z

Xt

�
t

(x
1:t

) dx
1:t

=

Z

Xt

W
t

(x
1:t

) q
t

(x
1:t

) dx
1:t

(3.1)

where W
t

(x
1:t

) =

�t(x1:t)

qt(x1:t)
is the unnormalised weight function. Given N inde-

pendent identically distributed samples ⇠i
1:t

⇠ q
t

the Monte Carlo approximation
of Z

t

is given by

ZN

t

=

1

N

NX

i=1

W
t

�
⇠i
1:t

�
. (3.2)

It is worth noticing that ZN

t

is a unbiased and consistent estimate of Z
t

, which
is the main quantity of interests in many applications, including those discussed
in this thesis. The unnormalised measure associated with the density �

t

can be
approximated with the empirical measure

�N
t

(dx
1:t

) =

1

N

NX

i=1

W
t

�
⇠i
1:t

�
�
⇠

i
1:t
(dx

1:t

) .

The ratio of the two approximations is

⇡N

t

(dx
1:t

) =

1

N

P
N

i=1

W
t

(⇠i
1:t

) �
⇠

i
1:t
(dx

1:t

)

1

N

P
N

i=1

W
t

(⇠i
1:t

) .
=

NX

i=1

wi

t

�
⇠

i
1:t
(dx

1:t

) (3.3)

16



where wi

t

=

Wt(⇠
i
1:t)PN

k=1 Wt(⇠
k
1:t)

for i 2 1 : N are the self-normalised weights. Being the

ratio of two unbiased estimator does not guarantee that ⇡N

t

is unbiased, which
indeed is not the case in general. However ⇡N

t

(�
t

) is strongly consistent for any
integrable test function �

t

, subject to ⇡ (�2

t

) < 1, and it satisfies a Central
Limit Theorem of which we will state a general form in section 3.5.

3.3 Sequential importance sampling

At the beginning of this chapter we introduced SMC methods as a tool to
approximate a sequence of target probability densities (⇡

t

)

t21:T . In order to
do so sequentially we need to select a proposal distribution with the following
structure

q
t

(x
1:t

) = µ
1

(x
1

)

tY

s=2

f
s

(x
s�1

, x
s

)

for all t 2 1 : T . When it is possible to do so, we can obtain a particle ⇠i
1:t

⇠ q
t

first by sampling ⇠i
1

⇠ µ
1

at time t = 1 and then propagating the particle
by sampling ⇠i

s

⇠ f
s

�
⇠i
s�1

, ·� for s 2 2 : t. The unnormalised weight function
W

t

(x
1:t

) admits the recursive decomposition

W
t

(x
1:t

) =

�
t

(x
1:t

)

q
t

(x
1:t

)

=

�
t�1

(x
1:t�1

)

q
t�1

(x
1:t�1

)

�
t

(x
1:t

)

�
t�1

(x
1:t�1

) f
t

(x
t�1

, x
t

)

= W
t�1

(x
t�1

)↵
t

(x
1:t

)

where the incremental importance weight function ↵
t

is given by

↵
t

(x
1:t

) =

�
t

(x
1:t

)

�
t�1

(x
1:t�1

) f
t

(x
t�1

, x
t

)

for all t 2 1 : T . The resulting sequential importance sampling algorithm
proceeds as follows.

At any time step t 2 1 : T estimates for the target distribution ⇡
t

and for
the normalising constant Z

t

are given by equations (3.3) and (3.2) respectively.
The advantage of the SIS algorithm is the reduced cost of propagating the
particle system ⇠1:N

1:t

with respect to sampling a set of completely new particles.
When the computational cost of sampling from f

t

(x
t�1

, ·) and evaluating the
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Algorithm 3.1 Sequential Importance Sampling

1. Sample ⇠i
1

⇠ q
1

independently for i 2 1 : N . Set wi

t

/ W
1

(⇠i
1

) for
i 2 1 : N .

2. For t = 2, . . . , T ,

(a) Sample independently ⇠i
t

⇠ f
t

�
⇠i
t�1

, ·� for i 2 1 : N .
(b) Set wi

t

/ W
t

(⇠i
1:t

) = W
t�1

�
⇠i
1:t�1

�
↵
t

(⇠i
1:t

) for i 2 1 : N .

incremental weights ↵
t

(x
1:t

) is independent of t, which is often the case, the
computational complexity of the SIS algorithm is fixed at any time step. On
the contrary an algorithm that samples exactly from ⇡

t

sequentially at each time
t would have a computational complexity at time t increasing at least linearly
with t. When the incremental weight ↵

t

(x
1:t

) does not depend on x
1:t�1

we write
g
t

(x
t

) = ↵
t

(x
1:t

). This is a desirable property for the incremental weights as in
this case the domain of g

t

does not increase in dimension with t, therefore in
usual scenarios we can evaluate g

t

at a fixed computational cost. From now on
we will consider propagation mechanisms of this type and in Part 2 we develop
an algorithm such that the incremental weights have this property.

As SIS is just a standard IS that exploits a particular decomposition of the
proposal distribution, it inherits the same drawbacks, in particular a variance
of the estimates that typically grows exponentially in time. A way to address
this problem is the introduction of some form of interaction within particles,
namely the resampling methods.

3.4 Sequential Monte Carlo

With SIS at any time step t we have a weighted set of particles
�
⇠1:N
1:t

, w1:N

t

�

approximating ⇡
t

. While the weighted particles provide approximations to in-
tegrals of test functions straightforwardly, to obtain an approximate sample
from the distribution ⇡

t

we need to perform a further sampling step. This con-
sists of drawing a sample from the IS approximation ⇡N

t

of ⇡
t

which is itself
obtained by sampling: for this reason this operation is called resampling. In
order to obtain such sample of size N , we can draw independently N indices
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A1

t

,. . . , AN

t

from a Categorical distribution Cat

�
w1:N

t

�
, that is the distribution

with outcome space S = {1, 2, . . . , N} and such that

P
�
Ai

t

= k
�
= wk

t

for all i 2 1 : N and k 2 S. The approximate sample from ⇡
t

is given by⇣
⇠
A

1
t

1:t

, . . . , ⇠
A

N
t

1:t

⌘
. In this thesis we adopt this resampling procedure in all the

simulations involving SMC algorithms. An overview of alternative resampling
schemes such as stratified resampling and systematic resampling can be found
in Cappé et al. (2007). As resampling at each time step can be detrimental in
terms of the quality of the SMC estimates, a common practice we adopt is the
use of an effective sample size-based adaptive resampling scheme (Kong et al.
1994, Liu & Chen 1995), about which we provide more details in Section 7.1.
The idea of SMC is to incorporate the resampling step within the propagation
mechanism. At each time step instead of propagating according to the chosen
proposal distribution q

t

the set of weighted particles, we propagate an equal
sized set of unweighted particles obtained by resampling.

Algorithm 3.2 A Particle Filter

1. Sample ⇠i
1

⇠ µ
1

independently for i 2 {1, . . . , N}.
2. For t = 2, . . . , T , sample independently

⇠i
t

⇠
P

N

j=1

g
t�1

(⇠j
t�1

)f
t

(⇠j
t�1

, ·)
P

N

j=1

g
t�1

(⇠j
t�1

)

, i 2 {1, . . . , N}.

Running Algorithm 3.2 with

µ
1

= µ, f
t

= f, g
t

(x) = g(x, y
t

), (3.4)

corresponds exactly to running the bootstrap particle filter of Gordon et al.
(1993), and we observe that when (3.4) holds, the quantity Z

T

defined in (3.1)
is identical to L, so that ZN

T

defined in (3.2) is an approximation of L.
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3.5 A central limit theorem for the normalising
constant estimator

A wide range of convergence results is available for SMC algorithms in Del Moral
(2004). As our main statistical quantity of interest is Z

T

:= E
hQ

T

t=1

g
t

(X
t

)

i
,

which in an HMM setting corresponds to the marginal likelihood L associated
with y

1:T

, we provide here a Central Limit Theorem for its estimator obtained
from Algorithm (3.2). This is an adaptation to our notation and setting of the
convergence result for SMC that can be found in Doucet & Johansen (2011).
An elegant proof of this result is given in Del Moral (2004, Chapter 9). Note
that given a particle system

�
⇠1:N
1:T

 
evolving according to Algorithm 3.2

ZN

T

:=

TY

t=1

1

N

NX

i=1

g
t

�
⇠i
t

�

is an unbiased estimator of Z
T

(see for example Doucet & Johansen (2011)).

Proposition 1. For the estimator ZN

T

we have

p
N

✓
ZN

T

Z
T

� 1

◆
d�! N (0, �2

),

where

d�! denotes convergence in distribution and

�2

:=

Z

X

⇡2

T

(x
1

)

µ
1

(x
1

)

dx
1

� 1 +

TX

t=2

✓Z

Xt

⇡2

T

(x
1:t

)

⇡
t�1

(x
1:t�1

) f
t

(x
t�1

, x
t

)

dx
1:t

� 1

◆
.

Note that we used the simplified notation ⇡
T

(x
1:t

) :=

R
XT�t ⇡T (x

1:T

) dx
t+1:T

.
Given a sequence of target distributions ⇡

1:T

, a sensible approach when selecting
an appropriate sequence of proposals µ

1

, f
2

, . . . , f
T

is trying to minimise the
asymptotic variance �2. In Section 6.4 we will show how to retrieve a consistent
estimator ⇡N

T

(�
T

) for the quantity ⇡
T

(�
T

) from Algorithm 3.2, for a square
integrable test function �

T

on XT . Although an analogous asymptotic result
is available for the estimator ⇡N

T

(�
T

) (see Doucet & Johansen (2011)) and we
provide it below with Proposition 2, trying to minimise the asymptotic variance
of ⇡N

T

(�
T

) when designing a particle filter could prove detrimental, as this
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depends on the specific test function �
T

whereas we are typically interested in
the expectations of several test functions.

Proposition 2. For the estimator ⇡N

T

(�
t

) we have

p
N
�
⇡N

T

(�
T

)� ⇡
T

(�
T

)

�
d�! N �

0, �2

�
,

where

d�! denotes convergence in distribution and

�2

:=

Z

X

⇡2

T

(x
1

)

µ
1

(x
1

)

Z

X

�
T

(x
1:T

) ⇡
T

(x
2:T

| x
1

) dx
2:T

� ⇡
T

(�
T

)

�
2

dx
1

+

T�1X

t=2

Z

Xt

⇡2

T

(x
1:t

)

⇡
t�1

(x
1:t�1

) f
t

(x
t�1

, x
t

)

·
Z

X

�
T

(x
1:T

) ⇡
T

(x
t+1:T

| x
1:t

) dx
t+1:T

� ⇡
T

(�
T

)

�
2

dx
1:t

+

Z

XT

⇡2

T

(x
1:T

)

⇡
T�1

(x
1:T�1

) f
T

(x
T�1

, x
T

)

[�
T

(x
1:T

)� ⇡
T

(�
T

)]

2 dx
1:T

.
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Chapter 4

Background

SMC methods were originally designed for online filtering, which refers to the
problem of approximating subsequent filtering distributions in real time as in-
formation becomes available. In this thesis we focus on an offline setting, where
the sequence of observations y

1:T

is fixed, and on the related problems of esti-
mating the normalising constant Z

T

or some function expectations under the
smoothing distribution. Some important applications present an offline nature
such as those involving the particle marginal Metropolis–Hastings (PMMH)
method of Andrieu et al. (2010) and the importance sampling squared (IS2)
method of Tran et al. (2014). When implementing a particle filter for an offline
setting, we can get important gains in terms of algorithm efficiency if we design
the particle evolution dynamic at time t based on the full observation sequence
y
1:T

rather than just on the information y
1:t

up to time t. In Section 4.1 we
give a brief review of look-ahead methods, the class of SMC methods the iAPF
belongs to, which are based on this strategy.

An alternative approach with respect to SMC methods in the offline setting
is to use Markov chain Monte Carlo (MCMC) or reversible jump MCMC meth-
ods (Gamerman & Lopes (2006), Green (1995)). MCMC methods are extremely
popular, however their efficient implementation can be challenging in complex
problems, where a careful design of proposal densities is required. Instances
where non-MCMC methods can be more efficient than MCMC algorithms in-
clude time-ordered hidden Markov models (Chopin (2007)) and mixture models
(Del Moral et al. (2006), Fearnhead (2004)) (for a longer list of applications and
discussion see Fearnhead (2008)).
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4.1 Look-ahead methods

Given a sequence of target distribution densities ⇡
1:T

where ⇡
t

is defined on the
state space Xt, Proposition 1 of Chapter 3 and related results suggest that the
choice of proposal distribution densities µ

1

and f
2:T

is critical in controlling the
variance of the SMC estimator. In the typical HMM framework, the sequence
of target distributions ⇡

1:T

takes the form of a sequence of conditional densi-
ties ⇡

t

(x
1:t

) = p (x
1:t

| y
1:t

) for t 2 1 : T given the stream of information that
consists of a sequence of observations y

1:T

. In this setting even if the proposal
distributions µ

1

and f
t

are carefully designed for all t 2 2 : T , standard SMC
methods can perform poorly for example when two consecutive target distri-
butions p (x

1:t

| y
1:t

) and p (x
1:t+1

| y
1:t+1

) present a high discrepancy. In this
case the variance of the incremental weights at time t + 1 is likely to be high,
leading to the degeneracy of the overall SMC importance weights. When an
HMM is used to model a dynamic system which posses strong memory, future
information can help sharpen the inference about current state and mitigate
the aforementioned problem. This can be the case for target tracking systems
such as in Godsill & Vermaak (2004), Ikeda & Watanabe (1981), and protein
structure prediction such as in Zhang & Liu (2002) for example. Look-ahead
methods constitute a subset of SMC methods that follows the basic principle
of using “future” information for designing the behaviour of the particle system
�
⇠1:N
1:T

 
.

Consider the sequence of target distribution densities ⇡
t

(x
1:t

) = p (x
1:t

| y
1:T

)

for t 2 1 : T . In this case all the information up to the end of the sequence
of observations y

1:T

is perfectly conveyed in the target distribution densities. If
we can use the sequence of proposals µ

1

(x
1

) = p (x
1

| y
1:T

) and f
t

(x
t�1

, x
t

) =

p (x
t

| x
t�1

, y
t:T

), for the corresponding incremental weight function ↵
t

(x
1:t

) we
have

↵
t

(x
1:t

) / ⇡
t

(x
1:t

)

⇡
t�1

(x
1:t�1

) f
t

(x
t�1

, x
t

)

=

p (x
1:t

| y
1:T

)

p (x
1:t�1

| y
1:T

) p (x
t

| x
t�1

, y
t:T

)

= 1
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for all t 2 2 : T and similarly for the initial proposal density

↵
1

(x
1

) / ⇡
1

(x
1

)

µ
1

(x
1

)

=

p (x
1

| y
1:T

)

p (x
1

| y
1:T

)

= 1.

For this particle dynamic the variance of the particle weights is minimised (i.e.
equal to zero) and resampling is unnecessary. Equivalently the asymptotic
variance of the normalising constant estimator ZN

T

is minimised being itself
equal to zero as Proposition 1 of Chapter 3 shows. This is an ideal scenario
that we will refer to as optimal look-ahead particle filter and it gives some
simple motivational basis for look-ahead strategies. We call the aforementioned
proposals densities µ

1

and f
t

for t 2 1 : T optimal look-ahead proposals. In
most realistic scenarios it is not possible to implement the optimal look-ahead
particle filter. If the state space X is not finite we do not have a general method
to sample particles according to the optimal look-ahead proposals p (x

1

| y
1:T

)

and p (x
t

| x
t�1

, y
t:T

) for t 2 2 : T . This particle dynamic can be implemented
only in a restricted number of models such as the linear Gaussian model (thanks
to the Kalman filter and related techniques). Also the integration operation
which is typically necessary to evaluate p (x

1:t

| y
1:T

) =

R
XT�t p (x1:T

| y
1:T

) dx
t:T

for different t 2 1 : T as it appears in the incremental weights functions is in
general unfeasible. If the state space X is finite it is possible to perform these
operations but at a computational cost which is typically unfeasible for the
cases of interests where X is relatively large.

Another important idealised scenario is when the sequence of target distri-
bution densities takes the form of

⇡
t

(x
1:t

) = p (x
1:t

| y
1:t+1

)

and the proposal distributions are

µ
1

(x
1

) = p (x
1

| y
1

) and f
t

(x
t�1

, x
t

) = p (x
t

| x
t�1

, y
t

) .
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For the correspondent incremental weights we have that

↵
t

(x
1:t

) =

⇡
t

(x
1:t

)

⇡
t�1

(x
1:t�1

) f
t

(x
t�1

, x
t

)

=

p (x
1:t

| y
1:t+1

)

p (x
1:t�1

| y
1:t

) p (x
t

| x
t�1

, y
t

)

=

p (x
1:t�1

| y
1:t

)

p(xt|xt�1,yt)p(yt+1|xt)

p(yt+1|yt)

p (x
1:t�1

| y
1:t

) p (x
t

| x
t�1

, y
t

)

/ p (y
t+1

| x
t

) .

This is known as the fully adapted particle filter. The fully adapted particle
filter is described in a slightly different framework in Pitt & Shephard (1999)
where it is seen as the particle filter given from the standard sequence of tar-
get distribution densities ⇡

t

(x
1:t

) = p (x
1:t

| y
1:t

) and the sequence of proposals
µ
1

(x
1

) = p (x
1

| y
1

) and f
t

(x
t�1

, x
t

) = p (x
t

| x
t�1

, y
t

). The corresponding in-
cremental weights take the form of ↵

t

(x
1:t

) = p (y
t

| x
t�1

) and therefore they
are independent from the outcome of the sampling step at time t. In this case
we can perform the resampling step before rather than after the sampling step,
improving the overall efficiency of the particle filter. The description of the
fully adapted particle filter and of other particle filters under the framework of
algorithm 3.2 is due to Johansen & Doucet (2008). In general for many models
of interest it is either impossible or computationally unfeasible to implement the
fully adapted particle filter for the same reasons that we mentioned regarding
the optimal look-ahead particle filter. A possible approach to particle filtering
inspired by the fully adapted particle filter and which has been very successful is
originally due to Pitt & Shephard (1999) and is known under the name of aux-

iliary particle filter (APF). Here we briefly provide the improved version of the
original APF due to Carpenter et al. (1999) which only includes one resampling
step at each time instance, as presented in Johansen & Doucet (2008).

The APF described in Carpenter et al. (1999) corresponds to the particle
filter given from the sequence of target densities

⇡
t

(x
1:t

) = p̂ (x
1:t

| y
1:t+1

) / p (x
1:t

| y
1:t

) p̂ (y
t+1

| x
t

) ,

where p̂ (y
t+1

| x
t

) is a suitable approximation of p (y
t+1

| x
t

), and from the
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sequence of proposal densities

µ
1

(x
1

) = p̂ (x
1

| y
1

) and f
t

(x
t�1

.x
t

) = p̂ (x
t

| x
t�1

, y
t

)

where p̂ (x
1

| y
1

) and p̂ (x
t

| x
t�1

, y
t

) are typically approximations of p (x
1

| y
1

)

and p (x
t

| x
t�1

, y
t

) respectively for t � 2. When the approximations of such
target and proposal densities are exact, we obtain the perfect adaption, that
is the fully adapted particle filter. Note that in this case at time t we do
not approximate directly the distribution density p (x

1:t

| y
1:t

) or a smoothing
distribution density p (x

1:t

| y
1:T

). In order to do so we can use importance
sampling with the importance distribution

p̂ (x
1:t�1

| y
1:t

) p̂ (x
t

| x
t�1

, y
t

) = p (x
1:t�1

| y
1:t�1

) p̂ (y
t

| x
t�1

) p̂ (x
t

| x
t�1

, y
t

)

whose approximation is obtained from the set of equally weighted particles
after the sampling step at time t and before the resampling step. For the im-
plementation of the APF the critical point is the design of the approximations
p̂ (x

t

| x
t�1

, y
t

) and p̂ (y
t

| x
t

). In general we should select a p̂ (x
t

| x
t�1

, y
t

) with
thicker tails than p (x

t

| x
t�1

, y
t

) in order to have a bounded incremental weights
function ↵

t

for all t 2 1 : T . Furthermore if we use p̂ (x
1:t�1

| y
1:t

) p̂ (x
t

| x
t�1

, y
t

)

as an importance sampling distribution to retrieve an approximation to p (x
1:t

| y
1:t

)

for the relative importance weights we have that

p (x
1:t

| y
1:t

)

p̂ (x
1:t�1

| y
1:t

) p̂ (x
t

| x
t�1

, y
t

)

/ p (x
1:t�1

| y
1:t�1

) p (y
t

| x
t�1

) p (x
t

| x
t�1

, y
t

)

p (x
1:t�1

| y
1:t�1

) p̂ (y
t

| x
t�1

) p̂ (x
t

| x
t�1

, y
t

)

=

p (y
t

| x
t�1

)

p̂ (y
t

| x
t�1

)

· p (xt

| x
t�1

, y
t

)

p̂ (x
t

| x
t�1

, y
t

)

therefore we also want the function ˆh (x
t

) = p̂ (y
t+1

| x
t

) to have thicker tails
than h (x

t

) = p (y
t+1

| x
t

) for these importance weights to be upper bounded. A
possible approach (Pitt & Shephard (1999)) for the design of p̂ (y

t

| x
t�1

) is to
set p̂ (y

t+1

| x
t

) = p (y
t+1

| m (x
t

)) where m (x
t

) corresponds to the mean, mode
or median of f (x

t

, ·). Although this simple approach is often applicable given
tractable model transitions, it does not guarantee for the incremental functions
and for the importance weights to have the aforementioned property of being
upper bounded.
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Given an HMM (µ, f, g) the optimal look-ahead particle filter and the fully
adapted particle filter have the property that they do not extend the domain
of the functions µ, f and g in the sense that µ

1

and f
t

are defined on the same
state space X as µ and f for all t 2 2 : T and the potential functions (i.e.
incremental weights functions) g

t

are defined on the same state space Y as g for
all t 2 1 : T . This feature is also shared by the  �APF , the particle filter that
we will introduce in Section 5.1, and it is essential in order for these particle
filters to be described under the framework of algorithm 3.2. This property
is not shared by, other than the APF, the block sampling and pilot look-ahead

sampling, which are two look-ahead strategies well known in the literature (see
for a more detailed exposition of these look-ahead algorithms Lin et al. (2013)).

Block sampling is a look-ahead strategy proposed in Doucet et al. (2006)
which consists of enlarging the state space of the proposals µ

1

and f
t

in or-
der to sample and update sections of the particles paths over a fixed lag L.
With this method also the dimensionality of the target distribution ⇡

t

is en-
larged, in a way such that by construction ⇡

t

admits the required distribution
p (x

1:t

| y
1:t

) as a marginal. These extended distributions are designed to cir-
cumvent the problem of computing integrals which do not admit a closed-form
expression such as those involved in the implementation of the optimal look-
ahead particle filter. The optimal choice for the block sampling proposals µ

1

and f
t

are µ
1

(x
1:1+L

| y
1:1+L

) and f
t

(x
t�1

, x
t:t+L

) = p (x
t:t+L

| x
t�1

, y
t:t+L

) for
t � 2 but as typically these sampling distributions are inaccessible, in practice
we can use approximations p̂ (x

1:1+L

| y
1:1+L

) and p̂ (x
t:t+L

| x
t�1

, y
t:t+L

) of the
optimal choices p (x

1:1+L

| y
1:1+L

) and p (x
t:t+L

| x
t�1

, y
t:t+L

) respectively. The
block sampling approach can be viewed as a natural extension of the APF cor-
responding to the case L = 0, and it outperforms standard SMC methods in the
applications presented in Doucet et al. (2006). However the performance of this
approach depends entirely on the ability of the user to design good approxima-
tions p̂ (x

1:1+L

| y
1:1+L

) and p̂ (x
t:t+L

| x
t�1

, y
t:t+L

) of the optimal distributions.
Although some techniques for the design of efficient proposal distributions can
be applied to this framework, there is no general method to construct an ap-
proximation p̂ leading to an efficient block sampling look-ahead algorithm.

A pilot exploration method is proposed in Zhang & Liu (2002) in which
at every time step t the space of future states up to time t + L is partially
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explored by pilot particle paths in order to convey future information in the
particles evolution dynamic. The method was introduced for the case of finite
state space of X = {a

1

, . . . , a
M

}. In this setting at every time step t and for
every particle ⇠i

t�1

, i 2 1 : N , M pilot paths each corresponding to a state a
j

with j 2 1 : M are generated independently according to a predefined pilot
proposal distribution. A suitable auxiliary weight is assigned to each pilot path
and each particle ⇠i

t�1

is then propagated via a resampling step that takes into
account such auxiliary weights. An alternative deterministic approach to the
generation of the pilot paths is also studied in Zhang & Liu (2002). If no prior
structural information is available the pilot proposal can correspond to the
model transition distribution f , therefore with this approach the design of the
proposal distribution is less critical with respect to block sampling approach.
However this method presents some limitations. In particular when the state
space X is continuous, it is not possible to explore all the possible values of x

t

.
One possible approach is to generate a sample of the state space from the model
transition and treat it as the set of values that ⇠

t

can assume, then proceed as
in the finite case. However producing a sample for each particle that effectively
explores a large state space X is unfeasible in most scenarios. A more detailed
but self contained description of pilot look-ahead sampling methods including
deterministic piloting and multilevel piloting is contained in Lin et al. (2013).

An extremely recent look-ahead scheme contemporary to the present work
is presented in Scharth & Kohn (2016) under the name of particle efficient
importance sampling (P-EIS). The P-EIS algorithm is based on the efficient
importance sampling algorithm (EIS) of Richard & Zhang (2007), which is an
importance sampling method for the estimation of high-dimensional integrals
that have a sequential structure. The P-EIS algorithm constructs a global
approximation of a target proposal distribution by iterating a sequence of least-
squares regressions, and this feature is shared by the iAPF. However the P-EIS
algorithm and the iAPF are different in their essence. With the P-EIS algorithm
least-squares regressions are used to define proposals and potentials of a particle
filter which is then run once. With the iAPF, backward minimisation routines
(that can be least-squares regressions) and particle filter iterations alternate
dynamically and adaptively. Furthermore the iAPF uses a different form of
least-squares regression that exploits the decomposition of the SMC proposal
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in the product of model transition and look-ahead functions.

4.2 Particle Marginal Metropolis–Hastings

Particle marginal Metropolis Hasting (PMMH) is a powerful parameter estima-
tion method presented in Andrieu et al. (2010) that combines standard MCMC
and SMC schemes. In important settings it makes it possible to build efficient
high dimensional Metropolis–Hastings (MH) proposal distributions by using
SMC methods and also to make Bayesian inference feasible for a large class of
statistical models where this was not previously so. This method builds on a
pseudo-marginal method originally introduced in Beaumont (2003) and further
studied in Andrieu & Roberts (2009) where theoretical results describing the
convergence properties of the original method and a modification of it are given.
In particular in Andrieu & Roberts (2009) it is shown how pseudo-marginal al-
gorithms share the same marginal stationary distribution as the idealised MH
algorithm they are approximations of. For many applications in a HMM set-
ting, for example those discussed in Part III, such approximations are based
on estimates ZN

T

of the normalising constant Z
T

. The accuracy of unbiased
estimators of these quantities is both of critical importance for the overall per-
formance of the a PMMH scheme (Andrieu & Vihola (2015), Lee & Łatuszyński
(2014), Sherlock et al. (2015), Doucet et al. (2015)) and (partly because of this)
the central motivation of the algorithm developed in Part II. We provide here
a brief description of the PMMH method pertinent to our applications in part
III.

Consider a HMM (µ
✓

, f
✓

, g
✓

) where the dynamic of the system depends on a
parameter of interest ✓ 2 ⇥ ✓ Rn. In a Bayesian framework, given a sequence
of observations y

1:T

we focus on the parameter estimation problem of ✓ based
on the posterior distribution density

⇡ (✓) / ⇡
prior

(✓) p
✓

(y
1:T

)

= ⇡
prior

(✓)E
✓

 
TY

i=1

g
✓

(X
t

, y)

!

= ⇡
prior

(✓)Z
✓
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defined on ⇥ and for a suitable prior distribution density ⇡
prior

on the parameter
✓. Two other problems directly related to this are simulation according to ⇡ (✓)
and computing expectations with respect to it. The Markov chain Monte Carlo
method is a relatively general approach for dealing with such problems that
consists of simulating an ergodic Markov chain (✓

i

)

i�1

which admits ⇡ (✓) as
invariant probability density (see Robert & Casella (2005)). When it is not
possible to sample according to ⇡ (✓) but this density is known analytically
or cheap to compute up to a normalising constant, a popular approach to the
construction of such Markov chain (✓

i

)

i�1

is the Metropolis–Hastings algorithm.
This scheme dates back to Metropolis et al. (1953) and its adaptation to non
symmetric kernels is due to Hastings (1970). The Metropolis-Hastings algorithm
consists of the following procedure. Given the current state ✓

i

of the Markov
chain at step i, we propose a value ✓0 ⇠ k (✓

i

, ·) sampled from an instrumental
kernel k : ⇥ ⇥ ⇥ �! R+, which is then accepted with a certain probability
↵ (✓

i

, ✓0) which depends on the values of the densities ⇡ (✓
i

) and ⇡ (✓0). If the
value is accepted then we set ✓

i+1

= ✓0, otherwise we set ✓
i+1

= ✓
i

. The
procedure is described with pseudo-code in Algorithm 4.1, for a given length L

of the Metropolis–Hastings chain.

Algorithm 4.1 Metropolis–Hastings algorithm

1. Set ✓
1

= ✓
0

2 ⇥
2. For i 2 1 : L

(a) Sample ✓0 ⇠ k (✓
i

, ·)
(b) Compute

↵ (✓
i

, ✓0) = 1 ^ ⇡ (✓
0
) k (✓0, ✓

i

)

⇡ (✓
i

) k (✓
i

, ✓0)

(c) With probability ↵ (✓
i

, ✓0) set ✓
i+1

= ✓0. Otherwise set ✓
i+1

= ✓
i

.

If the kernel k (✓, ✓0) is strictly positive for every ✓, ✓0 2 supp (⇡) the resulting
Markov chain (✓

i

)

i�1

is irreducible and has the desired invariant distribution ⇡.
Milder conditions on the irreducibility of the resulting Markov chain are given
in Roberts & Tweedie (1996).

When ⇡ (✓) is analytically intractable or too complex to evaluate even up
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to a normalising constant, Algorithm 4.1 cannot be implemented. However
we can consider approximations of this idealised algorithm. This idea is ex-
ploited in Beaumont (2003), Andrieu & Roberts (2009) where the density val-
ues ⇡ (✓

i

) and ⇡ (✓0) that appear in the acceptance probability of Algorithm 4.1
are approximated with importance sampling. Specifically for the HMM setting,
when p

✓

(y
1:T

) can be conveniently described as the marginal density of the
extended distribution density p

✓

(x
1:T

, y
1:T

), we can derive an estimate ZN

✓

of
p
✓

(y
1:T

) = Z
✓

using the output of an SMC algorithm with N particles targeting
the distribution density ⇡

T

(x
1:T

) = p
✓

(x
1:T

| y
1:T

). The resulting PMMH algo-
rithm is proposed in Andrieu et al. (2010) and we present a simple pseudo-code
description in Algorithm 4.2.

Algorithm 4.2 Particle Marginal Metropolis–Hastings algorithm

1. Initialisation

(a) Set ✓
1

= ✓
0

2 ⇥
(b) Run a particle filter to get an estimate ZN

✓1
of p

✓1 (y1:T )

2. For i > 1, while a stopping rule is not met

(a) Sample ✓0 ⇠ k (✓
i

, ·)
(b) Run a particle filter to get an estimate ZN

✓

0 of p
✓

(y
1:T

)

(c) Compute

↵ (✓
i

, ✓0) = 1 ^ ⇡prior (✓
0
)ZN

✓

0 k (✓0, ✓
i

)

⇡
prior

(✓
i

)ZN

✓i
k (✓

i

, ✓0)

(d) With probability ↵ (✓
i

, ✓0) set ✓
i+1

= ✓0, ZN

✓i+1
= ZN

✓

0 . Otherwise set
✓
i+1

= ✓
i

, ZN

✓i+1
= ZN

✓i
.

The key feature of Algorithm 4.2 is that the transition kernel corresponding
to 2.(a)-(d) leaves the target density of interest ⇡ (✓) invariant. Furthermore in
Andrieu et al. (2010, Proposition 4.4) mild assumptions that guarantee conver-
gence for any fixed N � 1 are formulated. These are the standard conditions
on the support of the SMC proposals and of convergence of the corresponding
idealised MH algorithm. Note that these conditions guarantee also the conver-
gence of the appropriately defined associated extended chain (✓

i

, xi

1:T

)

i�1

to the
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extended distribution density

⇡ (✓, x
1:T

) = ⇡
prior

(✓) p
✓

(x
1:T

| y
1:T

)

which is a stronger result compare to the convergence of the sole marginal ⇡ (✓).
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Part II

The Iterated Auxiliary Particle
Filter
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Chapter 5

Twisted Models

In the following chapters we give motivational ground to the iterated auxiliary
particle filter and provide a general iAPF algorithm and two possible imple-
mentations with full specifications. We do so following the exposition of our
research work in Guarniero et al. (2016).

5.1 The  -auxiliary particle filter

Given an HMM (µ, f, g) and a sequence of observations y
1:T

, we introduce a
family of alternative twisted models based on a sequence of real-valued,
bounded, continuous and positive functions  := ( 

1

, 
2

, . . . , 
T

). Letting, for
a transition density f as in Section 2.1 and bounded continuous positive
function  , f(x, ) :=

R
X f (x, x0

) (x0
) dx0, we define a sequence of

normalizing functions (

˜ 
1

, ˜ 
2

, . . . , ˜ 
T

) on X by

˜ 
t

(x
t

) := f (x
t

, 
t+1

)

for t 2 {1, . . . , T � 1}, ˜ 
T

⌘ 1, and a normalizing constant
˜ 
0

:=

R
X µ (x

1

) 
1

(x
1

) dx
1

. We then define the twisted model via the following
sequence of twisted initial and transition densities

µ 
1

(x
1

) :=

µ(x
1

) 
1

(x
1

)

˜ 
0

, f 
t

(x
t�1

, x
t

) :=

f (x
t�1

, x
t

) 
t

(x
t

)

˜ 
t�1

(x
t�1

)

, t 2 {2, . . . , T},
(5.1)
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and the sequence of positive functions

g 
1

(x
1

) := g (x
1

, y
1

)

˜ 
1

(x
1

)

 
1

(x
1

)

˜ 
0

, g 
t

(x
t

) := g (x
t

, y
t

)

˜ 
t

(x
t

)

 
t

(x
t

)

, t 2 {2, . . . T},
(5.2)

which play the role of observation densities in the twisted model. Our interest
in this family of twisted models is motivated by the following invariance result.

Proposition 3. If  is a sequence of bounded, continuous and positive func-

tions, and

Z :=

Z

XT

µ 
1

(x
1

) g 
1

(x
1

)

TY

t=2

f 
t

(x
t�1

, x
t

) g 
t

(x
t

) dx
1:T

,

then Z = L.

Proof. We observe that

µ 
1

(x
1

) g 
1

(x
1

)

TY

t=2

f 
t

(x
t�1

, x
t

) g 
t

(x
t

)

=

µ(x
1

) 
1

(x
1

)

˜ 
0

g (x
1

, y
1

)

˜ 
1

(x
1

)

 
1

(x
1

)

˜ 
0

·
TY

t=2

f (x
t�1

, x
t

) 
t

(x
t

)

˜ 
t�1

(x
t�1

)

g (x
t

, y
t

)

˜ 
t

(x
t

)

 
t

(x
t

)

= µ (x
1

) g
1

(x
1

)

TY

t=2

f (x
t�1

, x
t

) g (x
t

, y
t

) ,

where we use that ˜ 
T

⌘ 1 in the last term of the telescoping product. The
result follows.

Note that, in connection with Section 3.3, the initial and transition densities
defined by the equations 5.1 effectively define an importance proposal

q (x
1:T

) = µ 
1

(x
1

)

TY

t=2

f 
t

(x
t�1

, x
t

)

for the path x
1:T

. In this sense
Q

T

t=1

g 
t

(x
t

), the product of the elements in
the set of potentials defined by equations 5.2, provides an alternative likelihood
so that its product with the proposal q (x

1:T

) is unchanged with respect to the
original model, which is exactly what Proposition 3 shows.
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From a methodological perspective, Proposition 3 makes clear a particular
sense in which our main statistical quantity of interest

L :=

Z

X

T

µ (x
1

) g (x
1

, y
1

)

TY

t=2

f (x
t�1

, x
t

) g (x
t

, y
t

) dx
1:T

,

the marginal likelihood associated with y
1:T

, is common to an entire family of
µ
1

, (f
t

)

t2{2,...,T} and (g
t

)

t2{1,...,T}. The BPF associated with the twisted model
corresponds to choosing  

t

= 1 for i 2 1 : T so that

µ = µ
1

, f 
t

= f
t

, g 
t

= g
t

, (5.3)

in Algorithm 3.2. To emphasize the dependence on  , we provide in Algo-
rithm 5.1 the corresponding algorithm and we will denote approximations of
L by ZN

 . We demonstrate below that the BPF associated with the twisted
model can also be viewed as an APF associated with the sequence  , and so
refer to this algorithm as the  -APF. Since the class of  -APFs is very large,
it is natural to consider whether there is an optimal choice of  , in terms of the
accuracy of the approximation ZN

 : the following Proposition describes such a
sequence.

Algorithm 5.1  -Auxiliary Particle Filter

1. Sample ⇠i
1

⇠ µ independently for i 2 {1, . . . , N}.
2. For t = 2, . . . , T , sample independently

⇠i
t

⇠
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, ·)
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, i 2 {1, . . . , N}.

Proposition 4. Let  ⇤
:= ( ⇤

1

, . . . , ⇤
T

), where  ⇤
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#
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2 X, (5.4)

for t 2 {1, . . . , T � 1}. Then, ZN

 ⇤ = L with probability 1.

36



Proof. It can be established that
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t

, y
t

)
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) =  ⇤
t

(x
t

), t 2 {1, . . . , T}, x
t

2 X, (5.5)

as this is trivially true for t = T and easily shown for t < T proceeding
backwards. Therefore we obtain from (5.2) that g 
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and g 
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⌘ 1 for
t 2 {2, . . . , T}. Hence,
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with probability 1. To conclude, we observe that
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#
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In terms of the underlying Bayesian model, the optimal look-ahead functions
and the corresponding optimal  ⇤-APF have a straightforward interpretation.
With the Bayesian notation the function  ⇤

t

in equation 5.4 corresponds to

 ⇤
t

(x
t

) = p (y
t:T

| x
t

)

for all t 2 1 : T . Consequently for the normalising functions ˜ 
t

we have
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t

(x
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)
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R
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). For
the optimal twisted transitions/proposals we have that

µ 
1

(x
1

) / µ (x
1

) p (y
1:T

| x
1

) / p (x
1

| y
1:T

)

and
f 
t

(x
t�1

, x
t

) / f (x
t�1

, x
t

) p (y
t:T

| x
t

) / p (x
t

| x
t�1

, y
t:T

)
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for t 2 2 : T , which are the transition densities that convey perfectly all the
information up to the end of the observation sequence in the particles evolution
dynamic. Note also that in these terms we have that

g (x
t

, y
t

)

˜ 
t

(x
t

) = p (y
t

| x
t

) p (y
t+1:T

| x
t

) ,

therefore equation 5.5 assumes the more intuitive form of

p (y
t

| x
t

) p (y
t+1:T

| x
t

) = p (y
t:T

| x
t

)

and it is easily verified given the structure of the Bayesian model.
Implementation of Algorithm 5.1 requires that one can sample according to

µ 
1

and f 
t

(x, ·) and compute g 
t

pointwise. This imposes restrictions on the
choice of  in practice, since one must be able to compute both  

t

and ˜ 
t

pointwise. In general models, the sequence  ⇤ cannot be used for this reason
as (5.4) cannot be computed explicitly. However, since Algorithm 5.1 is valid
for any sequence of positive functions  , we can interpret Proposition 4 as mo-
tivating the effective design of a particle filter by solving a sequence of function
approximation problems. Furthermore other look-ahead methods rely on an
implicit approximation of the optimal look-ahead function  ⇤. It has also been
noted in Ruiz & Kappen (2017) that the computation of the optimal twisted
functions present some similarities with the control literature, and in particular
with the backward message passing involved in the computation of the optimal
control solution in Kappen et al. (2012).

Alternatives to the BPF have been considered before (see, e.g., the “locally
optimal” proposal in Doucet et al. 2000, the discussion in Del Moral 2004, Sec-
tion 2.4.2 and the Background section in Part I of this thesis). The family of
particle filters we have defined using  are unusual, however, in that g 

t

is a
function only of x

t

rather than (x
t�1

, x
t

). Other approaches in which the parti-
cles are sampled according to a transition density that is not f typically require
the extension of the domain of these functions. This is again a consequence of
the fact that the  -APF can be viewed as a BPF for a twisted model. This
feature is shared by the fully adapted APF of Pitt & Shephard (1999), when
recast as a standard particle filter for an alternative model as in Johansen &
Doucet (2008), and which is obtained as a special case of Algorithm 5.1 when
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t

(·) ⌘ g(·, y
t

) for each t 2 {1, . . . , T}. We view the approach here as general-
izing that algorithm for this reason.

It is possible to recover other existing methodological approaches as BPFs
for twisted models. We have already seen that when each element of  is
a constant function, we recover the standard BPF of Gordon et al. (1993).
Setting  

t

(x
t

) = g (x
t

, y
t

) gives rise to the fully adapted APF. By taking, for
some k 2 N and each t 2 {1, . . . , T},
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)E
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, y
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)
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= x
t

}
3

5 , x
t

2 X, (5.6)

 corresponds to a sequence of look-ahead functions (see, e.g., Lin et al. 2013)
and one can recover idealized versions of the delayed sample method of Chen
et al. (2000) (see also the fixed-lag smoothing approach in Clapp & Godsill
1999), and the block sampling particle filter of Doucet et al. (2006). When
k � T � 1, we obtain the optimal sequence  ⇤. Just as  ⇤ cannot typically be
used in practice, neither can the exact look-ahead strategies obtained by using
(5.6) for some fixed k. In such situations, the proposed look-ahead particle
filtering strategies are not  -APFs, and their relationship to the  ⇤-APF is
consequently less clear. We note that the offline setting we consider here affords
us the freedom to define twisted models using the entire data record y

1:T

. The
APF was originally introduced to incorporate a single additional observation,
and could therefore be implemented in an online setting, i.e. the algorithm
could run while the data record was being produced.

5.2 Asymptotic variance of the  -APF

Since it is not typically possible to use the sequence  ⇤ in practice, we propose
to use an approximation of each member of  ⇤. In order to motivate such an
approximation, we provide a Central Limit Theorem, adapted from the general
result of Proposition 1 of Chapter 3. It is convenient to make use of the fact
that the estimate ZN

 is invariant to rescaling of the functions  
t

by constants,
and we adopt now a particular scaling that simplifies the expression of the
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asymptotic variance. In particular, we let
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}] ,

where  ⇤ is the optimal sequence of lookahad functions defined in 4.

Proposition 5. Let  be a sequence of bounded, continuous and positive func-

tions. Then
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Proof of Proposition 5. We define a sequence of densities by
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for each k 2 {1, . . . , T}. We also define ⇡ 
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}. Combining equation
(24.37) of Doucet & Johansen (2011) with elementary manipulations provides,
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and the expression involving the rescaled terms ¯ ⇤
t

and ¯ 
t

then follows.

We emphasize that Proposition 5, follows straightforwardly from existing
results for Algorithm 3.2, since the  -APF can be viewed as a BPF for the
twisted model defined by  . For example, in the case  consists only of constant
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functions, we obtain the standard asymptotic variance for the BPF

�2

=

TX

t=1

�
E
⇥
¯ ⇤
t

(X
t

) | {Y
1:T

= y
1:T

}⇤� 1

 
.

From Proposition 5 we can deduce that �2

 tends to 0 as  approaches  ⇤ in
an appropriate sense. Hence, Propositions 4 and Proposition 5 together provide
some justification for designing particle filters by approximating the sequence
 ⇤.
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Chapter 6

The general iAPF algorithm

6.1 Classes of f and  

While the  -APF described in Section 5.1 and the asymptotic results just
described are valid very generally, practical implementation of the  -APF does
impose some restrictions jointly on the transition densities f and functions in
 . For tractability here we consider only the case where the HMM’s initial
distribution is a mixture of Gaussians and f is a member of F , the class of
transition densities of the form

f (x, ·) =
MX

k=1

c
k

(x)N ( · ; a
k

(x) , b
k

(x)) , (6.1)

where M 2 N, and (a
k

)

k2{1,...,M} and (b
k

)

k2{1,...,M} are sequences of mean and
covariance functions, respectively and (c

k

)

k2{1,...,M} a sequence of R
+

-valued
functions with

P
M

k=1

c
k

(x) = 1 for all x 2 X. Let  define the class of functions
of the form

 (x) = C +

MX

k=1

c
k

N (x; a
k

, b
k

) , (6.2)

where M 2 N, C 2 R
+

, and (a
k

)

k2{1,...,M}, (bk)k2{1,...,M} and (c
k

)

k2{1,...,M} are
a sequence of means, covariances and positive real numbers, respectively. As
the function  appears at the denominator of the incremental weights, adding
the constant C is functional to the robustness of the algorithm as it guaran-
tees the weights are bounded and with non explosive variance. Note that a
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product of Gaussian densities is itself a Gaussian density up to a multiplying
constant whose mean and variance/covariance matrix are easily derived (see for
example Bromiley (2003)). Consequently also the product of two mixtures of
Gaussian densities is (proportional to) a mixture of Gaussian densities. When
f 2 F we can choose  

t

2  , so that it is straightforward to implement Algo-
rithm 5.1 since, for each t 2 {1, . . . , T}, both  

t

(x) and ˜ 
t�1

(x) = f(x, 
t

) can
be computed explicitly and f 

t

(x, ·) is a mixture of normal distributions whose
component means and covariance matrices can also be computed. In this case
the constant C also guarantees that f 

t

(x, ·) is a mixture of densities with some
non-zero wright associated with the mixture component f (x, ·).

6.2 Recursive approximation of  ⇤

The ability to compute f(·, 
t

) pointwise when f 2 F and  
t

2  is also
instrumental in the recursive function approximation scheme we now describe.
Our approach is based on the following observation.

Proposition 6. The sequence  ⇤
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Proof. The definition of ⇤ provides that  ⇤
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Let (⇠1:N
1

, . . . , ⇠1:N
T

) be random variables obtained by running a particle filter.
We propose to approximate  ⇤ by Algorithm 6.1, for which we define  

T+1

⌘ 1.
This algorithm mirrors the backward sweep of the forward filtering backward
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smoothing recursion (see for instance Doucet et al. (2000)) which, if it could be
calculated, would yield exactly  ⇤.

Algorithm 6.1 Recursive function approximations

For t = T, . . . , 1:

1. Set  i

t

 g (⇠i
t

, y
t

) f (⇠i
t

, 
t+1

) for i 2 {1, . . . , N}.
2. Choose  

t

as a member of  on the basis of ⇠1:N
t

and  1:N

t

.

One choice in step 2. of Algorithm 6.1 is to define  
t

using a non-parametric
approximation such as a Nadaraya–Watson estimate (Nadaraya 1964, Watson
1964). An alternative approach is to choose  

t

as the minimizer in some subset
of  of some function of  

t

, ⇠1:N
t

and  1:N

t

. Although a number of other choices
are possible, we focus in Chapter 7 on these two approaches.

6.3 The algorithm

The iterated auxiliary particle filter (iAPF), Algorithm 6.2, is obtained by iter-
atively running a  -APF and estimating  ⇤ from its output. Specifically, after
each  -APF is run,  ⇤ is re-approximated using the particles obtained, and
the number of particles may be increased according to a well-defined rule. The
algorithm terminates when a stopping rule is satisfied.

44



Algorithm 6.2 An iterated auxiliary particle filter with parameters (N
0

, k, ⌧)

1. Initialize: set  0 to be a sequence of constant functions, l  0.

2. Repeat:

(a) Run a  l-APF with N
l

particles, and set ˆZ
l

 ZNl

 l .

(b) If l > k and sd(

ˆZ
l�k:l

)/mean(

ˆZ
l�k:l

) < ⌧ , go to 3.
(c) Compute  l+1 using a version of Algorithm 6.1 with the particles

produced.
(d) If N

l�k

= N
l

and the sequence ˆZ
l�k:l

is not monotonically increasing,
set N

l+1

 2N
l

. Otherwise, set N
l+1

 N
l

.
(e) Set l  l + 1 and go back to 2a.

3. Run a  l-APF and return ˆZ := ZNl
 

Note that Step 3 of Algorithm 6.2 is of vital importance. If we do not run
one more iteration of the iAPF after the stopping criterion is met, the unbi-
asedness of the normalising constant estimates is compromised. The rationale
for step 2(d) of Algorithm 6.2 is that if the sequence ˆZ

l�k:l

is monotonically in-
creasing, there is some evidence that the approximations  l�k:l are improving,
and so increasing the number of particles may unnecessarily increase compu-
tational cost. However, if the approximations ˆZ

l�k:l

have both high relative
standard deviation in comparison to ⌧ and are oscillating then reducing the
variance of the approximation of Z and/or improving the approximation of  ⇤

may require an increased number of particles. Some support for this procedure
can be obtained from the log-normal CLT of Bérard et al. (2014): under reg-
ularity assumptions, logZN

 is approximately a N (��2 /2, �2 ) random variable
and so P

�
ZN

 0 � ZN

 

� ⇡ 1��
⇣⇥
�2 0 � �2 

⇤
/
h
2

q
�2 + �2 0

i⌘
, which is close to 1

when �2 0 ⌧ �2 and provided that �
 

is O (1) (which always the case for our
examples and applications). Note that throughout all the simulations we used
the diagnostic sd(

ˆZ
l�k:l

)/mean(

ˆZ
l�k:l

) for Step (b) of Algorithm 6.2, because of
good empirical results on preliminary simulations. We point out the suggestion
that a more natural quantity would be sd

⇣
log

ˆZ
l�k:l

⌘
since optimality results

in the literature are generally phrased in terms of this.
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6.4 Approximations of smoothing expectations

Thus far, we have focused on approximations of the marginal likelihood, L, as-
sociated with a particular model and data record y

1:T

. Particle filters are also
used to approximate so-called smoothing expectations, i.e. quantities of the
type ⇡(') := E ['(X

1:T

) | {Y
1:T

= y
1:T

}] for some ' : XT ! R. Such approxi-
mations can be motivated by a slight extension of,

�(') :=
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)µ
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) g
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(x
1

)

TY

t=2

f
t

(x
t�1

, x
t

) g
t

(x
t

) dx
1:T

,

where ' is a real-valued, bounded, continuous function. We can write ⇡(') =
�(')/�(1), where 1 denotes the constant function x 7! 1. We define below a
well-known, unbiased and strongly consistent estimate �N(') of �('), which
can be obtained from Algorithm 3.2. A strongly consistent approximation of
⇡(') can then be defined as �N(')/�N(1).

The definition of �N(') is facilitated by a specific implementation of step 2.
of Algorithm 3.2 in which one samples
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t�1

⇠ Categorical
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!
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⇠ f
t

(⇠
A

i
t�1

t�1

, ·),

for each i 2 {1, . . . , N} independently. Other resampling schemes could also
be used and are consistent with the “ancestor selection” view. Use of, e.g., the
Alias algorithm (Walker 1974, 1977) gives the algorithm O(N) computational
complexity, and the random variables (Ai

t

; t 2 {1, . . . , T � 1}, i 2 {1, . . . , N})
provide ancestral information associated with each particle. By defining recur-
sively for each i 2 {1, . . . , N}, Bi

T

:= i and Bi

t�1

:= A
B

i
t

t�1

for t = T, . . . , 2, the
{1, . . . , N}T -valued random variable Bi

1:T

encodes the ancestral lineage of ⇠i
T

(Andrieu et al. 2010). It follows from Del Moral (2004, Theorem 7.4.2) that the
approximation
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is unbiased and strongly consistent, and a strongly consistent approximation of
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⇡(') is

⇡N

(') :=
�N(')

�N(1)
=

1

P
N

i=1

g
T

(⇠i
T

)

NX

i=1

'
⇣
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B

i
1

1

, ⇠
B

i
2

2

, . . . , ⇠
B

i
T

T

⌘
g
T

(⇠i
T

). (6.4)

The  ⇤-APF is optimal in terms of approximating �(1) ⌘ Z and not ⇡(')
for general '. Asymptotic variance expressions akin to Proposition 5, but for
⇡N

 ('), can be derived using existing results (see, e.g., Del Moral & Guionnet
1999, Chopin 2004, Künsch 2005, Douc & Moulines 2008) in the same manner.
These could be used to investigate the influence of on the accuracy of ⇡N

 (') or
the interaction between ' and the sequence  which minimizes the asymptotic
variance of the estimator of its expectation.

Finally, we observe that when the optimal sequence  ⇤ is used in an APF
in conjunction with an adaptive resampling strategy (see Algorithm 7.1 below),
the weights are all equal, no resampling occurs and the ⇠i

t

are all i.i.d. sam-
ples from P (X

t

2 · | {Y
1:T

= y
1:T

}). This at least partially justifies the use of
iterated  -APFs to approximate  ⇤: the asymptotic variance �2

 in (5.7) is
particularly affected by discrepancies between  ⇤ and  in regions of relatively
high conditional probability given the data record y

1:T

, which is why we have
chosen to use the particles as support points to define approximations of  ⇤ in
Algorithm 6.1.
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Chapter 7

Implementation Details and
Recursive Function Approximation
Approaches

In this section we provide all the details that are necessary for the implementa-
tion of the iAPF. In particular we specify two possible approaches for the back-
ward function approximation in Algorithm 6.1 that make use of the statistical
tools of kernel density estimates (in Section 7.2) and parametric optimisation
(in Section 7.3).

7.1 Implementation details

In Algorithm 6.2 we need to specify the parameters (N
0

, k, ⌧). The choice of N
0

is not critical, as the iAPF scheme increases adaptively the number of particles
until the desired degree of precision is reached. We specify the number N

0

for
each of our examples and applications. For the stopping rule, we used k = 5 for
the application in Chapter 8, and k = 3 for the applications in Chapter 9. The
parameter value k = 5 was used initially but it seemed overly conservative for
our applications, where k = 3 proved empirically to be reliable enough. In cases
where a preliminary study brings some concern about the convergence of the
look-ahead functions an higher value of k is advisable. We observed empirically
that the relative standard deviation of the likelihood estimate tended to be
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close to, and often smaller than, the chosen level for ⌧ . A value of ⌧ = 1

should therefore be sufficient to keep the relative standard deviation around 1
as desired (see, e.g., Doucet et al. 2015, Sherlock et al. 2015). We set ⌧ = 0.5

as a conservative choice for all our simulations apart from the multivariate
stochastic volatility model of Section 9.2, where we set ⌧ = 1 to improve speed.

We used an effective sample size-based resampling scheme (Kong et al. 1994,
Liu & Chen 1995), described in Algorithm 7.1 with a user-specified parame-
ter  2 [0, 1]. The effective sample size is defined as ESS(W 1, . . . ,WN

) :=⇣P
N

i=1

W i

⌘
2

/
P

N

i=1

(W i

)

2, and the estimate of Z is

ZN

:=

Y

t2R[{T}

"
1

N

NX

i=1

W i

t

#
,

where R is the set of “resampling times” defined as

R :=

�
t 2 {1, . . . , T � 1} : ESS(W 1

t

, . . . ,WN

t

)  N
 
.

This reduces to Algorithm 5.1 when  = 1 and to a simple importance sampling
algorithm when  = 0; we use  = 0.5 in our simulations. The use of adaptive
resampling is motivated by the fact that when the effective sample size is large,
resampling can be detrimental in terms of the quality of the approximation ZN .

7.2 Kernel density estimate approach

We present a first implementation that combines the iAPF scheme with the
statistical tool of kernel density estimation to incorporate the information ac-
quired into the look-ahead function update step at the end of every iteration.

Kernel density estimation is a non-parametric technique to estimate the
probability density function of a random variable. Let {⇠i, wi}

i21:N be a weighted
sample drawn from some distribution with unknown density f . We are inter-
ested in estimating the shape of this function f . Its kernel density estimator
is

ˆf
h

(x) = �
h

⇣�
⇠i, wi

 
i21:N

⌘
(x) :=

NX

i=1

wi ·K
h

�
x� ⇠i�
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Algorithm 7.1  -Auxiliary Particle Filter with -adaptive resampling

1. Sample ⇠i
1

⇠ µ 
1

independently, and set W i

1

 g 
1

(⇠i
1

) for i 2 {1, . . . , N}.
2. For t = 2, . . . , T :

(a) If ESS(W 1

t�1

, . . . ,WN

t�1

)  N , sample independently

⇠i
t

⇠
P

N

j=1

W j

t�1

f 
t

(⇠j
t�1

, ·)
P

N

j=1

W j

t�1

, i 2 {1, . . . , N},

and set W i

t

 g 
t

(⇠i
t

), i 2 {1, . . . , N}.
(b) Otherwise, sample ⇠i

t

⇠ f 
t

(⇠i
t�1

, ·) independently, and set W i

t

 
W i

t�1

g 
t

(⇠i
t

) for i 2 {1, . . . , N}.

where the kernel K
h

is a symmetric function that integrates to one and h

is a smoothing parameter called the bandwidth (possibly a matrix for multidi-
mensional models). Generally one wants to choose h as small as the cardinality
of the set {⇠i, wi}

i21:N allows, however there is always a trade-off between the
bias of the function estimator ˆf

h

and its smoothness. For a detailed exposition
of kernel density estimation see Rosenblatt et al. (1956), Parzen (1962) and for
weighted kernel density estimation and bandwidth selection see Chiu (1991),
Loader (1999), Wang & Wang (2007).

We want to produce a kernel density function that approximates at least
locally (in a region of high probability with respect to the smoothing distribu-
tion) the optimal look-ahead function  ⇤

t

up to a constant of proportionality
and for all t 2 1 : T . To do so we combine the tools of importance sampling and
weighted kernel density estimation. Ideally we would like to be able to draw a
sample ⇠1:M

t

from a distribution with density q
t

with high probability mass in
the region of interest and assign to each particle ⇠i

t

a weight wi

t

proportional to
 ⇤
t

(⇠i
t

) /q
t

(⇠i
t

), for each t 2 1 : N . We could then define  
t

as

 
t

(x) = �
h

⇣�
⇠i
t

, wi

t

 
i21:M

⌘
(x) + C,

with the reason for adding the constant C is given in Section 6.1. Even if we
could define a suitable proposal q

t

, in general we have no access to the optimal
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look-ahead function  ⇤. We can exploit instead the filtering support ⇠i
t

at time t
(here ⇠i

t

refers to a realisation of the particle dynamic rather than the stochastic
system of particles itself) and the approximations  i

t

defined through the back-
wards procedure in Algorithm 6.1. Note that ⇠1:N

t

is a conditional independent
sample given the set of particles and weights

�
⇠1:N
t�1

, w1:N

t�1

 
: we call the condi-

tional distribution density of its element q
t

. This is neither the smoothing nor
the filtering distribution density, as we are not taking into account the filtering
weights. We want to assign importance weights to the sample ⇠1:N

t

. In order
to correct for the distribution the sample ⇠1:N

t

is drawn from without having
access to the density q

t

, we define a kernel density approximation of q
t

as

q̂
t

(x) = �
h

✓⇢
⇠i
t

,
1

N

�

i21:N

◆
(x) .

For the term at the numerator of the importance weights we use for every
particle ⇠i

t

the approximation  i

t

of  ⇤
t

(⇠i
t

) we obtained through the backward
recursive procedure as in algorithm 6.1. Using these ingredients we define the
look-ahead function  

t

at time t as

 
t

(x) = �
h

�
⇠i
t

, vi
t

�
(x) + C

where the kernel density estimate weights v1:N
t

are given by

vi
t

=

 i

t

q̂
t

(⇠i
t

)

for all i 2 1 : N . The kernel density estimate implementation of Algorithm 6.1
corresponds to Algorithm 7.2, with the initialisation  

T+1

⌘ 1.
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Algorithm 7.2 Recursive function approximations, kernel density estimate
approach.

For t = T, . . . , 1:

1. Set  i

t

 g (⇠i
t

, y
t

) f (⇠i
t

, 
t+1

) for i 2 {1, . . . , N}.

2. Define q̂
t

(x) = �
h

⇣�
⇠i
t

, 1

N

 
i21:N

⌘
(x) .

(a) Set vi
t

  

i
t

q̂t(⇠
i
t)

for i 2 {1, . . . , N}.
(b) Set  3  

t

(x) = �
h

(⇠i
t

, vi
t

) (x) + C

We choose the kernel K
ht to be the density function of a (possibly multivari-

ate) Normal distribution N (0, h
t

H)

K
ht

�
x� ⇠1:N

t

�
:= N �

x; ⇠i
t

, h
t

H
�

where the bandwidth parameter h
t

and the matrix H depend on the set of
points ⇠1:N

t

, and we define  
t

as an appropriately weighted sum of Gaussian
densities

 
t

(x) =
X

i21:N

vi
t

N �
x; xi

t

, h
t

H
�
+ C,

for all t 2 1 : T. This guarantees that  
t

belongs to the chosen class  
✓

of
look-ahead functions defined in subsection 6.1. In general one would choose
kernel density functions which are conjugate with respect to the model trans-
ition in order to be able to perform easily the backward recursion procedure. We
use Scott’s rule (see Silverman (1982)) for the bandwidth choice, allowing just
diagonal covariance matrices in multidimensional models, due to algorithm effi-
ciency and because we find that the accuracy gain from a more refined estimate
is negligible.

For a fixed t 2 1 : T , the kernel density estimate q̂
t

depends also on the ran-
dom set of weighted particles

�
⇠1:N
t�1

, w1:N

t�1

 
, and the behaviour of the set  1:N

t

is
even less clear, therefore it is difficult to analyse the asymptotic behaviour of the
look-ahead function  

t

as the number of particles N increases. Empirical results
suggest that the number of particles used is critical in getting a good estimate
of the optimal look-ahead function sequence  ⇤, meaning that as N �! 1
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then  
t

approaches  ⇤
t

in a suitable sense. Nonetheless they also suggest that
at least in this context an extremely accurate estimate of  ⇤ is not critical in
the performance of the iAPF algorithm: the idea is that even if the look-ahead
function approximation is not very accurate, it can efficiently guide the particles
through regions of the path space with higher probability mass. Increasing the
number of particles N comes with a greatly increased computational cost which
is of order O (N2

) for the kernel density estimate implementation. In order to
reduce the computational burden we can use for the backward recursion only a
subset of the support particles. A natural choice is to sample without replace-
ment from the set ⇠1:N

t

the desired number of particles, so that we still have a
sample of elements drawn independently from a conditional distribution. How-
ever for our simulations we find empirically that is more efficient to select for
each time step t 2 1 : T a subset ⇠Jt

t

of the particles ⇠1:N
t

where the cardinality
of the subset of indices J

t

is | J
t

|= pN , and these are chosen picking the
particles corresponding to the

p
N highest values  J

t

. For our simulations a set
of
p
N is sufficient to obtain good kernel density estimates of the look-ahead

functions and this way we achieve the more affordable computational cost of
order O

⇣
N
p
N
⌘
.

7.3 Parametric approach

When we use kernel density estimates, for every t 2 1 : T the look-ahead func-
tion  

t

takes the form of a weighted sum of the chosen kernels (plus a constant).
Increasing the number of kernels in the mixture, we could approximate arbit-
rarily well the optimal look-ahead function  ⇤

t

. This comes at a prohibitive
computational cost. As we mention in the previous subsection, an extremely
accurate estimate of  ⇤

t

is not crucial: using a reduced number of kernels speeds
up the algorithm significantly, without necessarily compromising the efficiency.
Taking this to the extreme and we could reduce to one the number of compon-
ents in the mixture.

We present a second implementation that defines  
t

as a density function
chosen from a class of density functions  

✓

through parameter optimisation.
We choose  

✓

to be the class of normal density functions, so that ✓ = (m,⌃)

represents the mean and covariance matrix parameters. Specifically, for each

53



t 2 {1, . . . , T}, we compute numerically

(m⇤
t

,⌃⇤
t

,�⇤
t

) = argmin
(m,⌃,�)

NX

i=1

⇥N �
⇠i
t

;m,⌃
�� � i

t

⇤
2

+ l
�
⇠1:N
t

, N,m,⌃,�
�
,

(7.1)
where m 2 Rd, ⌃ 2 Rd⇥d , � 2 R and l is an appropriate real function that
penalises values of m too distant in an appropriate sense from the points ⇠1:N

t

.
We then set

 
t

(x
t

) := N (x
t

;m⇤
t

,⌃⇤
t

) + c(N,m⇤
t

,⌃⇤
t

), (7.2)

where c is a positive real-valued function, which ensures that f 
t

(x, ·) is a mix-
ture of densities with some non-zero weight associated with the mixture compo-
nent f(x, ·). This is intended to guard against terms in the asymptotic variance
�2

 in (5.7) being very large or unbounded. We chose (7.1), coupled with a local
optimiser, for simplicity and its low computational cost, and it provided good
performance in our simulations. Different objective functions can be considered.
To justify the introduction of the term l

�
⇠1:N
t

, N,m,⌃,�
�

note that

lim

|m|!1
�! 0

NX

i=1

⇥N �
⇠i
t

;m,⌃
�� � i

t

⇤
2

= 0

independently from ⇠1:N
t

and ⌃. In this case an unconstrained optimiser can
return as minimising triplet (m,⌃,�) the trivial values of � = 0, a mean m

extremely far from the origin (very high value of |m|) and a covariance ma-
trix ⌃ with very small diagonal entries. To address this problem in general we
can introduce a Tikhonov regularisation term l

�
⇠1:N
t

, N,m,⌃,�
�

in the objec-
tive function, which consists of a norm penalty on the optimisation arguments
(m,⌃,�). This is a popular technique in statistics and especially in the field
of inverse problems (see e.g. Tikhonov et al. (1995)). The introduction of
the term l

�
⇠1:N
t

, N,m,⌃,�
�

in the objective function is not necessary for all
the simulations in Part 3, as an implicit form of regularisation is given by the
adoption of a local optimiser. In particular we used the general-purpose op-
timiser R function optim based on the BFGS quasi-Newton method. In all of
the examples and applications of Part III, the chosen optimiser proved to be
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effective in finding the local optima corresponding to local non-trivial solution
of the minimisation problem 7.1 corresponding to l ⌘ 0. For general problems
where there is some concern about the optimiser returning trivial solutions,
we point out the method L-BFGS-B, also relative to the optim function, which
consists of a modification of the BFGS quasi-Newton method that allows for
box constraint optimisation. We do include the Tikhonov regularisation term
for the simulations with diffusion processes in Part IV, where an appropriate
penalising function l is defined. We performed the minimization in (7.1) under
the restriction that ⌃ was a diagonal matrix, as this was considerably faster
and preliminary simulations suggested that this was adequate for the examples
considered.

Algorithm 7.3 Recursive function approximations, parametric approach.

For t = T, . . . , 1:

1. Set  i

t

 g (⇠i
t

, y
t

) f (⇠i
t

, 
t+1

) for i 2 {1, . . . , N}.
2. Compute numerically

(m⇤
t

,⌃⇤
t

,�⇤
t

) = argmin
(m,⌃,�)

NX

i=1

⇥N �
⇠i
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;m,⌃
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⇤
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+l
�
⇠1:N
t

, N,m,⌃,�
�
,

and set  3  
t

(x) = N (x;m⇤
t

,⌃⇤
t

) + C

7.4 A note on the simulations

The purpose of the next part of the thesis is to investigate the performance of
the iAPF in a set of examples and applications. We show how in interesting
scenarios the iAPF can provide substantially better estimates of the marginal
likelihood L than the BPF at the same computational cost. This is exemplified
by its performance in estimating the marginal likelihood L of extreme obser-
vations and when d is large, recalling that X = Rd. In these cases, the BPF
typically requires a large number of particles in order to approximate L accu-
rately. In contrast, the  ⇤-APF computes L exactly, and we investigate below
the extent to which the iAPF is able to provide accurate approximations in this

55



setting. Similarly, when there are unknown statistical parameters ✓, we show
empirically that the accuracy of iAPF approximations of the likelihood L(✓)

are more robust to changes in ✓ than their BPF counterparts.
Unbiased, non-negative approximations of likelihoods L(✓) are central to the

particle marginal Metropolis–Hastings algorithm (PMMH) of Andrieu et al.
(2010), a prominent parameter estimation algorithm for general state space
hidden Markov models. An instance of a pseudo-marginal Markov chain Monte
Carlo algorithm (Beaumont 2003, Andrieu & Roberts 2009), the computational
efficiency of PMMH depends, sometimes dramatically, on the quality of the
unbiased approximations of L(✓) (Andrieu & Vihola 2015, Lee & Łatuszyński
2014, Sherlock et al. 2015, Doucet et al. 2015) delivered by a particle filter for
a range of ✓ values. The relative robustness of iAPF approximations of L(✓) to
changes in ✓, mentioned above, motivates their use over BPF approximations
in PMMH.
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Part III

Examples and Applications to
State Space Models
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Chapter 8

The Linear Gaussian Model

Recall from Section 2.2.1 that a linear Gaussian HMM is defined by the follow-
ing initial, transition and observation Gaussian densities: µ(·) = N (·;m,⌃),
f(x, ·) = N (·;Ax,B) and g(x, ·) = N (·;Cx,D), where m 2 Rd, ⌃, A,B 2
Rd⇥d, C 2 Rd⇥d

0 and D 2 Rd

0⇥d

0 . For this model, it is possible to implement
the fully adapted APF (FA-APF) and to compute explicitly the marginal likeli-
hood, filtering and smoothing distributions using the Kalman filter, facilitating
comparisons. We emphasize that implementation of the FA-APF is possible
only for a restricted class of analytically tractable models, while the iAPF
methodology is applicable more generally. Nevertheless, the iAPF exhibited
better performance than the FA-APF in our examples.

8.1 Exploratory simulations with the kernel dens-
ity estimates approach

Using kernel density estimates as described in 7.2 is a natural first approach
to shape the sequence of look-ahead functions  as with this method we do
not need any a priori knowledge on  ⇤ (e.g. if the perfect look-ahead functions
belong to a specific class of functions). In this section when the stopping rule in
Algorithm 6.2 is met we keep running the algorithm for some more iterations.
We do so to show that iterating the iAPF further leads to little to no gain in
the accuracy of the estimates, which supports empirically our choice of stopping
rule.
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8.1.1 Simple LG model

We sample a realisation x
1:T

of the latent process up to time T and a realisation
y
1:T

of the observation process given x
1:T

for different configurations of paramet-
ers. We look at subsequent estimates of the sequence of look-ahead functions
 l in a 2-dimensional linear Gaussian model, with the set of parameters

m =

 
0

0

!
,⌃ = A = B = C =

 
1 0

0 1

!
, D =

 
0.5 0.2

0.2 0.5

!

where we set T = 10. We chose this configuration for simplicity as the fact that
the latent process is explosive is not a problem given the very short observation
sequence. Recall that at every iteration of the algorithm, a new sequence of
look-ahead functions  l is defined, until the stopping rule in 6.2 is met. We
look here at the first three iterations of the algorithm and we report in Figure 8.1
the fifth function  l

5

of the sequence  l for l 2 0 : 3 along with the perfect look-
ahead function, i.e. a multivariate Gaussian density function whose parameters
can be determined by Kalman filtering. The look-ahead function  0

5

at the first
iteration is flat, as we assumed no a priori information is available, but after
the third iteration it is already difficult to distinguish the approximation from
the perfect look-ahead function, the last entry in the table.

A more rigorous analysis can be done by comparing the empirical variance
of the normalising constant estimator ˆZ and the average resampling count for
different number of total algorithm iterations l.

Table 1 reports the empirical variance over fifty runs of the normalising
constant estimator for the iterative look-ahead SMC algorithm at different it-
eration steps, including the bootstrap case with l = 0, and N = 500 particles.
The first thing to notice is the substantial improvement of the accuracy of the
estimator even with low values of l compared to the Bootstrap particle filter:
after only two iterations, the variance of the estimator is reduced about tenfold.
The second thing we notice is that the increments in efficiency given by further
iterating the algorithm quickly become negligible, so that after three iterations
no appreciable improvement is achieved.
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Figure 8.1: Subsequent look-ahead function estimates for  l

5

with l = 0, 1, 2, 3.
Comparison with perfect look-ahead function.

(a) Initialisation:  0
5 ⌘ 1 (b) First iteration:  1

5

(c) Second iteration:  2
5 (d) Third iteration:  3

5

(e) Perfect look-ahead function
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Table 8.1: Empirical variance of the estimator of the logarithm of the normal-
ising constant at different iteration count l

Variance of the loglikelihood estimator
Bootstrap 3.4 · 10�2

l=1 1.1 · 10�2

l=2 2.8 · 10�3

l=3 1.2 · 10�3

l=5 1.2 · 10�3

l=10 9.6 · 10�4

l =20 1.0 · 10�3

We report in Table 2 the count of total resampling count over the time hori-
zon T = 10 with different values of l, averaged over fifty runs of the algorithm.

Table 8.2: Averages over 50 runs of the iterative look-ahead algorithm

Average Resampling Count
Bootstrap l=1 l=2 l=3 l=5 l=10 l=20

10 4.64 1.76 1.36 1.16 1.28 1.30

Notice that especially with the first two iterations the average resampling
count drops significantly: this is important because a low resampling rate, other
than reducing the additional noise introduced at each selection iteration, mitig-
ates the degeneracy of the smoothing weights therefore allowing us to compute
fixed-lag smoothing distributions accurately, for example.

8.1.2 Extreme Observation Example

In the last section we showed how the iAPF presents some appreciable im-
provement compared to a BPF with the same number of particles N . If we
compare the computational cost though, given a Linear Gaussian model with
parameters such as those in the previous example, it can be more efficient to
increase the number of particles and run a bootstrap filter than iterating the
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look-ahead procedure with fewer particles. Nonetheless we showed that the al-
gorithm effectively obtains good approximations for the look-ahead functions
in this setting and we can find very similar results for other HMMs: the use of
such a look-ahead scheme could be preferable in cases where future observations
are highly informative relative to the latent process evolution.

We consider a Linear Gaussian model in one dimension defined by µ (·) =
N (·; 0, 1), f (x, ·) = N (·; x, 1) and g (x, ·) = N (·; x, 0.5) and instead of taking a
sample from the model we set three very short sequences of observations y1

1:2

=

(0, 10), y2
1:2

= (0, 15) and y3
1:2

= (0, 20) so that, because of the big jump between
the pair of observations in each sequence, they represent potential extreme
realisations of the observation process. In the following plots we show the
evolution of the normalising constant estimate through a total of 500 iterations
of the algorithm and we use a total of N = 100 particles at every iteration. The
dotted red line represents the truth estimate, derived via Kalman filtering.
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Figure 8.2: Extreme observation filtering simulations: normalising constants
estimates

In this setting our algorithm dramatically outperform the bootstrap. With
the BPF, billions of particles do not suffice to estimate the likelihood of such an
extreme sequence of observations, as the model transition fails to explore the
state space efficiently when used as proposal distribution. With our iterative
scheme, the subsequent waves of particles assume gradually the behaviour of
perfect look-ahead particles as the approximations of the look-ahead proposals
become more accurate: the estimate reaches convergence after some iterations.
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The execution time is still contained due to the small number of particles in
use. If we repeat the experiment using the stopping rule of Algorithm 6.2, the
iAPF on average stops after 71, 136 and 336 iterations (standard deviations of
the sample equal to 9, 24 and 41) for the instances with y = (0, 10), y = (0, 15)

and y = (0, 20) respectively (averages and standard deviations computed over
20 run of the algorithm). In all but a couple of cases for which we have a final
iteration with N = 200 particles, the starting value of N

0

= 100 particles is
never increased.

It is true that we are looking at observation process realisations which are
arguably too extreme and such a jump will “never” happen simulating from the
defined model. We give some motivations to look at such extreme sequences.

• Most of the times the real dynamic of the system is too complex to be
captured entirely, nonetheless a model has to be superimposed in order to
describe the data. Under this problem known as model misspecification,
a non-extreme sequence of observations could become extreme under the
superimposed model.

• In many cases we are interested in computing the likelihood associated
with a sequence of observations given different model structures and para-
meters, therefore sequences of extreme observations become more likely.
A particular case of this is when the HMM is expressed in terms of a (pos-
sibly multidimensional) parameter ✓. Many Monte Carlo schemes (see for
example Andrieu & Roberts (2009), Andrieu et al. (2010)) that aim at es-
timating ✓ rely on a accurate approximation for the normalising constants
L: a possible way to do this is to run a Metropolis-Hastings algorithm on
the parameter state space and in this case normalising constant estimates
appear in the acceptance ratio. If the MH algorithm explores exhaustively
the parameter state space it will be necessary to compute normalising con-
stant estimates for arbitrarily extreme (given the parameter configuration)
sequence of observations.

• Increasing the dimensionality of the latent process and the observation
process quickly leads to a drop in the observation likelihood: the use of the
BPF can be problematic in a high-dimensional setting where any sequence
of observations can be considered extreme. These preliminary results with
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extreme observations in one dimension suggest that the iAPF could show
interesting performance also for non extreme observation sequences in
high dimensional settings. We will look at some examples in this setting
with the parametric approach in the following section.

8.1.3 Kernel density estimate vs parametric approach

The obvious advantage of the kernel density estimates approach with respect to
the parametric approach is that we do not need to pick the look-ahead functions
from a predefined class of functions i.e. we do not need to make any preliminary
assumption about the shape of the look-ahead functions ( 

1

, . . . , 
T

). On the
other hand this method is computationally more expensive. Even selecting a
subset of

p
N particles for the backward recursion as described in Section 7.2 the

total computational cost of the algorithm is of order O
⇣
N
p
N
⌘
. Furthermore,

while kernel density estimation can be performed in any number of dimensions,
in practice the curse of dimensionality causes its performance to degrade in high
dimensions. The convergence rate of the kernel density estimate approximation
scales exponentially with dimension thus the number of particles needed for a
high dimensional model could be prohibitive. From the next section on we will
focus on the parametric approach as it presents a much higher efficiency in all
our applications, that is a much lower empirical variance of the normalising
constant estimates achieved with a similar execution time. When the optimal
look-ahead functions are unimodal, choosing  to be the set of Gaussian densit-
ies parametrised by their mean and variance/covariance matrix is a simple and
natural choice. In this unimodal setting we expect the parametric approach re-
lative to the class of Gaussian functions to be more efficient in most situations
than the kernel density estimate approach. However, consider for instance the
SSM defined for t 2 1 : T , T = 10, by the initial and transition densities

µ (·) = N (·; 0, 1) f (x, ·) = N (·; x, 1)

with state space X = R and the potential g (x) =
[�2,�1]

(x) +
[1,2]

(x) taking
values in Y = {0, 1}. For this toy model all the optimal look-ahead functions
 ⇤
t

for t 2 1 : T � 1 are symmetric and bimodal. If we consider the class of
Gaussian densities as the class  of look-ahead functions for the parametric
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optimisation approach (like we did in all our applications), we will not find a
good representative  of the optimal sequence of look-ahead functions  ⇤, as we
are trying to approximate the bimodal function  ⇤

t

with a unimodal function  
t

,
for all t 2 1 : T �1. The corresponding iAPF retains the unbiasedness property
of the normalising constant estimates, but it can easily perform worse than the
BPF. In the case where the iAPF presents low efficiency, it is easy to detect
whether this is due to a high discrepancy between  and  ⇤. In particular
we can plot the two sets of points (xi

t

, i

t

)

i21:N and (xi

t

, 
t

(xi

t

))

i21:N (as defined
in Algorithm 7.3), relative to  ⇤

t

and  
t

respectively,_and compare the two
resulting dotted surfaces for any t 2 1 : T . A possible approach to deal with
an excessive discrepancy between approximated and actual optimal look-ahead
functions is to consider a different class of density functions for  . For this toy
model, for instance, we could choose  to be the class of mixture of Gaussians
with two components. This solution, however, is strictly model dependent. The
main advantage of the kernel density estimate approach is that no tailoring of
the class  is required, which can be necessary for the parametric approach in
general scenarios and especially in the case where the functions in the optimal
look-ahead sequence  ⇤ are multimodal.

8.2 Parametric approach

The parametric approach of Section 7.3 depending on the chosen class of look-
ahead function  

✓

and minimisation routine can have a computational cost of
order O (N). It can also be robust for high dimensional model provided that the
class of functions  

✓

contains elements close enough to the perfect look-ahead
functions in the sequence  ⇤. In all our applications we choose  

✓

to be the set
of all Gaussian density functions parametrised by their mean (mean vector) and
variance (variance/covariance matrix). This choice led to good results partly
because in all our applications we expect the perfect look-ahead functions to
be unimodal. Clearly the choice of  

✓

is not limited to Gaussian densities and
for different applications it could be worth it to design  

✓

more carefully, for
example as the class of Gaussian mixtures with m components, with m > 1. In
all the following simulations the stopping rule of Algorithm 6.2 applies.
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8.2.1 Relative variance of approximations of Z when d is
large

We consider a family of Linear Gaussian models where m = 0, ⌃ = B = C =

D = I
d

and A
ij

= ↵|i�j|+1, i, j 2 {1, . . . , d} for some ↵ 2 (0, 1). Our first
comparison is between the relative errors of the approximations ˆZ of L = Z

using the iAPF, the BPF and the FA-APF. We consider configurations with
d 2 {5, 10, 20, 40, 80} and ↵ = 0.42 and we simulated a sequence of T = 100

observations y
1:T

for each configuration. We ran 1000 replicates of the three
algorithms for each configuration and report box plots of the ratio ˆZ/Z in
Figure 8.3.
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FA−APF

BPF

Figure 8.3: Box plots of ˆZ/Z for different dimensions using 1000 replicates. The
crosses indicate the mean of each sample.

For all the simulations we ran an iAPF with N
0

= 1000 starting particles,
a BPF with N = 10000 particles and an FA-APF with N = 5000 particles. In
each dimension the BPF and FA-APF both had slightly larger average compu-
tational times than the iAPF with these configurations. The average number of
particles for the final iteration of the iAPF was greater than N

0

only in dimen-
sions d = 40 (1033) and d = 80 (1142). For d > 10, it was not possible to obtain
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reasonable estimates with the BPF in a feasible computational time (similarly
for the FA-APF for d > 20). The standard deviation of the samples and the
average resampling count across the chosen set of dimensions are reported in
Tables 8.3–8.4.

Table 8.3: Empirical standard deviation of the quantity ˆZ/Z using 1000 repli-
cates

Dimension 5 10 20 40 80

iAPF 0.09 0.14 0.19 0.23 0.35
BPF 0.51 6.4 - - -

FA-APF 0.10 0.17 0.53 - -

Table 8.4: Average resampling count for the 1000 replicates

Dimension 5 10 20 40 80

iAPF 6.93 15.11 27.61 42.41 71.88
BPF 99 99 - - -

FA-APF 26.04 52.71 84.98 - -

Fixing the dimension d = 10 and the simulated sequence of observations
y
1:T

with ↵ = 0.42, we now consider the variability of the relative error of the
estimates of the marginal likelihood of the observations using the iAPF and
the BPF for different values of the parameter ↵ 2 {0.3, 0.32, . . . , 0.48, 0.5}. In
Figure 8.4, we report box plots of ˆZ/Z in 1000 replications. For the iAPF, the
length of the boxes are significantly less variable across the range of values of ↵.
In this case, we used N = 50000 particles for the BPF, giving a computational
time at least five times larger than that of the iAPF. This demonstrates that
the approximations of the marginal likelihood L(↵) provided by the iAPF are
relatively insensitive to small changes in ↵, in contrast to the BPF. Similar
simulations, which we do not report, show that the FA-APF for this problem
performs slightly worse than the iAPF at double the computational time.
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Figure 8.4: Box plots of ˆZ/Z for different values of the parameter ↵ using 1000

replicates. The crosses indicate the mean of each sample.
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8.2.2 Particle marginal Metropolis–Hastings

We consider a Linear Gaussian model with m = 0, ⌃ = B = C = I
d

, and
D = �I

d

with � = 0.25. We used the lower-triangular matrix

A =

0

BBBBBB@

0.9 0 0 0 0

0.3 0.7 0 0 0

0.1 0.2 0.6 0 0

0.4 0.1 0.1 0.3 0

0.1 0.2 0.5 0.2 0

1

CCCCCCA
,

and simulated a sequence of T = 100 observations. Assuming only that A is
lower triangular, for identifiability, we performed Bayesian inference for the 15
unknown parameters {A

i,j

: i, j 2 {1, . . . , 5} , j  i}, assigning each parameter
an independent uniform prior on [�5, 5]. From the initial point A

1

= I
5

we ran
three Markov chains ABPF

1:L

, AiAPF

1:L

and AKalman

1:L

of length L = 300000 to explore
the parameter space, updating one of the 15 parameters components at a time
with a Gaussian random walk proposal with variance 0.1. The chains differ
in how the acceptance probabilities are computed, and correspond to using
unbiased estimates of the marginal likelihood obtained from the BPF, iAPF or
the Kalman filter, respectively. In the latter case, this corresponds to running a
Metropolis–Hastings (MH) chain by computing the marginal likelihood exactly.
We started every run of the iAPF with N

0

= 500 particles. The resulting average
number of particles used to compute the final estimate was 500.2. The number of
particles N = 20000 for the BPF was set to have a greater computational time,
in this case ABPF

1:L

took 50% more time than AiAPF

1:L

to simulate. Note that here
and in the following examples in the thesis, N

0

is chosen so that there is rarely
the need for doubling the number of particles (from preliminary simulations).
This represents our guess of something close to the optimal choice of N

0

(since
if we choose a larger N

0

the CPU time will increase and if we choose a smaller
N

0

then there will need to be doubling, and if this happens many times then it
will result in an higher computational time too).

In Figure 8.5, we plot posterior density estimates obtained from the three
chains for 3 of the 15 entries of the transition matrix A. The posterior means
associated with the entries of the matrix A were fairly close to A itself, the
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largest discrepancy being around 0.2, and the posterior standard deviations
were all around 0.1. A comparison of estimated Markov chain autocorrelations
for these same parameters is reported in Figure 8.6, which indicates little differ-
ence between the iAPF-PMMH and Kalman-MH Markov chains, and substan-
tially worse performance for the BPF-PMMH Markov chain. The integrated
autocorrelation time of the Markov chains provides a measure of the asymp-
totic variance of the individual chains’ ergodic averages, and in this regard the
iAPF-PMMH and Kalman-MH Markov chains were practically indistinguish-
able (based on the empirical integrated autocorrelation time), while the BPF-
PMMH performed between 3 and 4 times worse, depending on the parameter.
The relative improvement of the iAPF over the BPF does seem empirically
to depend on the value of �. In experiments with larger �, the improvement
was still present but less pronounced than for � = 0.25. We note that in this
example,  ⇤ is outside the class of possible  sequences that can be obtained
using the iAPF: the approximations in are functions that are constants plus a
multivariate normal density with a diagonal covariance matrix whilst the func-
tions in  ⇤ are multivariate normal densities whose covariance matrices have
non-zero, off-diagonal entries.
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Figure 8.5: Linear Gaussian model: density estimates for the specified param-
eters from the three Markov chains.
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Figure 8.6: Linear Gaussian model: autocorrelation function estimates for the
BPF-PMMH (crosses), iAPF-PMMH (solid lines) and Kalman-MH (circles)
Markov chains.

In Table 8.5 we also provide the adjusted sample size of the 3 Markov chains
associated with each of the 15 parameters, obtained by dividing the length of
the chain by the estimated integrated autocorrelation time associated with each
parameter.
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Table 8.5: Sample size adjusted for autocorrelation for the three methods and
the different parameters

A1,1 A2,1 A3,1 A4,1 A5,1 A2,2 A3,2 A4,2

Kalman 2689 2997 603 504 601 3025 2909 765

iAPF 2660 2806 574 506 525 3068 2910 755

Bootstrap 64 59 18 13 18 72 95 21

A5,2 A3,3 A4,3 A5,3 A4,4 A5,4 A5,5

Kalman 709 714 513 460 729 640 929

iAPF 722 619 501 456 715 652 932

Bootstrap 27 16 12 16 13 17 27
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Chapter 9

Stochastic Volatility Models

9.1 Univariate stochastic volatility model

A simple stochastic volatility model is defined by µ(·) = N (·; 0, �2/(1 � ↵)2),
f(x, ·) = N (·;↵x, �2

) and g(x, ·) = N (·; 0, �2

exp(x)), where ↵ 2 (0, 1), � > 0

and �2 > 0 are statistical parameters (see, e.g., Kim et al. 1998). To compare
the efficiency of the iAPF and the BPF within a PMMH algorithm, we analyzed
a sequence of T = 945 observations y

1:T

, which are mean-corrected daily returns
computed as

y
t

= 100

"
(log r

t+1

� log r
t

)� 1

T

TX

i=1

(log r
i+1

� log r
i

)

#

from the weekday close exchange rates r
1:T+1

for the pound/dollar from 1/10/81
to 28/6/85. This data has been previously analyzed using different approaches,
e.g. in Harvey et al. (1994) and Kim et al. (1998).

We wish to infer the model parameters ✓ = (↵, �, �) using a PMMH algo-
rithm and compare the two cases where the marginal likelihood estimates are
obtained using the iAPF and the BPF. Following Kim et al. (1998), we placed
independent inverse Gamma prior distributions IG (2.5, 0.025) and IG (3, 1)

on �2 and �2, respectively, and an independent Beta (20, 1.5) prior distribu-
tion on the transition coefficient ↵. Also based on Kim et al. (1998) we used
(↵

0

, �
0

, �
0

) =

�
0.95,

p
0.02, 0.5

�
as the starting point of the three chains: X iAPF

1:L

,
XBPF

1:L

and XBPF

0

1:L

0 where L and L0 are the lengths of the first two chains and the
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third chain respecitvely. All the chains updated one component at a time with
a Gaussian random walk proposal with variances (0.02, 0.05, 0.1) for the param-
eters (↵, �, �). X iAPF

1:L

has a total length of L = 150000 and for the estimates
of the marginal likelihood that appear in the acceptance probability we use the
iAPF with N

0

= 100 starting particles. For XBPF

1:L

and XBPF

0

1:L

0 we use BPFs:
XBPF

0
1:L

is a shorter chain with more particles (L = 150000 and N = 1000) while
XBPF

0

1:L

0 is a longer chain with fewer particles (L = 1500000, N = 100). All
chains required similar running time overall to simulate. Figure 9.1 shows very
similar estimated marginal posterior densities for the three parameters using
the different chains.
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Figure 9.1: Stochastic Volatility model: PMMH density estimates for each
parameter from the three chains.

In Table 9.1 we provide the adjusted sample size of the Markov chains as-
sociated with each of the parameters. We can see an improvement using the
iAPF, although we note that the BPF-PMMH algorithm appears to be fairly
robust to the variability of the marginal likelihood estimates in this particular
application.
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Table 9.1: Sample size adjusted for autocorrelation for each parameter from the
three chains.

↵ �2 �

iAPF 3620 3952 3830
BPF 2460 2260 3271
BPF’ 2470 2545 2871

Since particle filters provide approximations of the marginal likelihood in
HMMs, the iAPF can also be used in alternative parameter estimation proce-
dures, such as simulated maximum likelihood (Lerman & Manski 1981, Diggle
& Gratton 1984). The use of particle filters for approximate maximum likeli-
hood estimation (see, e.g., Kitagawa 1998, Hürzeler & Künsch 2001) has recently
been used to fit macroeconomic models (Fernández-Villaverde & Rubio-Ramírez
2007). In Figure 9.2 we show the variability of the BPF and iAPF estimates of
the marginal likelihood at points in a neighborhood of the approximate MLE
of (↵, �, �) = (0.984, 0.145, 0.69). The iAPF with N

0

= 100 particles used 100

particles in the final iteration to compute the likelihood in all simulations, and
took slightly more time than the BPF with N = 1000 particles, but far less time
than the BPF with N = 10000 particles. The results indicate that the iAPF
estimates are significantly less variable than their BPF counterparts, and may
therefore be more suitable in simulated maximum likelihood approximations.
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Figure 9.2: log-likelihood estimates in a neighborhood of the MLE. Boxplots
correspond to 100 estimates at each parameter value given by three particle
filters, from left to right: BPF (N = 1000), BPF (N = 10000), iAPF (N

0

=

100).
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9.2 Multivariate stochastic volatility model

We consider a version of the multivariate stochastic volatility model defined
for X = Rd by µ(·) = N (·;m,U

?

), f(x, ·) = N (·;m + diag(�) (x�m) , U) and
g(x, ·) = N (·; 0, exp (diag (x))), where m,� 2 Rd and the covariance matrix
U 2 Rd⇥d are statistical parameters. The matrix U

?

is the stationary covariance
matrix associated with (�, U). This is the basic MSV model in Chib et al.
(2009, Section 2), with the exception that we consider a non diagonal transition
covariance matrix U and a diagonal observation matrix.

We analyzed two 20-dimensional sequences of observations y
1:T

and y0
1:T

0 ,
where T = 102 and T 0

= 90. The sequences correspond to the monthly returns
for the exchange rate with respect to the US dollar of a range of 20 differ-
ent international currencies, in the periods 3/2000–8/2008 (y

1:T

, pre-crisis) and
9/2008–2/2016 (y0

1:T

0 , post-crisis), as reported by the Federal Reserve System
(available at http://www.federalreserve.gov/releases/h10/hist/). We
infer the model parameters ✓ = (m,�, U) using the iAPF to obtain marginal
likelihood estimates within a PMMH algorithm. A similar study using a dif-
ferent approach and with a set of 6 currencies can be found in Liu & West
(2001).

The aim of this study is to showcase the potential of the iAPF in a sce-
nario where, due to the relatively high dimensionality of the state space, the
BPF systematically fails to provide reasonable marginal likelihood estimates in
a feasible computational time. To reduce the dimensionality of the parameter
space we consider a band diagonal covariance matrix U with non-zero entries on
the main, upper and lower diagonals. We placed independent inverse Gamma
prior distributions with mean 0.2 and unit variance on each entry of the diag-
onal of U , and independent symmetric triangular prior distributions on [�1, 1]
on the correlation coefficients ⇢ 2 R19 corresponding to the upper and lower di-
agonal entries. We place independent Uniform(0, 1) prior distributions on each
component of � and an improper, constant prior density for m. This results in
a 79-dimensional parameter space. As the starting point of the chains we used
�
0

= 0.95 · 1, diag(U
0

) = 0.2 · 1 and for the 19 correlation coefficients we set
⇢
0

= 0.25 · 1, where 1 denotes a vector of 1s whose length can be determined
by context. Each entry of m

0

corresponds to the logarithm of the standard
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deviation of the observation sequence of the relative currency.
We ran two Markov chains X

1:L

and X 0
1:L

, corresponding to the data se-
quences y

1:T

and y0
1:T

0 , both of them updated one component at a time and
each with a Gaussian random walk proposal with standard deviations equal to
(0.2 · 1, 0.005 · 1, 0.02 · 1, 0.02 · 1) for the parameters (m,�, diag (U) , ⇢). The
total number of updates for each parameter is L = 12000 and the iAPF with
N

0

= 500 starting particles is used to estimate marginal likelihoods within the
PMMH algorithm. In Figure 9.3 we report the estimated smoothed posterior
densities corresponding to the parameters for the Pound Sterling/US Dollar
exchange rate series. Most of the posterior densities are different from their
respective prior densities, and we also observe qualitative differences between
the pre and post crisis regimes. For the same parameters, sample sizes adjusted
for autocorrelation are reported in Table 9.2. Considering the high dimensional
state and parameter spaces, these are satisfactory. In the later steps of the
PMMH chain, we recorded an average number of iterations for the iAPF of
around 5 and an average number of particles in the final  -APF of around 502.

Table 9.2: Sample size adjusted for autocorrelation.
m

£

�
£

U
£

U
£,e

pre-crisis 408 112 218 116
post-crisis 175 129 197 120
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Figure 9.3: Multivariate stochastic volatility model: density estimates for the
parameters related to the Pound Sterling. Pre-crisis chain (solid line), post-
crisis chain (dashed line) and prior density (dotted line). The prior densities
for (a) and (b) are constant.

The aforementioned qualitative change of regime seems to be evident looking
at the difference between the posterior expectations of the parameter m for the
post-crisis and the pre-crisis chain, reported in Figure 9.4. The parameter m

can be interpreted as the period average of the mean-reverting latent process of
the log-volatilities for the exchange rate series. Positive values of the differences
for close to all of the currencies suggest a generally higher volatility during the
post-crisis period.
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Figure 9.4: Multivariate stochastic volatility model: differences between post-
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Part IV

Examples and Applications to
Diffusion Processes
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Chapter 10

Diffusion Processes

Diffusion processes are continuous-time Markov processes with almost surely
continuous sample paths (see for example Ikeda & Watanabe (1981)): we re-
strict our attention to the wide class of diffusion processes which can be defined
as solutions to stochastic differential equations. Diffusions are a very convenient
tool for modeling continuous time data from a wide range of areas such as biol-
ogy (e.g. Golightly & Wilkinson (2011)), finance (e.g. Ait et al. (2007), Black &
Scholes (1973), Cox et al. (1985)), engineering (e.g. Coffey et al. (2004)) bioin-
formatics (e.g. McAdams et al. (1999)). A diffusion’s dynamic is completely
characterized by a drift function and a volatility function: much effort has been
devoted to developing ways to efficiently estimate the parameters governing
these functions from partial and discrete observations.

Consider a Borel drift function a : R
+

⇥Rd �! Rd, a Borel volatility function
b : R

+

⇥ Rd �! Rd⇥d and a stochastic differential equation of the type

dX
s

= a
�
s,X

s

�
ds+ b

�
s,X

s

�
dW

s

(10.1)

for s 2 [0, S], the condition X
0

= x
0

and the multidimensional Wiener process
W

s

(Revuz & Yor (1994)).
Let b

k

: R
+

⇥ Rd �! Rd represent the k-th column of b that is b
k

(t, x) :=

[b(t, x)]
1:d,k

. We assume that there exists a K such that

|a(t, x)|2 +
dX

k=1

|b
k

(t, x)|2  K2

�
1 + |x|2� (10.2)

85



and

|a (t, x)� a (t, y)|+
dX

k=1

|b
k

(t, x)� b
k

(t, y)|  K |x� y| (10.3)

for every x, y 2 Rd and every t 2 [0, S]. Under this condition (see for example
Gikhman & Skorokhod (1969, Chapter 8, Theorem 4)) equation (10.1) has a
solution

�
¯X
s

�
s2[0,S] defined on the state space X = Rd that is unique up to

stochastic equivalence and continuous with probability 1 and with transition
probability that we denote by P

t,s

(x,A). We also assume that the functions
a and b are 2 times differentiable with bounded derivatives of all orders up
to 2, and the matrix b (t, x) b0 (t, x) is uniformly non-degenerate for every t so
that (see Del Moral et al. (2001)) the corresponding transition density that we
denote by p

t,s

(x,A) exists and therefore

P
t,s

(x,A) =

Z

A

p
t,s

(x, y) dy

for all 0  t  s  S, x 2 Rd and A 2 B �Rd

�
. Drift and volatility can depend

on a set of parameters ✓ 2 ⇥, we leave this dependence implicit for notational
simplicity. We are interested in the following problems.

1. Simulation of diffusion bridges, that are sample paths of
�
X

s

�
s2[0,S] con-

ditioning on the event
�
X

0

= x
0

, X
S

= x
S

 
.

2. Evaluation of transition densities of the form p
0,S

(x̄
0

, x̄
S

).

3. Evaluation of expectations of the type E
⇥
�
�
X

s

� | ¯X
0

= x̄
0

, X
S

= x
s

⇤
for

some s 2 [0, S] and some regular function � on X.

10.1 Euler–Maruyama approximation

In many applications we are given a sequence of observations from the diffusion
path and we face the parameter estimation problem relative to the possibly
multidimensional parameter ✓ 2 ⇥ that governs the drift function and volatility
function. Closed-form transition densities are rarely available in non trivial
cases, therefore likelihood-based inference can be difficult. Some attempts to
address this problem include moment based estimation (Chan et al. (1992)) and
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simulation based methods, see for example Durham & Gallant (2002), which
often involve the discretisation of the continuous time diffusion for example
through the so called Euler–Maruyama method.

The Euler–Maruyama method is a simple generalisation to stochastic dif-
ferential equations of the Euler method, a first-order numerical procedure for
solving ordinary differential equations with a given initial value (Ascher & Pet-
zold (1998)). Given the discretisation parameter h > 0, the Euler–Maruyama
approximation to the true solution of (10.1) is the Markov chain

�
Xh

t

�
t21:T+1

recursively defined by Xh

1

= x
0

and

Xh

t

⇠ N �
Xh

t�1

+ a
�
t� 1, Xh

t�1

�
h, b

�
t� 1, Xh

t�1

�
b0
�
t� 1, Xh

t�1

�
h
�

for t 2 2 : T + 1, T =

S

h

and where A0 denotes the matrix transponse of
the matrix A. Let P

h

denote the law of the Markov chain
�
Xh

t

�
t21:T+1

. Under
appropriate conditions (see Kloeden & Platen (1992, Chapter 10)) we have that

E


sup

t21:T+1

�� ¯X
th

�Xh

t

��
�
Mh�

where the constant M and � do not depend on h.
Most Bayesian and likelihood approaches consist of approximating the tran-

sition density p with the corresponding Euler–Maruyama discretisation. How-
ever, the time step between subsequent observations is typically too large to be
used as a time step with the Euler–Maruyama method, therefore the observed
low-frequency data is augmented with the introduction of T latent data points
between every pair of observations in order for the approximation to become
accurate. When the diffusion process is observed without error at fixed time
points, the likelihood of the diffusion parameter ✓ given the sequence of observa-
tions takes the form of a product of transition densities, as the transition density
of the diffusion process from a given exact observation on is independent from
the past. Therefore in this exactly and discretely observed diffusions setting we
can focus on the problem of approximating one single transition density.
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10.2 Particle filters for diffusion bridges

In order to address the aforementioned problems, for fixed h > 0, S > 0 and
x
S

2 X, we construct a state-space model from the Euler–Maruyama approxi-
mation of (10.1). The initial distribution is given by µ = �

x0 and the subsequent
transition densities by

f
t

(x
t�1

, x
t

) = N (x
t

; x
t�1

+ a (t� 1, x
t�1

)h, b (t� 1, x
t�1

) b0 (t� 1, x
t�1

)h) .

The potentials are given by g
t

(x
t

) ⌘ 1 for t 2 1 : T � 1 and

g
T

(x
T

) = N (x
S

; x
T

+ a (T, x
T

)h, b (T, x
T

) b0 (T, x
T

)h) .

This corresponds to a HMM where no observations of the latent process are
available up to time T , when the perfect observation at time T + 1 yields a
noisy pseudo observation. For this model we have that

Z
h

=

Z

X

T

µ (x
1

)

TY

t=2

f
t

(x
t�1

, x
t

) g
T

(x
T

) dx
1:T

that is the Euler–Maruyama approximation of the transition density Z =

p
0,S

(x̄
0

, x̄
S

). Using a particle filter we can get an unbiased estimate ZN

h

of
the quantity Z

h

which approaches the quantity of interest Z as the parameter h
tends to zero (see for example Del Moral et al. (2001)). This is important as for
a fine enough discretisation the Euler–Maruyama approximation becomes a re-
liable representation of the continuous dynamic, therefore we can be interested
in making inference on the discretised model instead. Similarly we can use par-
ticle filters to produce approximations to smoothing expectations and weighted
sample paths of the process Xh

1:T+1

conditioning on the event
�
Xh

T+1

= X
S

 
.

10.3 Motivations

Once we reformulate the problem of estimating diffusion transition densities as
an SSM normalising constant estimation problem, a wide variety of SMC tech-
niques becomes available. In this setting a BPF corresponds to an Importance
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Sampling scheme where a sample x
1:T

is generated from the proposal distri-
bution with density µ (x

1

)

Q
T

t=2

f
t

(x
t�1

, x
t

) and given a weight proportional to
g
T

(x
T

). ZN

h

is an unbiased estimate of Z
h

, the Euler-Maruyama approximation
that converges to the transition density p

0,S

(x̄
0

, x̄
S

) as h tends to zero. As h

decreases the potential g
T

(x
T

) = N (x
S

; x
T

+ a (T, , x
T

)h, b (T, x
T

) b0 (T, x
T

)h)

becomes extremely peaked around x
S

, leading to a problem of degeneracy of
the importance weights. For this reason when the amount of augmentation is
large, that is for small values of h, and a fine partition of the interval [0, S] is
required for the Euler-Maruyama approximation to approach the true density,
naive SMC schemes can break down. Another critical case is when the density
point being estimated is relatively far from the mode of the diffusion process
transition density. Note that we are dealing with a degenerate SSM where g

T

is the only non constant potential function.
If we set a small enough h, depending on the application, the diffusion non-

linear dynamic can be approximated very well by the Euler-Maruyama Markov
process with Gaussian transitions. As the main prerequisite of having Normal
transition densities is met, we can think of adapting the iAPF for this problem
to obtain a normalising constant estimator more robust with respect to high
degrees of augmentation. Once twisted, the SSM model we are considering is
not degenerate anymore: the twisted potentials are not constant in general,
therefore we can introduce resampling steps within the twisted dynamic. This
way we can mitigate the degeneracy problem and improve the accuracy of the
estimates of Z

h

.
In particular, consider the Euler-Maruyama approximation of the diffusion

bridge that follows the SDE (10.1) for s 2 [0, S], with conditions X
0

= x
0

,
X

S

= x
s

. For the corresponding SSM and the optimal choice of look-ahead
functions sequence we have that

 ⇤
T

(x
T

) = g
T

(x
T

) = N (x
S

; x
T

+ a (T, x
T

)h, b (T, x
T

) b0 (T, x
T

)h)

and even though the perfect look-ahead function  ⇤
T

is not a Gaussian, it can be
close to normal when the functions a (t, ·) : Rd �! Rd and b (t, ·) : Rd �! Rd⇥d

are nearly constant for every fixed t � 0. The look-ahead function backward
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recursion takes in this case the particular form

 ⇤
t

(x
t

) =

˜ ⇤
t

(x
t

) =

Z

X

N (x
t+1

; x
t

+ a (t, x
t

)h, b (t, x
t

) b0 (t, x
t

)h) ⇤
t+1

(x
t+1

) dx
t+1

for t 2 1 : T � 1, which is a simplified version of the usual backward recursion
where all the potentials of the untwisted SSM but the last one are constant.
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Chapter 11

The iAPF Implementation for
Diffusion Processes

As the SSM derived from the Euler-Maruyama discretisation has all the desired
properties for the application of the iAPF, technically we can run the algorithm
in its usual form without any modification. Nonetheless in this section we
describe two possible modifications to the iAPF that can significantly enhance
its performance in terms of efficiency in this specific diffusion setting.

Recall that the iAPF is based on an iterative procedure where we progres-
sively improve the sequence of look-ahead functions  

1:T

through subsequent
waves of exploring particles. Though it is possible to initialise the iterative
procedure with a starting sequence  0

1:T

typically we have too little, if any, a
priori knowledge to shape a convenient initial twisted model, and in any case
it is difficult to find a way to do so which is applicable in general cases. For
this reason our standard approach is not to convey any additional informa-
tion with the first iAPF iteration, which corresponds to setting  

t

⌘ 1 for all
t 2 1 : T . This choice is always possible in general but as a consequence the ini-
tial iAPF iterations, and in particular the very first one, suffer from the same
drawbacks of the BPF. For the untwisted model as h # 0 the final potential
function g

T

(x
T

) = N (x̄
S

; x
T

+ a (T, x
T

)h, b (T, x
T

) b0 (T, x
T

)h) becomes arbi-
trarily peaked around x̄

S

. For the BPF and therefore for the first iteration of
the iAPF this can lead to the problem of the degeneracy of the importance
weights. Extremely small values of the importance weights can cause numerical
problems in the optimiser routine within the iAPF, but the major issue lies
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behind the backward recursive estimation procedure. With the backward re-
cursion we estimate a new sequence of possibly enhanced look-ahead functions
exploiting the filtering support of the previous iAPF iteration. When g

T

is
peaked and the first wave of particles is propagated according to the untwisted
transition, most if not all the particles x1:N

T

at time T are likely to be far from
the mode of g

T

. With the parametric approach of Section 7.3 at time T we set
 
T

(x
T

) = N (x
T

;m
T

,⌃
T

) + c (N,m
T

,⌃
T

) where the parameters m
T

and ⌃
T

are obtained by solving numerically the minimisation problem

(m
T

,⌃
T

, z
T

) = argmin

(m,⌃,z)

TX

i=1

�
g
T

�
⇠i
T

�� zN �
⇠i
T

;m,⌃
��

2

+l
�
⇠1:N
t

, N,m,⌃,�
�
.

Recall that in the simulations of Part III we set l ⌘ 0 and we relied on an
implicit form of regularisation based on the use of a local optimiser. In this
case if we neglect the regularisation term l

�
⇠1:N
t

, N,m,⌃,�
�

we are effectively
fitting a Gaussian distribution to a potential function which is not Gaussian,
using points far in the tails of the potential function. This can cause some
instability in the estimates of the first sequences of look-ahead functions. Due
to the very small values of g

T

(xi

T

) for all i 2 1 : N , the numerical optimiser
can potentially return extreme parameter values that can lead to a  -APF less
efficient than desired. According to the defined stopping rule, the iAPF stops
only when the empirical variance of k subsequent normalising constant estimates
falls below the specified threshold ⌧ , and for this to happen we expect the look-
ahead function parameters to have reached a state of equilibrium. Nonetheless
the iAPF scheme keeps doubling the number of particles until this equilibrium
is approached and this can lead to an higher stopping time if the first many
sequences of look-ahead functions are relatively unstable.

In the next subsections we describe two different approaches that exploit
the features of this setting in order to try to address or at least mitigate this
problem. With the first method we initialise the iAPF to be applied to an Eu-
ler–Maruyama discretisation with the desired small value h with a sequence  0

obtained by running a complementary iAPF for the same diffusion bridge but
with a much coarse Euler–Maruyama discretisation for which the concentration
of g

T

is not critical. With the second method we provide a simple specification
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for the regularisation term to be added to the objective function of the opti-
misation routine that penalises an excessive discrepancy between  

t1 and  
t2

when t
1

is close to t
2

. Both methods work for the general class of diffusion as
in (10.1) and are not mutually exclusive, we can choose to use either or both
depending on the application.

11.1 Complementary iAPF initialisation

Consider the SSM given by the Euler–Maruyama approximation of (10.1) with
final condition ¯X

S

= x̄
S

and discretisation step h. For a general SSM it is
difficult to come up with a suitable initialising sequence of non-constant look-
ahead functions. In the case of diffusions though, there exists a natural SSM
with a similar structure to the one considered and that potentially does not
present the same difficulties: the SSM given by a more coarse Euler–Maruyama
discretisation applied to the very same diffusion bridge. Running the iAPF for
this complementary SSM can help us gathering enough information to define
an appropriate initialising sequence  0 for the original model.

In particular, we can consider the complementary SSM given by the Eu-
ler–Maruyama discretisation with approximation step h0

= h and correspond-
ing final time T 0

=

S

h

0 =

T



. We choose  2 N so that it divides T , that is if
the division of T by  gives an integer number, and in this case we write  | T
(and  - T if it does not). Assume that  is such that the corresponding final
untwisted potential g

T

0
(x

T

0
) = N (x̄

S

; x
T

0
+ a (T, x

T

0
)h0

; b (T, x
T

0
) b0 (T, x

T

)h0
)

is flat enough not to present the aforementioned problem with the degeneracy
of the importance weights: a possible approach to obtain such  is provided
at the end of the section. We run an iAPF with N

0

starting particles for the
complementary SSM, initialised with a sequence of constant look-ahead func-
tions. From the output of the algorithm we store, together with the estimate
ZN

h

0 of the normalising constant Z
h

0 , the final sequence of look-ahead functions
 L, where L is the number of iterations the algorithm has required to meet the
stopping rule. Note that  L

=  L

1:T

0 is a sequence of T 0
=

T



Gaussian distribu-
tions that can be completely described by the sequence of means and covariance
matrices (m0

1:T

0 ,⌃0
1:T

0) where  L

t

0 (x) = N (x;m0
t

0 ,⌃0
t

0) for every t0 2 1 : T 0. In
order to initialise the iAPF for the original SSM we need a longer sequence
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 0

=  0

1:T

or equivalently a set of parameters (m
1:T

,⌃
1:T

). It is natural for those
t 2 1 : T such that  | (t� 1) to set m

t

= m0
t�1
 +1

and ⌃
t

= ⌃

0
t�1
 +1

because

the discrete time indices t and (t�1)



+1 correspond to the same continuous time
(t� 1)h =

(t�1)



h0 for the original and the complementary SSM respectively (see
Figure 11.1). The fact that we are dealing with continuous sample paths and
that a and b are continuous suggests that we can expect parameters of look-
ahead functions relative to close times to be similar. For this reason for those t

such that  - (t� 1) we set the parameter value at t as an intermediate interpo-
lated value between the same parameter value at t

1

and t
2

, where t
1

, t
2

2 1 : T

are the closest times to t such that t
1

< t < t
2

and  | (t
1

� 1) , (t
2

� 1). More
precisely given (m

1:T

0 ,⌃
1:T

0
) from the iAPF execution for the complementary

SSM we set m
t

= m0
t�1
 +1

for all t 2 1 : T such that  | (t� 1) and

m
t

= m0
b t�1

 c+1

+

⇣
m0
b t�1

 c+2

�m0
b t�1

 c+1

⌘
[(t� 1) mod ]h

where a mod b indicates the remainder of the division of a by b. In a similar
way we set ⌃

t

= ⌃

0
t�1
 +1

for all t 2 1 : T such that  | (t� 1) and

⌃

t

= ⌃

0
b t�1

 c+1

+

⇣
⌃

0
b t�1

 c+2

� ⌃0
b t�1

 c+1

⌘
[(t� 1) mod ]h

where all the matrix operations are intended entry wise.
Consider for example the diffusion process

d ¯X
s

=

¯X
s

ds+ dW
s

with conditions ¯X
0

= 0 and ¯X
1

= 5 for s 2 [0, 1]. Let us say we want to
set h =

1

12

, T = 12, but we establish this is a too fine discretisation for our
problem. We run instead the iAPF corresponding to the discretisation step
h0

=

1

4

(therefore  = 3) and obtain a sequence of look-ahead functions  
1:T

0

where T 0
= 4 corresponding to the continuous time points (0, 0.25, 0.5, 0.75),

see Figure 11.1. The parameters of the look-ahead functions in the initialising
sequence  0

1:T

of the original model are obtained through interpolation. In
Figure 11.2 we show in black the two look-ahead functions  

3

and  
4

obtained
through the complementary iAPF, we set  0

7

=  
3

and  0

10

=  
4

. The red
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Figure 11.1: Correspondence between diffusion times and Euler-Maruyama dis-
cretisations times

1 2 3 T'=4

1 2 3 4 5 6 7 8 9 10 11 T=12

0 S−h' S−h S s

t'

t

Continuous
Diffusion

Complementary
SSM

Original
SSM

look-ahead functions  0

8

and  0

9

in between the continuous time points 0.5 and
0.75 are obtained through interpolation of the mean and standard deviation
parameters. Note that this linear scheme is just one possibility and its good
performance in our simulations is the reason why more complicated scheme have
not been investigated.

We usually have some flexibility on how to set the parameter T that deter-
mines the Euler-Maruyama approximation step h =

S

T

. For our simulations we
always set T = 10

↵ as an integer power of 10 and for the most challenging cases
setting  = 10 is always sufficient for providing an initialising sequence  0 that
can prevent the degeneracy problem. In general though the order of magnitude
that T has to have in order for the corresponding Euler–Maruyama discreti-
sation to be a good enough approximation of the continuous diffusion is often
unknown. In this case we can very conveniently apply the described procedure
in an iterative fashion. We choose an initial very coarse Euler–Maruyama dis-
cretisation corresponding to a very small T = T

1

. We run the iAPF with N

starting particles and store the normalising constant estimate ZN

S
T1

of Z S
T1

along

with the final sequence of look-ahead functions  (T1). We use the sequence  (T1)
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Figure 11.2: Example of look-ahead initialisation. Process d ¯X
s

=

¯X
s

ds+ dW
s

,
¯X
0

= 0, ¯X
1

= 5.

0.5 0.58 0.66 0.75
s

m=2.55
sd=0.6

m=3.2
sd=0.5

to define an extended interpolated sequence  
1:T2 with the described procedure,

where T
2

= T
1

and run an iAPF with N starting particles and initialised with
 
1:T2 for the SSM corresponding to the Euler-Maruyama discretisation with

T = T
2

. The output
✓
ZN

S
T2

, (T2)

◆
of the last iAPF run can be used to replicate

the procedure for the discretisation with T = T
3

= T
2

and so on. We can
keep refining the discretisation until we are satisfied with the result: a possible
stopping rule can be based on the empirical standard deviation of the last j

normalising constant estimates.

11.2 Regularisation

Recall that with the parametric optimisation approach, in order to define  
t

we
solve numerically the minimisation problem

argmin

(m,⌃,�)

NX

i=1

⇥N �
⇠i
t

;m,⌃
�� � i

t

⇤
+ l
�
⇠1:N
t

, N,m,⌃,�
�

where ⇠1:N
t

is the filtering support at time t at the previous iAPF iteration
and the values  1:N

t

depend on  
t+1

and on the SSM transitions and poten-
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tials. For the applications in Part III we neglected the regularisation term
l
�
⇠1:N
t

, N,m,⌃,�
�

as relying on the implicit form of regularisation given by the
use of a local optimiser led to good simulation results. In the diffusions setting,
when h is small, in the first iAPF iterations the particles ⇠1:N

t

can be far in the
tails of the optimal Gaussian density function that we would like to set as  

t

.
For this reason, even if effort is put in initialising the optimisation routine, the
minimiser can fall far from local optima therefore including the regularisation
term l

�
⇠1:N
t

, N,m,⌃,�
�

becomes critical. Recall that we stated in Section7.3
that if we do not include term l

�
⇠1:N
t

, N,m,⌃,�
�

in the objective function, we
have that

lim

|m|!1
�! 0

NX

i=1

⇥N �
⇠i
t

;m,⌃
�� � i

t

⇤
2

= 0

independently from ⇠1:N
t

and ⌃ and therefore an unconstrained optimiser can
return a trivial solution. To address this problem we introduce a Tikhonov
regularisation term in the objective function. Given that the diffusion paths
are continuous we expect the parameters of look-ahead functions relative to
close times not to change dramatically. For this reason we add a correction
term in the objective function that penalises big Euclidian distances between
modes of subsequent look-ahead functions. In particular for the final look-ahead
function parameters we set

(m⇤
T

,⌃⇤
T

,�⇤
T

) = argmin

(m,⌃,�)

⌃

N

i=1

⇥N �
⇠i
T

;m,⌃
�� � i

T

⇤
2

+

c (N,m,⌃,�)

h
|m� x̄

S

|

and then proceeding backwards recursively

(m⇤
t

,⌃⇤
t

,�⇤
t

) = argmin

(m,⌃,�)

⌃

N

i=1

⇥N �
⇠i
t

;m,⌃
�� � i

t

⇤
2

+

c (N,m,⌃,�)

h

��m�m⇤
t+1

��

where c is a real function. Ideally we would set the term c (N,m,⌃,�) to
grow more slowly than N (i.e. to be o(N)). In practice for our simulations
we set c(N,m,⌃,�) = NN (m;m,⌃) for simplicity and because at least in our
examples this choice is not critical as long as the penalising term scales with 1

h

.
As mentioned before the two methods are not mutually exclusive and one

can choose either or both depending on the application. Adding the penalising
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term to the objective function in the backward recursion has the effect that in
general the optimisation will not return the closest fit to the optimal look-ahead
function from the chosen class of functions. Nonetheless this second procedure
is practically inexpensive and always effective in the examples and applications
we consider, therefore this is the one we use in all our simulations if not stated
otherwise.
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Chapter 12

Examples and Applications

12.1 Exploratory example with a basic diffusion
bridge

We perform some simulations related to the basic diffusion bridge defined as
the solution of

d ¯X
s

= ↵ds+ �dW
s

, (12.1)

with initial condition ¯X
0

= 0, final condition ¯X
S

= x̄
S

and the parameters
↵ 2 R and � > 0. We choose this model as in this case it is straightforward to
derive an analytic expression for the transition density that is

p
t,s

(x
t

, x
s

) = N �
x
s

; x
t

+ ↵ (s� t) , �2

(s� t)
�

for all x
t

, x
s

2 R and any s > t � 0. The corresponding SSM given by the Eu-
ler–Maruyama discretisation with parameter h and T =

S

h

is defined by µ (x
1

) =

�
0

(x
1

), f (x
t

, x
t+1

) = N (x
t+1

; x
t

+ ↵h; �2h) and g
T

(x
T

) = N (x̄
S

; x
T

+ ↵h, �2h).
Note that in this case we have that  ⇤

T

(x
T

) = g
T

(x
T

) = N (x
T

; x̄
S

� ↵h, �2h)

therefore the perfect final look-ahead function is exactly a normal distribution.
We can easily verify that

 ⇤
T�1

(x
T�1

) =

Z

R
N �

x
T

; x
T�1

+ ↵h, �2h
�N �

x
T

; x̄
S

� ↵h, �2h
�
dx

T

= N �
x
T�1

; x̄
S

� 2↵h, 2�2h
�
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and in general  ⇤
t

(x
t

) = N (x
t

; x̄
S

� (T � t+ 1)↵h, (T � t+ 1) �2h) for all t 2
1 : T � 1 therefore the optimal look-ahead functions are all Gaussians, the class
of distributions we use for the parametric optimisation. Note also that equation
(12.1) describes a Brownian motion with drift parameter ↵ and scale parameter
� with Gaussian transition densities, and therefore the solution of 12.1 is a
Brownian bridge once we include the condition ¯X

S

= x̄
S

. In this case the
Euler–Maruyama discretisation does not introduce any approximation error, it
leads to exact solutions for any h and in particular P

h

�
g
T

�
Xh

T

� | Xh

1

= x̄
0

�
=

p
0,S

(x̄
0

, x̄
S

) for any h > 0. We compare the performances of the BPF and the
iAPF in estimating the transition density Z

h

= p
0,S

(0, 0) for different values of
the constant drift parameter ↵ and different values of the step parameter h. In
the simulations that follow we fix x̄

S

= 0, � = 1, S = 1 and we compare the
estimates of Z

N
h
Z

from a BPF with N = 10000 particles and from an iAPF with
N

0

= 200 particles. The number of particles throughout all of this part is set
so that the iAPF computational time is (significantly) lower than that of the
BPF. The number of particles is set so that in all the instances the BPF requires
higher computational time. For each of the three values of the drift parameter
↵ 2 {1, 2, 4} we consider three values of the parameter h 2 {10�1, 10�2, 10�3}.
The BPF is increasingly challenged as the discretisation becomes finer and for
higher values of the drift ↵, corresponding to more extreme observations (as
x̄
S

= 0). With the finest discretisation in (12.3) the BPF systematically fails to
provide reasonable estimates. As for the iAPF our stoping rule with ⌧ = 1 was
met before the sixth iteration in all cases, but we include the boxplots relative
to L = 10 iterations of the algorithm to show that even in this setting the
chosen stopping rule seems empirically adequate in detecting the convergence
of the iAPF look-ahead functions estimates.
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Figure 12.1: Drift parameter ↵ = 1. Box plots of the estimates of ˆ

Z

Z

for 50

replicates of the BPF and the iAPF.

BPF 2 3 4 5 6 7 8 9 10 11

0
.6

1
.0

E
s
ti
m
a
te
s

(a) h = 10�1

BPF 2 3 4 5 6 7 8 9 10 11

0
.6

1
.0

E
s
ti
m
a
te
s

(b) h = 10�2

BPF 2 3 4 5 6 7 8 9 10 11

0
.6

1
.0

E
s
ti
m
a
te
s

(c) h = 10�3

Figure 12.2: Drift parameter ↵ = 2. Box plots of the estimates of ˆ

Z

Z

for 50

replicates of the BPF and the iAPF.

101



BPF 2 3 4 5 6 7 8 9 10 11

0
1

2
3

4
5

E
s
ti
m
a
te
s

(a) h = 10�1

BPF 2 3 4 5 6 7 8 9 10 11

0
1

2
3

4
5

E
s
ti
m
a
te
s

(b) h = 10�2

BPF 2 3 4 5 6 7 8 9 10 11

0
1

2
3

4
5

E
s
ti
m
a
te
s

(c) h = 10�3

Figure 12.3: Drift parameter ↵ = 4. Box plots of the estimates of ˆ

Z

Z

for 50

replicates of the BPF and the iAPF.

If we take a closer look at what happens when ↵ = 4 and h = 10

�3 in
Figure 12.4a we can see that it takes at least 3 iterations for the iAPF to
provide reasonably accurate estimate. In this case the iAPF still performs well
and the computational time of the algorithm is not compromised, but we show
how an appropriate initialisation can improve its efficiency. In Figure 12.4b
we show the corresponding results for an iAPF where the initial sequence is
defined through the interpolation method of the previous section. In Figure
12.5 we show the logarithm of the empirical relative standard deviation for the
two algorithms. The execution time of the initialised iAPF is about 50% lower
for the 10 iterations of the iAPF, and therefore even lower if we let the iAPF
stop according to the usual stopping rule.
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Figure 12.4: Box plots of the estimates of ˆ

Z
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for 50 replicates of the BPF and
the iAPF.

Figure 12.5: Logarithm of the relative standard deviations for the non initialised
(white) and initialised (black) iAPF
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12.2 Sin diffusion

We consider the following diffusion process

d ¯X
s

= sin

�
¯X
s

�
ds+ dW

s
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with the conditions ¯X
0

= 0 and ¯X
1

= c on the interval [0, 1]. For this diffusion
exact simulation is possible and it has been used as an example to showcase the
Exact Algorithm in Beskos & Roberts (2005). Note that the estimates from
the Exact Algorithm are relative to the continuous diffusion, therefore we can
investigate on the impact of discretisation. We run some simulations to compare
the efficiency of the iAPF with respect to the BPF and use the Exact Algorithm
to check the results. Note that the optimal look-ahead functions  ⇤

1:T

relative
to the SSM given by the Euler–Maruyama discretisation with parameter h are
not Gaussian in general, contrary to the previous example with the Brownian
bridge. We run simulations for all the combinations of values for the parameters
c 2 �0, ⇡, 3

2

⇡
 

and h 2 {10�1, 10�2, 10�3} and we report in Table 12.1 the
standard deviations of ˆ

Z

¯

Z

for 50 replicates of the iAPF with N
0

= 500 and of the
BPF with N = 10000. The performance of the BPF becomes worse for finer
discretisations, that is for smaller values of h, and for more extreme values of
x̄
S

, that is when x̄
S

is far from the mode of the transition density p
0,1

(0, ·). The
iAPF provides better performance than the BPF in all cases, nonetheless the
BPF can give reasonably good estimates for x̄

S

= 0 and, to a lesser extent, for
x̄
S

= ⇡. For the case where x̄
S

=

3

2

⇡ and for the finer discretisations given by
h = 10

�2 and h = 10

�3 the BPF fails to provide any sensible estimate, while
the iAPF performs very well also for this parameter configurations.

Table 12.1: Logarithm of standard deviation of ˆ

Z

Z

for the iAPF and the BPF

h = 10

�1 h = 10

�2 h = 10

�3

x̄
S

= 0

iAPF:� 5.58

BPF:� 4.21

iAPF:� 5.70

BPF:� 3.42

iAPF:� 5.91

BPF:� 2.98

x̄
S

= ⇡
iAPF:� 4.48

BPF:� 3.34

iAPF:� 4.14

BPF:� 2.38

iAPF:� 4.59

BPF:� 1.49

x̄
S

=

3

2

⇡
iAPF:� 3.92

BPF: + 0.45

iAPF:� 4.22

BPF: –
iAPF:� 3.28

BPF: –

We show some additional plots for the three cases corresponding to the
parameter pairs (c, h) = (0, 10�1

) in Figure 12.6, (c, h) = (⇡, 10�2

) in Figure
12.7 and (c, h) =

�
3

2

⇡, 10�3

�
in Figure 12.8 which are expected to represent

different degrees of challenge for the BPF as they correspond to increasingly
fine discretisations and increasingly extreme realisations. The first two plots in

104



each figure compare the variability of 50 estimates from the BPF and from the
iAPF. The third plot represents the estimated smoothing mean for the BPF
(black),the iAPF (red) and the Exact Algorithm (green) plus and minus one
estimated smoothing standard deviation (dashed lines), that are respectively the
expected value and the standard deviation of the process

�
Xh

t

�
t21:T conditioning

on Xh

T+1

= c.
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Figure 12.6: Simulations with h = 10

�1, c = 0
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Figure 12.8: Simulations with h = 10
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2

⇡

12.3 Time-dependent drift and diffusion in 2 di-
mensions

Given a one dimensional diffusion, provided that the drift a and the volatility
function b do not depend on time, that they satisfy the regularity conditions
(Lipschitz (10.3), with a growth bound (10.2)) and that the conditions to allow
the Lamperti transform hold we can obtain exact samples of diffusion bridges
through the exact algorithm. We now run some simulations with the iAPF for
two more general examples to investigate the behaviour of the algorithm when
the Exact Algorithm cannot directly be used. In the first one-dimensional
example the drift function depends also on the time parameter and with the
second example we consider a diffusion in two dimensions.
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12.3.1 Time dependent drift

Consider the diffusion

d ¯X
s

= ↵s sin( ¯X
s

)ds+ �dW
s

with the conditions ¯X
0

= 0, ¯X
1

= c > 0 in [0, 1]. We run simulations for
different parameter configurations to compare the performances of the BPF and
the iAPF. In all our simulations the iAPF gives a better performance, the extent
of the improved efficiency depending on the instance. The BPF is challenged
when the ending point of the diffusion ¯X

1

= c is relatively unlikely given the
parameters ↵ and �. Consider the parameters c = 2⇡, ↵ = 50 and � = 3. We
report simulations relative to 50 runs of the BPF with N = 10000 particles and
iAPF with N

0

= 500 particles in Figure 12.9. In this case, because the diffusion
paths are continuous and ↵, s � 0, the diffusion process has to go through a
regime of negative drift a

�
s, ¯X

s

�
= ↵s sin

�
¯X
s

�
for ¯X

s

2 (⇡, 2⇡). If this happens
at the beginning of the interval [0, 1], the drift is lower in absolute value because
of the time coefficient s. The iAPF can recognise this dynamic thanks to the
backward recursion that incorporates information about the ending point in the
twisted transition. The BPF fails to provide any reasonable estimate.
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Figure 12.9: Simulations with h = 10

�2, x̄
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12.3.2 Diffusion in 2 dimensions

Our second example is based on the two dimensional diffusion defined by the
stochastic differential equations

d ¯X(1)

s

= ↵ ¯X(2)

s

sin(

¯X(1)

s

)ds+ �dW (1)

s

d ¯X(2)

s

= dW (2)

s

with the conditions ¯X
(1)

0

=

¯X
(2)

0

= 0, ¯X
(1)

1

= c, ¯X
(2)

1

= 1 in [0, 1] with
two independent Brownian motions W

(1)

s

and W
(2)

s

. The iAPF presents some
improvements for all the investigated parameter configurations. We report sim-
ulations relative to 50 runs of the BPF with N = 10000 particles and iAPF with
N

0

= 500 particles relative to two different parameter sets. We set ↵ = � = 1
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and c = ⇡ and report the results in Figure 12.10. From Figure 12.10a and Fig-
ure 12.10b we can see that the iAPF significantly outperforms the BPF, but the
relative standard deviation of the estimates from the BPF is still under control.
In Figure 12.10c and Figure 12.10d we report the smoothing mean estimated
by the two algorithm plus and minus one empirical standard deviation for the
50 replicates. The black (BPF) and the red (iAPF) paths do not differ quali-
tatively but the standard deviation of the BPF mean estimator (black dashed
lines) is significantly higher than that of the iAPF (red dashed lines).
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Figure 12.10: Simulations with h = 10

�2, c = ⇡

We provide a similar report for the parameters ↵ =50, � = 3 and c = 2⇡ in
Figure 12.11. In this second more challenging instance the BPF cannot provide
reasonable estimates for the approximation of the transition density Z

h

while
the relative standard deviation of the estimates provided by the iAPF is well
under control.
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12.4 Comparison with other methods

In all the exploratory examples of this chapter so far we have compared the
iAPF with the BPF. Applying the BPF to the Euler–Maruyama approxima-
tion of a diffusion is not something novel: it is known under the name of forward
simulation and it is described in its essence in Pedersen (1995). Also the draw-
backs of forward simulation are well known, as when simulating skeleton paths
with this method we do so independently of the observations. The modified
diffusion bridges (MDB) approach of Durham & Gallant (2002) can overcome
this limit by shaping a proposal transition which depends on the ending point
x̄
S

of the diffusion bridge. This method, like the forward simulation method, is
based on the Euler–Maruyama approximation of the diffusion bridge defined by
equation 10.1 with discretisation parameter h. When propagating a path x

1:t

with the MDB approach, we define the approximate diffusion

dZ
s

= a (x
t

, th) ds+ b (x
t

, th) dW
s

for s 2 [th, S] and with the condition Z
th

= x
t

. The subsequent point x
t+1

of the
path x

1:t

is proposed according to the discretisation of this auxiliary diffusion,
conditioning on the ending point Z

S

= x̄
S

. In particular we have that
 

Z
h(t+1)

Z
S

!
| (Z

th

= x
t

) ⇠ N (m (x
t

, th) ,⌃ (x
t

, th))

where

m (x
t

, th) =

 
x
t

+ ha (x
t

, th)

x
t

+ (S � th) a (x
t

, th)

!

and

⌃ (x
t

, th) =

 
hb(x

t

, th)b0 (x
t

, th) hb(x
t

, th)b0 (x
t

, th)

hb(x
t

, th)b0 (x
t

, th) (S � th) b(x
t

, th)b0 (x
t

, th)

!
.

From this we can easily and computationally efficiently derive the conditional
distribution of

�
Z

h(t+1)

| Z
ht

= x
t

, Z
S

= x̄
S

�
and propose x

t+1

accordingly (see
for example Malory & Sherlock (2016)). Once the full path x

1:T

is sampled, it is
given with the appropriate importance weight as usual. While this approach can
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be very efficient in many scenarios, paths sampled this way present necessarily
a linear dynamic therefore are not suitable for approximating a continuous
diffusion with a highly non-linear dynamic, as we will show in the following
subsections.

With the aim of addressing this problem for highly non-linear diffusion, a
residual-bridge proposal is introduced in Whitaker et al. (2016). This method
consists of constructing a deterministic path (⇣

s

)

s2[0,S] which captures the non-
linear dynamic of the conditioned diffusion, and then using the MDB approach
on the residual process R

s

:=

¯X
s

� ⇣
s

which satisfies the stochastic differential
equation

dR
s

= (a (R
s

+ ⇣
s

, s)� ⇣ 0
s

) ds+ b (R
s

+ ⇣
s

, s) dW
s

(12.2)

for s 2 [0, S] and with the condition R
0

= 0. This method is successful if the
path (⇣

s

)

s2[0,S] effectively captures the non-linear dynamic of the true diffusion
so that the residual process resembles a Brownian bridge. The choice of the
deterministic path (⇣

s

)

s2[0,S] is critical. A natural choice (see Whitaker et al.
(2016)) is to define (⇣

s

)

s2[0,S] = (⌘
s

)

s2[0,S] , where (⌘
s

)

s2[0,S] is the solution of the
ordinary differential equation

d⌘
s

ds
= a (⌘

s

, s) (12.3)

with the condition ⌘
0

= x̄
0

, that is obtained by suppressing the stochastic term
in the stochastic differential equation in 10.1. Such deterministic path does not
take into account the observation ¯X

S

= x̄
S

and therefore can be inconsistent
with the conditioned diffusion. Another suggestion also presented in Whitaker
et al. (2016) is to consider a tractable approximation

⇣
ˆR
s

⌘

s2[0,S]
of the process

(R
s

)

s2[0,S] and define the deterministic path as

⇣
s

= ⌘
s

+ E
h
ˆR
s

| ¯X
S

= x̄
S

i

where (⌘
s

)

s2[0,S] is again the solution of Equation (12.3).
An important extension of the residual-bridge work of Whitaker et al. (2016)

is presented in Malory & Sherlock (2016). In particular their proposal takes into
account diffusion volatilities which are not constant. This can lead to greater
statistical efficiency in situations where the volatility varies considerably such
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as for large inter-observation intervals where the diffusion moves substantially
over the state space and for diffusions whose volatility is time inhomogeneous.

12.4.1 Sin diffusion

We consider the sin diffusion

dX
t

= ↵ sin (X
t

) dt+ dW
t

(12.4)

in [0, 1] with condition X
0

= 0, X
1

= c, the parameter ↵ > 0 that controls
the magnitude of the drift and the brownian motion W

t

. We initially set the
parameter ↵ = 1 and we repeat the first experiment as in Subsection 12.2 using
the MDB approach of Durham & Gallant (2002). As we did before, we run
simulations for all the combinations of values for the parameters c 2 �0, ⇡, 3

2

⇡
 

and discretisation parameter h 2 {10�1, 10�2, 10�3} and we report the updated
version of Table 12.1 in Table 12.3. Recall that each entry of the table consists
of the standard deviations of ˆ

Z

¯

Z

for 50 iterations of the iAPF with N
0

= 500, the
BPF with N = 10000 and the MDB approach with N = 10000. The number
of particles in use for each algorithm is chosen so that they lead to a similar
computational time. We can see in Table 12.3 that for ↵ = 1 in every instance
the MDB approach shows the best accuracy as measured by the relative variance
of the normalising constant estimates.

Table 12.2: Logarithm of standard deviation of ˆ

Z

Z

for iAPF, BPF, D&G

↵ = 1 h = 10

�1 h = 10

�2 h = 10

�3

x̄
S

= 0

iAPF:� 5.58

BPF:� 4.21

D&G:� 5.86

iAPF:� 5.70

BPF:� 3.42

D&G:� 7.18

iAPF:� 5.91

BPF:� 2.98

D&G:� 6.78

x̄
S

= ⇡

iAPF:� 4.48

BPF:� 3.34

D&G:� 6.51

iAPF:� 4.14

BPF:� 2.38

D&G:� 6.71

iAPF:� 4.59

BPF:� 1.49

D&G:� 6.78

x̄
S

=

3

2

⇡

iAPF:� 3.92

BPF: + 0.45

D&G:� 6.20

iAPF:� 4.22

BPF: –
D&G:� 7.08

iAPF:� 3.28

BPF: –
D&G:� 6.92

Now we run the same experiment setting the parameter ↵ that controls the
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drift to ↵ = 10, and we report the results from these simulations in Table 12.3.
Even in this more challenging scenario the MDB approach leads to an acceptable
variance of the normalising constant estimates, while the estimates from the
BPF are extremely inaccurate apart from the instance with (c, h) = (0, 10�1

).
Nonetheless the iAPF presents the best performance among the three methods,
and in particular for c 2 �⇡, 3

2

⇡
 

the relative variance of the estimates is at
least one order of magnitude lower than that of the MDB approach for every
instance. As we pick more extreme values for the parameter ↵ we accentuate
the non-linearity of the drift and for this reason the MDB approach becomes
unsuitable for example for the problem of evaluating transition densities for this
model, as we show with the following experiment.

Table 12.3: Logarithm of standard deviation of ˆ

Z

Z

for iAPF, BPF, D&G

↵ = 10 h = 10

�1 h = 10

�2 h = 10

�3

x̄
S

= 0

iAPF:� 5.79

BPF:� 2.91

D&G:� 3.15

iAPF:� 5.24

BPF:� 0.26

D&G:� 7.18

iAPF:� 5.01

BPF: + 0.46

D&G:� 6.78

x̄
S

= ⇡

iAPF:� 3.08

BPF:� 0.36

D&G:� 0.78

iAPF:� 3.53

BPF: + 1.14

D&G:� 0.52

iAPF:� 3.19

BPF:�
D&G:� 0.58

x̄
S

=

3

2

⇡

iAPF:� 2.80

BPF: + 0.45

D&G:� 0.50

iAPF:� 2.22

BPF: –
D&G:� 0.90

iAPF:� 2.28

BPF: –
D&G:� 1.08

We fix the right end of the bridge to c = 0 and the discretisation parameter
to h = 10

�1, and we use the MDB approach to produce 50 sample paths for
different value of the parameter ↵ 2 {2, 10, 50}. We present the results in
Figure 12.12. For each case the subfigure on the left shows the 50 sample
paths in black, and the subfigure on the right reports the same paths but the
transparency factor of each one is proportional to its importance weight. While
the MDB proposal seems suitable for the case where ↵ = 2, when we set ↵ = 10

or ↵ = 50 the degeneracy of the importance weights is evident as in these cases
only one path is clearly visible. For these cases the iAPF is a better choice: after
each time step, once a twisted model is defined through the forward backward
procedure, the resampling feature allows us to drop the paths that are doomed
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to have a negligible importance weight, but this is not the only reason. With the
forward backward procedure the iAPF defines a sequence of twisted proposals
that take into account the ending point of the bridge but also adapt to the
non-linear drift of the diffusion. To show this, for the diffusion in 12.4 with
parameters c = 0 and ↵ 2 {2, 10, 50} we run an iAPF with N = 50 particles,
keeping the number of particles constant for 10 iterations of the algorithm in
order to have a fixed computational cost of order O (N). At the end of the
10th iteration we store the final sequence  of look-ahead functions and we
run a  -APF without resampling. We report the results in Figure 12.13 with
the same interpretation as in Figure 12.12. We also report in Table 12.4 the
effective sample size of the 6 sets of 50 weights of the paths sampled with the
MDB approach and with the  -APF. Recall that the effective sample size n

eff

Kong et al. (1994) of a weighted sample {x
i

, w
i

}
i21:N is given by

n
eff

=

P
N

i=1

w2

i⇣P
N

i=1

w
i

⌘
2

so for any set of N weights we have 1  n
eff

 N . The effective sample size
gives the approximate size of an i.i.d. sample which would be equivalent in
precision to the weighted sample used in a single importance sampling setting.
For the case ↵ = 50 the effective sample size of the weights from MDB approach
reach the lower limit for this indicator. We repeat the identical experiment with
the number of particles that we used for the other simulations: 10000 for the
MDB approach and 500 for the  -APF. The results are reported in Table 12.5.
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Figure 12.12: MDB approach for the sin diffusion: 50 sampled paths
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Table 12.4: Effective sample size of the weights of the path in Figure 12.12 and
Figure 12.13

ESS MDB approach  -APF
↵ = 2 41.02 49.86
↵ = 10 2.23 49.92
↵ = 50 1.00 6.78

Figure 12.13: iAPF for the sin diffusion: 50 sampled paths
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For this case the extensions of the MDB approach presented in Section 12.4
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Table 12.5: Effective sample size from sampled paths from the MDB approach
(10000 paths) and the  -APF without resampling (500 paths).

ESS MDB approach  -APF
↵ = 2 8324.07 495.33
↵ = 10 406.12 490.74
↵ = 50 1.08 64.52

cannot mitigate the problem related to non-linear drift. Consider the residual-
bridge approach of Whitaker et al. (2016). If we consider the natural choice
of choosing a deterministic path capturing the non-linearity of the drift, the
ordinary differential equation 12.3 becomes in this case

d⌘
s

ds
= ↵ sin ⌘

s

with the condition ⌘
0

= 0. This equation presents a unique solution which
is ⌘

s

⌘ 0, therefore applying the MDB approach to the residual-bridge defined
by the stochastic differential equation 12.2 is equivalent to applying it to the
original diffusion. Also the other method suggested by Whitaker et al. (2016)
based on a tractable process ˆR

s

approximating the residual reduces to the sim-
ple MDB approach when the process ¯X

s

is observed perfectly and ⌘
S

= x̄
S

.
Not even the other extension we considered by Malory & Sherlock (2016) can
enhance the performance of the MDB approach, as this is designed to address
scenarios where the volatility varies substantially, while in this case the volatility
of the process is constant in time and space.

12.4.2 Stochastic volatility process of the Heston model

The Heston model is a mathematical continuous time stochastic model popular
in the financial literature that describes the evolution of the prices of a set
of financial assets that depend on a common underlying volatility diffusion
(Heston (1993)). We usually observe the prices of the assets from the financial
market at discrete times and we want to make inference on the parameters
guiding the stochastic volatility process. We examine some instances of this
problem in the next section, where it is difficult to adapt the MDB approach of
Durham & Gallant (2002) as perfect observations of the volatility process are
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not available. In this subsection we make a comparison between the iAPF and
the MDB approach for the simplified model that consists only in the underlying
stochastic volatility process.

Consider volatility process v
t

following the stochastic differential equation

dv
t

= ✓
1

(✓
2

� v
t

) dt+ ✓
3

p
v
t

dW
t

(12.5)

for t 2 [0, 1] and the Brownian motion W
t

. This corresponds to the Cox-
Ingersoll-Ross model for interest rates (Cox et al. (1985)) where ✓

2

> 0 is the
long run average variance, ✓

1

> 0 the rate at which v
t

reverts to ✓
2

and ✓
3

is the
volatility of the volatility parameter. For this model we consider the problem
of estimating the transition density p

0,1

(v̄
0

, ·) for a fixed v̄
0

> 0.
We fix the parameters ✓

2

= 0.5, ✓
3

= 0.3 and v̄
0

= 0.5 and we investigate
the three different cases for ✓

1

2 {5, 10, 20}. We consider a set of equally spaced
points vi

1

= 0.3 + i0.8�0.3

100

for i 2 1 : 100 in the interval [0.3, 0.8]. For each vi
1

our estimate for p
0,1

(v̄
0

, vi
1

) is the normalising constant Z
h

of the SSM given
by the Euler–Maruyama discretisation of the diffusion (12.5) corresponding to
the discretisation parameter h. In order to set a parameter h such that the
corresponding discretisation is fine enough for our estimates to be close to the
true transition density p

0,1

(v̄
0

, ·) we run some preliminary simulations. For
✓
1

= 20 and for i 2 0 : 100 we use the iAPF with N
0

= 1000 starting particles
to compute an estimate of p

0,1

(v̄
0

, vi
1

). We do so for three different values of the
discretisation parameter h 2 {50, 100, 200} and we report the three smoothed
estimates of the density p

0,1

(v̄
0

, ·) in Figure 12.14.
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Figure 12.14: Estimates of p
0,1

(v̄
0

, ·) given by the parameters h = 50 (red,
dotted), h = 100 (black, dashed) and h = 200 (black,solid)
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While we can see a small difference between the estimates from h = 50

and h = 100, the two estimates obtained setting h = 100 and h = 200 are
practically overlapping. This suggests that these approximations should be
reasonably close to the transition density of the continuous model. For this
reason we set h = 200 for the rest of this section.

In order to assess the variability of the estimated transition density, we run
a similar experiment but this time for each vi

1

we get 50 estimates from 50

runs of the algorithm and we register the mean and the standard deviation of
these estimates. We do so using an iAPF with N

0

= 500 starting particles and
then with the MDB approach of Durham & Gallant (2002), using N = 10000,
leading to a comparable (but lower for the iAPF) computational time with
respect to the iAPF. In Figure 12.15 we report the results for the instance of
the model with ✓

1

= 5. The black solid line is obtained by smoothing the means
of the estimates for the different values {vi

1

}
i20:100, while the red dashed lines

represent the variability of the densities obtained by adding and subtracting two
estimated standard deviations. For this first case, with similar computational
times the performances of the iAPF and the MDB approach are very similar,
with this second algorithm offering a slightly lower variance of the estimates.
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As we increase the parameter ✓
1

that controls the drift of the diffusion, the
accuracy of the MDB gets rapidly worse while the iAPF is not visibly effected,
similarly to the example in the previous section. In particular for ✓

1

= 10 in
Figure 12.16 the iAPF overtakes the MDB approach in accuracy only slightly,
while for the value ✓

1

= 20 in Figure 12.17 the difference between the two
estimates is remarkable.

Figure 12.15: Estimates of transition density p
0,1

(v̄
0

, ·) for ✓
1

= 5
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Figure 12.16: Estimates of transition density p
0,1

(v̄
0

, ·) for ✓
1

= 10

(a) MDB approach
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Figure 12.17: Estimates of transition density p
0,1

(v̄
0

, ·) for ✓
1

= 20
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12.5 Multivariate Heston model

In this section we consider the problem of estimating the likelihood of a sequence
of noisy, discrete and partial observations from a multivariate Heston model
(Heston (1993)). The Heston model consists of an underlying volatility process
v
t

and a set of d financial securities S(1), . . . , S(d). The underlying volatility
process v

t

follows the stochastic differential equation

dv
t

= ✓
1

(✓
2

� v
t

) dt+ ✓
3

p
v
t

dW
t

for t 2 [0, 1] and the Brownian motion W
t

, and it is the same as the process
12.5 in Section 12.4.2. The evolution of the values of d assets S(1), . . . , S(d)

depends on the common underlying volatility process v
t

. Each asset S(i)

t

follows
the stochastic differential equation

dS
(i)

t

= µ
i

S
(i)

t

dt+ S
(i)

t

p
v
t

dW
(i)

t

for t 2 [0, 1] and the possibly correlated Brownian motions W
(1)

t

, . . . ,W
(d)

t

.
While we can read assets prices from the financial market and interpret them
as noisy observations of the assets values, we do not have access to any direct ob-
servation of the underlying volatility process. Suppose we have T = 13 equally
spaced noisy observations of each asset (but not of the underlying stochastic
volatility process), that represent monthly measurements over the course of a
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year at times t
1

= 0, t
2

=

1

12

, . . . , t
13

= 1. In particular we have

y
(i)

j

⇠ N
⇣
S
(i)

tj
, ✏
⌘

for i 2 1 : d and j 2 1 : T . We write y
j

=

⇣
y
(1)

j

, . . . , y
(d)

j

⌘
and we want to esti-

mate Z = p (y
1:T

). We do so by running the BPF, the MDB approach of Durham
& Gallant (2002) and the iAPF for the SSM given by the Euler–Maruyama dis-
cretisation of the Heston model diffusion corresponding to the discretisation
step h = 100. In the following simulations we look at the variability of the esti-
mators of ZN

h

given by the BPF, the MDB approach and the iAPF. As stated
before, to contain the variance of such normalising constant estimators is very
important, for example when they are used within a PMMH scheme for the pa-
rameter estimation problem. Note that we only observe the stochastic volatility
process through the asset values process: observations of the full latent process
X

t

=

⇣
v
t

, S
(1)

t

, . . . , S
(d)

t

⌘
are only partial and therefore, in the MDB approach,

while the asset prices simulated paths between subsequent observations evolve
according to modified diffusion bridges, the unobserved volatility process paths
between observations follow a forward simulation type evolution.

For the simulations we fixed the parameters v
0

= 0.5, ✓
1

= 1, ✓
2

= 0.5,
✓
3

= 0.02 and S
(i)

0

= 1, µ
i

= 0.05 for all i 2 1 : d. For i 6= j we fix the
correlations of the Brownian motions corr

⇣
W

(i)

t

,W
(j)

t

⌘
= ⇢ if |i� j| = 1 and

corr

⇣
W

(i)

t

,W
(j)

t

⌘
= 0 otherwise. First we produce synthetic asset values path

from the Euler–Maruyama approximation of the model corresponding to the
discretisation parameter h = 10000, for all possible combinations of the param-
eters d 2 {2, 5, 10} and ⇢ 2 {0, 0.25}. In Figure 12.18 we report the simulated
data that corresponds to perfectly observed monthly measurements of the asset
values.
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Figure 12.18: Monthly evolutions of the asset values over the course of a year
with d 2 {2, 5, 10} and ⇢ 2 {0, 0.25}

(a) d = 2, ⇢ = 0 (b) d = 2, ⇢ = 0.25

(c) d = 5, ⇢ = 0 (d) d = 5, ⇢ = 0.25

(e) d = 10, ⇢ = 0 (f) d = 10, ⇢ = 0.25

For all the paths in Figure 12.18 we simulate noisy observations for the three
value of the parameter ✏ 2 {0.2, 0.02, 0.002}. For each configuration we run 50

BPF with N = 10000 particles and 50 iAPF with N
0

= 100 starting particles
and we store the corresponding normalising constant estimates. For the MDB
approach we set N

2

= 5000 particles for the case when d = 2, N
5

= 2500

125



particles in the example with d = 5 and N
10

= 1000 particles for the final
case with d = 10. The number of particles is set so that in the worst case the
computational time of the iAPF is still lower than that of the other schemes.
For each parameter configuration we report in Figure 12.19 the boxplot of the
normalising constant estimates divided by the mean of the normalising con-
stant estimates given by the iAPF for that particular configuration, which we
believe is the most accurate estimate of Z = p (y

1:T

). From the boxplots we can
see that in all the instances but one (corresponding to the parameters d = 2,
✏ = 0.02 and ⇢ = 0) the estimates from the iAPF present less variability than
those obtained from the BPF. The differences in these two algorithms (iAPF
and BPF) performances are extremely evident in the most challenging scenarios
with d � 5 and ✏  0.02. While for most of these cases the BPF estimates are
completely unreliable, the iAPF still provides reasonable estimates at a feasible
computational time. If compared with the MDB approach, the performance of
the iAPF is only clearly superior with respect to that of this scheme in dimen-
sion d = 10. However in general scenarios the MDB approach presents some
important drawbacks with respect to the iAPF. First of all it is necessary for
the observation densities to be Gaussian for the implementation of the MDB
scheme, whereas the iAPF does not rely on this assumption. Second the MDB
approach involves d ⇥ d-matrices inversions, therefore the scheme becomes in-
creasingly expensive in higher dimension, gradually reducing its computational
cost per particle advantage with respect to the iAPF. Lastly the iAPF easily and
automatically adapts to highly non linear dynamics, while the MDB approach
fails in this.

In Table 12.6 we also provide all the figures for the logarithms of the relative
standard deviations corresponding to the boxplots of Figure 12.19. If we keep d

and ✏ constant and we compare the iAPF figures corresponding to the different
values of correlation ⇢ = 0 and for ⇢ = 0.25 we notice that the second value is
always higher: the iAPF performance is overall inferior for the case with non
zero correlation between the Brownian motions (⇢ = 0.25) with respect to the
case with uncorrelated Brownian motions. The reason for this is that the cor-
relation parameter ⇢ has also a strong influence on the corresponding optimal
look-ahead functions. Recall that in all our simulations with the parametric
approach we choose the look-ahead functions from the class of Gaussian den-
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sities with diagonal variance/covariance matrix (plus a constant). While the
iAPF performs still reasonably well with the case ⇢ = 0.25, for higher values of
the parameter ⇢ it is advisable to consider a richer class of Gaussian look-ahead
functions, with a variance/covariance matrix with more degrees of freedom (i.e.
at least some positive non diagonal entries), in order to capture the dependence
structure of the latent process.
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Figure 12.19: Boxplots of the normalising constant estimates ˆ

Z

¯

Z

for the BPF
(dark grey) the iAPF (light grey) and the MDB approach (white)

(a) d = 2, ⇢ = 0 (b) d = 2, ⇢ = 0.25

(c) d = 5, ⇢ = 0 (d) d = 5, ⇢ = 0.25

(e) d = 10, ⇢ = 0 (f) d = 10, ⇢ = 0.25
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Table 12.6: Logarithm of standard deviation of ˆ

Z

Z

for iAPF, BPF

(a) ⇢ = 0

✏ = 0.2 ✏ = 0.02 ✏ = 0.002

d = 2

iAPF:� 7.40

BPF:� 3.61

MDB:� 4.39

iAPF:� 2.45

BPF:� 2.95

MDB:� 3.64

iAPF:� 2.77

BPF:� 1.22

MDB:� 3.56

d = 5

iAPF:� 5.88

BPF:� 2.85

MDB:� 4.09

iAPF:� 1.78

BPF:� 1.38

MDB:� 3.56

iAPF:� 2.22

BPF: �
MDB:� 1.71

d = 10

iAPF:� 4.21

BPF:� 1.99

MDB:� 2.27

iAPF:� 1.22

BPF: �
MDB:� 0.07

iAPF:� 1.24

BPF: �
MDB: + 0.77

(b) ⇢ = 0.25

✏ = 0.2 ✏ = 0.02 ✏ = 0.002

d = 2

iAPF:� 3.71

BPF:� 3.26

MDB:� 3.96

iAPF:� 2.33

BPF:� 2.47

MDB:� 3.16

iAPF:� 1.85

BPF:� 1.53

MDB:� 2.70

d = 5

iAPF:� 2.87

BPF:� 1.36

MDB:� 2.54

iAPF:� 0.72

BPF: + 0.09

MDB:� 1.97

iAPF:� 0.17

BPF: �
MDB:� 0.88

d = 10

iAPF:� 1.20

BPF:� 1.17

MDB:� 1.11

iAPF:� 0.19

BPF: �
MDB:� 0.04

iAPF:� 0.09

BPF: �
MDB: + 0.56
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Chapter 13

Conclusion

In this thesis we have presented the iAPF, an offline algorithm that approxi-
mates an idealized particle filter whose marginal likelihood estimates have zero
variance. The main idea is to iteratively approximate a particular sequence of
functions, and an empirical study with an implementation using parametric op-
timization for models with Gaussian transitions showed reasonable performance
in some regimes for which the BPF was not able to provide adequate approx-
imations. We applied the iAPF to Bayesian parameter estimation in general
state space HMMs by using it as an ingredient in a PMMH Markov chain. It
could also conceivably be used in similar, but inexact, noisy Markov chains;
Medina-Aguayo et al. (2015) showed that control on the quality of the marginal
likelihood estimates can provide theoretical guarantees on the behaviour of the
noisy Markov chain. The performance of the iAPF marginal likelihood estimates
also suggests they may be useful in simulated maximum likelihood procedures.
In our empirical studies, the number of particles used by the iAPF was orders
of magnitude smaller than would be required by the BPF for similar approxi-
mation accuracy, which may be relevant for models in which space complexity
is an issue. In the last part of the thesis we have shown how the iAPF can
facilitate statistical inference in the context of diffusion processes, in particular
for the problems of estimating transition densities and sampling from diffusion
bridges. The modifications to the iAPF we have introduced in Chapter 11 are
meant to enhance its performance when a fine Euler–Maruyama discretisation
is required. In our simulations the iAPF gives good results even when the BPF
performance is compromised due to the degeneracy of the importance weights
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problem, either because we consider a relatively fine discretisation or because
the density point being estimated is relatively far from the mode of the diffusion
process transition density. In particular in Section 12.4 we show how in some
simple instances the iAPF can be a valid alternative to the MDB approach of
Durham & Gallant (2002), as it shows to be more robust with respect to highly
non-linear dynamics. An interesting idea to be explored is the possibility to
combine the two algorithms: the MDB approach can be used to initialise the
iAPF, by producing the first wave of exploring particles and therefore a particles
support from which we can shape  

1

. This would mitigate the problem with
the degeneracy of the importance weights in the first iterations of the iAPF,
possibly more effectively than the complementary iAPF initialisation discussed
in Section 11.1.

In the context of likelihood estimation, the perspective brought by viewing
the design of particle filters as essentially a function approximation problem has
the potential to significantly improve the performance of such methods in a va-
riety of settings. There are, however, a number of alternatives to the parametric
optimization approach described in Section 7.3, and it would be of particular
future interest to investigate more sophisticated schemes for estimating  ⇤, i.e.
specific implementations of Algorithm 6.1. We have described a kernel density
approach in Section 7.2 and used it to define estimates of the sequence  ⇤ with
some success in Chapter 8, but the computational cost of the approach was
much larger than the parametric approach. Alternatives to the classes F and
 described in Section 6.1 could be obtained using other conjugate families,
(see, e.g., Vidoni 1999). We also note that although we restricted the matrix ⌃
in (7.1) to be diagonal in our examples, the resulting iAPF marginal likelihood
estimators performed fairly well in some situations where the optimal sequence
 ⇤ contained functions that could not be perfectly approximated using any
function in the corresponding class. Finally, the stopping rule in the iAPF,
described in Algorithm 6.2 and which requires multiple independent marginal
likelihood estimates, could be replaced with a stopping rule based on the vari-
ance estimators proposed in Lee & Whiteley (2015). For simplicity, we have
discussed particle filters in which multinomial resampling is used; a variety of
other resampling strategies (see Douc et al. 2005, for a review) can be used
instead.
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The iAPF performs well in all of our applications and very well in most
of them. This is also due to the fact that it effectively exploits the sequential
nature of the SSM models, and even if we are dealing with d ⇥ T -dimensional
distributions ⇡

T

which are difficult to approximate, the look-ahead functions
are “only” d�dimensional and therefore more treatable. It is possible to think
of an importance sampling version of the iAPF where an initial proposal density
q
0

is used to target an arbitrary density ⇡. The procedure would correspond
to the standard version of the iAPF applied to the (degenerate) SSM with
initial distribution µ = q

0

and only one potential function g (·) = ⇡(·)
q0(·) . However

in applications of interest the target density ⇡ tend to be high dimensional -
which is a problem for the kernel density estimate approach due to the curse of
dimensionality - and multimodal or with a non trivial shape - in which case it
might be too much to assume that we can define a class of parametric functions
which resemble g (·) = ⇡(·)

q0(·) with the parametric approach. While some adaptive
importance sampling schemes might be more apt in the importance sampling
setting (Oh & Berger (1992), Rubinstein (1999)), the iAPF proved to be a
competitive new element in the set of sequential Monte Carlo methodologies.
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