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Abstract
The importance of home healthcare is growing rapidly since populations of developed and even developing countries
are getting older and the number of hospitals, retirement homes, and medical staff do not increase at the same rate. We
consider the Home Healthcare Nurse Scheduling Problem where patients arrive dynamically over time and acceptance and
appointment time decisions have to be made as soon as patients arrive. The objective is to maximise the average number of
daily visits for a single nurse. For the sake of service continuity, patients have to be visited at the same day and time each
week during their episode of care. We propose a new heuristic based on generating several scenarios which include randomly
generated and actual requests in the schedule, scheduling new customers with a simple but fast heuristic, and analysing
results to decide whether to accept the new patient and at which appointment day/time. We compare our approach with two
greedy heuristics from the literature, and empirically demonstrate that it achieves significantly better results compared to
these other two methods.

Keywords Home healthcare · Optimisation · Heuristics · Simulation

1 Introduction

Home Healthcare (HHC), also referred to as in-home care,
social care, or domiciliary care, is becoming one of the most
important components of healthcare. HHC helps hospitals
and retirement homes to free capacity and decrease care
delivering cost [1]. The most crucial objective of HHC is to
ensure people who need medical attention and daily care to
receive high-standard home services. According to patients’
needs, nurses, physicians, doctors, and operators visit
patients’ homes periodically and provide services. Many
elderly, people who are chronically ill, and individuals with
disabilities receive HHC services [2].

In 2005, $53.4 billion were spent on 17,700 HHC service
providers in the US according to The National Association
for Home Care and Hospice. HHC companies employed

� Juergen Branke
Juergen.Branke@wbs.ac.uk

Mustafa Demirbilek
M.Demirbilek@warwick.ac.uk

Arne Strauss
Arne.Strauss@wbs.ac.uk

1 Warwick Business School, Coventry, UK

2 WarwickBusiness School, University ofWarwick, Coventry, UK

200,000 nurses to service approximately 7.6 million patients
in 2007 [3]. Due to some factors such as ageing population,
chronic diseases, insufficient capacity of hospitals, etc., it
is projected that the demand for HHC doubles by 2030
[4]. The following information shows why HHC is gaining
much more importance day by day:

– The number of people aged 65 and over in US will be
four times as many by 2040 [5].

– Care of a patient in the home costs only $132 per day
whilst $1889 are spent for a patient receiving care in a
hospital [3].

– Home-based health technologies cost $3 billion in 2007
versus $7.7 billion in 2012 [1].

– The percentage of American adults who are chronically
ill is more than 50% [6].

In this study, we focus on the acceptance decision of a
request as well as the scheduling. In the literature, an accep-
tance policy is occasionally discussed in different areas
such as public transportation [7] and vehicle dispatching
[8]. The problem starts whenever a patient requests ser-
vice. The HHC provider has to decide whether or not to
accept the patient and, if accepted, assign suitable appoint-
ment days and times. Then, for each shift, all nurses start
from their homes, visit scheduled patients at the agreed
appointment times, serve them for the prescribed time, and
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finally return to their homes. In this paper, only a single
nurse servicing patients in a specific area is considered and
any overlaps with other nurses’ regions are ignored. We
leave the multi-nurse case to future research. The objec-
tive of this problem is to maximise the average number
of daily visits performed by the nurse. We require that
patients are serviced at the same days and times during
their service horizon, which is called consistent, periodic
Vehicle Routing Problem (VRP). Furthermore, the problem
is dynamic, and acceptance and assignment time deci-
sions have to be made as soon as patients arrive. Although
there are some studies providing solutions to this problem
by using greedy algorithms in the literature, these algo-
rithms do not consider or only partially consider future
demand. We propose a Scenario Based Approach (SBA)
which simulates several scenarios, scheduling new cus-
tomers with a simple but fast heuristic, and analysing results
to decide whether to accept the new patient and at which
appointment day\time. The basic idea is to see how many
times the new request is assigned amongst all simulated
requests and in which time slot it is scheduled most fre-
quently. We examine two different variants for SBA. First,
a Daily Scenario Based Approach (DSBA) constructs daily
tours based on single day demand. Next, a Weekly Sce-
nario Based Approach (WSBA) constructs weekly tours
by taking into account an entire week’s requests simulta-
neously in each scenario. Our main contributions are the
following:

– A new acceptance and scheduling policy based on a
solution methodology which anticipates future demand
for the Dynamic HHC problem,

– Comparison of two different approaches, one depend-
ing on constructing tours for each day of the week
independently and the other considering all visits of
requests in the week at the same time when constructing
tours for each day.

– Comparison of our solution method to two greedy
heuristics proposed by Bennett and Erera [9].

In Section 2, we present a literature review related to
home health nurse routing and scheduling problems. In
Sections 3 and 4, we define the problem and present the
solution approaches. In Sections 5, simulation environment,
scenarios, and results are presented. Finally, we conclude
our study and outline future opportunities in Section 6.

2 Literature review

In this section, we go over the most relevant studies in the
HHC area and Dynamic Routing Problem (DVRP) since our
problem and solution methodology are directly related to
the DVRP.

2.1 HHC studies

HHC related models started with Begur et al. [10] in
1997, “An integrated spatial DSS for scheduling and routing
home healthcare nurses”. They constructed a decision
support system for a home care company to optimise
their routing and rostering operation without considering
time windows. We refer readers to Mutingi et al. [11]
for a state-of-the-art review of the models and algorithms
that have been reported in the literature between 1997
and 2013, and concentrate on some key papers from this
period.

Gaspero and Urli [12] focused on finding an optimal
multi-day HHC schedule by employing a two-stage solu-
tion approach. First, they used constraint programming to
solve the vehicle routing formulation. Next, they intro-
duced a large neighbourhood search method to improve the
initial solution provided by constraint programming. This
method was applied to solve a set of random instances
that mimic a real-world HHC assignment problem. Exper-
imental outcomes showed that large neighbourhood search
significantly improved the constraint programming solu-
tion in terms of number of unscheduled patients. However,
constraint programming is a better way to reduce the total
travelling distance. Bard et al. [13] constructed weekly
schedules of HHC staff servicing in 135 nursing homes.
They tried to minimise cost over a 5-day planning horizon
under over time rules, breaks, and time window constraints.
Additionally, preference of patients and nurses were taken
into account unless they violated feasibility of the model.
They modelled the problem as a large-scale mixed integer
programme and used a branch-and-price-and-cut algorithm
to solve it. Furthermore, a rolling horizon algorithm was
used to find high-quality solutions for larger instances since
the branch-and-price-and-cut algorithm was slow to con-
verge. They employed data and regulations such as the
practises, policies, legal restrictions, and compensation rules
of Key Rehab, a company providing physical, occupa-
tional, and speech therapy in US Midwest. Carello and
Lanzarone [14] developed a healthcare application based
on nurse rostering by taking into account the continuity of
care requirement. They used stochastic programming and
robust optimisation to model both deterministic and stochas-
tic problem settings without generating scenarios. They
tested the algorithm by using real-life data, taken from a
HHC service provider in Italy, and observed that the robust
approach showed superior results in terms of overtime work
and continuity of care compared to non-robust algorithms.
However, the algorithms could provide reasonable results
for at most a week since computational cost became very
high for longer periods. Cappanera and Scutella [15] tried to
develop a model that took into account operators’ skill level
matching to patients’ needs. They proposed an integer linear
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programming formulation to solve this assignment problem
including scheduling and routing factors. They used real
data derived from HHC providers in Italy to evaluate their
model and observed that it worked successfully address-
ing large HHC instances. Duque et al. [16] constructed
a decision support system for a social profit organisation
that provides HHC in Belgium. They modelled the prob-
lem as a bi-objective optimisation model considering two
different objectives, satisfying preferences of both nurses
and patients and minimising total travel distances. Consis-
tency and periodicity of visits, different visits frequencies
depending on patient needs, and caregiver absence were
taken into consideration in the model. They suggested a
two-stage approach based on the first maximising the most
crucial objective, the satisfaction of patients and nurses’
preferences independent of minimising travel distance. At
the second stage, the travel distance was minimised with
a constraint on worsening the first objective value below
a predefined tolerance limit. Zhan et al. [17] studied an
HHC routing and appointment scheduling problem with
uncertain service times for a doctor. Their objectives are
to minimise patients’ waiting times, the doctor’s idle time,
and total travel time. First, they solved a small size prob-
lem with mixed integer programming under the assumption
of known patients’ service time distributions. Next, the
problem was modelled as a two-stage stochastic program-
ming problem and the L-Shape method was used since the
branch-and-cut algorithm was not able to solve the prob-
lem in a reasonable time for larger instances. Finally, they
suggested a heuristic method which could calculate approx-
imate cost of idle and waiting times just by considering
the predecessor’s random service time. Results showed that
the L-Shape method was more efficient than a branch-and-
cut algorithm. Additionally, the heuristic provided good
results for large size problems. Hiermann et al. [18] con-
sidered HHC scheduling problem with nurse-patient pref-
erences, time windows, qualifications, and pre-allocated
jobs for a home care company operating in Austria. They
aimed to minimise the tour length when considering sat-
isfaction of patients and staff. A two-stage approach was
employed to solve the problem. At the first stage, an initial
solution was created by constraint programming or ran-
dom procedure. At the second stage, the initial solution
was iteratively optimised by applying one of four meta-
heuristics: a memetic algorithm, scatter search, variable
neighbourhood search, and simulated annealing. Results
showed that all algorithms performed and terminated in
reasonable time. Particularly, the memetic algorithm and
variable neighbour search provided superior results. Braek-
ers et al. [19] proposed a bi-objective optimisation model
to examine the trade-off between operating cost covering
overtime and travel costs and service level including prefer-
ences of clients and nurses. They solved the problem with a

meta-heuristic algorithm based on a multi-directional local
search framework. They conducted computational experi-
ments by using several benchmark problem samples gen-
erated based on a real data set. The algorithm performed
quite well compared to exact solution methods for small
size instances. The results showed that allowing for an
additional operating cost was able to improve the ser-
vice level significantly. Mankowska et al. [20] developed a
model for daily HHC routing and scheduling. The model
covers nurse qualifications, patients’ preferences, interde-
pendent and dependent services where the former requires
that some tasks must be handled before other tasks and
the latter is taken into consideration when a task needs
more than one worker. They aimed at minimising travel and
idle times of nurses and providing fair allocation of wait-
ing times amongst the requests. They introduced a mixed
integer linear model and solved a small size problem with
ILOG Cplex Solver and a large size instance with adaptive
variable neighbourhood search algorithm. Tables 1, 2, and 3
represent a classification of publications in terms of
objectives/performance measures, constraints, and solution
methodologies in the literature.

As we mentioned above, existing papers in the literature
generally focused on static problem settings for which
the number of patients was already known, but requests
arrive to the system dynamically during service horizon
in real life cases. Additionally, they did not consider any
acceptance policy. We have found only the study of Bennett
and Erera [9] which considers dynamic patient sets. They
presented a rolling horizon myopic planning approach for
the single nurse HHC problem. This approach proposed a
capacity based insertion heuristic when integrating a new
patient request to the existing schedule by considering the
nurse’s remaining available time explicitly. Furthermore,
they modelled the problem as dynamic periodic fixed
appointment time, which means that patients arrived
dynamically and they were assigned to predetermined days
over a predetermined number of weeks to visit. Their
objective was to maximise the number of patients being
served by a nurse. However, the proposed distance and
capacity based heuristics are greedy algorithms which try
to choose the best movement whenever a new request
arrives without considering future requests or only partially.
Moreover, these heuristics accept all requests by ignoring
that to reject a request now can allow to accept more
requests in the future. The point behind an acceptance or
a rejection decision is that if a request of a patient located
far from the tour is rejected, more closer requests in the
future can be assigned to the tour. In other words, we
spend time serving patients instead of travelling between far
locations. Of course, we should project future demand
properly to make this decision. Therefore, we tried to
answer two questions in the perspective of this study. First,
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Table 1 A classification of publications in terms of performance measures and objectives

Travel Time/Cost Waiting Time/Cost Patient/Staff Preferences Unscheduled Patient/Task

Begur et al. [10] �
Gaspero and Urli [12] � � �
Bard et al. [13] � �
Carello et al. [14] �
Cappanera et al. [15] �
Duque et al. [16] � �
Zhan et al. [17] � �
Hiermann et al. [18] � �
Braekers et al. [19] � � �
Bennett and Erera [9] �
Mankowska et al. [20] � � �
Our study �

do we accept or reject the request? And second, if we decide
to accept the request, which time slot should it be assigned?

2.2 DVRP studies

In contrast to the classical VRP, real-world applications
often force decision makers to design routing plans online
where new information becomes available during plan
execution. DVRP studies begin with Wilson et al. [21]
in 1977. They employed a greedy insertion heuristic
to put dynamically arriving requests into a tour for
a single vehicle. Interested readers can find detailed
literature reviews on the DVRP in [7, 22, 23]. Because
the DVRP literature is vast, we only discuss some
papers whose solution methods are related to our solution
methodology. Ichoua et al. [24] suggested a Tabu Search
based solution method to exploit probabilistic knowledge

about future request arrivals. They proposed a waiting
strategy where vehicles wait at their current locations based
on knowledge about future requests if there is a time
gap until the next customer service. Hvattum et al. [25]
proposed a multi-stage stochastic programming model and a
heuristic solution methodology. The heuristic that generated
scenarios including scheduled visits and random customers
raised from known distributions. Each sample scenario was
solved as a deterministic VRP and common features in
the sample scenario solutions were employed to construct
routes. Bent et al. [26] modelled DVRP with time windows
and aimed to maximise the number of daily visits. They
proposed a multiple scenario approach based on generating
routing plans including both known and future customers.
A distinguished plan selected by a consensus function in
terms of the smallest travel cost was employed for decision
making processes. The multiple scenario approach was

Table 2 A classification of publications in terms of constraints

Qualification Multi worker Time windows Consistency/Periodicity Patient/Staff Preferences Breaks

matching

Begur et al. [10] � � �
Gaspero and Urli [12] �
Bard et al. [13] � � �
Carello et al. [14] � �
Cappanera et al. [15] � � �
Duque et al. [16] � � �
Zhan et al. [17] �
Hiermann et al. [18] � � �
Braekers et al. [19] �
Bennett and Erera [9] �
Mankowska et al. [20] � � �
Our study �



Dynamically accepting and scheduling patients for home healthcare

Table 3 A classification of publications in terms of solution methodologies

Exact Heuristics Single objective Multi objective Static Dynamic

Begur et al. [10] � � �
Gaspero and Urli [12] � � �
Bard et al. [13] � � � �
Carello et al.[14] � � �
Cappanera et al. [15] � � �
Duque et al. [16] � � �
Zhan et al. [17] � � � �
Hiermann et al. [18] � � �
Braekers et al. [19] � � �
Bennett and Erera [9] � � �
Mankowska et al. [20] � � � �
Our study � � �

tested against greedy approaches under dynamism varying
between 30% and 80%. The main difference between the
solution methods of Bent and Hvattum et al. is that the
multiple scenario approach from [26] works as Tabu Search
with adaptive memory by maintaining and updating routing
and distinguished plans consisted of current and future
customers whilst Hvattum’s heuristic [25] is a multi-stage
model in which each stage represents a time interval over
the time horizon. The aim is to find a plan that minimises
the expected cost of visiting both current and future requests
at the beginning of each stage.

Although the problem we consider is certainly related
to the dynamic vehicle routing problem, but there are
also substantial differences. The typical paper on dynamic
VRP considers a single day, and customer requests may
arrive whilst vehicles are already under way. The customer
requests then have to be integrated into the existing tours,
tours can usually be changed dynamically. On the other
hand, in our problem we assume all customer requests arrive
in the week before the first service, they arrive dynamically,
and we have to commit to fixed appointment dates and times
for each request when it arrives. Also, whilst usually DVRP
problems assume a customer request only has to be serviced
once, we assume patients have to be serviced several times
a week, over several weeks, and at the same times and days
every week.

3 Problem definition

The problem we consider is a single nurse HHC scheduling
problem in a dynamic environment over a planning horizon.

Nurse All patients are visited by a single nurse in a defined
geographic service area. Each working day is divided into

equally-spaced time slots to schedule patient visits. A set of
possible appointment times, K, can be defined as:

K={b+iφ : i=0,1,...,k},
where b is the earliest time for an appointment and φ is
the time between appointment times. Travel time between
patient i and j is denoted by m(gi, gj ) in minutes where
gi represents the location of patient i. All travel times are
always rounded up to the nearest multiple of time slot.
Overtime and weekend work are not considered in our
model.

Patients Inter-arrival times between patients’ requests are
exponentially distributed with parameters over the planning
horizon. A request i from location gi contains weekly
service frequency fi , episode of care eci that represents
how many weeks patient i needs care, service duration for
each visit sdi , starting time for the service Ki , and weekly
allowable visit day combinations. Visits have to be at the
same days and times for consecutive weeks during the
episode of care.

Dynamics The problem is dynamic in that there are many
acceptance/rejection decisions during the planning horizon.
Thus, the solution depends on our scenarios. At each stage
(a request arrives), decisions are whether or not the request
is accepted, and if so, which day combination and time slot
it should be assigned to. Patients that cannot be scheduled
are rejected. We assume that the acceptance/reject decision
has to be made straight away (e.g. whilst the patient is still
on the phone) and if we reject a patient, the patient will turn
to another home healthcare company.

Constraints

– Let i and j be two consecutive appointments on a day,
and let gi and gj represent locations of the patients
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assigned to those appointments. Every route for that day
is feasible, if and only if

Ki + sdi + m(gi, gj ) ≤ Kj

for any two consecutive appointments, i and j .
– A task, representing a duty at a patient’s home, has to

be carried out as often as determined by its frequency
and episode.

– One of the possible day combinations can be selected
for each patient.

– Patients, if accepted, must be serviced at same days and
times every week during their service horizon.

– A nurse starts a tour from her home and ends the tour at
her home again within the shift’s time window.

– A nurse has to handle a task in its scheduled time period.

Objective The objective is maximisation of patient visits
during the planning horizon. This is different from
maximisation of the number of patients served since patients
need different numbers of visits. If T represents a set
of patients accepted over the planning horizon, excluding
warm-up, our objective is:

max
T

∑

t∈T

ft ect .

4 Solutionmethods

In this section, we explain two greedy heuristics and our
solution methodologies.

4.1 Distance Heuristic

The distance heuristic [9] is a greedy method which
assigns a new request between the pair of patients where
is the smallest insertion cost/additional travel time. The
cost is calculated by subtracting the distance between the
predecessor and successor of a request from the sum of
distances between the request and its predecessor and
successor. If the Euclidean distance between a request and
its predecessor and successor are represented as k1 and
k2 and the Euclidean distance between its predecessor and
successor is k3, the insertion cost, C is calculated as:

C = k1 + k2 − k3.

Therefore, whenever a new patient arrives to the system,
the algorithm calculates the cost of insertion of that
patient between all requests assigned already in each
day of the week if intervals are feasible. After that, the

method selects the cheapest interval in a day/days according
to visit frequency of the patient. Finally, all visits are
scheduled to those cheapest days and time slots during the
service horizon of the patient. The appointment time is set
according to proximity of the request to its predecessor or
successor. For example, if the distance between the request
and its predecessor is shorter than than the distance between
the request and its successor, the visit will start right after
its predecessor visit and enough travel time of course. If
there are some days which have the same insertion costs, as
a tie-breaker, we assign the visit to one where fewer patient
visits are already scheduled to balance the workload of
days.

4.2 Capacity heuristic

The distance heuristic schedules appointments next to each
other, even if the travel from one appointment to the next
requires more than one time unit. In such cases it may
be beneficial to allow for a longer time gap between
appointments, so that future patients can be inserted in
between, without requiring additional travel time.

The capacity heuristic [9] avoids scheduling a new
patient directly adjacent to an existing patient if the travel
time is longer than a time slot. If a new patient is more
than one time slot away from other patients in the schedule,
the capacity heuristic assigns it to a time slot which leaves
ample time between it and its predecessor and successor
patients to be able to assign a future request between them.
For example, let us assume that the travel time between a
new request and its predecessor (8.00 am) and successor
(11.00 am) are 19 and 24 minutes respectively, and service
time is 30 minutes for each one. Thus, candidate time
slots are 9.00, 9.15, 9.30, 9.45, and 10.00. If we use the
distance heuristic, he is scheduled at 9.00 am. In this case,
we can schedule at most one additional request at 9.45,
10.00, or 10.15. On the other hand, if we schedule the
request at 9.30, there is a possibility to schedule two more
patients at 8.45 and 10.15 if they need only one time slot
for travelling between their predecessors and successors.
Therefore, the capacity heuristic creates gaps for future
patients. Of course, there must be enough space between
predecessor and successor patients to put the current request
into a suitable time slot. If not, requests are assigned as they
are assigned with the distance heuristic.

4.3 Scenario based approach

As mentioned in previous sections, distance and capacity
heuristics are greedy algorithms which try to choose the
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best movement whenever a new request arrives without
considering or only partially considering future requests.
These heuristics accept all requests if they can and ignore
that rejecting a request now can allow accepting more
requests in the future. Therefore, with SBA, we try to
answer two questions. First, do we accept or reject the
request? And if we decide to accept the request, which time
slot should it be assigned?

The basic idea behind the algorithm is to run a number
of simulations (scenarios) and see how many times the
request under consideration has been assigned amongst
all requests and in which time slot it has been scheduled
most frequently. A scenario includes a number of randomly
generated requests in terms of the expected demand and
expected number of visits as is explained in more detail
in the simulation set-up in the next section. We try to
make a daily tour with randomly generated requests,
previously accepted ones, and the current one by using
the cheapest insertion heuristic whose aim is to find the

shortest sub-tour. After the tour is full or all requests
in the scenario are assigned, we cheque whether the
current request has been scheduled and, if so, its time
slot.

We study two different variants for SBA. First, the Daily
Scenario Based Approach (DSBA) simply constructs daily
tours based on daily demand and independent of a request’s
multiple visits in the week. Next, the Weekly Scenario
Based Approach (WSBA) constructs weekly tours based on
one week demand and all visits of the current patient and
requests in the scenario.

4.3.1 Daily scenario based approach(DSBA)

In DSBA, each day in a week is evaluated separately and
independently of other days in the week. Let us illustrate
DSBA with an example. Assume that a new request arrives
on Monday from a random location in the service area with
3-visit-per-week frequency. Episode of care and service

Fig. 1 Illustration of generating scenarios and finding the number of acceptance over all scenarios and the most frequent time slot the request is
assigned to
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duration do not matter since they are assumed to be the same
for all patients. Now we have to decide whether we accept
or reject the request.

First, we generate several scenarios for each day of
the next week. Each scenario has a number of randomly
generated requests and the current request as shown in
Fig. 1. To find how many requests we need to generate
randomly, we calculate the average weekly demand. Note
that we always calculate a week of demand no matter when
a request arrives as explained at the end of this section. If
we are looking at next Monday and the expected demand
until that day is 10 new patient requests, the total number
of visits for next week equals 25 (10*2.5), where 2.5 is the
expected weekly visit frequency for a patient. We divide the
total number of weekly visits by 5 to determine the average
number of visits for a day. It means that 5 requests are
generated for each scenario and the current request is added
to them.

Next, we try to construct a tour by using requests in
the scenario and patients already assigned for that day as
illustrated in Fig. 1. Requests are assigned to the tour by
using the cheapest insertion heuristic until the tour is full
or all requests in the scenario have been scheduled. The
cheapest insertion heuristic (CIH) calculates the cost of all
possible insertions and finds the one that has the lowest cost.

Once all the requests have been scheduled or no further
request can be inserted, we check whether the current
request has been scheduled and if so, in which time slot it
has been scheduled. After all scenario simulations finish,
we find how many times it has been accepted and which
time slot it has been assigned to most frequently that
day as seen on bottom right Fig. 1. To decide which
day combination (Monday-Wednesday-Friday, Tuesday-
Thursday-Friday, etc.) it is scheduled, we pick up the
best one, two or three days in terms of number of
assignments over all scenarios. If the request cannot be
scheduled for the number of days that it needs weekly, it
is rejected. Algorithm 1 shows the pseudo code for DSBA.
”nReqInTour” in Algorithm 1 represents how many times
the request has been scheduled over all scenarios. If it has
been assigned at least once, which is called threshold, we
accept that request. One can see how different thresholds
affect the results in Section 5. The number of scenarios is
represented by “n” and how to determine the quantity is
explained in Section 5.1.2.

We generate random requests based on a week of
demand. For example, if a patient arrives on Wednesday, we
consider a week demand when checking the next Monday
or Friday. However, we have two working days until
Monday and seven working days until Friday. The reason
to this assumption is that requests that arrive through the

end of the week are most likely accepted if the true
demand is considered since no other random requests
are generated due to the lack of demand. According to
our experiments, this set-up outperforms the previous one
if the service horizon for patients is only one week.
However, if the service horizon is 4-weeks as in our case,
the number of daily visits dramatically decreases because
accepted patients at the end of the week start blocking
acceptance of more suitable requests arriving in subsequent
weeks. Therefore, we use a week of demand in all our
experiments.

4.3.2 Weeky scenario based approach(WSBA)

As explained in the previous section, when generating
scenarios for each day in a week, as in DSBA, different
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visits of the same patient are simply ignored. However,
a patient can need 1, 2 or 3 visits in a week and
should be considered when generating scenarios for each
day of the week. Therefore, we developed a Weekly
Scenario Based Approach (WSBA) which constructs tours
by taking into account all visits of requests simultaneously
in each scenario. In this approach, we generate visits
based on expected weekly demand and weekly visit
frequency of patients, and construct a weekly schedule with
corresponding daily tours by using the cheapest insertion
heuristic until the tour is full or all requests in the scenario
have been scheduled. After repeating the same process for
several scenarios, we choose the day combination to which
the current request has been most frequently assigned over
all scenarios. Patients who can not be scheduled in any
scenario are rejected. Algorithm 2 shows the pseudo code
for WSBA. “nCombinations” represents the days for which
visits of a patient can be scheduled. As an illustration,
assume that there are 5 randomly generated requests (R1
to R5) with different weekly visits and Request A which is
under consideration whether to accept or not in the scenario.
Table 4 represents these requests with the number of visits
they need and insertion cost in terms of travel times for
each day. The insertion cost for each day is calculated as we
do in DSBA. The algorithm selects the cheapest day/days
depending on the number of visits that a request needs.
Summing up cost of those days gives the total cost. Monday
and Wednesday results in the cheapest total cost for R4
whilst R1 should be assigned to Monday since it needs only
one visit and the cheapest insertion cost is computed for
Monday. Lines 15-19 in Algorithm 2 show the calculation of
the cheapest day set as shown in the example above. Table 5
shows iterations where the algorithm compares requests in
the scenario and selects the cheapest in terms of the average
cost. The average cost is computed in order to compare
insertion costs of patients who need different numbers of
visits. R2 is chosen and removed from the scenario in the
first iteration in Table 5. In the second iteration, the total
costs for all remaining requests are recalculated as in Table 4
and Request A is selected and removed from the scenario
this time due to having the smallest average cost. These
iterations last until no request remains in the scenario or
the tour becomes full. As can be seen in the next section,
we use two different day sets, day set 1 and 2. The former
allows all possible day combinations whereas the latter only
allows specific day combinations. When testing WSBA, we
employ day set 2 since the computational time is linear with
the possible number of day combinations. Assignments of
visits at the same time in the scenario and comparison of
average assignment cost distinguish WSBA from DSBA.

5 Simulation and results

5.1 Experimental set-up

We run 30 simulations for each experiment. Each simulation
horizon is 360 working days where each day lasts 510
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Table 4 Assignment cost for each visit of requests and total cost

Visit Monday Tuesday Wednesday Thursday Friday Day set Total cost

R1 1 50 60 55 80 80 Mon 50

R2 3 30 ... 40 ... 20 Mon-Wed-Fri 90

R3 3 50 ... 30 ... 40 Mon-Wed-Fri 120

R4 2 50 60 50 80 60 Mon-Wed 100

R5 2 80 40 50 40 70 Tue-Thu 80

A 3 70 ... 50 ... 70 Mon-Wed-Fri 190

minutes. A day is composed of 34 time slots (k=34) which
last 15 minutes. The nurse works between 08.00 and 16.30
each day during the planning horizon. 20-day warm-up
period is set at the beginning of the simulation. Inter-arrival
times between requests are exponentially distributed with
mean 510, 340, or 255 minutes (we have three trials). This
corresponds to approximately 1, 1.5, and 2 requests per
day, respectively. Each patient has to be serviced over 4
weeks with stochastic visit frequency 1, 2, or 3 visits per
week with probabilities 0.05, 0.35, and 0.60, respectively.
The first visit is scheduled in the following week after the
request has been accepted. Visit durations are deterministic
and take 30 minutes. Each arriving customer request is
equally likely to arise from either a small square geographic
region subdivided into 900 equally-sized square subregions
or a large square geographic region subdivided into 3,600
equally-sized square subregions. The reason of using two
different area sizes is to observe how algorithms react
to short and long travel times. Simulation parameters are
shown in Table 6. The nurse (depot) is located in the
centre of both regions. To understand differences between
simulation results, we conduct independent samples t-
tests. Numbers written in bold font mean that they are
statistically different. We have two different set-ups for
visit days each patient can be assigned to according to
his weekly visit frequency. In the first set-up, each patient
can be scheduled any combination of days in the week.
Because we do not allow weekend work, there are

(
n
f

)

day combinations for a patient where f represents the
weekly visit frequency and n represents the number of days
(Monday, Tuesday, Wednesday, Thursday, Friday). This is
called day set 1. Although most studies in the literature
allow any day combinations when assigning requests, some
authors [16] emphasises not to use sequential days if
multiple visits are taken into consideration. Intuitively,
it does not make sense to perform some tasks such as
cooking, bathing, etc. the first two or three days at the
beginning of a week and to do nothing at the remaining
days when considering real life cases. Thus, we also use
another day set-up which does not allow to schedule
sequential days when the visit frequency of a patient
is two or three. Therefore, only the following visit day
combinations can be assigned to a patient who needs
two visits in a week, ((Monday,Friday),(Monday,Thursday),
(Tuesday,Friday),(Tuesday,Thursday)) and a patient who
needs three visits in a week, (Monday,Wednesday,Friday).
This set-up is called day set 2.

Note that our approach does not depend on above
parameter settings such as time intervals, appointment
durations, service horizon, or non-uniform demand. It can
be applicable for different parameter setting as well.

5.1.1 Determination of scenario size

In DSBA and WSBA, we fixed the scenario size to 75.
Obviously, a large number of scenarios means longer

Table 5 Selection of requests

Iteration 1 Iteration 2 Iteration 3

Visit Total cost Average cost Total cost Average cost Total cost Average cost

R1 1 50 50 60 60 30 30

R2 3 90 30 ... ... ... ...

R3 3 120 40 150 50 120 40

R4 2 100 50 120 60 140 70

R5 2 80 40 150 50 100 50

A 3 190 63 100 33 ... ...
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Table 6 Simulation setup

Simulation parameters

Simulation horizon (day) 360

Warm-up period (day) 20

Daily working time (minute) 510

Service Horizon (week) 4

Interarrival times (minute) 510,340,255

Weekly visit frequency 1,2,3

Weekly visit probability 0.05,0.35,0.60

Small area (X1, X2, Y1, Y2) 0,30,0,30

Large area (X1, X2, Y1, Y2) 0,60,0,60

computational time. On the other hand, a lower size of
scenarios can cause decreasing quality of estimation for
appointment times. Therefore, we tried different numbers of
scenarios to observe how it affects results. Figure 2 shows
the average number of daily visits under different scenario
sizes and inter-arrival times for day set 1, a small region, and
the predefined experimental setting. The results for the three
different inter-arrival times stabilise at scenario sizes above
70 or 80. To further increases the number of scenarios rises
the computational cost but no longer improves the quality of
solution.

5.1.2 Determination of acceptance threshold

As we mentioned previously, one of our aims in this study
is to develop an acceptance policy. We believe that rejection

of some patients helps to accept more patients in the
future. In DSBA and WSBA, some scenarios are generated
and daily/weekly tours are constructed. The purpose is
to check whether or not the current request should be
accepted. However, how many times across the number of
scenarios should a patient be assigned to be able to accept
it? To determine the setting, we tried different acceptance
thresholds and results are reported in Fig. 3. Again we
conducted three trials for different inter-arrival times and
the same experimental setting was used as in Section 5.1.1.
Figure 3 clearly demonstrates that average daily visits tend
to reduce when the acceptance threshold is increased. The
reason is that accepting a request is getting harder when we
increase the threshold. Particularly, if the demand is high,
the decline of average number of daily visits is steeper since
a high threshold decreases the probability of acceptance.
Therefore, we fixed the acceptance threshold to 1. It means
that we accept a patient if he/she can be scheduled at least
once over 75 scenarios.

Note that always accepting the patient would be similar
to DH and leads to inferior results.

5.2WSBA vs DSBA

In this section, we compare the two different solution
methodologies that we developed, WSBA and DSBA. As
explained in the previous section, the main difference
between the two methodologies is that each tour constructed
for a day is independent of the remaining days in the week
in DSBA. On the other hand, weekly tours are constructed

Fig. 2 Average daily visits
under different scenario sizes
and inter-arrival times



M. Demirbilek et al.

Fig. 3 Average daily visits for
different acceptance thresholds

by using visits belonging to the same requests in WSBA.
The latter is more realistic since requests need one, two, or
three visits in a week and generating different requests for
each scenario without considering these visits as in DSBA
can affect the results. However, Tables 7 and 8 show that
results of average daily visits, travel times per person, and
acceptance rates are close. None is superior to the other
since DSBA provides slightly better results in some cases
whilst there are other cases where WSBA works better.
Because our objective is to maximise average number of
daily visits, it is more important to look at results of visits for
WSBA and DSBA. As can be seen in the first three columns

in Table 7, DSBA results are slightly higher for the small
region, but only the difference between average number of
visits for WSBA and DSBA under large area and the high
demand scenario is statistically significant.

Computational cost is a crucial factor for this study
since a decision has to be made as soon as someone
requests a service. Therefore, execution times are reported
for WSBA, DSBA, DH (Distance Heuristic), and CH
(Capacity Heuristic) in Table 9. Each time is measured
during a trial in which day set 2 is used. CH and DH
need relatively short times compared to our methodology.
Execution times for WSBA are significantly longer than

Table 7 Comparisons of
WSBA and DSBA in terms of
average number of daily visits,
travel times per person, and
patient acceptance rate for the
small region

Times∗ WSBA DSBA

Daily visits 510 6.97 ±0.05∗∗ 7.00 ±0.04

340 8.07 ±0.04 8.09 ±0.03

255 8.61 ±0.02 8.65 ±0.03

Travel times 510 16.67 ±0.18 17.36 ±0.15

340 15.35 ±0.09 15.64 ±0.08

255 14.18 ±0.08 13.92 ±0.07

Acceptance rate 510 0.72 ±0.004 0.73 ±0.005

340 0.58 ±0.003 0.59 ±0.003

255 0.49 ±0.003 0.49 ±0.004

∗Under consideration of 510-minute day length, interarrival times result in approximately 1, 1.5, and 2
requests per day, respectively.
∗∗ Standard error
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Table 8 Comparisons of
WSBA and DSBA in terms of
average number of daily visits,
travel times per person, and
patient acceptance rate for the
large region

Times WSBA DSBA

Daily visits 510 6.05 ±0.04 6.08 ±0.03

340 6.81 ±0.03 6.81 ±0.01

255 7.28 ±0.02 7.18 ±0.02

Travel times 510 28.58 ±0.24 29.43 ±0.17

340 26.66 ±0.13 25.34 ±0.10

255 24.75 ±0.20 24.03 ±0.14

Acceptance rate 510 0.51 ±0.005 0.51 ±0.004

340 0.64 ±0.004 0.65 ±0.002

255 0.41 ±0.003 0.41 ±0.002

DSBA execution times even though we use day set 2 for the
trial. It is clear that assessing a whole week with all visits of
different requests in each scenario of WSBA significantly
increases computations compared to decomposing a week
into separate days and evaluating them independently in
DSBA. We decided to use DBSA since results are close
and the computational cost of DSBA is much lower than
WSBA’s.

Note that WSBA is conceptually more appropriate than
DBSA, as it simultaneously looks at all appointments
required by a patient over the week. But it is computa-
tionally much more expensive, and the additional benefit
in terms of performance in the scenarios considered in our
study is marginal. However, for problems with more interde-
pendence between the days, WSBA may have advantages.

5.3 DSBA, distance, and capacity heuristics

Table 10 shows the average number of daily visits according
to DH, CH, and DSBA. Our methodology yields superior
results for both small and large regions and different inter-
arrival times. Particularly, daily visits increases substantially
compared to DH and CH in the small region if demand
is relatively high. Average number of daily visits by using
DH is higher than by using CH in the large area, and
the improvement by SBA reaches around 11% and 6%
compared to CH and DH. All results are significantly
different from each other.

Table 9 Execution times for each method(millisecond)

Method 510 340 255

WSBA 24,927 78,676 177,489

DSBA 1,741 2,813 6,873

CH 33 47 56

DH 32 42 51

Table 11 demonstrates travel times per visit for the
three approaches. DH and CH provide shorter travel times
than DSBA since it does not benefit from its ability to
select more suitable requests under low demand. When
demand is higher, DSBA also ensures travel times at least
as good as DH and CH or better even though number of
patients serviced is more than for the other two methods.
Particularly, travel times in SBA are significantly lower in a
large area and when demand is medium and high.

Table 12 represents acceptance rates (number of accepted
requests/total requests) for the three methods. Although
DH and CH accept all they can and do not reject any
request if they have an available place for it, acceptance
rates of our methodology are higher in all experiments.
This shows that rejection of some requests now can help
to accept more requests overall in the future. In a small
region, acceptance rates are close to each other because of
low demand condition. The proposed methodology takes
demand fluctuation into account and accepts as many
patients as possible if the demand is low. However, it
can be seen that our methodology significantly increases
acceptance rates under scenarios of small region-high
demands and large region. As for the results of average
number of daily visits, results of travel times per patient and
acceptance rates are statistically significantly better.

Tables 13, 14 and 15 represent the results of average
number of daily visits, travel times per person, and
acceptance rates for DH, CH, and DSBA for day set
2. DSBA provides higher average daily visits and lower
travel times per person for both small and large regions
and different inter-arrival times. All differences of average
daily visits and travel times are statistically significant.
Particularly, average number of daily visits provided by
DSBA tend to increase when the demand is low. On the
other hand, saving travel times per person is going up
when areas become bigger and demand increases for DSBA.
However, acceptance rates are not statistically significantly
different from each other in some cases.
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Table 10 Average daily visits for DH, CH, and DSBA by using day set 1

Region Times DH DSBA % CH DSBA %

Small 510 8.19 ±0.02 8.31 ±0.03 1.46 8.21 ±0.02 8.31 ±0.03 1.32

Small 340 9.03 ±0.02 9.38 ±0.03 3.87 9.14 ±0.03 9.38 ±0.03 2.61

Small 255 9.28 ±0.02 9.79 ±0.02 5.50 9.49 ±0.02 9.79 ±0.02 3.22

Large 510 6.97 ±0.02 7.09 ±0.02 1.81 6.57 ±0.01 7.09 ±0.02 7.98

Large 340 7.54 ±0.02 7.88 ±0.02 4.49 7.18 ±0.02 7.88 ±0.02 9.68

Large 255 7.79 ±0.02 8.26 ±0.02 5.97 7.46 ±0.02 8.26 ±0.02 10.75

Table 11 Average travel time per visit for DH, CH, and DSBA (minute) by using day set 1

Region Times DH DSBA % CH DSBA %

Small 510 14.75 ±0.04 15.46 ±0.05 4.76 14.92 ±0.05 15.46 ±0.04 3.57

Small 340 15.24 ±0.06 14.68 ±0.07 -3.72 15.07 ±0.07 14.68 ±0.07 -2.62

Small 255 14.98 ±0.05 13.68 ±0.08 -8.68 14.88 ±0.08 13.68 ±0.08 -8.05

Large 510 26.63 ±0.09 25.87 ±0.08 -2.86 26.83 ±0.08 25.87 ±0.08 -3.58

Large 340 26.17 ±0.15 24.42 ±0.12 -6.70 26.64 ±0.14 24.42 ±0.12 -8.35

Large 255 25.75 ±0.14 22.63 ±0.14 -12.11 26.07 ±0.13 22.63 ±0.14 -13.19

Table 12 Acceptance Rates for DH, CH, and DSBA by using day set 1

Region Times DH DSBA % CH DSBA %

Small 510 0.81 ±0.003 0.83 ±0.003 2.34 0.82 ±0.003 0.83 ±0.003 1.73

Small 340 0.62 ±0.004 0.65 ±0.004 4.63 0.63 ±0.005 0.65 ±0.004 3.18

Small 255 0.48 ±0.004 0.53 ±0.003 8.50 0.49 ±0.003 0.53 ±0.003 7.16

Large 510 0.71 ±0.003 0.72 ±0.004 1.24 0.67 ±0.002 0.72 ±0.004 6.78

Large 340 0.52 ±0.004 0.55 ±0.004 5.82 0.50 ±0.004 0.55 ±0.004 9.68

Large 255 0.41 ±0.002 0.45 ±0.003 9.39 0.40 ±0.003 0.45 ±0.003 13.62

Table 13 Average daily visits for DH, CH, and DSBA by using day set 2

Region Times DH DSBA % CH DSBA %

Small 510 6.52 ±0.02 7.00 ±0.04 7.4 6.63 ±0.04 7.00 ±0.04 5.6

Small 340 7.80 ±0.02 8.09 ±0.03 3.7 7.85 ±0.03 8.09 ±0.03 3.1

Small 255 8.29 ±0.03 8.65 ±0.03 4.3 8.51 ±0.03 8.65 ±0.03 1.6

Large 510 5.9 ±0.01 6.08 ±0.01 3.1 5.52 ±0.02 6.08 ±0.01 10.2

Large 340 6.69 ±0.04 6.81 ±0.03 1.9 6.32 ±0.04 6.81 ±0.03 7.8

Large 255 7.06 ±0.02 7.18 ±0.02 1.7 6.73 ±0.03 7.18 ±0.02 6.7

Table 14 Average travel time per visit for DH, CH, and DSBA (minute) by using day set 2

Region Times DH DSBA % CH DSBA %

Small 510 18.88 ±0.11 17.36 ±0.15 -8.6 18.15 ±0.13 17.36 ±0.15 -4.4

Small 340 16.67 ±0.10 15.64 ±0.09 -6.32 16.82 ±0.07 15.64 ±0.09 -7.5

Small 255 16.35 ±0.10 13.92 ±0.06 -14.9 16.11 ±0.09 13.92 ±0.06 -13.4

Large 510 30.95 ±0.22 29.27 ±0.17 -5.4 32.22 ±0.26 29.27 ±0.17 -9.2

Large 340 27.40 ±0.08 25.34 ±0.10 -7.5 28.50 ±0.08 25.34 ±0.10 -11.1

Large 255 28.46 ±0.16 24.03 ±0.14 -15.6 29.23 ±0.20 24.03 ±0.14 -17.8
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Table 15 Acceptance Rates for DH, CH, and DSBA by using day set 2

Region Times DH DSBA % CH DSBA %

Small 510 0.68 ±0.003 0.73 ±0.005 7.4 0.71 ±0.005 0.73 ±0.005 2.8

Small 340 0.60 ±0.003 0.60 ±0.003 0 0.59 ±0.003 0.60 ±0.003 1.7

Small 255 0.48 ±0.004 0.49 ±0.004 2.1 0.51 ±0.003 0.49 ±0.004 4.1

Large 510 0.65 ±0.004 0.65 ±0.004 0 0.62 ±0.006 0.65 ±0.004 4.8

Large 340 0.53 ±0.002 0.54 ±0.002 1.9 0.50 ±0.002 0.54 ±0.002 8

Large 255 0.44 ±0.002 0.43 ±0.003 -2.3 0.42 ±0.003 0.43 ±0.003 2.3

6 Conclusion and future work

Because of increasing average life expectancy, chronic
diseases, and insufficiency of healthcare facilities, home
care is getting more and more crucial everyday. However,
many people who need care cannot access home care
services due to lack of care workers. Therefore, companies
have to use their workers’ time efficiently in the scheduling
and routing process.

In this study, the problem is dynamic and assignment
time decisions have to be made as soon as patients arrive
by considering service continuity. There is only one study
in the literature providing solutions to this problem and it
suggested greedy algorithms. We propose a Scenario Based
Approach (SBA) which is based on generating several
scenarios of future demand to see whether or not we
can assign visits of the patient who is currently under
consideration. If we can, we check how many times and
which time slots most frequently the patient is scheduled
over all scenarios. Otherwise, the patient will be rejected.

We develop and analyse two different approaches, Daily
SBA (DSBA) and Weekly SBA (WSBA). The former
generates scenarios based on daily demand whereas the
latter generates scenarios based on generation visits based
on weekly demand and visit frequency of patients. In
the considered problem instances, the results are similar
whilst the computational time for WSBA is significantly
higher than DSBA’s. Therefore, we test and compare
DSBA to the distance and capacity heuristics. We construct
a simulation model where requests arrive according to
a Poisson distribution. We make 6 trials based on two
differently sized regions and 3 different inter-arrival times.
DSBA is clearly superior to distance and capacity heuristics
in each scenario based on the average number of daily
visits and patient acceptance rates. The travel times of our
method are slightly higher under low-demand scenarios
whilst DSBA provides significantly shorter travel times at
medium and high demands and larger areas. Particularly,
we have significant improvements compared to the other
two methods under 1.5 and 2 requests per day for most of
cases. DSBA increases average daily visits by up to 10%

and lessens travel times per patient by up to 13% compared
to the distance and capacity heuristics. Additionally, we
also test our algorithm only if special day combinations
are allowed for multiple visits. Results show that DSBA
provides up to 7.5% and 10% higher daily visits and up to
17% lower travel times compared to the the distance and
capacity heuristics.

The most important advantage of our application from
the perspective of practitioners is that they will be capable of
assessing and answering a request quickly without waiting
until the beginning of the next schedule period.

In this study, the route of a single HHC nurse is optimised
for dynamic patient sets. Whilst this paper deals with the
simplest case of a single nurse, in practise many HHC
providers will employ multiple nurses with different skills.
In future research, we plan to extend our study to such
cases. One challenge is that continuity of care will require a
patient to be serviced always by the same nurse, and some
preliminary tests have already shown that this is difficult to
achieve with DSBA, and that WSBA has clear advantages
in case of multiple nurses. Furthermore, deterministic travel
and service times seem strong assumptions and it seems
worth considering stochastic travel and service times as
well.
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16. Duque PM, Castro M, Sörensen K, Goos P (2015) Home care
service planning. the case of landelijke thuiszorg. Eur J Oper Res
243(1):292–301

17. Zhan Y, Wang Z, Wan G (2015) Home care routing and appoint-
ment scheduling with stochastic service durations, Available at
SSRN

18. Hiermann G, Prandtstetter M, Rendl A, Puchinger J, Raidl GR
(2015) Metaheuristics for solving a multimodal home-healthcare
scheduling problem. Cent Eur J Oper Res 23(1):89–113

19. Braekers K, Hartl RF, Parragh SN, Tricoire F (2016) A bi-
objective home care scheduling problem: Analyzing the trade-
off between costs and client inconvenience. Eur J Oper Res
248(2):428–443

20. Mankowska DS, Meisel F, Bierwirth C (2014) The home health
care routing and scheduling problem with interdependent services.
Health Care Manag Sci 17(1):15–30

21. Wilson NH, Colvin NJ (1977) Computer control of the Rochester
dial-a-ride system. Massachusetts Institute of Technology Center
for Transportation Studies

22. Thomas BW (2010) Dynamic vehicle routing, Wiley Encyclope-
dia of Operations Research and Management Science
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