

warwick.ac.uk/lib-publications

Original citation:
Li, Zhenyu, Davis, James A. and Jarvis, Stephen A. (2017) An efficient task-based all-reduce
for machine learning applications. In: Machine Learning on HPC Environments, ACM New
York, NY, USA, 12-17 Nov 2017. Published in: Proceedings of the Machine Learning on HPC
Environments (MLHPC'17)

Permanent WRAP URL:
http://wrap.warwick.ac.uk/95878

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© ACM, 2017. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
Proceedings of the Machine Learning on HPC Environments (MLHPC'17) (2017)
http://doi.acm.org/10.1145/3146347.3146350

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/132846648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/95878
http://doi.acm.org/10.1145/3146347.3146350
mailto:wrap@warwick.ac.uk

An Efficient Task-based All-Reduce for Machine Learning
Applications

Zhenyu Li

Zhenyu.Li@warwick.ac.uk

Department of Computer Science

University of Warwick

Coventry, UK

James Davis

J.Davis.4@warwick.ac.uk

Department of Computer Science

University of Warwick

Coventry, UK

Stephen Jarvis

S.A.Jarvis@warwick.ac.uk

Department of Computer Science

University of Warwick

Coventry, UK

ABSTRACT
All-Reduce is a collective-combine operation frequently utilised

in synchronous parameter updates in parallel machine learning

algorithms. The performance of this operation - and subsequently

of the algorithm itself - is heavily dependent on its implementation,

configuration and on the supporting hardware on which it is run.

Given the pivotal role of all-reduce, a failure in any of these regards

will significantly impact the resulting scientific output.

In this research we explore the performance of alternative all-

reduce algorithms in data-flow graphs and compare these to the

commonly used reduce-broadcast approach. We present an archi-

tecture and interface for all-reduce in task-based frameworks, and

a parallelization scheme for object-serialization and computation.

We present a concrete, novel application of a butterfly all-reduce

algorithm on the Apache Spark framework on a high-performance

compute cluster, and demonstrate the effectiveness of the new but-

terfly algorithm with a logarithmic speed-up with respect to the

vector length compared with the original reduce-broadcast method

- a 9x speed-up is observed for vector lengths in the order of 10
8
.

This improvement is comprised of both algorithmic changes (65%)

and parallel-processing optimization (35%).

The effectiveness of the new butterfly all-reduce is demonstrated

using real-world neural network applications with the Spark frame-

work. For the model-update operation we observe significant speed-

ups using the new butterfly algorithm compared with the original

reduce-broadcast, for both smaller (Cifar and Mnist) and larger

(ImageNet) datasets.

CCS CONCEPTS
• Computer systems organization → Parallel architectures;
Distributed architectures; •Computingmethodologies→Ma-
chine learning;

KEYWORDS
Butterfly All-Reduce; Data-flow Frameworks; Apache Spark; Syn-

chronous Model Training;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MLHPC’17, November 12–17, 2017, Denver, CO, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5137-9/17/11. . . $15.00

https://doi.org/10.1145/3146347.3146350

ACM Reference Format:
Zhenyu Li, James Davis, and Stephen Jarvis. 2017. An Efficient Task-based

All-Reduce for Machine Learning Applications. In Proceedings of MLHPC’17 .
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3146347.3146350

1 INTRODUCTION
In aggregating a given input vector from different processes, with

a user-defined associative and commutative reduction function, the

all-reduce operation is able to distribute the combined result to all

participating processes. This collection of data is key to a number

of high performance computing and data analytic applications.

A simplified view of all-reduce is to split it into two parts: reduce
and broadcast. The reduce process collects a vector from participat-

ing processes and combines these into a single value. The broadcast

process then takes this result and distributes it to all processes

involved.

In machine learning, all-reduce operations are commonly seen

in synchronous parameter updates of the distributed Stochastic

Gradient Descent (SGD) optimization, which is used extensively

in, for example, neural networks, linear regressions and logistic

regressions. One such example is AlexNet on ImageNet [13], where

every step performs a reduction of weights with an estimated size

of 200MB for large model trainings. Moritz [17] reports that with

SparkNet the weight-update of AlexNet takes around 20 seconds

on a 5-node EC2 cluster, while performing a single mini-batch

gradient computation only takes about 2 seconds. In such cases,

the overall runtime in distributed neural network training is domi-

nated by communication, highlighting the need for a more efficient

all-reduce implementation.

Machine learning algorithms and data-processing applications

are commonly implemented on data-analytic frameworks, such

as batch-processing and stream-processing frameworks, that are

designed for static data and continuous data respectively (see Sub-

section 2.1). Deep learning libraries, such as Caffe [11], Theano [24]

and Torch [25] are single machine implementations, but many have

been used with batch-processing frameworks in a distributed envi-

ronment. Tensorflow [1], DistBelief [6] and Project Adam [4], on

the other hand, are distributed deep learning frameworks.

Modern data-analytic frameworks, regardless of batch-processing

or stream-processing, share two basic traits: (i) task-based execu-

tion that separates memory and computation; and (ii) applications

defined in terms of data transformations in data-flow graphs. All-

reduce is frequently expressed as a simple reduce-broadcast data-
flow graph but, as we demonstrate, this is not efficient and is lim-

ited by bandwidth at the root process. More efficient all-reduce

https://doi.org/10.1145/3146347.3146350
https://doi.org/10.1145/3146347.3146350

MLHPC’17, November 12–17, 2017, Denver, CO, USA Zhenyu Li, James Davis, and Stephen Jarvis

algorithms, such as butterfly/distance-doubling and doubling-and-

halving [23], usemany-stagemany-to-many communications, which

themselves are highly complex for them to be expressed in a data-

flow graph. All-reduce also depends on a number of factors, includ-

ing the size of the vector, the size of the cluster, network latency,

bandwidth, topology, etc., and a hybrid strategy is required for

optimal performance.

The Message-Passing-Interface (MPI) includes optimized func-

tions for all-reduce. However, there are fundamental design dif-

ferences between MPI and task-based frameworks, which mean

that MPI cannot be used directly in batch-processing and stream-

processing (see Subsection 2.1). As a result, research towards more

efficient all-reduce on task-based frameworks is needed.

This paper explores novel, efficient implementations of all-reduce

on task-based frameworks. The contributions of this paper include:

• A new general architecture and interface for all-reduce in

task-based frameworks, demonstrated via implementation

on the Apache Spark framework, the design and results of

which are directly transferable to other task-based frame-

works;

• A parallelization scheme that enables automatic paralleliza-

tion of vector computation and serialization, which reduces

overheads in object-serialization and computation by 80-90%;

• A novel application of the butterfly all-reduce algorithm

for the Apache Spark framework that is efficient for very

large vector reduction, exhibiting a 9x speed-up compared

to the reduce-broadcast method for vector lengths of 10
8
on

a high-performance cluster;

• A demonstration of the effectiveness of the butterfly all-

reduce algorithm on real-world neural network applications,

where we observe significant speed-ups of model updates

using the butterfly algorithm compared with the original

reduce-broadcast method on small (Cifar and Mnist) and

large (ImageNet) datasets.

The remainder of the paper is organized as follows: Section 2 pro-

vides background on data-analytic frameworks, all-reduce algo-

rithms and the application of all-reduce in machine learning; Sec-

tion 3 describes the design and implementation of a new butterfly

all-reduce in Spark, which is tested using benchmark tests and

through real-world applications in Section 4; Section 5 concludes

that the butterfly all-reduce has significant performance impact in

model updates for distributed machine learning compared with the

original reduce-broadcast method. Through this research and fur-

ther improvements which we propose, we believe that the speed of

synchronous training can potentially match asynchronous training

in future implementations.

2 BACKGROUND
The goal of this work is to improve the speed at which data can be

processed in a task-based framework. However, there are a number

of different frameworks and programming models that exist for

the purpose of data processing, each with their own advantages

and disadvantages. Understanding the design decisions behind the

usage of each is key to incorporating new algorithmic approaches

to existing processes. We describe several popular frameworks,

and highlight the challenges faced in designing and developing a

suitable implementation of the all-reduce operation.

2.1 Data Processing Frameworks
Batch processing is a computing model in which a series of tasks are

executed independently with no interaction, and is often employed

for processing large volumes of static data. MapReduce [7] is one of

the earliest distributed batch-processing frameworks, where each

element in the dataset is passed through a Map-Reduce pipeline.
Data-flow pipelines subsequently developed, providing flexible and

sophisticated processing models, include Directed-Acyclic-Graph

(DAG) engines in Dryad [10] and Spark [27], as well as the latest

Stateful-Directed-Graph engines such as Naiad [18].

Stream processing on the other hand focuses on the real-time pro-

cessing of continuously generated data. Modern stream processing

frameworks such as Apache Storm [26] and Apache Flink [3], share

the same task-based data-flow architectures, which can be viewed

as batch-processing frameworks with event-triggered processing

mechanisms.

The parameter server architecture [22] is a distinct distributed

computing model in which globally shared variables are managed

by a group of servers that are accessible by a group of stateless

workers, which was designed for topic modelling and later applied

to neural network training in DistBelief [6] and Project Adam [4].

A special type of tasks called PS tasks in the TensorFlow [1] frame-

work also carries out the same role of parameter servers seen in

the other frameworks. Updating a shared variable collaboratively

by all workers (i.e., all-reduce) is equivalent to reduce-broadcast
but with a larger bandwidth at the root process, which depends on

the number of machines used as parameter servers. The network

bandwidth bottleneck can be partially mitigated by offloading the

computation to parameter servers, thus reducing traffic volume by

sending the smaller inputs rather than the larger outputs. However,

this demands more computing resources on the server side and it is

not always possible if the computation contains inter-dependencies.

The Message Passing Interface (MPI) operates in a Single Pro-

gram,Multiple Data (SPMD) fashion, where each statically allocated

process runs a copy of the same program but operates on its own set

of data. Running in parallel, these processes can communicate data

between one another via the communication interface as and when

needed. Task-based frameworks on the other hand, separate mem-

ory and computation, running tasks anywhere in the cluster either

serially or in parallel. Resource allocation in task-based frameworks

is therefore elastic and dynamic, allowing the overall size of the

system to grow or shrink according to demand. In addition, tasks

can relocate from one machine to another in cases of failure or

resource re-allocation.

Due to these differences, there exist two primary reasons why

MPI all-reduce cannot be used directly in task-based data-analytic

frameworks:

• MPI all-reduce takes a pre-defined data-type and operation

as inputs, but the design of data-analytic frameworks permits

users to define the data-type and operation.

• Synchronization may cause deadlocks in a task-based frame-

work. Since MPI cannot interact with the task scheduler, and

An Efficient Task-based All-Reduce for Machine Learning Applications MLHPC’17, November 12–17, 2017, Denver, CO, USA

(a) Tree-Reduce+Broadcast (b) Butterfly

Figure 1: All-Reduce Algorithms

tasks run asynchronously, synchronization operations can

cause the application to hang.

As a consequence, the introduction and implementation of blocking

operations such as all-reduce can not simply be translated from

one high-performance computing framework to another.

2.2 All-Reduce Algorithms
The performance of an all-reduce algorithm depend on many fac-

tors, including: (i) the size of the vector; (ii) the size of the clus-

ter; (iii) the nearest number of nodes in a power-of-two; (iv) the

network latency and bandwidth and, (v) the network topology

(e.g., ring, mesh, torus, hyper-cube, dragonfly, etc.). Classical im-

plementations include the butterfly and the binary-tree algorithms.

This research focuses on butterfly algorithms, as algorithmically

these take the least number of steps and, they are amenable to

modern high-performance interconnects with high bandwidth. A

number of previous studies have already made extensive compar-

isons of all-reduce algorithms for the Message-Passing-Interface

(MPI) [20] [21] [23].

Apache Spark implements a simple variant of the reduce-broadcast
algorithm for all-reduce, which is illustrated in Figure 1a. The reduc-
tion phase (i.e., bottom half) is a binary-tree reduction process that

takes lgp steps, where p is the number of processes. The broadcast
phase (i.e., top half) is a process of one-to-all transfer of the initial

random data block (default size 4 Mega-Byte), followed by all-to-all

shuffle of the rest of the data blocks.

The butterfly algorithm is illustrated in the right-hand-side of

Figure 1b. In the first step each process exchanges the vector and

performs a reduction with a process distance of 1 (i.e., with the

neighbouring process), and with each subsequent step the distance

doubles. The algorithm takes lgp steps to complete, where p is the

number of processes.

2.3 Theoretical Performance
We compare the reduce-broadcast and butterfly all-reduce algo-

rithms through theoretical cost estimations using the work of

Thakur [23]. Let there be p nodes, with each producing a vector

of n bytes after an initial local reduction. γ is the computational

cost per byte of locally executing one operation with two operands,

and ζ is the serialization or de-serialization cost per byte through

a serialization algorithm. Network communication is modelled as

linear time by α + nβ , where alpha is the latency/start-up time per

message and β is the transfer time per byte.

Binary-tree reduction takes lgp steps and, in each step, vectors

are fetched and combined by the reduction task; the cost is therefore:

Ttr ee,r ed = lgp(α + nβ + 2nζ + nγ) (1)

The communication cost for broadcasting n bytes in block_size
blocks is:

Tbroadcast =
n

block_size
(α + block_sizeβ + 2block_sizeζ) (2)

The total cost of reduce-broadcast is therefore the sum of Ttr ee,r ed
and Tbroadcast .

For butterfly all-reduce, there are the same number of steps as a

binary tree reduce (lgp), but all nodes fetch and combine in parallel.

The cost of butterfly all-reduce, assuming a node count of a power-

of-two, is therefore:

Tbutter f ly = lgp(α + nβ + 2nζ + nγ) (3)

In comparison, butterfly all-reduce should be superior if the vector

is small, or the bandwidth is large enough such that the linear cost

model is still valid.

2.4 Butterfly All-Reduce in Apache Spark
In the early stages of development, it was proposed to implement

butterfly all-reduce on Spark. However, the idea was rejected be-

cause ’the butterfly pattern introduces complex dependency that

slows down the computation’ [8], and as a result the reduce-broadcast
approach was adopted as an alternative.

As a result, users employ the less efficient reduce-broadcastmethod

provided by Spark, or more efficient custom self-contained Java

implementations if available: For example, butterfly mixing [28] is

an implementation of butterfly all-reduce used by the BIDdata [19]

project, which attempts to accelerate incremental optimization al-

gorithms (such as gradient descent) by performing gradient compu-

tations at intermediate butterfly stages. However, these are bespoke

solutions that assume parallel tasks as MPI processes, which can

potentially hang as previously described.

As seen in Sub-section 2.3, butterfly all-reduce has a significant

performance impact from a theoretical standpoint. Therefore, we

seek to implement butterfly all-reduce as a shared variable instead

of as data-set transformations, to avoid the ’complex dependency’

while maintaining good performance.

2.5 All-Reduce in Machine Learning
Many machine learning algorithms can be formulated as an optimi-

sation problem to search for the best model, and Stochastic Gradient

Descent (SGD) is a popular algorithm for solving the optimisation

problem over a large dataset. A distributed implementation of SGD

MLHPC’17, November 12–17, 2017, Denver, CO, USA Zhenyu Li, James Davis, and Stephen Jarvis

Figure 2: Architecture of task-based all-reduce

averages the model weights across the cluster to incorporate differ-

ent training examples, which itself is an all-reduce operation.

In many cases, real-world data is very sparse, and much research

takes advantage of this fact to accelerate communications. One

solution to accelerate the model-update process (i.e., all-reduce) has

been to drop 99% of near-zero values and exchange sparse indices

of the remaining 1% [2]; this is, in many respects, a compression

method. Such an approach has been shown to demonstrate a 50x
reduction in communication volume, and a 1.3x speed-up in model

training in a neural machine translation system. By dropping the

near-zero values, accuracy is lost and the rate of convergence of

SGD is degraded. As such, it is only applicable where the values

are highly skewed and the lost indices have low-significance.

Kylix [29] is another self-contained Java implementation of all-

reduce that attempts to optimize all-reduce for power-law graph

data that commonly presents itself in web graphs and social net-

works, for example. The idea of Kylix is to use heterogeneous-

degrees at different layers of a butterfly network, and it is shown

that the communication volume in the lower-layer is typically much

less than the top layer. Experimental results show a 5x speed-up of

Kylix with respect to the binary butterfly algorithm in a selection

of different test scenarios.

2.6 Asynchronous SGD
Model updates with all-reduce in SGD is a synchronous process that

works best for fast convergence, which also limits the speed and

scalability of distributed learning. There have been other attempts to

accelerate SGD by giving up the synchronous nature and exploiting

the tolerance of SGD to noise. Butterfly mixing [28] is just such an

example, performing gradient update at intermediate stages of a

butterfly all-reduce instead of at the end of the all-reduce process.

SparkNet [17] presented a more straight-forward approach by

synchronizing the weights every few steps. Project Adam [4] and

Tensorflow [1] use a so-called Stale Synchronous Model, where the

element updates in a vector are performed by atomic operations

without synchronization across all processes. As a result, the values

used to compute the weights may not be current and could have

been modified by other processes, hence the term ‘stale’.

3 METHODOLOGY
We present an architecture and interface for butterfly all-reduce

in task-based frameworks, demonstrated through implementation

in Apache Spark, the current mainstream task-based data-flow

batch-processing framework. Subsections 3.1 & 3.2 introduce the

Algorithm1Multi-threaded implementation of the all-reduceman-

ager

1: reduced_vector ← empty vector
2: local_submissions ← new Queue
3: procedure LocalReduction
4: repeat
5: new_vector ←Wait f or new submission
6: Lock reduced_vector for reduction
7: reduced_vector ← Reduce(reduced_vector ,new_vector)
8: Release reduced_vector
9: Remove(local_submissions , new_vector)
10: until Global Reduction Is Signalled

11: end procedure
12: function GlobalReduction

13: Wait for local reduction to finish

14: Apply all-reduce algorithm (e.g., butterfly)

15: end function
16: function Submit(new_vector)

17: local_submissions .add(new_vector)
18: Signal local reduction thread

19: end function
20: function Get

21: Wait until global reduction ends

22: return reduced_vector
23: end function

proposed general architecture and user interface used within this

work, the design and implementation of which are portable to other

task-based batch-processing or stream-processing frameworks. In

addition, other opportunities for optimizations are identified and

are detailed further in Subsections 3.3 & 3.4.

3.1 All-Reduce Architecture
In contrast to the static parallel processes of a MPI applications,

tasks in batch-processing or stream-processing can be allocated

dynamically across the cluster. The number of machines available

can grow or shrink, with tasks able to run in either serial or parallel

and migrate from one machine to another. For a collective operation

to function in such a system, the number of participating tasks must

be defined prior to the all-reduce action and resume only once the

number of committed tasks is reached.

Figure 2 illustrates the architectural structure of this approach. A

master process is in charge of task scheduling and maintaining a

list of processes participating in the all-reduce. A multi-threaded

implementation of the all-reducemanager is presented in Algorithm

1. Each slave process has an independent manager for all-reduce

results, with the tasks submitting a vector to their manager as

they end; to preserve the data, the managers stay alive within their

slave processes. Once all of the participating tasks have finished

the all-reduce process can begin, storing the combined results in

the all-reduce manager for retrieval by tasks in the next stage. If a

task is migrated from one machine to another, whether it is due to

task failure or resource re-allocation, a copy of the all-reduce data

will be sent to the new slave (ask and get).

An Efficient Task-based All-Reduce for Machine Learning Applications MLHPC’17, November 12–17, 2017, Denver, CO, USA

Figure 3: Internal Mechanism of the all-reduce process.
Elem 1: first element/partition in the local vector. Elem 1’:

first element/partition in the exchanged vector.

The resulting architecture is suitable for any task-based frame-

work (e.g., batch-processing or streaming-processing), with or with-

out dynamic allocation.

3.2 User Interface
To incorporate the use of all-reduce algorithms other than reduce-

broadcast, a simple interface is provided to operate on a shared

variable, rather than applying dataset transformations in a data-flow.

This is due to the potential use of hybrid schemes with different

all-reduce algorithms which, as expressed in Subsection 2.4), are

too complex to be efficiently expressed in a data-flow diagram. The

API methods are as follows:

(1) Init(key, numTasks, func): Creates a shared variable for the

given key with the number of tasks and a reduction func-

tion, the context of all-reduce is maintained by the returned

handle;

(2) Commit(vector): Commits a vector for reduction, the function

does not block;

(3) Get: Get the globally reduced vector, block until completion;

In addition to information about the number of tasks, users must

also supply a reduction function and all-reduce data in the form of

a vector object. The format of the inputs to the function is that of a

pair of elements in the vector (i.e., in the form ofCk ← Ak +Bk , in-
stead ofC ← A+B), where the elements can simply be sub-vectors

in the original vector. The reason for this explicit format is that the

reduction function cannot be applied to the sub-elements in paral-

lel, even if a collection type is detected by reflection. By providing

the data in this manner, the all-reduce module is able to exploit

parallelism to speedup the object-serialization and computation.

3.3 Parallel Processing
Figure 3 depicts the scheme by which the data is processed in a

parallelized fashion to speedup the all-reduce operation. As the

vector is submitted to the all-reduce manager, the elements are

partitioned based on the number of cores available on the node.

As the algorithm starts, each partition of the vector goes through

the pipeline (i.e., serialization-upload-get-deserialisation-reduction)

simultaneously and asynchronously.

Applying the cost analysis described in Subsection 2.3, the cost

of parallel butterfly all-reduce becomes

Tbutter f ly,par = lgp(α + nβ + 2n

c
ζ +

n

c
γ) (4)

where c is the number of available processors on each node, and

other symbols have the same meaning as in Subsection 2.3. In

comparison, object serialization and computation are serial in Spark,

which poses performance limitations as the vector size grows for

larger-scale model training in machine learning. The reasons why

it is not parallel are three-fold:

• Map and reduce have their origin in functional languages,

where a function is applied on elements of arbitrary type,

and are not forced to be a vector type. Spark preserves such

syntax for general usage;

• Parallelisation of the map and reduce stages is at the object-
level, and not at the vector-element level. This is achieved

by running multiple tasks in parallel in Spark, which is ac-

ceptable if there are enough tasks to occupy the processors.

However, in the case of all-reduce, there are far fewer objects

for reduction (i.e., one combined vector per node) to allow

enough parallel tasks to fully utilize all processors on each

node;

• Users can write a parallel version of the reduction function

to take advantage of the multi-level resources, but the com-

putation itself is rarely the primary cost factor. As we will

see in a demonstration of the neural network training in

Sub-section 4.2.3, object serialization is the dominant cost

factor, but there is no parallel implementation of the generic

serializer. To speed up object serializations of arbitrary type,

users must implement a custom parallel serialization method,

which involves low-level byte manipulations that is too tech-

nical and error-prone even for the most skilled programmers.

We solve this conundrum by forcing an input of a vector type,

which allows the framework to take care of parallelization

without additional user code.

In otherwords, our vector-based user-interface and parallel-processing

scheme provides a finer-grained parallelisation to fully exploit all

processing resources, in contrast to the coarse-grained parallelisa-

tion in Spark.

3.4 In-Memory Optimisation
In contrast to many task-based frameworks that store intermediate

results on disk to release memory pressure and enhance memory

tolerance, we keep the update-to-date vector in-memory, which

avoids extra I/O overhead. The reason for this is two-fold: (i) all-

reduce vectors are relatively small in size compared to the input

dataset, and (ii) submitted/exchanged vectors are combined into a

MLHPC’17, November 12–17, 2017, Denver, CO, USA Zhenyu Li, James Davis, and Stephen Jarvis

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·108

0

10

20

30

40

50

Vector Length

A
v
e
r
a
g
e
A
l
l
-
R
e
d
u
c
e
T
i
m
e
(
s
e
c
.)

Reduce-Broadcast Butterfly Serial Butterfly Parallel

Figure 4: Average All-Reduce Performance on 32 Executors
for a Single Iteration

single vector, resulting in a memory usage that does not grow as

the number of tasks increases.

4 RESULTS
4.1 Experimental Setup
To evaluate the all-reduce implementations, a simple benchmark

and a real-world neural network deployment were tested on a

high-performance cluster, the specification of which is detailed

in Table 1. Notable features of this hardware include Intel Xeon

CPUs, an Infiniband interconnect and the latest install of Apache

Spark. We evaluate the performance of all-reduce by comparing

Table 1: Hardware & Software Specification of the Test
Cluster

Component Detail

Nodes 1 Driver Node, 32 Executor Nodes

Cores per Node 20

CPU Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz

Memory 64GB

Harddisk Locally Attached (HDD & SSD)

Interconnect Mellanox Technologies MT26428

Software Centos/Linux-2.6, Hadoop 2.7, Spark-2.1.1

the resident reduce-broadcast and our new implementation of the

butterfly algorithm. Each executor process runs two tasks in turn,

and each task outputs a vector of randomly generated floating point

numbers. The length of the vector for reduction ranges from 100,000

to 150,000,000 elements (that is, it has an approximate size of 390KB

to 572MB). Experiments are repeated 10 times in 8, 16 and 32 node

configurations.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·108

0

2

4

6

8

10

Vector Length

S
p
e
e
d
u
p

8 nodes 16 nodes 32 nodes

Figure 5: Speed-up of Parallel Butterfly w.r.t
Tree-Reduce+Broadcast on 8, 16, 32 nodes

4.2 Empirical Performance
Figure 4 reports the average all-reduce time against the vector

size on 32 executors, and Figure 5 reports the relative speed-up of

the parallel-butterfly algorithm with respect to reduce-broadcast
in 8, 16 and 32 node configurations. The average all-reduce time

exhibits a linear relationship with respect to the vector length.

The relative speed-up of the parallel-butterfly algorithm exhibits

logarithmic growth and becomes saturated at a vector length of

10
7
; improvements re-gain momentum at 10

8
, signalling traits of

the underlying network and supporting protocols.

4.2.1 Reduce-Broadcast and Vector Length. It is observed that

the gradient of reduce-broadcast starts to grow as the the vector

length reaches 10
8
. The same is reflected in Figure 5, where the

speed-up should have saturated at 7x for a vector length of 10
7−108,

but re-surges rapidly after 10
8
. It is evident that the bandwidth

bottleneck is reached for the reduce-broadcast method at this point.

4.2.2 Butterfly All-Reduce and Cluster Size. Even though the

butterfly algorithm minimizes the number of steps in the all-reduce,

it is still susceptible to network bandwidth limit and contention.

In contrast to the reduce-broadcast method, we have not seen an

increase in steepness in overall all-reduce time in Figure 4 for the

butterfly all-reduce. Furthermore, the per-stage all-reduce time is

stable (i.e., within 0.1 second difference) for the largest vector length

of 1.5 × 108 with different cluster setups (i.e., 8, 16 and 32 nodes),

as shown in Table 2. As such, we might assume a steady growth in

per-stage all-reduce time for the next immediate power-of-2 cluster

sizes (i.e., 64, 128 nodes) for vector lengths within 1.5 × 108.

4.2.3 Breakdown Analysis. Figure 6 reports the breakdown of

costs in all-reduce, which is summed over 10 runs and averaged

across 32 slaves. The overheads are split into 5 metrics:

An Efficient Task-based All-Reduce for Machine Learning Applications MLHPC’17, November 12–17, 2017, Denver, CO, USA

B
u
t
t
e
r
fl
y
-
P
a
r
a
l
l
e
l

B
u
t
t
e
r
fl
y
-
S
e
r
i
a
l

R
e
d
u
c
e
-
B
r
o
a
d
c
a
s
t

B
u
t
t
e
r
fl
y
-
P
a
r
a
l
l
e
l

B
u
t
t
e
r
fl
y
-
S
e
r
i
a
l

R
e
d
u
c
e
-
B
r
o
a
d
c
a
s
t

B
u
t
t
e
r
fl
y
-
P
a
r
a
l
l
e
l

B
u
t
t
e
r
fl
y
-
S
e
r
i
a
l

R
e
d
u
c
e
-
B
r
o
a
d
c
a
s
t

B
u
t
t
e
r
fl
y
-
P
a
r
a
l
l
e
l

B
u
t
t
e
r
fl
y
-
S
e
r
i
a
l

R
e
d
u
c
e
-
B
r
o
a
d
c
a
s
t

B
u
t
t
e
r
fl
y
-
P
a
r
a
l
l
e
l

B
u
t
t
e
r
fl
y
-
S
e
r
i
a
l

R
e
d
u
c
e
-
B
r
o
a
d
c
a
s
t

0

100

200

300

400

30M 60M 90M 120M 150M

Array Size (Number of Floats)

T
i
m
e
(
S
e
c
o
n
d
s
)

Startup Compute

Send-Overhead Recv-Overhead

Blocking

Figure 6: Breakdown of overheads in all-reduce of a large
array size for 10 iterations on a 32-node cluster

Table 2: Per Stage Time for Vector Length of 1.5 × 108 for
Parallel Butterfly All-Reduce

Nodes 8 16 32

Time 0.95 0.93 0.99

Table 3: All-reduce time in real-world neural network
applications across 32 nodes. Original: Reduce-broadcast.

New: Butterfly all-reduce.

Dataset Neural Net

Weight

size – log

length

Original

(sec.)

New

(sec.)

Cifar [12] cuda-convnet [5] 5.2 0.356 0.154

Mnist [16] LeNet [15] 5.6 0.447 0.184

ImageNet [9] AlexNet [14] 7.8 17.9 2.4

(1) Start-Up: Starting up of tasks, including task delivery, serial-

ization/deserialization, etc.;

(2) Compute: Compute cost of the reduction function;

(3) Send Overhead: Object serialization (for all), and disk I/O for

Spark Shuffle (for reduce-broadcast only);

(4) Receive Overhead: Object deserialization;

(5) Blocking: Block time during network transmission of data

(for all), and final stage object deserialization at the driver

process (for reduce-broadcast only);

By comparing the breakdown components of serial-butterfly and

reduce-broadcast, the network block time in serial-butterfly is re-

duced by 84%, whilst the cost of computation and object serializa-

tion are almost identical. The parallel-butterfly algorithm further

optimizes the compute and object serialization by making use of

all available CPU cores. Compute time is reduced by 80-90%, and

object serialization (i.e., send overhead + receive overhead) is also

reduced by 80-90%, with respect to the serial version.

In summary, algorithmic changes (i.e., butterfly against reduce-
broadcast) and parallel-processing contributes to 65% and 35% of

the overall speed-up.

4.2.4 Further Optimization. For parallel-butterfly, themajor sources

of overhead are object serialization (25%) and network blocking

(60%). With the impact of object serialization minimized by parallel-

processing, network blocking is the only source of further improve-

ments, which can be further reduced by utilizing the native interface

of the underlying interconnect architecture such as, for example,

Infiniband Verbs/Remote-Direct-Memory Access (RDMA). From

this, a theoretical maximum of 2.5x speed-up is obtainable through

further optimization or alternative algorithms.

For sparse vector reduction in stochastic gradient descent, there

exist other optimization methods such as butterfly mixing [28]

and sparse vector compression [2]. Assuming the communication

volume can be compressed 50 times by dropping 99% of the near-

zero values, an extra 4x speed-up is expected by extrapolation from

Figure 4, which can potentially lead to a total of 72x speed-up for

vector lengths of 10
8
with respect to the original reduce-broadcast

method. However, since it also slows down convergence, the actual

speed-up for the model to reach the same accuracy may be smaller.

4.3 Applications - Neural Network
Many machine learning algorithms can be formulated as an optimi-

sation problem to search for the best model, and Stochastic Gradient

Descent (SGD) is a popular algorithm for solving the optimisation

problem over a large dataset. For distributed machine learning, a

typical parallelisation scheme of SGD averages the weights across

the cluster to incorporate updates from different training examples

at the end of each step, which requires reduction and re-distribution

of the weights (i.e., all-reduce). The overhead in exchanging the

model updates limits the scalability of distributed learning, which

depends on the complexity of the model. Neural networks are one

typical example where the overall performance suffers due to the

network exchange of weights at each iterative step.

Cifar, Mnist and ImageNet are three popular datasets in machine

learning research, which are also used as examples in SparkNet [17].

We compare the costs of model updates in neural networks with the

original reduce-broadcast method and the new butterfly all-reduce

algorithm for these three datasets. The neural-net models and the

results for all-reduce are listed in Table 3.

Cifar and Mnist are relatively small datasets compared with

ImageNet, and so the neural-net models are therefore small. The

model weights for Cifar andMnist are only 0.2% and 0.6% the size for

ImageNet. Nevertheless, a 2.3x speed-up is observed for Cifar and

Mnist, and a more notable 7.4x speed-up is observed for ImageNet.

The all-reduce times and speed-ups match the projections seen in

Figures 4 & 5.

MLHPC’17, November 12–17, 2017, Denver, CO, USA Zhenyu Li, James Davis, and Stephen Jarvis

5 CONCLUSION & FUTUREWORK
In this paper we explore novel, efficient all-reduce algorithms and

their implementation in task-based, data-analytic frameworks. The

aim of this research is to speed up synchronous parameter updates

in several machine learning algorithms (for example, linear/logistic

regression and neural networks). We present an architecture and

interface for all-reduce in task-based frameworks, and a paralleliza-

tion scheme for object serialization and computation. Testing of the

new butterfly all-reduce algorithm is conducted using the Apache

Spark framework.

The effectiveness of the butterfly algorithm is demonstrated by

a logarithmic growth in speed-up with respect to the vector length

compared with an existing reduce-broadcast method. A 9x speed-up

is seen on vector lengths in the order of 10
8
on a 32-node high-

performance cluster.

The new butterfly all-reduce algorithm is also tested with respect

to the naive reduce-broadcast method on model-updates of neural

network applications. A 2x and a 7x speed-up are observed for the

Cifar and Mnist datasets, and the ImageNet dataset, respectively.

We predict stable performance of the butterfly algorithm for larger

cluster sizes.

By taking advantage of further architectural improvements (for

example RDMA) and algorithmic improvements (for example sparse

vector compression), we predict that significant speed-ups of all-

reduce with respect to the original reduce-broadcast method remain

obtainable. It is this which motivates our future research.

All-reduce in the context of dynamic scaling of cluster resources

is the other thread of our research, and in particular the design

of all-reduce algorithms suitable for such architectures. In future

research we plan to report on a new hybrid all-reduce algorithm

which is in development for architectures with varying number of

nodes, network bandwidth and topology.

ACKNOWLEDGMENT
This research is supported by Atos IT Services UK Ltd and by the

EPSRC Centre for Doctoral Training in Urban Science and Progress

(grant no. EP/L016400/1).

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

2016. TensorFlow: A system for large-scale machine learning. In Proceedings of
the 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). Savannah, Georgia, USA.

[2] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse Communication for Dis-

tributed Gradient Descent. arXiv preprint arXiv:1704.05021 (2017).
[3] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single

engine. Data Engineering 38, 4 (2015).

[4] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.

2014. Project Adam: Building an Efficient and Scalable Deep Learning Training

System.. In OSDI, Vol. 14. 571–582.
[5] cuda convnet. n.d.. https://code.google.com/archive/p/cuda-convnet/. (n.d.). [On-

line; Accessed 01-August-2017].

[6] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark

Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale

distributed deep networks. In Advances in neural information processing systems.
1223–1231.

[7] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing

on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[8] Spark Github. 2014. [WIP][SPARK-1485][MLLIB] Implement Butterfly AllReduce.

https://github.com/apache/spark/pull/506. (2014). [Online; Accessed 01-August-

2017].

[9] ImageNet. n.d.. http://www.image-net.org/. (n.d.). [Online; Accessed 01-August-

2017].

[10] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.

Dryad: distributed data-parallel programs from sequential building blocks. In

ACM SIGOPS operating systems review, Vol. 41. ACM, 59–72.

[11] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional

Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093 (2014).
[12] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. n.d.. CIFAR-10 dataset. https:

//www.cs.toronto.edu/~kriz/cifar.html. (n.d.). [Online; Accessed 01-August-2017].

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classifi-

cation with Deep Convolutional Neural Networks. In Proceedings of the 25th Inter-
national Conference on Neural Information Processing Systems (NIPS’12). CurranAs-
sociates Inc., USA, 1097–1105. http://dl.acm.org/citation.cfm?id=2999134.2999257

[15] Yann Lecun. n.d.. LeNet-5, convolutional neural networks. http://yann.lecun.

com/exdb/lenet/. (n.d.). [Online; Accessed 01-August-2017].

[16] Yann Lecun, Corinna Cortes, and Christopher J.C. Burges. n.d.. The MNIST

dataset. http://yann.lecun.com/exdb/mnist/. (n.d.). [Online; Accessed 01-August-

2017].

[17] Philipp Moritz, Robert Nishihara, Ion Stoica, andMichael I Jordan. 2015. Sparknet:

Training deep networks in spark. arXiv preprint arXiv:1511.06051 (2015).
[18] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 439–455.

[19] BID Data Project. n.d.. http://bid.berkeley.edu/BIDdata/overview/. (n.d.). [Online;

Accessed 01-August-2017].

[20] Rolf Rabenseifner. 2004. Optimization of collective reduction operations. In

International Conference on Computational Science. Springer, 1–9.
[21] Rolf Rabenseifner and Jesper Larsson Träff. 2004. More efficient reduction algo-

rithms for non-power-of-two number of processors in message-passing parallel

systems. In European Parallel Virtual Machine/Message Passing Interface UsersâĂŹ
Group Meeting. Springer, 36–46.

[22] Alexander Smola and Shravan Narayanamurthy. 2010. An architecture for parallel

topic models. Proceedings of the VLDB Endowment 3, 1-2 (2010), 703–710.
[23] Rajeev Thakur and William D Gropp. 2003. Improving the performance of

collective operations in MPICH. In European Parallel Virtual Machine/Message
Passing Interface UsersâĂŹ Group Meeting. Springer, 257–267.

[24] Theano Development Team. 2016. Theano: A Python framework for fast compu-

tation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016).

http://arxiv.org/abs/1605.02688

[25] Torch. n.d.. http://torch.ch/. (n.d.). [Online; Accessed 01-August-2017].

[26] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M

Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,

et al. 2014. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. ACM, 147–156.

[27] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2–2.

[28] Huasha Zhao and John Canny. 2013. Butterfly mixing: Accelerating incremental-

update algorithms on clusters. In Proceedings of the 2013 SIAM International
Conference on Data Mining. SIAM, 785–793.

[29] Huasha Zhao and John Canny. 2014. Kylix: A sparse allreduce for commodity

clusters. In Parallel Processing (ICPP), 2014 43rd International Conference on. IEEE,
273–282.

https://code.google.com/archive/p/cuda-convnet/
https://github.com/apache/spark/pull/506
http://www.image-net.org/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/mnist/
http://bid.berkeley.edu/BIDdata/overview/
http://arxiv.org/abs/1605.02688
http://torch.ch/

	Abstract
	1 Introduction
	2 Background
	2.1 Data Processing Frameworks
	2.2 All-Reduce Algorithms
	2.3 Theoretical Performance
	2.4 Butterfly All-Reduce in Apache Spark
	2.5 All-Reduce in Machine Learning
	2.6 Asynchronous SGD

	3 Methodology
	3.1 All-Reduce Architecture
	3.2 User Interface
	3.3 Parallel Processing
	3.4 In-Memory Optimisation

	4 Results
	4.1 Experimental Setup
	4.2 Empirical Performance
	4.3 Applications - Neural Network

	5 Conclusion & Future Work
	References

