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Abstract. Full battery models are highly complex, which limits their application to tasks such
as optimization and uncertainty quantification. To lower the computational burden, sensitivity
analysis (SA) can be used as a precursor to identify the most important parameters in the
model, but SA itself relies on a high number of full model evaluations, which has motivated
the use of emulators. For high-dimensional output problems, emulators are challenging to
construct. In this paper we develop a probabilistic framework for SA of high-dimensional output
models using a Gaussian process emulator based on dimensionality reduction. This allows us
to perform SA under uncertainty for multi-ouput problems, providing error bounds for the
emulator predictions of sensitivity measures. We show how this can be achieved using Monte
Carlo sampling or possibly by using semi-analytical expressions with highly efficient sampling.
Moreover, we can perform SA for multivariate outputs by ranking the sensitivity measures
related to (uncorrelated) coefficients in a basis for the output space.

1. Introduction
The large number of parameters appearing in mathematical models and numerical codes for
batteries complicates modelling efforts. Lowering the time cost of simulations by identifying the
most influential parameters and studying their effects is an effective precursor to tasks such as
design optimization and uncertainty quantification (UQ). This process is referred to as sensitivity
analysis (SA) [1]. SA methods can be categorized in different ways. In quantitative SA the
influence of a parameter (usually referred to as “factor” of an input) is assigned (reproducibly)
a number called a sensitivity index or importance measure. In local SA, the output variability
is studied by perturbing an input around a nominal (base) value, while methods that attempt
to measure the output variability across the entire input space are termed global . For small
variations in the inputs local methods may be more computationally efficient. In many cases
involving complex nonlinear models, however, local SA methods are inadequate.

In all but the simplest of cases, sensitivity indices must be approximated numerically based
on a sample of the inputs (sampling-based SA) together with the corresponding outputs. Output
variations are measured by varying one input factor at a time (as in all local methods), or by
varying all input factors simultaneously (as in most global methods) using factorial or fractional
factorial methods, which takes into account the joint influences of factors due to correlations,
but comes at the cost of a higher number of input samples in order to achieve accurate results.

http://creativecommons.org/licenses/by/3.0
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In the context of battery models, very little attention has been paid to SA. In the majority of
cases, formal SA methods are not used; the model is simply run multiple times by varying factors
individually and inspecting the outputs, using ad-hoc measures or by employing visualization
tools [2]. In a small number of studies more rigorous approaches have been used, but almost
invariably with highly simplified models. Applying formal SA methods to complex battery and
fuel cells models is computationally burdensome and often not feasible, particularly with brute
force Monte Carlo (MC) approaches. In order to overcome this issue an emulator or meta-model
can be used. The emulator itself can be difficult to construct when the input and/or output
space is high-dimensional (e.g., input and/or output fields). If the quantity of interest (QoI),
which is derived from the output, is a scalar, an alternative is to use an emulator directly between
the inputs and QoI. It may be the case, however, that there are multiple QoIs, in which case it
would be ideal to emulate the output, especially when other tasks (e.g. UQ) involving different
quantities, including perhaps the original output, are to be performed subsequently.

To address these issues, we develop an approach for SA of a nonlinear Li-ion battery model
by employing a Gaussian process emulator based on dimensionality reduction to approximate
entire charge-discharge curves. QoIs are extracted from the curves in order to perform a SA. We
show how it is possible to perform an efficient probabilistic SA in the context of a variance-based
approach [4], extending previous results for the scalar case considered by Oakley and O’Hagan [5]
to linear functional QoIs derived from the multi-dimensional output. Lastly, using the emulation
method we are able to perform a SA of multiple outputs (including in high dimensional spaces)
by ranking coefficients in a low-dimensional subspace approximation of the output space.

2. Problem setup and sensitivity analysis
Suppose that the model output is y = η(x;ξξξ) ∈ F for some function space F , where x represents,
e.g., space, time or space-time and ξξξT = (ξ1, ξ2, ..., ξk) ∈ X ⊂ R

k is a vector of input factors;
that is, a spatial, temporal or spatio-temporal field, parameterized by inputs ξξξ. The computer
model (simulator), on the other hand, provides a finite-dimensional approximation of η(x;ξξξ),
e.g., at a finite number of points in a spatial and/or temporal grid or in terms of a finite basis.
We may write the simulator output as a vector y ∈ R

d, in which d is the number of degrees of
freedom, e.g., the d components of y represent values of η(x;ξξξ) at d points x. We can therefore
consider the simulator as a mapping ηηη : X → Y ⊂ R

d between a feasible input space X ⊂ R
k

and an output space Y, i.e., y = ηηη(ξξξ).
Let Q be a scalar QoI that is derived from y via a linear functional G : F → Q′ ⊂ R. We

can instead consider Q as a mapping F = (G ◦ η)(ξξξ) : ξξξ �→ Q directly between X and Q, i.e.,
Q = F (ξξξ) = G(η(x;ξξξ)). In reality, we have an approximation q = f(ξξξ) of Q, where the mapping
f : X → Q is derived from a linear functional g : Rd → Q ⊂ R that acts on the simulator outputs
y, that is f(ξξξ) = (g ◦ ηηη)(ξξξ) = g(ηηη(ξξξ)). We develop a SA framework in which the outputs y are
estimated by an emulator. We first describe the SA methods employed and the construction of
the emulator. We then show how it is possible to perform SA on QoIs derived from the emulator
output, before presenting a probabilistic SA analysis and a method for multi-output SA.

One approach to SA measures the sensitivity of the QoI by estimating the derivative ∂ξif

around a nominal (base) point ξξξ using finite differences [6]. The main weakness of such local
methods is that they provide no information on how the sensitivity to a given ξi depends on
the values of the other factors. In order to extend this method to a global analysis we may
use multiple base points {ξξξj}rj=1, which leads to the class of elementary effect tests (EETs).
Suppose that X is the unit hypercube, and each direction ξi is discretized into p levels (points).
The elementary effect of ξi at ξξξj = (ξj,1, . . . , ξj,k)

T is: ‘

EE
(j)
i ≡ [f(ξj,1, . . . , ξj,i + δi, . . . , ξj,k)− f(ξj,1, . . . , ξj,i, . . . , ξj,k)

]
/Δi, (1)
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where Δi ∈ {1/(p − 1), . . . , 1 − 1/(p − 1)}. Typically, Δi = Δ, ∀i. Morris [3] proposed two
sensitivities measures for each ξi, namely the mean and the standard deviation of the finite

distribution Fi over {EE
(j)
i }rj=1 (or |EE

(j)
i |). The mean μi of EEi measures the influence of ξi,

while the standard deviation σi measures the degree of interaction with the other factors.
To calculate the statistics for each elementary effect, i.e., μi and σi, we can randomly choose

M base points {ξξξj}Mj=1, then construct so-called trajectories in X of k+1 points ξξξj∪{ξξξj,n}kn=1 for

each j. Setting ξξξj,0 = ξξξj , the trajectory point ξξξj,n is obtained by perturbing a randomly chosen
factor of ξξξj,n−1 by ±Δ until all factors have been perturbed, but with the property that ξξξj,n
and ξξξj,n−1 differ in only one factor. The model is run at every point in each of the trajectories
(a total of M(k + 1)) to obtain EEi,j , i = 1, . . . k, j = 1, . . .M , yielding estimates of μi and σi.

A more sophisticated approach to SA, embedded in probability, involves treating the inputs
as stochastic variables, which leads to a distribution over the QoI [4, 6]. A variance based
first-order effect of each input factor is given by Varξi(Eξξξ∼i

[q|ξi]), where E[·] and Var(·) denote
expectation and variance operators with respect to the distribution over a subscripted random
variable; or with respect to the distribution p(ξξξ) over ξξξ if no subscript is present, i.e. E[·] ≡ Eξξξ[·].
The quantity ξξξ∼i is the vector of all inputs factors excluding ξi (and similarly for multiple
indices). The first order sensitivity index (or main effect index) for the input ξi is defined as
Si ≡ Varξi(Eξξξ∼i

[q|ξi])/Var(q), which measures the contribution of the main effect of ξi to the
total QoI variance. Another measure of sensitivity, defined below, is the total effect index , which
incorporates interactions between the factors ξi:

STi ≡ Eξξξ∼i
[Varξi(q|ξξξ∼i)]/Var(q) = 1− Varξξξ∼i

(Eξi [q|ξξξ∼i])/Var(q). (2)

The variance-based SA framework can be couched in terms of the decomposition of the variance
of q. Suppose q = f(ξξξ) ∈ L2(X ) (square integrable functions defined on X ) and X is (without
loss of generality) a unit hypercube X = {ξξξ|0 ≤ ξi ≤ 1; i = 1, . . . , k}. We also assume that the
factors are independently and uniformly distributed within X , so that the probability density
functions satisfy p(ξi1 , . . . , ξil) = 1[0,1]l for {i1, . . . , il} ⊂ {1, . . . , k}, where 1A is the indicator
function on a set A. The expectation operators Eξξξ∼i1...il

[·] are then unweighted integrals over

ξi1 , . . . , ξil . The function f(ξξξ) can be decomposed in the following way (Hoeffding [7]):

f(ξξξ) = f0 +
k∑

i=1

fi(ξi) +
k∑

i=1

k∑
j=i+1

fij(ξi, ξj) + . . .+ f1...k(ξ1, . . . , ξk), (3)

where f0 is a constant, fi(ξi) (the main effect of ξi) is a function only of ξi,
fij(ξi, ξj) (the interaction) is a function only of ξi and ξj , and so on. The condition∫ 1
0 fi1i2...is(ξi1 , ξi2 , . . . , ξis)dξiw = 0 is imposed for 1 ≤ i1 < i2 < . . . < is ≤ k and
iw ∈ {i1, i2, . . . , is} [7]. Thus, the summands are orthogonal, in the sense that:∫

X
fi1i2...im(ξi1 , ξi2 , . . . , ξim)fi′1i′2...i′n(ξi′1 , ξi′2 , . . . , ξi′n)dξξξ = 0, (4)

for {i1, i2, . . . , im} �= {i′1, i′2, . . . , i′n}. Moreover, f0 = E[q] =
∫
X f(ξξξ)dξξξ, fi = Eξξξ∼i

[q|ξi]− f0, fij =
Eξξξ∼ij

[q|ξi, ξj ]−fi−fj−f0, etc.. By squaring and integrating Eq. (3) and using the orthogonality

property, we obtain a decomposition of the total variance V = Var(q) =
∫
X f2(ξξξ)dξξξ − f2

0 , that

is, V =
∑k

i=1 Vi +
∑k

i=1

∑k
j=i+1 Vij + . . .+ V1...k, in which Vi = Varξi(fi(ξi)) = Varξi(Eξξξ∼i

[q|ξi]),
Vij = Varξiξj (fij(ξi, ξj)) = Varξiξj (Eξξξ∼ij

[q|ξi, ξj ]) − Varξi(Eξξξ∼i
[q|ξi]) − Varξj (Eξξξ∼j

[q|ξj ]), and
so on. The terms Vi1...il , l ≤ k are called partial variances and it is obvious that the main
effect indices Si are simply the partial variances normalized by the total variance. We can also
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define higher order sensitivity indices by normalizing the Vi1...il , e.g. the second-order index
Sij = Vij/V , which measures the effect of interactions between ξi and ξj on q.

The main and total indices can be computed using a quasi MC method [1] by first generating
a matrix X = [ξi,j ], i = 1, . . . , 2k, j = 1, . . . , N , of N points in the 2k hypercube, using a
low-discrepancy sequence such as a Latin hypercube. This is done according to the distribution
p(ξξξ) over the factors, e.g., p(ξξξ) = 1[0,1]k for independent ξi ∼ U [0, 1]. X is then partitioned into

a matrix A ∈ R
N×k consisting of the first k columns and a matrix B ∈ R

N×k consisting of the
remaining k columns. This provides two independent sets of N samples in the k hypercube. A
third matrix Ci consists of the columns of matrix B except the i-th column, which is set to the
i-th column of A. The next step is to compute the QoI q by running the model at the selected
inputs contained in the sample matrices A, B, and Ci to yields vectors qA = f(A), qB = f(B)
and qCi = f(Ci) (f(A) is used to denote vectorized q values from the set consisting of the rows
of A). The indices Si and STi are then estimated as follows:

Si =
(1/N)

∑N
j=1 qA,jqCi,j − f2

0

(1/N)
∑N

j=1 q
2
A,j − f2

0

, STi =
(1/N)

∑N
j=1 qB,jqCi,j − f2

0

(1/N)
∑N

j=1 q
2
A,j − f2

0

, (5)

where qA,j is the j-th coordinate of qA (etc.) and f0 = (1/N)
∑N

j=1 qA,j is the sample mean.

This procedure is repeated for each i = 1, . . . , k. The first of Eqs. (5) follows from the basic
definition Varξi(Eξξξ∼i

[q|ξi]) =
∫
[0,1] E

2
ξξξ∼i

[q|ξi]dξi − (
∫
[0,1] Eξξξ∼i

[q|ξi]dξi)2. The last term is E
2[q] =

f2
0 , while the first term can be written as:

∫
[0,1] E

2
ξξξ∼i

[q|ξi]dξi =
∫
[0,1]k

∫
[0,1]k−1 f(ξ1, . . . , ξk) ×

f(x′1, . . . , x′k)dξξξdξξξ
′
∼i, i.e., the expectation over ξξξ and ξξξ′∼i of f(ξ1, . . . , ξk) × f(x′1, . . . , x′k), which

explains the MC estimate in Eq. (5). A similar explanation can be given for the STi estimate.
The cost of this procedure is 2N runs of the model to generate the matrices A and B, and an

additionalNk runs to obtain the QoIs corresponding toCi. This give a total ofN(k+2), which is
much lower than the cost of brute-force MC estimates of Varξi(Eξξξ∼i

[q|ξi]) and Varξξξ∼i
(Eξi [q|ξξξ∼i]).

The former, e.g., would require O(N) runs (N 
 k) to estimate the inner expectation for a fixed
ξi, which we would be repeated O(N) times to estimate the outer variance, leading to O(N2)
runs for each i.

3. Gaussian process emulation of the model outputs
Suppose we are given training points {yj}mj=1 ⊂ Y, which are values of y = ηηη(ξξξ) at the design
points {ξξξj}mj=1. Without loss of generality we mean centre the training points: yj �→ yj − y,

where y =
∑m

k=1 yk. Assume that Y is a low-dimensional linear subspace of Rd. We derive
an approximate basis for Y using principal component analysis (PCA) [8], i.e., we find a linear
transformation w(ξξξ) = VTy, in which V ∈ R

d×d has orthogonal columns vi (a basis for R
d)

and the uncorrelated components wi(ξξξ) of w(ξξξ) have decreasing variance with i.
Let Σ = E[yyT ] be the symmetric and positive definite variance-covariance matrix. The

eigenvalue problem Σv = λv yields the vi and corresponding positive eigenvalues λ1 > · · · > λd.
The components of a point in this basis satisfy Var[wi(ξξξ)] = λi and E[wi(ξξξ)wj(ξξξ)] = 0 for i �= j.

Any point y ∈ Y can be written in the form y = Vw(ξξξ) =
∑d

i=1wi(ξξξ)vi =
∑d

i=1(v
T
i y)vi and

an r-dimensional approximation yr ∈ Yr = span(v1, . . . ,vr) of y is given by yr = Vrwr(ξξξ) =∑r
i=1wi(ξξξ)vi, where Vr = [v1 . . .vr] and wr(ξξξ) = (w1(ξξξ), . . . , wr(ξξξ))

T . It can be demonstrated

[8] that E
[‖y − yr‖2

]
=
∑d

i=r+1 λi, from which a value of r can be selected based on a chosen

tolerance. Σ is approximated by the sample covariance matrix ΣS = (1/m)YYT , where
Y = [y1 . . .ym]. The coefficients wi(ξξξ) = vT

i y of a point y = ηηη(ξξξ) are assumed to be realizations
of uncorrelated (therefore mutually independent) GPs. We emulate these coefficients for test
inputs ξξξ to find low-dimensional approximations yr = ηηηr(ξξξ) ≡ Vrwr(ξξξ) ∈ Yr [9].
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Let us focus on wi(ξξξ) for some i ∈ {1, . . . , r}. We wish to approximate wi(ξξξ) : X → R given
values of this function (from a PCA) at design points {ξξξj}mj=1. In GPR, we place a GP prior
distribution indexed by ξξξ ∈ X over wi(ξξξ). The distribution p(wi(ξξξ1), . . . , wi(ξξξm)) for an arbitrary
finite collection of indices {ξξξ1, . . . , ξξξm} is Gaussian. The GP prior is wi(ξξξ)|θθθi ∼ GP (0, c(ξξξ, ξξξ′;θθθi)),
which has a zero mean function (we set wi(ξξξj) �→ wi(ξξξj) − wi, where wi = (1/m)

∑
j wi(ξξξj))

and a covariance function c(ξξξ, ξξξ′;θθθi), dependent upon hyperparameters θθθi. We employ a square-
exponential function for all i: c(ξξξ, ξξξ′;θθθi) = θ0 exp{−(ξξξ − ξξξ′)Tdiag(θi,1, . . . , θi,k)(ξξξ − ξξξ′)}, where
θθθi = (θi,0, . . . , θi,k)

T , in which θi,1, . . . , θi,k are the inverse square correlation lengths.
The distribution of di ≡ (wi(ξξξ1), . . . , wi(ξξξm))T given θθθi (i.e., the likelihood) is p(di|θθθi) =

N (0,Ci), with covariance matrix Ci = [c(ξξξi, ξξξj ;θθθi)]
m
i,j=1. The predictive distribution at new

inputs ξξξ ∈ X is obtained from the joint distribution p(wi(ξξξ),di|θθθi) by conditioning on di [10]:

wi(ξξξ)|di, θθθi ∼ GP
(
m′i(ξξξ), c

′
i(ξξξ, ξξξ

′)
)
,

m′i(ξξξ) = ci(ξξξ)
TC−1i di + wi, c′i(ξξξ, ξξξ

′) = c(ξξξ, ξξξ′;θθθi)− ci(ξξξ)
TC−1i c(ξξξ′),

(6)

in which ci(ξξξ) = (c(ξξξ1, ξξξ;θθθi), . . . , c(ξξξm, ξξξ;θθθi))
T . The hyperparameters can be specified

by point estimates [10] such as the maximum log likelihood estimate (MLE): θθθi,MLE =

arg maxθθθi(− ln |Ci|/2 − dT
i C

−1
i di/2). This procedure is repeated for each i = 1, . . . , r to

obtain wr(ξξξ) = (w1(ξξξ), . . . , wr(ξξξ))
T . Using MLE estimates, we obtain E[wr(ξξξ)] = m′(ξξξ) ≡

(m′1(ξξξ), . . . ,m′r(ξξξ))T . The predicted variance of each coefficient is Var(wi(ξξξ)) = c′i(ξξξ, ξξξ). The
model outputs are therefore distributed as follows (noting that Cov (wi(ξξξ), wj(ξξξ)) = 0 for i �= j):

yr − y = ηηηr(ξξξ) = Vrwr(ξξξ) ∼ GP
(
myr , cyr(ξξξ, ξξξ

′)
)

myr(ξξξ) = E[ηηηr(ξξξ)] = Vrm
′(ξξξ),

cyr(ξξξ, ξξξ
′) = Cov

(
ηηηr(ξξξ), ηηηr(ξξξ

′)
)
= Vrdiag(c

′
1(ξξξ, ξξξ

′), . . . , c′r(ξξξ, ξξξ
′))VT

r ,

(7)

3.1. Probabilistic and multivariate sensitivity analysis
The emulation method described above extends Bayesian GP modelling to multiple outputs
in a probabilistic manner, furnishing an explicit distribution over the output (Eqs. (7)). We
can always extract estimates of the statistics of sensitivity measures using full MC sampling.
Take for example the main effect index Si = Varξi(Eξξξ∼i

[q|ξi])/Var(q). The expected value and
variance of a quantity with respect to the distribution over ηηηr are denoted Eηηηr [·] and Varηηηr(·),
respectively. Since q = f(ξξξ) = g(ηηη(ξξξ)), a MC estimate of Eηηηr [Si] is given by:

Eηηηr [Si] = Eηηηr

[
Varξi(Eξξξ∼i

[g(ηηη(ξξξ))|ξi])
Var(g(ηηη(ξξξ))

]
= Eηηηr

⎡
⎣Eξi

[
E
2
ξξξ∼i

[g(ηηη(ξξξ))|ξi])
]
− E

2 [g(ηηη(ξξξ))]

E [g(ηηη(ξξξ))2]− E2 [g(ηηη(ξξξ))]

⎤
⎦

≈ 1

J

J∑
j=1

N−3∑N
l=1

(∑N
n=1 g(ηηη

(j)(ξξξ
(n)
∼i , ξ

(l)
i ))
)2 −N−2

(∑N
n=1 g(ηηη

(j)(ξξξ(n))
)2

N−1∑N
n=1 g(ηηη

(j)(ξξξ(n))2 −N−2
(∑N

n=1 g(ηηη
(j)(ξξξ(n))

)2
(8)

where ηηη
(j)
r is drawn from p(ηηηr) = GP (myr(ξξξ), cyr(ξξξ, ξξξ

′)) and the ξi ∼ U [0, 1] are independent.

The notation ηηη(j)(ξξξ
(n)
∼i , ξ

(l)
i ) means that ηηη(j)(ξξξ) is evaluated at ξi = ξ

(l)
i , ξξξ∼i = ξξξ

(n)
∼i for some

i ∈ {1, . . . , k}. The generic number N in Eq. (8) need not be the same for all MC estimates.
In this MC procedure we interpret Si ≡ Si(ηηη) as a random function of the random vector ηηη

and obtain samples ηηη(j)(ξξξ) (deterministic functions of ξξξ) from p(ηηηr) to approximate the outer
integral. We then sample from ξξξ∼i ∼ U [0, 1]k−1 and ξi ∼ U [0, 1] to approximate the inner
integrals of g(ηηη(ξξξ)) = f(ξξξ), which is a random function of ξξξ. In practice, we generate the
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samples of ξξξ∼i and ξi, and then sample from the distributions over wi(ξξξ), i = 1, . . . , r, to obtain
partial realizations (at the sampled values of ξξξ) of wr(ξξξ), from which we can obtain (partial)
realizations of ηηηr(ξξξ) = Vrwr(ξξξ). In fact, the last step is not necessary since we can work directly
with wr(ξξξ) to obtain realizations of the QoI q = g(ηηη(ξξξ)), i.e., g(ηηη(ξξξ)) = g(Vrwr(ξξξ)). Varηηηr(Si)
is estimated in the same way and the same procedure can be used for STi or any other measure.

In the scalar output case (the output being the QoI), Oakley and O’Hagan derived semi-
analytical expressions for estimating the expectations Eηηηr [·] and possibly variances Varηηηr(·) of
several sensitivity measures using only a very small number of MC runs (e.g. O(1) vs. O(N) for
Eηηηr [Si] as required in full MC to estimate Varξi(Eξξξ∼i

[g(ηηη(ξξξ))|ξi])) [5]. Equivalent semi-analytical
expressions can be established for certain types of scalar QoIs derived from the multivariate
output emulator used in this paper, namely QoIs arising from a linear functional of the output.
These expressions are derived in the Appendix. Another feature of this method is that we could
investigate the sensitivity of multivariate outputs under uncertainty to the inputs by separately
(due to their independence) ranking the sensitivity indices for the coefficients wi(ξξξ), i = 1, . . . , r,
using the procedures described above, i.e., setting q = wi(ξξξ). Since the wi(ξξξ) are scalar GPs,
the probabilistic analysis of Oakley and O’Hagan [5] is directly applicable.

4. Li-on battery model
We consider a Li-ion battery comprised of a LiMn2O4 positive electrode and a graphite LixC6

porous negative electrode. The electrolyte consists of a non-aqueous carbonate solvent mixture
and a lithium salt LiPF6 in a 1:1 mixture of ethylene carbonate and diethyl carbonate dispersed
in an inert polymer matrix. The domain is 1-d (direction x) and the positive and negative
current collectors are located at x = 0 and x = L, respectively. Intercalation of Li is described
by a mass balance with diffusion in a pseudo dimension R (into spherical particles) [11]. The
solid Li concentration in the positive (negative) electrode cps (cns ) is given by:

∂tc
s
j = R−2∂R(R2Ds

j∂Rc
s
j), (9)

where Ds
j is the diffusion coefficient of Li in the active material. Here and below, j = p for the

positive electrode, j = n for the negative electrode and j = s for the separator. The boundary
conditions are ∂Rc

s
j |R=0 = 0 and −Ds

j∂Rc
s
j |R=Rp = (1/aF )∂xi2, where Rp is the particle radius,

a is the specific active surface area and i2 is the current density in the electrolyte:

i2 = −κ2∂xφ2 + κ2RUTF
−1(1− t0+)(1 + ∂ln c ln fA)∂x ln c, (10)

where κ2 is the effective ionic conductivity, T is the temperature, F is Faraday’s constant, RU

is the universal gas constant, φ2 is the electrolyte potential, fA is the mean molar activity
coefficient of the electrolyte, c is the lithium ion (Li+) concentration and t0+ is the transference
number of Li+. The solid phase current density i1 is governed by Ohm’s law: i1 = −κ1∂xφ1,
where κ1 is the effective conductivity of the solid and φ1 is the solid-phase potential. Charge
conservation demands that i1+i2 = I, for a total current density I. The boundary conditions for
the potentials (galvanostatic) are −κ1∂xφ1 = I at x = 0, L and −κ2∂xφ2 = 0 at x = 0, L, while
the electronic charge fluxes are zero and the ionic charge fluxes are continuous at the separator
interfaces. The mass balance for Li+ is:

εj∂tc = ∂x (εjDj∂xc)− (1− t0+)(ν+F )−1∂xi2, (11)

where εj is the volume fraction of electrolyte, Dj is the effective diffusion coefficient of the
Li+ through the electrolyte, and ν+ is the number of cations into which a mole of electrolyte
dissociates. The flux at both ends of the cell (−εjDj∂xc by virtue of the zero ionic charge flux)
is set to zero. The current density is given by the Butler-Volmer equation:

∂xij = −aFkj(c)
αa,j (ct − csj)

αa,j (csj)
αc,j

(
e−αaFηj/(RUT ) − eαaFηj/(RUT )

)
, (12)
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where αa and αc are the charge transfer coefficients, ct is the total concentration of lithium, kj
is the rate constant for the relevant reaction and ηj = φ1 − φ2 − Uj is the overpotential at the
relevant electrode, in which Uj is the corresponding equilibrium potential.

5. Results and discussion
The Li-ion battery model was implemented in COMSOL Multiphysics [12]. A total of 500
simulations were performed by varying the initial state of charge SOCin (initial csn divided
by ct), the particle diameter in the positive electrode Rp and the positive electrode porosity
εp. We set ξξξ = (SOCin, Rp, εp)

T ∈ X ⊂ R
k as the input, with the k = 3 factors given by

the components. The inputs for the 500 simulations were selected using a Sobol sequence.
A current pulse i(t) consisting of 12 s of 120 A discharge, followed by 12 s of relaxation
(0 A load), and then 12 s of 120 A charge was simulated (galvanostatic operation). The
output was taken to be the cell voltage Ecell(t)[V] at 0.5 s intervals, yielding a total of
73 values at t = 0, 0.5, 1, . . . , 35.5, 36 s. These values were vectorized to form the outputs:
yT = ηηη(ξξξ) = (Ecell(0), Ecell(0.5), . . . , Ecell(35.5), Ecell(36)) ∈ Y ⊂ R

d, where ηηη as before
represents the simulator and d = 73. The first 100 outputs were reserved for training the
emulator and the remaining mt = 400 were used for testing the emulator. The training data set
is denoted {(ξξξj ,yj)}mj=1, as before, and the test data set is denoted {(ξξξ∗j ,y∗j )}mt

j=1.

We consider two QoIs: (i) the energy efficiency q = f(ξξξ) = ηE =∫
[d] i(t)Ecell(t)dt

/∫
[c] i(t)Ecell(t)dt ∈ Q = [0, 1], in which [d] ([c]) is the discharge (charge)

time interval; .and (ii) the voltage drop during discharge, q = ΔVc ∈ Q = R+

3 4 5 6 7 8 9 10
PCA basis dimension

10-9

10-8

10-7

10-6

R
el

at
iv

e 
er

ro
r

0 10 20 30
Time/s

3.4

3.6

3.8

4

4.2

C
el

l v
ol

ta
ge

 / 
V

Figure 1. (Left) Boxplots of the emulator error on the test set {(ξξξ∗j ,y∗j )}mt
j=1 using the training

set {(ξξξj ,yj)}mj=1 with m = 100. (Right) Example predictions y∗r,j (dashed lines) of Ecell during
the discharge-charge cycle y∗j (solid lines) using r = 10. The worst case predictions (highest ε∗)
are the thick lines and 4 further examples are shown.

Figure 1 shows Tukey boxplots of the relative errors on the test set {(ξξξ∗j ,y∗j )}mt
j=1 using

the training set {(ξξξj ,yj)}mj=1 with m = 100 for an increasing r. The errors were defined as
ε∗ = ||y∗r,j − y∗j ||/||y∗j ||, in which y∗r,j is the mean GP prediction of y∗j using Eq. (7). Example
predictions of the discharge-charge cycle are shown in Figure 1, for r = 10. The worst case
predictions (highest ε∗) are shown, alongside 4 further examples. For the SA below we used
m = 100 and r = 10.



8

1234567890 ‘’“”

ICAPM 2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1039 (2018) 012020  doi :10.1088/1742-6596/1039/1/012020

5.1. Sensitivity analysis
The SA was performed using the SAFE package developed by Pianosi et al. [13]. For the
variance-based method we placed a uniform distribution on the factors and sampled points
X = [ξi,j ], i = 1, . . . , 2k, j = 1, . . . , N (N = 5000) in the 2k hypercube using a Latin hypercube
design. The physical ranges were 0.1 ≤ εp ≤ 0.4, 0.5 ≤ Rp[μm] ≤ 2 and 0.4 ≤ SOCin ≤ 0.6,
and the factors were scaled to obtain X = [0, 1]3. The sampled inputs were used to produce the
three input matrices A ∈ R

N×k, B ∈ R
N×k and Ci ∈ R

N×k, i = 1, . . . , k, from which the QoI
values qA = f(A), qB = f(B) and qCi = f(Ci) were extracted.
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Figure 2. Main and total effects for ηE (left) and ΔVc (right).
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Figure 3. Convergence of the EEs for different numbers of model evaluations with 95%
confidence intervals in the case of ηE (left) and ΔVc (right).

Figure 2 presents both the main and total effects for the three factors. As expected, the
particle size and porosity are the most influential, while the initial SOC mainly affects the open-
circuit potential so has relatively little influence on q. The porosity determines the effective ionic
conductivity (the volume fraction of electrolyte is εp) and since the ohmic loss is predominantly
suffered in the ionic phase, εp has a major influence on the internal resistance. Moreover, the
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reaction rate depends upon the concentration (per unit volume of the electrode) of Li+ according
to the Butler-Volmer law (12), so a restricted supply of Li+ in the positive electrode will lead to
a large concentration overpotential for a fixed current (the overpotential in (12) must increase as
c decreases in order to maintain a fixed left hand side, i.e, applied current density). The particle
radius determines the level of mass transport resistance for the solid Li (which has to diffuse
through the particle to react at R = Rp) as well as the specific surface area for reaction (smaller
particles lead to higher specific areas). Thus, increasing the particle radius will lead to a higher
concentration overpotential and, therefore, a deterioration in performance. For the voltage drop
during discharge (ΔVc), εp has the greatest influence, followed by Rp and lastly SOCin, as seen in
Figure 2. The combination of an increased Ohmic drop and a higher concentration overpotential
on the total polarization caused by a lower εp outweighs the effect of an increased concentration
overpotential caused by lowering Rp.

For an EET, uniform distributions were selected for the three factors, which were again
scaled to yield X = [0, 1]3. A major difference between the variance-based method and
the EET is the sampling strategy. The EET is highly efficient, requiring only M(k + 1)
model evaluations vs. N(k + 2) to calculate the main effect indices; in the results above,
N(k + 2) = 5000 × (3 + 2) = 25000, which is much higher than typical values of M(k + 1).
The trends in the means of the μi with confidence intervals (CIs) are depicted in Figure 3
for an increasing number of model evaluations (M(k + 1)). The CIs were established using
bootstrapping [14], which consists of re-sampling the base points with replacement to produce
P copies of the trajectories and for each of the P copies to use the EET to estimate μi and σi.
This provides empirical distributions over μi and σi from which means and confidence bounds
can be estimated.
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Figure 4. Main and total effects for the first two PCA coefficients (for the cell voltage curve).

The ranking of the inputs is the same as in the variance-based method. The means stabilize
at around M = 500 (2000 model runs). There are small but noticeable fluctuations in the mean
for εp around the value 0.25 even at much higher values of M but this behaviour is stable.
The cause is the broad range of εp in comparison with the other factors and, therefore, the
relatively small number of samples. Moving to a higher value of M the confidence intervals
shrink, suggesting greater accuracy in the predictions. The ranking, however, is accurate even
for very low numbers of M , which shows that the EET is more efficient than the variance based
method. Although time cost is not an issue for the emulator, which provides extremely rapid
predictions (on the order of a few seconds for 2000 predictions), in cases where a full simulator
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is used the much lower number of model runs for the EET represents an enormous advantage.
To investigate the sensitivity of the charge-discharge curve, we examine the main and total

effects of the PCA coefficients wi(ξξξ) using the same Latin hypercube design and N = 5000 (we
replace, e.g., ηE with wi(ξξξ), i ∈ {1, . . . , r}). The results are depicted in Figure 4 for w1 and w2.
Figure 5 shows an example (from the test set) of the contributions from the PCA eigenvectors
(wivi, up to i = 4) towards the final (mean centred) voltage profile. The first two contributions
can be seen to have by far the most influence. The sensitivities of the coefficients w1 and w2 are
highest for εp and Rp, with roughly equal contributions from each, while higher-order coefficients
(w3 and w4) were more heavily influenced by SOCin.

6. Summary and conclusions
SA is often unfeasible with complex computer models. In such cases emulators, of varying degrees
of sophistication, can be employed. Quantifying the uncertainty in the emulator predictions is
desirable, but this is only achievable for certain approaches. For multivariate outputs (especially
in high dimensional spaces), SA under uncertainty is especially challenging, even when the QoI is
a scalar. In this paper we propose a GP emulator approach for performing SA under uncertainty
when the model output is multivariate (possibly in a high-dimensional space). We present an
example for a Li-ion battery, demonstrating that the method can be efficient and accurate. We
are able to perform a probabilistic SA on scalar QoIs derived from the output (via a linear
functional) and also on the output itself by focusing individually on each random principal
coefficient. This can be achieved with either full MC sampling or by using semi-analytical
expressions that are extensions of those derived by Oakley and O’Hagan [5] for scalar QoIs.
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Figure 5. An example of the contributions from the PCA eigenvectors (wivi) towards the final
(mean centred) voltage profile. In the left-hand figure, wivi is successively added to the mean.
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Appendix A. Efficient sampling for sensitivity analysis under uncertainty
We consider a scalar linear functional QoI Q = F (ξξξ) = (G ◦ η)(ξξξ) as defined in section 2. For
example, we may consider G(y) =

∫
R η(x;ξξξ)w(x)dμ(x), for some measure μ on a compact subset

R of RL representing space or time. To keep matters simple, we set w(x) ≡ 1/μ(R), use Lebesgue
measure and assume that η(x;ξξξ) is continuous; then the Riemann and Lebesgue integrals coincide
and approximations to G(y) by Riemann sums or Gauss quadratures converge. In reality of
course we have a discrete output yr = (y1, . . . , yd)

T = ηηηr(ξξξ) that approximates η(x;ξξξ) at, say,
points {xl}dl=1 ⊂ R. Correspondingly, we have a discrete approximation g(y) of G(y) defined

by a quadrature g(yr) = μ(R)−1
∑d′

j=1 bjylj , where {ylj}d
′

j=1 ⊂ {yl}dl=1 (approximating η(xlj ;ξξξ),

j = 1, . . . , d′) is a subset of the coefficients of yr and bj are quadrature weights. If we are using
a Gauss quadrature, the points xlj are specified and must be included in the design {xl}dl=1. For
ease of presentation, and without loss of generality, we use a mid-point Riemann sum, so that
f(ξξξ) = g(ηηηr(ξξξ)) = g(yr) = d−1

∑d
l=1 yl.

Rather than a point estimate of yr we have a distribution over functions (7), which leads
to distributions over q = f(ξξξ) and therefore over the sensitivity measures, as a consequence
of the emulator uncertainty. The typical sensitivity measures employed are Si = Vi/V =
Varξi(Eξξξ∼i

[q|ξi])/Var(q) and STi = 1− Varξξξ∼i
(Eξi [q|ξξξ∼i])/Var(q). Oakley and O’Hagan [5] also

propose the main effects fi = Eξξξ∼i
[q|ξi] − f0 as useful graphical summaries of the influences of

each variable. We derive approximate estimates of the means and variances of these various
quantities, extending the analysis in [5] to multiple output problems. Recalling relationship (7),
namely, yr =

∑r
i=1wi(ξξξ)vi, and denoting the l-th component of vj by vlj , we obtain:

Eηηηr

[
Eξξξ∼i

[q|ξi]
]
= Eηηηr

[
Eξξξ∼i

[
1

d

d∑
l=1

yl

∣∣∣∣ξi
]]

=
1

d
Eηηηr

⎡
⎣Eξξξ∼i

⎡
⎣ d∑

l=1

r∑
j=1

wj(ξξξ)v
l
j

∣∣∣∣ξi
⎤
⎦
⎤
⎦

=
1

d
Eηηηr

⎡
⎣Eξξξ∼i

⎡
⎣ r∑
j=1

bjwj(ξξξ)

∣∣∣∣ξi
⎤
⎦
⎤
⎦ =

1

d
Eξξξ∼i

⎡
⎣ r∑
j=1

bjEηηηr [wj(ξξξ)]

∣∣∣∣ξi
⎤
⎦

=
1

d
Eξξξ∼i

⎡
⎣ r∑
j=1

bjm
′
j(ξξξ)

∣∣∣∣ξi
⎤
⎦ =

1

d

r∑
j=1

bj

∫
[0,1]k−1

m′j(ξξξ)dξξξ∼i =
1

d

r∑
j=1

bjTj(ξi)

(A.1)

where bj =
∑d

l=1 v
l
j and the functions Tj(ξi) are defined by the integrals in the last line. Similarly:

Eηηηr [E[q]] = (1/d)
r∑

j=1

bj

∫
[0,1]k

m′j(ξξξ)dξξξ = (1/d)
r∑

j=1

bjT
′
j , (A.2)
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where T ′j are now constants since the integration is over all input factors. Thus Eηηηr [fi] =

Eηηηr [Eξξξ∼i
[q|ξi]]−Eηηηr [E[q]] = (1/d)

∑r
j=1 bj(Tj(ξi)− T ′j). The integrals defining Tj and T ′j can be

approximated numerically at a very low computational cost.
We denote by ξξξ∼I the vector of factors excluding those corresponding to the index set

I ⊂ {1, . . . , k} and denote by ξξξI the subset of factors corresponding to I. From the definition
of covariance we have:

Covηηηr
(
Eξξξ∼I [q|ξξξI ],Eξξξ∼J [q|ξξξJ ]

)
= Eηηηr

[
Eξξξ∼I [q|ξξξI ]Eξξξ∼J [q|ξξξJ ]

]− Eηηηr

[
Eξξξ∼i

[q|ξξξI ]
]
Eηηηr

[
Eξξξ∼J [q|ξξξJ ]

]
=

∫
ξξξ′∼J

∫
ξξξ∼I

Eηηηr

[
f(ξξξ)f(ξξξ′)

]
dξξξ∼Idξξξ′∼J − Eηηηr

[
Eξξξ∼I [q|ξξξI ]

]
Eηηηr

[
Eξξξ∼J [q|ξξξJ ]

]

=

∫
ξξξ′∼J

∫
ξξξ∼I

{
Covηηηr

(
f(ξξξ), f(ξξξ′)

)− Eηηηr [f(ξξξ)]Eηηηr

[
f(ξξξ′)

]}
dξξξ∼Idξξξ′∼J

− Eηηηr

[
Eξξξ∼I [q|ξξξI ]

]
Eηηηr

[
Eξξξ∼J [q|ξξξJ ]

]
=

∫
ξξξ′∼J

∫
ξξξ∼I

Covηηηr
(
f(ξξξ), f(ξξξ′)

)
dξξξ∼Idξξξ′∼J

=

∫
ξξξ′∼J

∫
ξξξ∼I

r∑
j=1

r∑
p=1

bjbpCovηηηr
(
wj(ξξξ), wp(ξξξ

′)
)
dξξξ∼Idξξξ′∼J

=
1

d2

∫
ξξξ′∼J

∫
ξξξ∼I

r∑
j=1

b2jcj(ξξξ, ξξξ
′)dξξξ∼Idξξξ′∼J = U(ξξξI , ξξξJ )

(A.3)

in which the last step follows from the mutual independence of the wi, and the
posterior covariances cj(ξξξ, ξξξ

′) are given in Eqs. (6). Now, Varηηηr(fi) = Eηηηr [E
2
ξξξ∼i

[q|ξi]] −
2Eηηηr [Eξξξ∼i

[q|ξi]E[q]]−Eηηηr [E
2[q]]−E

2
ηηηr [fi] in which the last term on the right hand side is already

known. The first to third terms are calculated by using the definition of covariance and Eq.
(A.3) with (I,J ) = ({i}, {i}), ({i}, ∅) and (∅, ∅), together with the previous expressions for
Eηηηr

[
Eξξξ∼i

[q|ξi]
]
and Eηηηr [E[q]]. The integrals in Eq. (A.3) are again cheap to evaluate. The

means of all the fi, evaluated separately for selected values of ξi in [0, 1], can be combined on a
single plot together with standard deviations to measure the influences of the factors [5] .

We next consider the partial variances Vi. We first note that Eηηηr [Vi] = Eηηηr [Varξi(Eξξξ∼i
[q|ξi])] =

Eηηηr [Eξi [E
2
ξξξ∼i

[q|ξi]] − E
2
ξi
[Eξξξ∼i

[q|ξi]]] = Eηηηr [Eξi [E
2
ξξξ∼i

[q|ξi]]] − Eηηηr [E
2[q]], the second term of which

is already known. The first term is evaluated as follows:

Eηηηr

[
Eξi [E

2
ξξξ∼i

[q|ξi]]
]
= Eηηηr

[∫
[0,1]

(∫
[0,1]k−1

f(ξξξ∗)dξξξ∗∼i

∫
[0,1]k−1

f(ξξξ)dξξξ∼i

)
dξi

]

=

∫
[0,1]

∫
[0,1]k−1

∫
[0,1]k−1

Eηηηr [f(ξξξ)f(ξξξ
∗)] dξξξ∗∼idξξξ∼idξi

=

∫
[0,1]

∫
[0,1]k−1

∫
[0,1]k−1

{Covηηηr (f(ξξξ), f(ξξξ∗))− Eηηηr [f(ξξξ)]Eηηηr [f(ξξξ
∗)]} dξξξ∗∼idξξξ∼idξi

=
1

d2

r∑
j=1

∫
[0,1]

∫
[0,1]k−1

∫
[0,1]k−1

bj

⎧⎨
⎩bjcj(ξξξ, ξξξ

∗)−
r∑

p=1

bpwj(ξξξ)wp(ξξξ
∗)

⎫⎬
⎭ dξξξ∗∼idξξξ∼idξi

(A.4)

in which ξξξ∗ = (ξ∗1 , . . . , ξi, . . . , ξ∗k)
T . These integrals are readily and cheaply approximated

numerically. A first order Taylor expansion yields Eηηηr [Si] = Eηηηr [Vi/V ] = Eηηηr [Vi]/Eηηηr [V ], from
which the main effect indices can be approximated.


