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Abstract

Methods for solving the time-dependent Schrödinger equation via basis set expan-
sion of the wavefunction can generally be categorised as having either static (time-
independent) or dynamic (time-dependent) basis functions. We have recently intro-
duced an alternative simulation approach which represents a middle road between these
two extremes, employing dynamic (classical-like) trajectories to create a static basis
set of Gaussian wavepackets in regions of phase-space relevant to future propagation of
the wavefunction [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test
a modification of our methodology which aims to reduce the size of basis sets gener-
ated in our original scheme. In particular, we employ short-time classical trajectories
to continuously generate new basis functions for short-time quantum propagation of
the wavefunction; to avoid the continued growth of the basis set describing the time-
dependent wavefunction, we employ Matching Pursuit to periodically minimize the
number of basis functions required to accurately describe the wavefunction. Overall,
this approach generates a basis set which is adapted to evolution of the wavefunc-
tion whilst also being as small as possible. In applications to challenging benchmark
problems, namely a 4-dimensional model of photoexcited pyrazine and three different
double-well tunnelling problems, we find that our new scheme enables accurate wave-
function propagation with basis sets which are around an order-of-magnitude smaller
than our original trajectory-guided basis set methodology, highlighting the benefits of
adaptive strategies for wavefunction propagation.
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1 Introduction

The key challenge of wavefunction-based quantum dynamics lies in solving the time-dependent

Schrödinger equation (TDSE),1

−i~ ∂

∂t
|ψ(q, t)〉 = Ĥ |ψ(q, t)〉 , (1)

where q describes the nuclear degrees-of-freedom and Ĥ is the Hamiltonian operator (defined

as the sum of kinetic and potential contributions, Ĥ = T̂ + V̂ ). Most commonly, the time-

dependent wavefunction |ψ (q, t)〉 is approximated as a linear expansion in a set of basis

function, |φ(q, t)〉,

|ψ(q, t)〉 =
N∑
i=1

ci(t) |φi(q, t)〉 . (2)

Quantum dynamics methods relying on this approach can be categorised based on the manner

in which the basis set behaves. Basis functions may be chosen at the outset, resulting

in a time-independent basis set, |φi(q, t)〉 = |φi(q)〉. Once sampled, the basis functions

remain static, and the time-dependence of the system is expressed through propagation of

the expansion coefficients, ci(t),
2–4 according to the Dirac-Frenkel variational principle.5–8

Because the basis functions are time-independent, the region of phase-space spanned by the

basis set must be carefully chosen at the start of a calculation; the most direct implementation

of this approach, whereby the entire phase-space of interest is spanned by the basis set, leads

to the well-known exponential scaling with system size.9

Alternatively, time-dependent basis sets feature basis functions, |φi(q, t)〉, which adapt to

follow wavefunction evolution in time;10,10–12,12–25 in general, the associated expansion coef-

ficients, ci(t), are again propagated using the Dirac-Frenkel variational principle.5–8 To date,

a wide range of time-dependent basis functions, as well as a variety of different equations-

of-motion for the basis functions themselves, have been employed in quantum dynamics

simulations. With regards to basis sets evolving under variational equations-of-motion, the
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most prominent example is the multi-configurational time-dependent Hartree (MCTDH) ap-

proach, which employs expansion of the wavefunction in terms of single-particle functions,

yielding highly accurate results at reasonable computational expense.10,10–13 In the related

G-MCTDH method, single-particle functions in selected (environmental) degrees-of-freedom

are replaced with Gaussian wavepackets (GWPs);14 this development is taken to its natu-

ral conclusion in the variational multiconfigurational Gaussian (vMCG) method, where the

basis functions are multidimensional GWPs which evolve according to variational equations-

of-motion.12,15–19 While these variational methods for propagating basis functions are in-

creasingly applied to high-dimensional problems, challenges remain; for example, MCTDH

requires that the potential energy surface (PES) of interest be expressed as a sum of prod-

uct terms, requiring a prior non-trivial fitting procedure, while the equations-of-motion of

vMCG can be ill-conditioned, such that convergence with respect to basis set size can itself

become challenging.

The challenges of variational evolution can be alleviated somewhat by employing non-

variational equations-of-motion which are easier to deal with from a computational view-

point. For example, the ab initio multiple spawning (AIMS) method23,25,26 evolves a time-

dependent set of GWP basis functions using classical molecular dynamics, while a novel

algorithm is employed to adaptively expand the basis set as non-adiabatic events are de-

tected. Combined with on-the-fly evaluation of adiabatic electronic states and couplings, the

AIMS methodology has enabled direct insight into the photorelaxation in complex environ-

ments.25,27 The multi-configurational Ehrenfest (MCE) method28,29 developed by Shalashilin

and coworkers employs a similar approach, but here the basis functions simultaneously span

multiple electronic states and evolve according to Ehrenfest trajectories; most recently, the

ideas of AIMS and MCE have been combined in the ab initio multiple cloning algorithm,30

which has already been employed to investigate photodissociation phenomena in organic

chromophores. We also note that the recently published quantum trajectory Gaussian basis

(QTGB)9 method provides an interesting perspective in its application of Bohmian mechan-
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ics to its guiding trajectories; initial applications of this approach to two-dimensional prob-

lems have proven promising, while the applicability to more challenging higher-dimensional

systems remains to be tested. Expanding the scope further beyond trajectory-guided meth-

ods for wavefunction propagation, there also exist a range of methods which employ mixed

strategies whereby a quantum sub-system evolves in the presence of a classical environment;

the quantum wavepacket ab initio molecular dynamics (QWAIMD) method31,32 is a good

example of such an approach which has found application to, for example, vibrational prop-

erties of hydrogen-bonded dihalide systems.33 Of course, the idea of classical evolution of

wavefunctions is also tied to the enormous range of work on semi-classical quantum dynamics

methods, including the popular linearized- semi-classical initial value representation (LSC-

IVR34–39) and forwards-backwards IVR methods (FB-IVR40,41) which have been successfully

employed to study systems ranging from liquid water42 to photosynthetic complexes.39

While these, and other, non-variational approaches to wavefunction propagation have

been shown capable of providing new insights into quantum dynamics of complex systems,

they are not without problems; for example, approximate (non-variational) equations-of-

motion can violate the energy-conservation implicit in the TDSE.43 Furthermore, the prop-

agation of basis functions based on classical equations-of-motion is potentially inadequate

in capturing all dynamical effects; in the most challenging cases, these simulations can fail

to sample the regions of configurational space associated with tunnelling, unless some care

is given to the choice of initial conditions for the basis function trajectories.

As a result of the remaining computational challenges associated with both variational

and non-variational quantum simulation approaches, there remain opportunities for develop-

ing new strategies. One strategy which our group, and others,4,9,44,45 have begun to explore

is the idea of adaptive basis sets which represent a “middle road” between time-dependent

and time-independent basis set strategies. Here, the individual basis functions describing

the wavefunction are time-independent, but the basis functions themselves are adaptively

added or removed from the full basis set as the wavefunction evolves; the time-evolution
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of the expansion coefficients associated with the static basis functions is performed vari-

ationally, thereby circumventing the problem of energy conservation encountered by non-

variational evolution. Within this class of methods, the matching pursuit split operator

Fourier transform (MP-SOFT)46,47 approach is perhaps most successful to date. Here, a

“greedy” matching pursuit (MP) algorithm is employed to transform between grid-based

and GWP-based representations of a time-dependent wavefunction, enabling efficient ana-

lytical evolution under the operation of the kinetic energy operator. However, the potential

energy operator in MP-SOFT must still be expressed on a uniform grid in configurational

space; this approach is therefore at odds with the demands of “direct” quantum dynamics

approaches which are interfaced with ab initio electronic structure methods. More recently,

the basis expansion leaping (BEL)45 method avoids the use of a grid in configurational space

completely, and instead exploits the over-complete nature of GWP basis sets. Here, a ba-

sis set of GWPs is periodically expanded by placing new GWP basis functions into empty

regions of phase-space according to an overlap-based metric; following variational evolution

of the expansion coefficients, the GWP basis set is periodically pruned to remove redundant

GWPs. This approach has demonstrated good initial performance for a two-dimensional

benchmark problem, but has not yet been employed to higher-dimensional systems. Fur-

ther examples of basis adaptation strategies have employed ideas based on identifying linear

dependence through analysis of overlap matrices and subsequently employing methods such

as singular value decomposition (SVD); recent work by Prociuk and, separately, Worth are

good examples within this category.48,49

In the spirit of these adaptive approaches, we have recently introduced a novel method

for basis set generation for quantum dynamics.44 Here, we employ computationally-simple

(classical molecular dynamics or Ehrenfest-type) trajectories to place GWP basis functions

in phase-space, guided by the PES of the system. Following the initial sampling stage, the

GWP basis set behaves time-independently, with wavefunction propagation being expressed

variationally through the expansion coefficients. In contrast to the BEL method, our strat-
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egy employs a physically-motivated placement of basis functions, albeit at the additional

cost of running multiple sampling trajectories. Our trajectory-guided method was very suc-

cessfully applied to the vibronic Hamiltonian models describing the decay of photoexcited

pyrazine, resulting in qualitative reproduction of exact MCTDH dynamics for both 4- and

24-dimensional representations.

Given the simplicity of this strategy for sampling GWP basis functions for quantum dy-

namics basis sets, these initial results were encouraging; however, we recognise a number of

important assumptions associated with our initial methodology. Chief among these assump-

tions is that the classical trajectories employed during the basis sampling stage will explore

the same regions of phase-space which are relevant to quantum propagation; however, clas-

sical trajectories can potentially sample regions of phase-space which are inconsistent with

quantum mechanics, for example due to their inability to correctly treat zero-point energy

(ZPE)50–52 and tunnelling, as already noted above.

To overcome these challenges, this Article proposes a modification to our initial trajectory-

guided method. In particular, we adopt the view that classical trajectories with appropriate

initial conditions are suited to sample basis functions for short time-periods; this is in con-

trast to our initial report, where classical molecular dynamics trajectories are assumed to

sample the relevant region of phase-space for quantum propagation over the entire simula-

tion time-scale. Thus, we retain both the strategy for sampling basis functions as well as

the time-independent propagation algorithm, however we now split the full time-evolution

into small segments, each requiring short “bursts” of GWP basis function sampling, fol-

lowed by propagation of the expansion coefficients according to the TDSE. Between these

trajectory bursts, we employ the MP algorithm23,27,30,53–55 to minimise the active basis set

and optimise the wavefunction representation quality. Overall, our scheme evolves a quan-

tum wavefunction using repeated expansion (via classical trajectories) and minimization (via

MP); the main conclusion of this paper is that this adaptive scheme allows for the simulation

of qualitatively accurate quantum dynamics in many-dimensional systems at a fraction of
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the computational expense of our initial basis-set sampling strategy.

2 Theory

2.1 Original trajectory-guided sampling scheme

To set the context for the adaptive basis strategy introduced here, we first outline our

original trajectory-guided approach.44 We assume that our system of interest is described

by f nuclear degrees-of-freedom and a set of diabatic states |α〉, and we assume that we

have an initial wavefunction |ψ(q, 0)〉|α〉. We subsequently initialise a set of m trajectories

with initial conditions chosen based on the characteristics of the initial wavefunction; for

example, the initial positions and momenta of each trajectory could be drawn from the

Wigner distribution of the initial wavefunction. These trajectories are then propagated for nt

time-steps according to either classical or Ehrenfest trajectories, depending upon the number

of electronic states in the system. Along each trajectory, the coordinates and momenta of the

current phase-space point are stored at each time-step with a probability of 1/ns, where ns

is a user-defined frequency factor which, along with m, influences the total basis set size; in

the case of systems containing multiple electronic states, we note that we place a GWP basis

function on each electronic state such that the total basis set scales linearly with number of

electronic states.

The TDSE is subsequently solved using the entire set of N ' m× (nt/ns) basis functions

which, for the sake of computational simplicity, are chosen to be f -dimensional GWPs of

the form,

〈q|gj〉 = Nje
−(q−qj)

TAj(q−qj)+
i
~pj ·(q−qj), (3)

where Nj is the GWP normalisation constant, Aj is an f × f diagonal matrix with entries

γκ/~, where κ labels the degree-of-freedom, and {qj,pj} are the position and momenta of the

corresponding trajectory. Again, for computational simplicity, we use fixed-width GWPs,
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such that γκ is a constant for each degree-of-freedom κ.

Using the full basis set of N GWPs, the wavefunction of the system is subsequently

written as

|ψ(q; t)〉 =
N∑
j=1

cj(t)|gj〉|αj〉, (4)

where we note that the sampled GWPs are now assumed to be time-independent, with

the time-dependence of ψ(q; t) carried solely through the expansion coefficients. Direct

application of the Dirac-Frenkel variational principle yields

ċ = − i
~
S−1Hc, (5)

where S is the overlap matrix with elements

Sij = 〈αi|〈gi|gj〉|αj〉, (6)

and H is the Hamiltonian matrix with elements

Hij = 〈αi|〈gi|Ĥ|gj〉|αj〉, (7)

for the set of N basis functions.

2.2 Adaptive trajectory-guided scheme

While the trajectory-guided strategy outlined above was proven to be successful in simu-

lations of 4- and 24-dimensional models of photorelaxation in pyrazine, as well as in 50-

dimensional simulations of a spin Boson model,44 there are two drawbacks to the strategy.

First, using classical-like trajectories to sample GWP basis functions can lead to inconsis-

tencies in the regions of phase-space sampled by the basis set and those most relevant to

quantum propagation; most importantly, as already noted above, this might arise when one
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considers tunnelling problems, where classical trajectories might not be able to cross barriers

on the PES which might otherwise be traversed in full quantum simulations. Furthermore,

classical trajectories with initial conditions sampled from a quantum phase-space distribu-

tion can lead to ZPE leakage,56 where the ZPE in bound vibrational modes escapes into

the remaining degrees-of-freedom of the system, violating the conservation of ZPE implicit

in quantum dynamics. We emphasize here that this potential ZPE leakage problem is not

associated with the wavefunction propagation itself, which is performed by variational evo-

lution of the TDSE within our approaches, but is associated with the use of a finite set of

classical trajectories which are not guaranteed to sample the correct quantum phase-space

distribution once propagated in time. A second drawback of our original strategy is that

the total size of the basis set generated by our trajectory-sampling approach can be quite

large. For example, in applications to the 4-dimensional model of photoexcited pyrazine, it

was found that around 24×103 basis functions were required to give quantitative agreement

with accurate MCTDH results for the time-dependent populations of the diabatic states.

These challenges can, in principle, be addressed introducing two modifications into our

original sampling strategy. First, we replace the long-time classical trajectory sampling

of our original method with multiple short-time trajectories. By using classical-like tra-

jectories to sample GWP basis functions relevant to short-time (i.e. tens of femtoseconds)

quantum propagation, we minimize the ZPE leakage problem, which is typically observed

in simulations on longer timescales (i.e. few 100 femtoseconds to picoseconds, depending

on the system). Furthermore, by repeatedly restarting new trajectories with initial condi-

tions drawn from the current wavefunction ψ(q; t), we improve the likelihood of sampling

basis functions which are relevant to quantum dynamics in the immediate future, without

having to sample potentially superfluous basis functions at longer times. The second im-

provement to our initial strategy is to introduce a scheme to adaptively prune the basis set

during the calculation; this is necessary to avoid the continuous expansion of the basis set

which would arise by continued propagation of trajectories. In this work, we exploit the
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over-complete nature of GWP basis sets,43 to adaptively create a minimal basis set which

accurately represents the time-dependent wavefunction with as few GWP basis functions as

possible. As already noted, this adaptive strategy has been employed in several previous

GWP-based simulations;9,43,45 however, our approach is unique in using MP to generate a

minimal representation of the wavefunction while avoiding linearly-dependent GWP basis

functions.

Introducing the two changes outlined above into our original strategy gives a new ap-

proach founded on short-time trajectories and automated basis adaptation. In the remainder

of this paper, we focus on comparing our original strategy, referred to hereafter as stan-

dard trajectory-guided (sTG), to the modified strategy, referred to hereafter as adaptive

trajectory-guided (aTG). In summary, as shown in Fig. 1, our aTG scheme for wavefunction

propagation proceeds as follows:

1. Assume that we have a wavefunction at some time t, |ψ(q; t)〉, given as a linear com-

bination of N GWPs, as in Eq. 4.

2. Sample m sets of appropriate initial positions and momenta from the current wavefunc-

tion. To sample each of the m initial conditions, we select a GWP k with a probability

given by the magnitude of its overlap onto the total wavefunction, |〈gk|ψ(q; t)〉|; for the

selected GWP, initial position and momenta are sampled from the Wigner distribution

of the |gk〉.

3. Using the sampled initial conditions, propagate m trajectories for a short time ts

using classical molecular dynamics (in the case of a single diabetic surface), Ehrenfest

dynamics (multistage case), or any other appropriate classical-like approach.

4. Along each sampling trajectory, place fixed-width GWPs at the current phase-space

point (qj,pj) with a probability 1/ns at each propagation time-step.

5. The sampled GWPs are added to the set of N original GWPs, with the expansion
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coefficients of the new GWPs set to zero; the total size of the new GWP basis set is

N I .

6. The expansion coefficients of the N I GWPs are now propagated according to Eq. 5

for time ts.

7. Following propagation, use MP to minimize the size of the GWP basis set, while still

accurately representing the current wavefunction. This results in a new set of NB

GWPs describing the wavefunction, and we then go back to step (1).

As is clear from Fig. 1, this strategy results in a wavefunction which constantly expands and

contracts throughout the quantum propagation; in contrast to our original sTG approach,

the results below show that this adaptive strategy dramatically reduces the total size of the

basis set required in a given quantum dynamics problem, without compromising simulation

accuracy. However, to complete the description of our aTG approach, we now outline the

MP strategy as implemented here to periodically generate a minimal GWP representation

of a time-dependent wavefunction.

2.3 The matching pursuit optimisation algorithm

Our aTG strategy uses MP to periodically minimize the size of the GWP basis required

to describe the current wavefunction. The MP strategy as implemented here exploits the

fact that the GWP basis set is overcomplete; MP then allows us to find a wavefunction

representation which requires as few GWP basis functions as possible. In this way, periodic

application of MP allows us to adaptively minimize the overall basis set size, leading to

fewer evaluations of overlap and Hamiltonian matrix elements and a more efficient simulation

overall. In this work, we use the MP algorithm53 to minimise and optimise the active basis set

at the end of each trajectory-sampling period, following propagation of the basis expansion

coefficients; the resulting minimal basis set is then used as the initial wavefunction for the

next short-time period of basis set sampling and propagation.
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Originally a method for signal decomposition,53 MP has also found previous applications

in quantum dynamics simulations,43,46,47,57 most notably in the MP-SOFT method. MP is

a “greedy” algorithm for selecting, from a large set of basis functions, the minimal set of

functions required to reproduce a target signal (or, in the present context, wavefunction)

with a chosen accuracy. The MP procedure implemented here can be summarised as follows:

1. Let ∣∣ψA(q, t)
〉

=
NI∑
i

cAi (t)
∣∣φAi (q)

〉
be the wavefunction at time t. Note that the wavefunction is described by N I GWP

basis functions and their associated diabatic state, |φi(q)〉 = |gi(q)〉|αi〉; these N I

GWPs form the set {φA}.

2. Store the initial wavefunction:
∣∣ψI(q, t)〉 =

∣∣ψA(q, t)
〉
.

3. Initialise the number of GWPs in the minimal description of the current wavefunction:

NB = 0. Also, initialize the set {φB}, containing GWPs which comprise the MP-

optimized description of the wavefunction
∣∣ψA(q, t)

〉
; initially, the set {φB} is empty.

4. Select from the current set of GWPs, {φA}, the GWP possessing the largest absolute

overlap

ω = |
〈
φA(q)

∣∣ψA(q, t)
〉
|

with the active wavefunction
∣∣ψA(q, t)

〉
.

5. Maximise the overlap function ω with respect to the parameters of GWP
∣∣φA(q)

〉
(namely, positions qA and momenta pA), using a suitable algorithm such as steepest-

descents or conjugate gradients.

6. The optimised GWP basis function, φopt, is added to the set of retained basis functions

which will be used to form the minimal description of the wavefunction
∣∣ψA(q, tA)

〉
.

Increment the new GWP set: NB → NB + 1, {φB} → {φB}+ φopt.
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7. Calculate new expansion coefficients, cB(t), for the minimal representation defined by

the set {φB}, ∣∣ψB(q, tB)
〉

=
NB∑
i

cBi (t)
∣∣φBi (q)

〉
.

The expansion coefficients can be determined by projection of the NB GWP basis

functions onto
∣∣ψA(q, t)

〉
. Thus,

cB(t) =
(
SB
)−1

W ,

where SB is the NB ×NB overlap matrix for the optimised set of GWPs and W is a

vector of length NB with elements Wj = 〈φB|ψA〉.

8. Update the remainder of the wavefunction by subtracting the optimized counterpart,

such that ∣∣ψA(q, tA)
〉
→

NI∑
i

cAi (t)
∣∣φAi (q)

〉
−

NB∑
i

cBi (t)
∣∣φBi (q)

〉
.

9. Check convergence of the minimal representation. If the norm of the overlap of the

optimised representation onto the initial wavefunction is greater than a user-defined

cut-off ∆, such that

|
〈
ψB(q, t)

∣∣ψI(q, t)〉 | ≥ ∆ ,

then replace the wavefunction
∣∣ψI(q, t)〉 =

∣∣ψB(q, t)
〉

and continue propagation. Oth-

erwise, go to step (4).

The wavefunction resulting from this MP procedure typically contains far fewer GWPs

than the initial wavefunction, yet reproduces the original wavefunction to an accuracy de-

scribed by ∆. An example of this is shown in Fig. 2, wherein the sizes N I and NB are

compared for a simulation of the 4-dimensional pyrazine model (details given below).

As a final point, it is worth commenting on the additional computational expense incurred
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by this adaptive MP scheme. Depending on the frequency with which MP is performed on the

current active basis set, as well as the size of the basis set itself, we find that MP represents

a significant increase in the overall computation time when one is using simple analytical

PESs. However, it is important to bear in mind that our long-term goal is to use our GWP

propagation scheme in “on-the-fly” quantum dynamics, where the PES is evaluated using ab

initio electronic structure calculations during the course of the time-evolution, rather than

pre-fitting an analytical PES to a database of prior electronic structure calculations. In this

“on-the-fly” scenario, the additional expense of MP is expected to be small compared to

the benefits which will arise from propagating the wavefunction using a minimal basis set;

in particular, by minimizing the size of the basis set, we ultimately minimize the number

of (computationally demanding) ab initio electronic structure calculations which will be

required for evaluation of the Hamiltonian matrix.

3 Results and discussion

The aTG scheme outlined above improves upon our original sTG scheme by reducing the

dependence on the accuracy of classical dynamics and introducing an adaptive scheme for

selecting a minimal basis set. In this Article, we focus on assessing the impact of these two

changes by considering quantum dynamics simulations of three different systems: (i) non-

adiabatic dynamics in a 4-dimensional model of pyrazine following photoexcitation to the S2

electronic state, (ii) tunnelling in a double-well potential with linearly-coupled degrees-of-

freedom, and (iii) tunnelling in a double-well potential with strong non-linear coupling to the

tunnelling coordinate. These systems are selected because they each represent challenging

prototypical problems in quantum dynamics, yet analytical PESs and numerically exact

benchmark results are available; furthermore, we emphasize that our ultimate goal is to

model quantum dynamics in complex multidimensional systems, so we prefer to benchmark

new methodologies for challenging problems in preference to 1- or 2-dimensional cases.
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3.1 Photorelaxation in pyrazine

Pyrazine, C4H4N2, exhibits vibronic coupling between its first and second excited electronic

states, S1 and S2 respectively. As a result of this, photoexcitation to S2 from the ground

state, S0, is followed by ultrafast population transfer to S1. The ultrafast relaxation between

these states is ascribed to the presence of a conical intersection between S2 and S1, resulting

in a broad photoabsorption spectrum with few sharply-defined features.58–60

This pyrazine system has evolved into a benchmark problem for non-adiabatic dynamics.

In particular, a vibronic Hamiltonian is available which has been fit to experimental data and

ab initio calculations, and this Hamiltonian has been used in extensive MCTDH simulations,

thereby providing benchmark results for comparison. The 24-dimensional, two electronic-

state vibronic Hamiltonian can be written as13

Ĥ =

f∑
i=1

[
−ωi

2

∂2

∂q2i
+
ωi
2
q2i

]
+

 −∆ 0

0 ∆

+
∑
i∈G1

 ai 0

0 bi

 qi

+
∑

(i,j)∈G2

 aij 0

0 bij

 qiqj +
∑
i∈G3

 0 ci

ci 0

 qi +
∑

(i,j)∈G4

 0 cij

cij 0

 qiqj ,

(8)

where qi is the normal-mode coordinate of the ith vibrational mode and ωi represents the

corresponding vibrational frequency. The energy splitting between S1 and S2 is equal to 2∆

at the origin of nuclear coordinate-space. The known parameters ai, bi, aij and bij describe

linear and bilinear expansion terms, while the coupling between states is expressed by ci and

cij. The subdivision of vibrational modes in Eq. 8 reflects the symmetry of the system; the

mode coupling the S1 (B2u) and S2 (B3u) states must possess B1g symmetry. The set G1

thus contains all modes of Ag symmetry, G2 is comprised of pairs of modes with identical

symmetry, G3 represents a single mode with B1g symmetry and G4 is the set of all pairs of

modes, the product of which results in B1g symmetry.

The four-dimensional (f = 4) version of this Hamiltonian, comprising the vibronic cou-
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pling mode ν10a and the three Ag modes exhibiting the strongest linear coupling (ν1, ν6a

and ν9a), is well-known to sufficiently represent the population dynamics of the photoexcited

system.44 This significantly reduces the computational challenge in comparison with explicit

treatment of all 24 vibrational modes. As our previous work44 was mostly focussed on this

lower-dimensional model, we will limit ourselves to discussion of the 4-mode Hamiltonian

here. It is worth noting that even this lower dimensional version of the full Hamiltonian

exceeds the the size of systems for which other adaptive basis methods such as BEL45 and

QTGB9 have been demonstrated to date.

To sample basis functions, we retain the propagation scheme used in our previous work,44

relying on mean-field Ehrenfest equations-of-motion which account for multiple electronic

states. Thus each sampling trajectory represents a basis function of the form,

|φ(q, t)〉 = [a1(t) |1〉+ a2 |2〉] |gt(qt,pt)〉 , (9)

where a1,2 are expansion coefficients for the diabatic electronic states S1 (|1〉) and S2 (|2〉),

respectively, and (qt,pt) are the phase-space coordinates of the trajectory. The expansion

coefficients evolve according to equations-of-motion derived from the TDSE,

ȧ = − i
~

[
H− i~Ṡ

]
a . (10)

Here, H is the Hamiltonian matrix in the electronic basis defined by Hij = 〈gt| 〈i|Ĥ|j〉 |gt〉,

and the elements of the time-derivative overlap matrix Ṡ are

Ṡij = δij

[
f∑
k=1

〈
gt

∣∣∣∣ ∂gt∂qk

〉
∂qk
∂t

+

〈
gt

∣∣∣∣ ∂gt∂pk

〉
∂pk
∂t

]
, (11)

where the Dirac delta function arises due to the orthonormality of the electronic states. Initial

positions and momenta of the sampling trajectories are obtained by sampling the Wigner

phase-space distribution of the initial wavefunction, and these positions and momenta evolve
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according to,

dqk
dt

=
pk
mk

, (12)

dpk
dt

= −∂VEhr
∂qk

, (13)

where the Ehrenfest potential energy is given by

VEhr =
|a1|2V11 + |a2|2V22 + 2Re(a∗1a2V12)

|a1|2 + |a2|2
, (14)

with Vij representing the element of the potential energy matrix of the system for electronic

states i and j.

To account for the diabatic electronic states during basis sampling, GWPs are placed on

electronic state |1〉 with a probability P 1
S , given by

P 1
S =

|a1|2

|a1|2 + |a2|2
. (15)

The probability of placing basis functions on state |2〉 is calculated in the same way, but

using |a2|2 in the numerator. This approach to placing basis functions ensures that, near

regions of configurational space in which the electronic states are strongly-coupled, GWPs

are placed on both electronic surfaces.

The initial wavefunction for our calculations reflects photoexcitation of pyrazine from

the ground state to the S2 excited state, with the normal-mode vibrational coordinates all

chosen as qκ = 0. Specifically, the initial wavefunction is,

ψ(q, t=0) =

[
f∏
k=1

(
1

π

)1/4

exp

(
−1

2
q2k

)]
|2〉 . (16)

For the pyrazine model system considered here, the S2 photoabsorption spectrum can

be calculated by Fourier transform of the wavefunction autocorrelation function, enabling

comparison with experimental data. However, our previous work has shown that, due to
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the artificial dampening and sampling functions necessary to reproduce the resolution of the

experimental spectrum, long-time dynamics are dampened to the point of having no effect

on the final absorption spectrum at all;44 in other words, the photoabsorption spectrum

only assesses the accuracy of the simulation at short times in the pyrazine system. Instead,

the state population dynamics provide a far more detailed insight into the accuracy with

which the dynamics of the system are being reproduced;44 as a result, we focus explicitly on

calculating the diabatic population of S1 as a measure of calculation accuracy. Within our

propagation scheme, using the wavefunction of Eq. (4), the population P1(t) is given by,

P1(t) =
∑
i,j

c∗i (t)cj(t) 〈gi(q) | gj(q)〉 δλi,1δλj ,1 , (17)

where λj represents the state inhabited by basis function |gj(q)〉.

Three calculations with differing initial basis set sizes were carried out, all employing

a 0.1 fs timestep. The GWP basis sampling probability at each time-step was 1/ns = 0.01

during each calculation. Each trajectory sampling burst of 100 time-steps was immediately

followed by 100 steps of wavefunction propagation; a set of 15 such trajectory-sampling

bursts resulted in a total simulation time of 150 fs. MP optimization was carried out be-

tween each burst (i.e. every 10 fs) until the overlap of the optimized basis set with the

wavefunction at the end of the previous burst reached ∆ = 0.95. The three calculations

reported here employed different numbers of sampling trajectories, m = 100, 300 and 500,

resulting in ∼1000, 3000 and 5000 GWP basis functions being sampled during each short

sampling burst. The basis set sizes remained relatively constant throughout each simulation,

with variations in number of GWPs retained by the MP algorithm being around 20%, 10%

and 3% for initial sizes of 1000, 3000 and 5000 GWPs respectively; this is illustrated in Fig.

2, which shows the number of GWPs retained following MP optimization for the m = 300

simulation. All simulations used the fourth-order Runge-Kutta algorithm for propagation

of the wavefunction expansion coefficients, while the velocity Verlet algorithm was used to
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propagate the sampling trajectories. Finally, width parameters of all GWPs were fixed for

all degrees of freedom at a value of γ = 0.5, reflecting the width of the initial wavepacket.

Fig. 3 shows the population of the S1 state of pyrazine, P1(t), as a function of time for

the three sizes of basis set employed. Even using just 1000 GWPs per short 10 fs propagation

period, the qualitative features of the population dynamics are clearly reproduced by our

method. The remaining error in Fig. 3(a) at longer times has two principal components. The

first is due to the random nature of the initial conditions of the GWP sampling trajectories;

in particular, we find that repeating the 1000 GWP simulations with different sets of GWP

initial conditions leads to a variation of around 5% in the calculated population dynamics.

The second aspect of the remaining error in Fig. 3(a) relates to the basis set size; as

usual in basis set-based methods for wavefunction propagation, larger basis sets would be

expected to give better agreement with the exact results because of the inherently better

description of the wavefunction combined with the variational solution of the TDSE (at least

for the expansion coefficients). Indeed, as expected, we find that increasing basis set size

clearly allows for better description of some features of the population, such as the small

re-absorbance to the S2 state occurring after just a few femtoseconds; this is highlighted in

Figs. 3(b) and 3(c). This suggest that our method quickly converges with respect to basis

set size which, considering the small basis sets employed here, is very encouraging.

Further investigation of the oscillation at 10 fs highlights the role played by the duration

of the trajectory bursts employed in our aTG method. To investigate further, Fig. 4 shows

the populations arising from two calculations employing comparably sized basis sets (N '

3000), but using different MP restart frequencies, namely 10 fs and 25 fs. The difference in

behaviour between the calculations employing 10 fs bursts and 25 fs bursts, respectively, can

be understood based on the effect of the burst duration on the basis set sampling during each

period of propagation. First, consider the short time behaviour, where it is clear that using

25 fs burst trajectories gives more accurate results. The reason is due to the differing sizes

of the basis set generated by classical sampling trajectories; in the case of 10 fs burst, GWP
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sampling results in a total basis set size of 3064 which is used to propagate the wavefunction

for the first 10 fs, although application of MP at 10 fs shows that only 7 of these GWPS make

a significant contribution to the evolved wavefunction. In contrast, in the case of the 25 fs

burst calculation, GWP sampling leads to a total GWP basis set size of 3252 GWPs which

are used to propagate the wavefunction and, of these, we find that 297 GWPs are active

after 25 fs. This comparison suggests that the effective active basis set generated by sampling

GWPs with 25 fs bursts is larger and better spans the relevant region of phase-space than

that generated by 10 fs bursts, leading to a more accurate calculation, as observed.

Now consider the behaviour at longer times, where 10 fs bursts are generally more ac-

curate. Here, because of the shorter burst duration, the GWP sampling trajectories are, by

definition, closer to the region of phase-space defined by the current evolving wavefunction; in

contrast, the 25 fs burst trajectories will have more opportunity to explore a wider region of

phase-space (due to the longer burst trajectory). Because these GWP trajectories are guided

by classical-like equations-of-motion, there is no guarantee that the sampling generated by

these longer 25 fs bursts will remain accurate with regards to evolution of the wavefunction,

leading to larger errors in the calculation at longer simulation times. In contrast, we find

that, after the initial time with errors arising as described above, the 10 fs burst trajectories

lead to a more accurate result by sampling GWPs which are more relevant to the immediate

time-evolution of the wavefunction. Finally, we note that, although one could argue that

the same principle should apply at short times, a further difference between long- and short-

time basis sets is the fact that, due to the application of the MP algorithm, the basis set at

longer times can re-use some of the GWPs sampled at earlier times. For the initial sampling

period (i.e. either 10 fs or 25 fs), this ability to re-use GWPs is obviously not possible and

wavefunction evolution can only be based on those GWPs generated in the initial sampling

period. As noted above, the 25 fs burst simulation enables a better exploration of phase-

space in this initial period, leading to more accurate wavefunction propagation, although

this advantage is lost at later times when the basis set generated by 25 fs bursts explores
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regions of phase-space which are less directly relevant to propagation.

Fig. 5 compares the performance of the aTG algorithm presented here to the previous

sTG version,44 where long-time classical trajectories are used to sample GWP basis functions;

shown are S1 state populations for the 4-dimensional pyrazine Hamiltonian, compared to

numerically-exact MCTDH results. Comparing the two results for approximately 3000 basis

functions (bearing in mind that the MP optimisation algorithm results in an adaptive basis

set of varying size) clearly illustrates the benefits of the modification presented here; while

sTG results in relatively poor agreement in the population dynamics beyond 25 fs, the new

aTG method yields qualitatively accurate dynamics across the entire time domain. Given

that the main difference between the aTG and sTG methods is the use of short-time sampling

trajectories, rather than serial long-time sampling, we believe that Fig. 5 highlights the

problem of relying on classical trajectories at long times.

The benefits of our aTG modification can be even more clearly observed when comparing

to data obtained using 2.4 × 104 basis functions within the original sTG formalism. Aside

from the small divergence from the exact solution at around 10 fs, the origin of which has

been noted above, using just 3000 GWPs during each 10 fs time period is sufficient to produce

dynamics comparable in accuracy to that of the largest sTG calculation we have reported

previously. Furthermore, if we compare the number of Hamiltonian matrix elements which

must be evaluated in each different calculation as a way of comparing computational expense,

we note that the aTG simulation with an average of 1000 GWP basis functions during each

10 fs time period requires just 3% of the Hamiltonian matrix element evaluations of the sTG

method with a basis set size of 2.4 × 104 yet, as shown in Figs. 3 and 5, the population

dynamics are of comparable accuracy.

The adaptive nature of the basis sets generated by our aTG method draws into question

whether the basis set itself significantly increases in size during the simulation. Depending

upon the nature of the underlying PES in a given problem, as well as the extent of phase-

space which might be sampled for a given problem, one might expect that the number of basis
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functions describing the wavefunction might fluctuate with time; in contrast, any uncontrolled

growth of the number of basis functions would suggest that adaptive optimization by MP is

not sufficient to maintain accurate description of the wavefunction. However, Fig. 6 shows

that the MP scheme is capable of maintaining a steady overall basis set size, rather than

a continuously growing basis; for a calculation with an initial basis set of 3000 GWPs, the

total number of basis functions fluctuates at most by 10% about an average value of 3300

GWPs. Although not shown here, the calculations employing 1000 and 5000 basis functions

behave similarly, with average variations of 20 % and 3% respectively.

Fig. 6 also shows the distribution of the basis set across the two diabatic electronic states,

S1 and S2. As expected, the variation in the basis set occupancy on each state closely follows

the calculated populations on the states. As a result, we find that our aTG scheme is capa-

ble of accurately modelling non-adiabatic dynamics on coupled electronic states; combining

trajectory-guided sampling which spans both electronic states simultaneously with an adap-

tive scheme for basis optimization implicitly allows treatment of coupled electron-nuclear

dynamics.

From the simulation results in this Section, we conclude that the relatively simple mod-

ifications to our previously published sTG method44 reported here are highly effective in

reducing the size of the active basis set required to converge to qualitative quantum dynam-

ics. The MP optimisation algorithm used here can effectively maintain a minimal basis set

which accurately represents the time-dependent wavefunction; the results in Fig. 5 and 6

demonstrate that the resulting dynamics of our aTG approach are accurate. Furthermore,

we note that the underlying strategy of periodic basis set minimisation is highly transferable

and should be readily applicable to other well established quantum simulation methods such

as AIMS or MCE.
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3.2 The double-well potential

Our aTG methodology is not just applicable to non-adiabatic systems; given that the new

approach is less reliant on the accuracy of classical molecular dynamics at long times, it is

interesting to investigate whether quantum tunnelling can also be correctly modelled using

this procedure. Classical trajectories in themselves cannot accurately capture all quantum-

mechanical tunnelling effects; however, by sampling from an initial quantum-mechanical

distribution, classical trajectories have the potential to access regions of phase-space which

are broadly consistent with quantum dynamics and so can be used to position basis functions

appropriately. However, we stress that the final time-evolution of the system in our aTG

method is performed according to variational solution of the TDSE.

To test our aTG method in the case of quantum tunnelling, we investigate a multidimen-

sional double-well tunnelling benchmark which has been previously studied by several alter-

native quantum dynamics approaches.57,61–63 This double-well model represents tunnelling

of a quantum particle through a one-dimensional energy barrier; the tunnelling coordinate

is itself coupled to a set of f − 1 harmonic oscillators. The potential energy function is

V (q) = Vdw(q1) + Venv(q) , (18)

where Vdw(q1) is the double-well potential given by

Vdw(q1) =
1

16η
q41 −

1

2
q21 , (19)

and Venv(q) is the remaining interaction representing the environment of harmonic oscillators

and their coupling to the tunnelling coordinate q1, as described below.

Here, we consider two different versions of this model, varying in the manner of coupling

between tunnelling coordinate, q1, and the bath modes. As in previous investigations of this
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model,57,61–63 we use η = 1.3544 and the initial wavefunction is a normalised GWP, given by

ψ0(q) =

f∏
k=1

( α
π~

)1/4

exp
[
−α
~

(qk − q̄k)2
]
, (20)

where f is the number of degrees of freedom, q̄1 = −2.5, q̄j = 0 for the other f − 1 degrees-

of-freedom, and α = 0.5. In all simulations reported here, all degrees of freedom have mass

m = 1.

The energy expectation value associated with this initial wavefunction is lower than the

classical height of the barrier in the tunnelling coordinate for each of the three cases discussed

below; as a result, tunnelling is an important factor in the dynamics of this system. To

monitor the tunnelling dynamics, we calculate the tunnelling correlation function, Cr(t),

given by

Cr(t) = 〈ψr(q, 0) |ψ(q, t)〉 , (21)

where ψr(q, 0) is the mirror image of the initial wavefunction given in Eq. (20) (i.e. q̄1 =

+2.5, q̄j = 0 for the other f − 1 degrees-of-freedom). The magnitude of Cr(t) describes the

extent to which the wavefunction has tunnelled through the barrier.

3.2.1 Linear coupling

The first double-well potential considered here exhibits linear coupling between pairs of

degrees-of-freedom, including the tunnelling coordinate q1. The environmental contribution

to the potential energy operator is

Venv(q) =

f∑
i=2

[
1

2
q2i + aqi−1qi

]
, (22)

where a = 0.2.62 We consider two version of this model, with f = 2 and f = 5; we refer

to these hereafter as Model I and Model II. For both Model I and Model II, our calcu-

lations employed 12 bursts of trajectory sampling, each employing 104 time-steps of 0.002
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a.u., resulting in 20 a.u. of total sampling time for each short-time period. In total, the

wavefunction was propagated for 240 a.u.

Encouragingly, in the case of Model I, m = 25 sampling trajectories, storing basis func-

tions with a probability of 1/ns = 0.002 at every time-step, were sufficient to obtain numer-

ical accuracy with respect to configuration interaction (CI) benchmark results,62 as shown

in Fig. 7(a). The resulting adaptive basis set, which was optimised with a MP convergence

of ∆ = 0.99, had an average size of 517 GWPs with variation between bursts not exceeding

10% of this value. The consistency of the basis set size again shows that our method is not

simply reliant on stepwise expansion of the basis set to maintain accuracy.

In the case of Model II, the additional bath modes require a larger basis set to achieve

accurate results, as expected. Here, we employed m = 50 sampling trajectories with storage

probability 1/ns = 0.008, resulting in an average basis set size of 1032 GWPs. MP optimiza-

tion employed a cut-off of ∆ = 0.995, which resulted in an encouragingly consistent basis

set size, with variations remaining below 14%. As shown in Fig. 7(b), our method is able

to qualitatively reproduce the tunnelling dynamics, with the main inconsistency appearing

in the higher frequency oscillations of the tunnelling correlation function, Cr(t). Increasing

the basis set size further improves the reproduction of the exact results, as expected; for

example, a simulation employing 5000 GWPs on average is shown in Fig. 7(c),(although

there remains some error due to this finite basis set). Overall these results are highly en-

couraging as they provide further evidence that the aTG method outlined here can be used

to treat quantum dynamics in tunnelling systems, despite being founded on purely classical

trajectories.

3.2.2 Quadratic coupling

In the final case, termed Model III, coupling to the bath modes is quadratic in nature;

additionally, coupling occurs between the tunnelling coordinate q1 and all modes constituting

the harmonic bath, not just between q1 and q2 as in Eq. 22. The nature of this coupling
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means that the effective potential experienced along the q1 tunnelling coordinate is strongly

asymmetric, with one potential energy well being lower in energy than the other; we find that

this feature means that the quantum dynamics of Model III are significantly more difficult

to reproduce in trajectory-based schemes than either Models I or II.

The coupling and bath potential for Model III is given by

Venv(q) =

f∑
i=2

[
1

2
q2i + aq1q

2
i

]
, (23)

where a = 0.05 and f = 20.62 Again, the mass is m = 1 for all degrees-of-freedom. In

our aTG simulations we used a set of m = 50 sampling trajectories, with a 0.002 a.u.

timestep and a sampling probability of 1/ns = 0.005. Our simulation comprised 60 bursts

of trajectory sampling, each lasting 1000 timesteps, resulting in a total propagation time

of 120 a.u.. MP optimisation was carried out using a cut-off value of ∆ = 0.995, yielding

a basis set comprising an average of 884 GWPs. The basis set size varied by a maximum

of 44%, although the average variation across the full simulation time was just 5%. For

comparison, we also performed a sTG simulation using comparable simulation conditions.

In particular, we initiated 50 independent trajectories of 60 × 103 timesteps, placing basis

functions with a probability of 1/ns = 0.00025; this results in a total basis set size of 994

GWPs (i.e. directly comparable to our aTG simulation), and the expansion coefficients of

this set were propagated using Eq. 5 with a tilmestep of 0.002 a.u..

We note that, following other GWP simulations of this model,63 we sample initial GWP

positions at t = 0 from both the initial wavefunction and its mirror image ψr(q, 0) in both

aTG and sTG simulations; this approach to sampling GWPs is only used in our approach at

t = 0, while initial GWP conditions are sampled form the time-evolving wavefunction during

later short-time trajectory sampling periods. Without this sampling approach, classical

trajectory-based methods do not exhibit sufficient tunnelling through the double-well barrier

as a result of the strongly asymmetric nature of the potential; this is discussed further below.
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The results shown in Fig. 8 clearly reflect the differences between our original sTG

approach and the updated aTG method. Specifically, sTG fails to qualitatively reproduce

the tunnelling dynamics; in particular, sTG overestimates the extent of tunnelling through

the double-well potential, a feature which is most likely an artefact of the initial generation

of GWP sampling trajectories which, as noted above, are sampled from both sides of the

double-well potential along q1. In contrast, aTG does a reasonable job of reproducing the

magnitude of tunnelling through the double-well barrier. The aTG dynamics is correctly

reproduced for times up to around t = 25 a.u. (Fig. 8 (a)); however, we note that this is

sufficient to capture the initial tunnelling dynamics, despite our approach being based solely

on classical trajectories. At longer times, our calculated Cr(t) broadly follows the exact

result, although with a noticeable decrease in the magnitude of oscillations in the correlation

function; this suggests that, at medium-to-long times, the wavefunction approximated by

our approach is does not tunnel sufficiently. The spectrum (Fig. 8(b)), obtained via Fourier

transform of Cr(t) in the same procedure outlined in our previous work,44 reflects the results

of Fig. 8(a); the dynamics are qualitatively correct, but some of the details are inaccurate.

These results serve to first emphasize the significant advantage of adopting an adaptive

basis strategy. Here, any given time-propagation period has around 900 GWPs in both

the aTG and sTG simulations, but the aTG results are much more qualitatively accurate

due to the adaptation of the trajectories to the current wavefunction; in other words, by

periodically optimizing the basis and reinitialising trajectories based on the phase-space of

the current wavefunction, the short-time sampling of GWPs is much more representative of

the space to be spanned by the wavefunction in the near-future. However, although basis

re-sampling and adaptation is clearly advantageous, the reliance on classical trajectories

remains; this fact explains the remaining errors in our aTG simulations. Because these

classical sampling trajectories do not capture quantum effects such as tunnelling, a clear route

to improving our methodology would be to move towards sampling methods which do include

such effects; examples here might include ring-polymer molecular dynamics (RPMD64,65) or
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centroid molecular dynamics (CMD66,67), and work in this direction is now under way.

4 Conclusions

In this Article, we have addressed the limitations of our previously-published sTG trajec-

tory sampling method for quantum dynamics simulations.44 Specifically we have proposed

a simple modification which alleviated problems associated with divergence of the sampling

trajectories at long times, which previously resulted in in inefficient basis set sizes and poor

computational scaling. Here, in our aTG approach, by limiting the duration of the sampling

steps, as well as minimising and optimising the active basis set during propagation, these

challenges can be alleviated.

To demonstrate the effectiveness of adaptive trajectory approach, we have studied chal-

lenging multidimensional quantum dynamics benchmark problems. The vibronic pyrazine

Hamiltonian allowed for direct comparison to the serial trajectory sampling method and

showed that comparable accuracy can be achieved with basis sets only a fraction of size

required in our original trajectory-based approach. To further show the applicability of

this approach to larger systems, we also explored a double-well tunnelling benchmark prob-

lem.57,61–63 Again in the case of few degrees of freedom, our method was shown to be accurate

and efficient. In the higher dimensional case, whilst observing some loss of accuracy, we were

still able to capture qualitative dynamics at reasonable computational cost. These results

are extremely encouraging given the simplicity of our approach and its grounding in classi-

cal mechanics. As noted above, strongly quantum mechanical problems, such as tunnelling

through strongly asymmetric barriers (Model III) are still a challenge, although we note that

aTG is very successful in capturing the qualitative dynamics of the system; current work is

focussed on replacing the classical trajectory sampling with path integral-based approaches

which are computationally efficient yet captures the role of quantum-mechanical tunnelling

on the sampled configurations of the GWP basis functions, and we expect that such an
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approach will help to further improve our overall adaptive quantum simulation strategy.
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(24) Ben-Nun, M.; MartÄ±Ìnez, T. J. Nonadiabatic molecular dynamics: Validation of the

multiple spawning method for a multidimensional problem. J. Chem. Phys. 1998, 108,

7244–7257.

(25) Ben-Nun, M.; Martinez, T. J. Ab Initio Quantum Molecular Dynamics. Adv. Chem.

Phys. 2002, 121, 439.
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(A) Trajectory 
     sampling

(B) TDSE solution

(C) MP reduction

Figure 1: Schematic outline of aTG algorithm. Starting from an initial wavefunction ex-
panded in a set of GWPs, new GWPs are added to the basis set by trajectory sampling (A).
Solution of the TDSE for the full set of GWPs (B), followed by reduction by the MP method
(C) results in a time-propagated wavefunction described by a minimal set of GWPs.
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Figure 2: Comparison of initial basis set size, N I , to the size of the set resulting from the
MP optimisation and minimisation algorithm (∆ = 0.95), NB, for the 4-dimensional vibronic
pyrazine Hamiltonian.

39



0

0.2

0.4

0.6

0.8

1

Exact
1000 GWPs

0

0.2

0.4

0.6

0.8

P
1
(t

)

Exact
3000 GWPs

0 50 100 150

Time / fs

0

0.2

0.4

0.6

0.8

Exact
5000 GWPs

Figure 3: Population of the lower diabatic S1 state, P1(t), as a function of time, calculated
using adaptive basis sets with varying size, for the 4D pyrazine Hamiltonian. The basis set
sizes given are approximately the number of GWPs which form the wavefunction during
each short 10 fs propagation period.
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Figure 4: Population of the lower diabatic S1 state, P1(t), as a function of time, for the 4D
pyrazine Hamiltonian using different MP restart frequencies.
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Figure 5: Population of the S1 state, calculated using the trajectory burst sampling algorithm
presented herein as well as the previously published44 serial approach.
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Figure 6: Size of the adaptive basis set for a calculation starting with 3000 GWPs, as well
as explicit GWP state populations.
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Figure 7: Tunnelling correlation functions for (a) Model I (f = 2), (b) Model II (f = 5)
using 1000 GWPs and (c) Model III using 5000 GWPs compared to CI benchmark.62
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Figure 8: (a) Tunnelling correlation function for Model III (f = 20), (b) corresponding
spectrum obtained via Fourier transform
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