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On Morita and derived equivalences for cohomological

Mackey algebras

Markus Linckelmann and Baptiste Rognerud

Abstract

By results of the second author, a source algebra equivalence between two p-blocks of fi-
nite groups induces an equivalence between the categories of cohomological Mackey functors
associated with these blocks, and a splendid derived equivalence between two blocks induces
a derived equivalence between the corresponding categories of cohomological Mackey functors.
The main result of this paper proves a partial converse: an equivalence (resp. Rickard equiva-
lence) between the categories of cohomological Mackey functors of two blocks of finite groups
induces a permeable Morita (resp. derived) equivalence between the two block algebras.

1 Introduction

Let p be a prime and O a complete local principal ideal domain with residue field k = O/J(O)
of characteristic p; we allow the case O = k. Let G be a finite group. The blocks of OG are
the primitive idempotents in Z(OG). For b a block of OG, denote by coMack(G, b) the abelian
category of cohomological Mackey functors of G associated with b, with coefficients in the category
mod(O) of finitely generated O-modules. The second author showed in [11] that if two block
algebras OGb and OHc of finite groups G and H are splendidly Morita or derived equivalent, then
coMack(G, b) and coMack(H, c) are equivalent or derived equivalent, respectively. We show that a
Morita or Rickard equivalence between coMack(G, b) and coMack(H, c) induces a Morita or derived
equivalence between OGb and OHc.

Theorem 1.1. Let G, H be finite groups, b a block of OG and c a block of OH. An equiva-
lence between the abelian categories coMack(G, b) and coMack(H, c) (resp. a Rickard equivalence
between their chain homotopy categories) induces a permeable Morita equivalence (resp. a derived
equivalence) between the block algebras OGb and OHc.

If O has characteristic zero, we obtain a converse to [11, Proposition 4.5].

Corollary 1.2. Suppose that O has characteristic zero. The abelian categories coMack(G, b) and
coMack(H, c) are equivalent if and only if b and c are splendidly Morita equivalent.

By a result of Scott [12] and Puig [8], two blocks are splendidly Morita equivalent if and only
if they have isomorphic source algebras. Theorem 1.1 will be proved in Section 4 as a consequence
of the description of the category coMack(G, b) in terms of a source algebra of b in [5], and the
two theorems below. Corollary 1.2 follows from this and Weiss’ criterion [13], implying that if
char(O) = 0, then a permeable Morita equivalence is splendid.
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Theorem 1.3. Let A and B be symmetric O-algebras. Let X be a finitely generated O-free A-
module and let Y be a finitely generated O-free B-module. Suppose that A is isomorphic to a direct
summand of X as an A-module, and that B is isomorphic to a direct summand of Y as a B-module.
Set E = EndA(X) and F = EndB(Y ). A Morita equivalence between E and F induces a Morita
equivalence between A and B which restricts to an equivalence between add(X) and add(Y ).

A Rickard equivalence between two algebras A and B consists of a bounded complex X of
A-B-bimodules and a bounded complex Y of B-A-bimodules such that the terms of X, Y are
finitely generated projective as left and right modules, such that we have homotopy equivalences
X ⊗B Y ' A in the homotopy category K(A ⊗O Aop) of finitely generated A-A-bimodules and
Y ⊗A X ' B in the corresponding homotopy category K(B ⊗O Bop). A Rickard equivalence
induces a derived equivalence between A and B.

Theorem 1.4. Let A and B be symmetric O-algebras. Let X be a finitely generated O-free A-
module and let Y be a finitely generated O-free B-module. Suppose that A is isomorphic to a direct
summand of X as an A-module, and that B is isomorphic to a direct summand of Y as a B-module.
Set E = EndA(X) and F = EndB(Y ). A Rickard equivalence between E and F induces a derived
equivalence between A and B.

Since the categories of cohomological Mackey functors in the statement of Theorem 1.1 are
equivalent to the module categories of the corresponding Mackey algebras, the notion of Rickard
equivalences extends in the obvious way to categories of cohomological Mackey functors. By results
of Rickard in [9] and [10], if two symmetric O-algebras are derived equivalent, then they are Rickard
equivalent, but such a Rickard equivalence may not be related in an obvious way to a given derived
equivalence. This is essentially the reason why the conclusions in the theorems above are formulated
in terms of derived equivalences rather than Rickard equivalences.

Notation. For A an algebra, we denote by Aop the opposite algebra. An A-module is a unital
left module, unless stated otherwise. We denote by mod(A) the category of finitely generated A-
modules, and we identify mod(Aop) with the category of finitely generated unital right A-modules.
For U a finitely generated A-module, we denote by add(U) the full subcategory of mod(A) consisting
of all modules which are isomorphic to finite direct sums of summands of U . We denote by Ch(A)
the category of chain complexes of finitely generated A-modules, and by K(A) the corresponding
homotopy category.

Remark 1.5. For the purpose of proving Theorems 1.3 and 1.4 it would be sufficient to require
that every projective indecomposable A-module is isomorphic to a direct summand of X, or equiv-
alently, that the category proj(A) of finitely generated projective A-modules is contained in the
category add(X). Since A is symmetric, this condition is equivalent to X having a generator and
a cogenerator as a direct summand. This is the condition which appears for instance in work of
Auslander [1], introducing the notion of representation dimension, and subsequently in work of
Iyama [4], where the finiteness of the representation dimension of Artin algebras is proved.

Remark 1.6. The theme of extending/restricting derived equivalences between two finite-dimensional
algebras over a field to/from suitable idempotent condensations appears in the work of many au-
thors, such as [2] and [3]. As pointed out by the referee, it would certainly be interesting to explore
the possibility of common generalisations of the results of the present paper and some of the results
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in the above mentioned references. There is some overlap with methods used in [6] and [2]; we
mention this in the Remarks 2.5 and 3.3 below.

It is tempting to speculate, whether the above theorems might possibly be of some use towards
Broué’s abelian defect conjecture, by playing the conjecture back to a question of derived equiva-
lences between certain endomorphism algebras with interesting structural properties. Just to give
an example of what we have in mind here, one could ask whether - at least in some special cases
- the derived equivalence between blocks with abelian defect groups predicted by Broué’s abelian
defect conjecture become more accessible for the quasi-hereditary covers (in the sense of Rouquier)
of the block algebras.

2 On relatively O-injective modules

Let A be an O-algebra. Suppose that A is free of finite rank as an O-module. Let U be a finitely
generated left A-module. The module U is called relatively O-projective if U is isomorphic to a
direct summand of A⊗O V for some O-module V . Thus U is projective if and only if U is relatively
O-projective and O-free. If U is indecomposable and relatively O-projective, then U is isomorphic
to a direct summand of either A or A/πnA for some positive integer n, because an indecomposable
O-module is isomorphic to either O or O/πnO for some positive integer n.

Dually, U is called relatively O-injective if U is isomorphic to a direct summand of HomO(A, V )
for some O-module V , where the left A-module structure on HomO(A, V ) is given by (b · ϕ)(a) =
ϕ(ab) for all a, b ∈ A and ϕ ∈ HomO(A, V ). As before, if U is indecomposable relatively O-injective,
then U is isomorphic to a direct summand of either A∗ = HomA(A,O) or of HomO(A,O/πnO)
for some positive integer n. Note that for n = 1 this yields the injective k ⊗O A-modules. It is
well-known that if U is O-free, then U is relatively O-injective if and only if k⊗O U is injective as a
k⊗O A-module; we include short proofs of this and related facts for the convenience of the reader.

Lemma 2.1. Let A be an O-algebra which is free of finite rank as an O-module, and let U be an
A-module which is free of finite rank as an O-module. Then U is projective if and only if k ⊗O U
is a projective k ⊗O A-module.

Proof. If U is projective, then k ⊗O U is obviously projective as a k ⊗O A-module. Suppose
conversely that k ⊗O U is a projective k ⊗O A-module. Then there is a projective A-module P
such that k ⊗O P ∼= k ⊗O U as A-modules. Since P is projective, it follows that the obvious map
P → k ⊗O P ∼= k ⊗O U lifts to a map P → U . This map is surjective by Nakayama’s lemma (we
use here that U is finitely generated as an O-module). Since both P and U are O-free of the same
rank (equal to the dimension of k ⊗O U), it follows that the map P → U obtained in this way is
an isomorphism.

Lemma 2.2. Let A be an O-algebra which is free of finite rank as an O-module, and let U be an
A-module which is free of finite rank as an O-module. Then U is relatively O-injective if and only
if the right A-module U∗ = HomO(U,O) is projective.

Proof. Since duality preserves finite direct sums and since U is projective (resp. relatively O-
injective) if and only if all direct summands of U have the same property, we may assume that U
is indecomposable. Since also U is O-free, it follows that U is relatively O-injective if and only if
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U is isomorphic to a direct summand of A∗ = HomO(A,O). Applying O-duality, this is the case
if and only if U∗ is isomorphic to a direct summand of A∗∗ ∼= A as a right A-module, hence if and
only if U∗ is projective as a right A-module.

Lemma 2.3. Let A be an O-algebra which is free of finite rank as an O-module, and let U be an
A-module which is free of finite rank as an O-module. Then U is relatively O-injective if and only
if k ⊗O U is an injective k ⊗O A-module.

Proof. We may assume that U is indecomposable. If U is relativelyO-injective, then U is isomorphic
to a direct summand of A∗ = HomO(A,O). Thus k ⊗O U is isomorphic to a direct summand of
(k ⊗O A)∗ = Homk(k ⊗O A, k), and hence k ⊗O U is injective as a k ⊗O A-module. Suppose
conversely that k ⊗O U is injective as a k ⊗O A-module. Then k ⊗O U is isomorphic to a direct
summand of the k-dual (k ⊗O A)∗ of k ⊗O A. Thus the k-dual (k ⊗O U∗) of k ⊗O U is isomorphic
to a direct summand of the regular right k ⊗O A-module k ⊗O A, hence is projective as a right
k ⊗O A-module. By the obvious version of Lemma 2.1 for right modules, the O-dual U∗ of U is a
projective right A-module. Thus U is relatively O-injective, by Lemma 2.2.

Let A be a finite-dimensional k-algebra. The k-dual U∗ of a right A-module U is then a left
A-module, and for any idempotent e in A, we have a canonical isomorphism (Ue)∗ ∼= e(U∗) of left
eAe-modules. This isomorphism is induced by restricting k-linear maps U → k to Ue. It can be
regarded as a special case of an adjunction isomorphism: since Ue ∼= U ⊗A Ae, we have a natural
isomorphism Homk(U ⊗A Ae, k) ∼= HomA(Ae,Homk(U, k)). The left side is (Ue)∗, and the right
side is HomA(Ae,U∗) ∼= e(U∗). Applied to U = eA this yields an isomorphism of left eAe-modules
e((eA)∗) ∼= (eAe)∗. We use this in the proof of the following lemma.

Lemma 2.4. Let A be a finite-dimensional k-algebra. Suppose that for any primitive idempotent i
in A the left A-module Ai is injective if and only if the right A-module iA is injective. Let J be a
set of pairwise orthogonal representatives of the conjugacy classes of primitive idempotents j with
the property that Aj is injective. Set e =

∑
j∈J j. Then the k-algebra eAe is selfinjective.

Proof. By the assumptions, the right A-module eA is both projective and injective. Thus its k-dual
(eA)∗ = Homk(eA, k) is a projective and injective left A-module. It follows that any indecomposable
direct summand of (eA)∗ is isomorphic to a direct summand of Ae, by the choice of e. The
indecomposable direct summands of Ae in any decomposition of Ae are pairwise nonisomorphic.
Similarly for eA. Since Ae and eA have the same number of indecomposable direct factors, it
follows that (eA)∗ ∼= Ae as left A-modules. Multiplying both modules on the left by e yields an
isomorphism of left eAe-modules e(eA)∗ ∼= eAe. The left side is isomorphic to (eAe)∗, and hence
eAe is injective as a left eAe-module as required.

Remark 2.5. Lemma 2.4 can be proved as a consequence of [6, Theorem 1.5]. To see this, it
suffices to show that the class of projective-injective indecomposable A-modules in Lemma 2.4 is
invariant under the Nakayama functor ν. If i is a primitive idempotent in A such that the projective
indecomposable A-module Ai is injective, then the right A-module iA ∼= HomA(Ai,A) is projective
and injective by the assumptions in the Lemma, and hence ν(Ai) = (iA)∗ is projective and injective.

If a finite-dimensional k-algebra A has the property that for any primitive idempotent i the
left A-module Ai is injective if and only if the right A-module iA is injective, then clearly any
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block algebra of A and any algebra Morita equivalent to A inherit the analogous property. This
property applies to the Yoshida type endomorphism algebras. This will follow from some general
considerations, based on the usual translation between direct summands of a module and projective
modules over its endomorphism algebra.

Lemma 2.6. Let A be a finite-dimensional k-algebra, X a finite-dimensional left A-module, and
set E = EndA(X). Let M be a direct summand of X.

(i) If HomA(X,M) is injective as an Eop-module, then M is injective as an A-module.

(ii) If HomA(M,X) is injective as an E-module, then M is projective as an A-module.

Proof. Suppose that HomA(X,M) is injective as an Eop-module. Let ι : M → N be an injective
A-homomorphism. We need to show that ι is split. The map η : HomA(X,M) → HomA(X,N)
sending ϕ ∈ HomA(X,M) to ι ◦ ϕ is an injective homomorphism of Eop-modules. Thus η is split
injective. Therefore there is an Eop-homomorphism ε : HomA(X,N) → HomA(X,M) satisfying
ε ◦ η = Id, the identity on HomA(X,M). By the usual general abstract nonsense, ε is induced by
an A-homomorphism π : N → M ; that is, we have ε(ψ) = π ◦ ψ. Since ϕ = ε(η(ϕ)) = π ◦ ι ◦ ϕ for
all ϕ ∈ HomA(X,M). Applying this with ϕ a projection of X onto M implies that π ◦ ι = IdM ,
and hence ι is split. Thus M is an injective A-module. This proves (i). The proof of (ii) is dual; we
sketch the steps. Let π : N → M be a surjective A-homomorphism. Precomposing with π induces
an injective homomorphism β : HomA(M,X) → HomA(N,X), which by the assumptions, is split
injective. Any splitting of β is induced by precomposing with an A-homomorphism M → N , which
is then shown to be a section of π. This proves (ii).

We will use the following elementary fact on tensor products of finitely generated projective
modules.

Lemma 2.7. Let A be an O-algebra which is finitely generated as an O-module. Let e be an
idempotent in A. Suppose that U is a projective left A-module which is a finite direct sum of direct
summands of Ae, or that V is a projective right A-module which is a finite direct sum of direct
summands of eA. The inclusions eU ⊆ U and V e ⊆ V induce an isomorphism V e ⊗eAe eU ∼=
V ⊗A U .

Proof. The maps V e ⊗eAe eU → V ⊗A U induced by the inclusions eU ⊆ U and V e ⊆ V are a
natural transformation from the bifunctor (U, V ) 7→ V e⊗eAe eU to the bifunctor (U, V ) 7→ V ⊗AU .
This natural transformation is O-linear in both arguments, so it suffices to show that it yields an
isomorphism if U = Ae or if V = eA. If U = Ae, then V e ⊗eAe eU = V e ⊗eAe eAe ∼= V e ∼=
V ⊗A Ae = V ⊗A U . A similar argument shows that if V = eA, then we have an isomorphism
V e⊗eAe eU ∼= V ⊗A U , proving the statement.

Lemma 2.8. Let A be an O-algebra which is finitely generated as an O-module. Let U be a bounded
complex of finitely generated projective A-modules. Suppose that k ⊗O U has a contractible direct
summand W as a complex of k ⊗O A-modules. Then U has a contractible direct summand V such
that k ⊗O V = W .

Proof. Set Ā = k ⊗O A and Ū = k ⊗O U . Since U is bounded, the algebra EndCh(A)(U) is
finitely generated as an O-module, and EndCh(Ā)(Ū) is finite-dimensional. Denote by C the ideal
in EndCh(A)(U) of chain maps ψ : U → U which satisfy ψ ∼ 0; that is, C is the kernel of the
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canonical algebra homomorphism EndCh(A)(U)→ EndK(A)(U). Similarly, denote by D the kernel
of the canonical algebra homomorphism EndCh(Ā)(Ū) → EndK(Ā)(Ū). Since the components of

U are projective, any homotopy Ū → Ū [−1] lifts to a homotopy U → U [−1]. It follows that the
canonical map C → D is surjective. The summand W of Ū corresponds to an idempotent η in
EndCh(Ā)(Ū). Since W is contractible, this idempotent is contained in D. Thus, by standard lifting
theorems, there is an idempotent η̂ in C which lifts η. Thus V = η̂(U) is a contractible direct
summand of U which lifts W .

The following result identifies bounded complexes of finitely generated modules which are both
projective and injective.

Lemma 2.9. Let A be a finite-dimensional k-algebra. Let U be a bounded chain complex of finitely
generated projective A-modules. Suppose that U has no nonzero contractible direct summand as
a chain complex, and that for any bounded above acyclic chain complex C in Ch(A) we have
HomK(A)(C,U) = {0}. Then the components of U are injective.

Proof. Let α : U → IU be an injective resolution of U ; that is, IU is a bounded above chain complex
of finitely generated injective A-modules and α is a quasi-isomorphism. Denote by α the image of
α in HomK(A)(U, IU ). Consider the associated exact triangle in K(A),

U
α // IU // C(α) // U [1]

Since α is a quasi-isomorphism, it follows its cone C(α) is acyclic. By the assumptions on U , the
morphism C(α)→ U [1] in this triangle is zero. Therefore, by a standard property of triangulated
categories (see e. g. [15, Lemma 3.4.9]), the morphism α is a split monomorphism in K(A). That
is, there exists a chain map δ : IU → U such that δ ◦ α ∼ IdU .

Since U is bounded, the algebra EndCh(A)(U) is finite-dimensional. We use as before the fact
that idempotents in this algebra correspond to direct summands of U as a chain complex, and
that contractible direct summand correspond to those idempotents which are in the kernel of the
canonical algebra homomorphism EndCh(A)(U)→ EndK(A)(U).

By the assumptions on U , this kernel contains no idempotents, and hence is contained in the
radical J(EndCh(A)(U)). Since δ ◦ α maps to the identity in EndK(A)(U), it follows that δ ◦ α
is invertible in EndCh(A)(U). Thus the chain map β = (δ ◦ α)−1 ◦ δ satisfies β ◦ α = IdU . This
shows that U is isomorphic to a direct summand of IU . In particular, the components of U are
injective.

3 Proof of Theorems 1.3 and 1.4

An O-algebra A is symmetric if A is free of finite rank as an O-module, and if A is isomorphic to
its O-dual A∗ as an A-A-bimodule. One of the special features of a symmetric O-algebra A is that
the two duality functors with respect to A and O are isomorphic; that is, for any left A-module
U , there is an isomorphism HomA(U,A) ∼= U∗ of right A-modules which is natural in U . More
precisely, any choice of a bimodule isomorphism A ∼= A∗ induces such an isomorphism of duality
functors as follows: if s ∈ A∗ is the image of 1 under a bimodule isomorphism A ∼= A∗, then the
map sending ϕ ∈ HomA(U,A) to s◦ϕ ∈ U∗ is an isomorphism, for any A-module U . The naturality
implies in particular that this isomorphism is an isomorphism as right EndA(U)-modules.
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Lemma 3.1. Let A be a finite-dimensional k-algebra and let X be a finite-dimensional A-module.
Set E = EndA(X). If X has a direct summand isomorphic to A as an A-module, then X is
projective as an E-module. If in addition A is symmetric, then X∗ is projective as an Eop-module.

Proof. If A is isomorphic to a direct summand of X, then HomA(A,X) is a projective E-module,
and clearly HomA(A,X) ∼= X. If in addition A is symmetric, then we have a natural isomorphism
X∗ ∼= HomA(X,A), and this is a projective Eop-module.

Proposition 3.2. Let A be a symmetric k-algebra and X a finite-dimensional A-module. Suppose
that A is isomorphic to a direct summand of X. Set E = EndA(X). Let U be a direct summand
of X. The following are equivalent.

(i) The A-module U is projective.

(ii) The Eop-module HomA(X,U) is injective.

(iii) The E-module HomA(U,X) is injective.

Proof. If HomA(X,U) is an injective Eop-module, then by Lemma 2.6 (i) the A-module U is
injective, hence also projective, since we assume that A is symmetric. Thus (ii) implies (i). Similarly,
if HomA(U,X) is injective, then by Lemma 2.6 (ii) the A-module U is projective. Thus (iii) implies
(i). In order to show that (i) implies (ii) and (iii), it suffices to show that HomA(X,A) is an injective
Eop-module and that HomA(A,X) is an injective E-module. Thus it suffices to show that their
duals HomA(X,A)∗ and HomA(A,X)∗ are projective as modules over E and Eop, respectively.
Since A is symmetric, we have a natural isomorphism HomA(X,A) ∼= Homk(X, k) = X∗. The
naturality implies in particular, that these isomorphisms are isomorphisms as Eop-modules. Thus
we have an isomorphism of E-modules HomA(X,A)∗ ∼= X, and this is a projective E-module by
Lemma 3.1. Similarly, note that HomA(A,X) ∼= X, and hence that HomA(A,X)∗ ∼= X∗, which is
indeed a projective Eop-module, again by Lemma 3.1.

Proof of Theorem 1.3. We use the notation of Theorem 1.3. By Proposition 3.2 and Lemma 2.3,
projective indecomposable modules over E and F which are also relatively O-injective, correspond
to the indecomposable summands of A and B, respectively. Denote by e an idempotent in E
such that e(X) ∼= A, and denote by f an idempotent in F such that f(Y ) ∼= B. Then Ee is a
direct sum of indecomposable E-modules which are projective and relatively O-injective, and any
indecomposable E-module which is projective and relatively O-injective is isomorphic to a direct
summand of Ee. The right E-module eE, the left F -module Ff and the right F -module fF have
the analogous properties.

Let M be an E-F -module and N an F -E-bimodule inducing a Morita equivalence; that is, M ,
N are finitely generated projective as left and right modules, and we have bimodule isomorphisms
M ⊗F N ∼= E and N ⊗E M ∼= F . A Morita equivalence between E and F preserves projective
indecomposables which are also relatively O-injective. Thus N ⊗E Ee ∼= Ne is a direct sum of
summands of Ff . In particular, fNe is projective as a fFf -module. Similarly, eM , as a right
F -module, is a direct sum of summands of fF , and hence eMf is projective as a right fFf -module.
Using Lemma 2.7, applied to E and F instead of A and B, we have isomorphisms

eEe ∼= eM ⊗F Ne ∼= eMf ⊗fFf fNe

Exchanging the roles of E and F shows similary that fFf ∼= fNe ⊗eEe eMf , and that eMf and
fNe are both projective as left and as right modules. Thus the bimodules eMf and fNe induce

7



a Morita equivalence between eEe and fFf . Since eEe ∼= EndA(e(X)) ∼= EndA(A) ∼= Aop and
similarly fFf ∼= Bop, passing to opposite algebras yields a Morita equivalence between A and B.

We need to show that this Morita equivalence restricts to an equivalence between add(X) and
add(Y ). It suffices to show that the equivalence mod(A) ∼= mod(B) sends add(X) to add(Y ). Since
A and B are symmetric, it suffices to show that fNe ⊗eEe − sends add(X∗) to add(Y ∗). Let V
be an A-module in add(X). Then HomA(V,X) is a projective E-module. Since N ⊗E − is an
equivalence of categories, it follows that N ⊗E HomA(V,X) is a projective F -module. Thus there is
a B-module W in add(Y ) such that N ⊗E HomA(V,X) ∼= HomB(W,Y ) as F -modules. Multiplying
by f yields an isomorphism of fFf -modules

fN ⊗E HomA(V,X) ∼= fHomB(W,Y ) ∼= HomB(W,B)

Since fN is a direct sum of summands of eE, it follows from Lemma 2.7 that the left side is
isomorphic to

fNe⊗eEe eHomA(V,X) ∼= fMe⊗eEe HomA(V,A)

Since A and B are symmetric, we have HomA(V,A) ∼= V ∗ and HomB(W,B) ∼= W ∗. This shows that
fNe⊗eEe V ∗ ∼= W ∗, and hence the functor fNe⊗eEe− sends add(X∗) to add(Y ∗) as claimed.

Proof of Theorem 1.4. We use the notation of Theorem 1.4. Let M be a bounded complex of E-
F -bimodules and N a bounded complex of F -E-bimodules inducing a Rickard equivalence; that
is, the components of M , N are finitely generated projective as left and right modules, and we
have homotopy equivalences of chain complexes of bimodules E-E-bimodules M ⊗F N ' E and
F -F -bimodules N ⊗E M ' F . Denote by e an idempotent in E such that e(X) ∼= A, and denote
by f an idempotent in F such that f(Y ) ∼= B. Multiplying the above homotopy equivalences
by e and f on both sides yields homotopy equivalences of chain complexes of eEe-eEe-bimodules
eM ⊗F Ne ' eEe and of fFf -fFf -bimodules fN ⊗E Mf ' fFf .

We will show that there are quasi-isomorphisms

eMf ⊗fFf fNe→ eM ⊗F Ne

fNe⊗eEe eMf → fN ⊗E Mf

whose restriction to the left and to the right are homotopy equivalences, and we will then see that
this implies that the functors eMf ⊗fFf − and fNe⊗eEe − induce inverse derived equivalences.

The complex Ne ∼= N ⊗E Ee is a bounded complex of finitely generated projective F -modules.
We will show that

Ne ∼= N0 ⊕N1

for some contractible complex N1 and a complex N0 whose components consist of finite direct
sums of summands of Ff . In order to show this, by Lemma 2.8, we may assume that O = k.
Since Ee is injective, we have HomK(E)(C,Ee) = {0} for any acyclic bounded above complex C
of finitely generated E-modules. Since N ⊗E − induces an equivalence of homotopy categories of
chain complexes K(E) ∼= K(F ), it follows that we have HomK(F )(D,Ne) = {0} for any acyclic
bounded above complex D of finitely generated F -modules. It follows from Lemma 2.9, that the
indecomposable direct summands of Ne which are not contractible consist of injective F -modules,
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hence of sums of summands of Ff . Reverting to general O, multiplying the previous isomorphism
by f on the left yields an isomorphism of chain complexes of fFf -modules

fNe ∼= fN0 ⊕ fN1

such that fN0 is a bounded complex of finitely generated projective fFf -modules, and fN1 is a
bounded contractible complex. The same argument shows that we have an isomorphism of chain
complexes of right F -modules

eM ∼= M0 ⊕M1

where M0 is a complex of right F -modules which are finite direct sums of summands of fF , and
M1 is a contractible complex of right F -modules. Thus, as before, multiplying this isomorphism on
the right by f yields an isomorphism of chain complexes of right fFf -modules

eMf ∼= M0f ⊕M1f

such that M0f is a bounded complex of finitely generated projective right fFf -modules and M1f is
a bounded contractible complex. Thus we have a decomposition as complexes of right eEe-modules

eM ⊗F Ne = M0 ⊗F Ne⊕M1 ⊗F Ne ∼=

M0f ⊗fFf fNe⊕M1 ⊗F Ne

where we have made use of Lemma 2.7 for the isomorphism. We also have

eMf ⊗fFf fNe = M0f ⊗fFf fNe⊕M1f ⊗fFf fNe

In both of these isomorphisms, the right most terms are contractible as chain complexes of right
eEe-modules, because M1f is contractible as a chain complex of right fFf -modules. Thus we have
a chain map of complexes of eEe-eEe-bimodules

eMf ⊗fFf fNe→ eM ⊗F Ne ' eEe

which restricts to a homotopy equivalence as a chain map of complexes of right eEe-modules, and,
by the analogous argument, restricts to a homotopy equivalence as a chain map of complexes of left
eEe-modules. In particular, this bimodule chain map is a quasi-isomorphism. Similarly, we have a
bimodule quasi-isomorphism

fNe⊗eEe eMf → fN ⊗E Mf ' fFf

which restricts to homotopy equivalences on the left and on the right.
We show next that the functor eMf ⊗fFf − from Ch(fFf) to Ch(eEe) preserves quasi-

isomorphisms. We use the right fFf -chain complex decomposition eMf = M0f ⊕M1f above.
If β : V → V ′ is a quasi-isomorphism in Ch(fFf), then IdeMf ⊗ β : eMf ⊗fFf V → eMf ⊗fFf V ′
decomposes as a direct sum of chain maps of complexes of O-modules M0f⊗fFf V →M0f⊗fFf V ′
and M1f ⊗fFf V → M1f ⊗fFf V ′. The first of these is a quasi-isomorphism because M0f is a
bounded complex of projective right fFf -modules. The second is trivially a quasi-isomorphism,
since both M1f ⊗fFf V and M1f ⊗fFf V ′ are acyclic, as M1f is contractible as a complex of right
fFf -modules. Thus the functor eMf ⊗fFf − induces a functor on derived categories; similarly for
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fNe ⊗eEe −. These two functors are inverse to each other as functors on the derived categories.
Indeed, since the above bimodule chain map eMf ⊗fFf fNe → eEe is a homotopy equivalence
as chain map of complexes of right eEe-modules, it follows that for any complex U in Ch(eEe),
the induced chain map eMf ⊗fFf fNe⊗eEe U → U is a homotopy equivalence as a chain map of
complexes of O-modules, hence a quasi-isomorphism as a chain map of complexes of eEe-modules.
The result follows.

Remark 3.3. The above proof does not show that the quasi-isomorphisms eMf ⊗fFf fNe →
eM ⊗F Ne and fNe⊗eEe eMf → fN ⊗EMf are homotopy equivalences as bimodule chain maps.
It also does not show that eMf and fNe are projective as complexes of left and right modules.
In particular, this proof does not show that eMf and fNe are Rickard complexes, and it seems
unclear whether the induced derived equivalence preserves the subcategories of chain complexes
over add(X) and add(Y ). The proof does show that the derived equivalence induced by M and N
restricts to an equivalence

Kb(add(Ee)) ∼= Kb(add(Ff)) ,

thanks to the isomorphism Ne ∼= N0 ⊕ N1 for some contractible complex N1 and a complex N0

with components in add(Ff), and the analogous isomorphism for Mf , where the notation is as in
the proof above. In the case where the base ring O is a field, this can also be deduced from [2,
Theorem 4.3], making use of Remark 2.5.

4 Proof of Theorem 1.1 and Corollary 1.2

The proof of Theorem 1.1 is played back to the theorems 1.3 and 1.4, together with description of
cohomological Mackey functors in terms of source algebras of blocks in [5], extending ideas going
back to Yoshida [14].

Proposition 4.1. Let A be a source algebra of a block of a finite group with defect group P . Set
X = ⊕Q A ⊗OQ O and E = EndA(X), where in the direct sum Q runs over the subgroups of P .
For ι a primitive idempotent in E, the following are equivalent.

(i) E ◦ ι is a relatively O-injective left E-module.

(ii) ι ◦ E is a relatively O-injective right E-module.

(iii) ι(X) is isomorphic to a projective indecomposable left A-module.

Proof. Note that A is a symmetric O-algebra and that A is isomorphic to the summand indexed by
the trivial group 1 in the direct sum X = ⊕Q A⊗OQ O. Thus the result follows from Proposition
3.2, combined with Lemma 2.3.

Proof of Theorem 1.1. Denote by P a defect group and by A a source algebra of the block b of
OG. Similarly, denote by Q a defect group and by B a source algebra of the block c of OH. Set
X = ⊕R A ⊗OR O, where R runs over the subgroups of P , and set E = EndA(X). Similarly,
Y = ⊕T A⊗OT O, where T runs over the subgroups of Q, and set F = EndB(Y ). It follows from
Theorem 1.3 (resp. Theorem 1.4) that if E and F are Morita equivalent (resp. Rickard equivalent)
then A and B are permeable Morita equivalent (resp. derived equivalent). By [5, Theorem 1.1] we
have coMack(G, b) ∼= mod(Eop) and coMack(H, c) ∼= mod(F op), whence the result.
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A permeable Morita equivalence between block algebras over k need not be splendid; see [11,
Remark 4.7]. In characteristic zero, however, permeable Morita equivalences are splendid.

Proposition 4.2. If O has characteristic zero, then a permeable Morita equivalence between two
blocks of finite group algebras over O is splendid.

Proof. Let B, B′ be block algebras of some finite group algebras over O, with defect groups P , P ′,
respectively. Let M be a B-B′-bimodule inducing a permeable Morita equivalence. Then M ⊗B′ −
sends the p-permutation B′-module B′ ⊗OP ′ O to the p-permutation B-module M ⊗OP ′ O. In
particular, M is free as a left OP -module, as a right OP ′-module, and M ⊗OP ′ O is a permutation
OP -module. Note that since M is free as a right OP ′-module, the quotient M⊗OP ′O is isomorphic
to the fixpoints MP ′

in M with respect to the right action of P ′ on M . Weiss’ criterion [13,
Theorem 2] (adapted to the more general coefficient ring O in [8, Appendix 1]), applied to P × P ′
and the normal subgroup 1×P ′ instead of G and N , respectively, implies that M is a permutation
O(P × P ′)-module.

Proof of Corollary 1.2. If B and B′ are splendidly Morita equivalent, then their associated cat-
egories of cohomological Mackey functors are equivalent by [11, Proposition 4.5]. Conversely, if
char(O) = 0 and if the categories of cohomological Mackey functors of B, B′ are equivalent, then
B, B′ are permeable Morita equivalent by Theorem 1.1, hence splendidly Morita equivalent by
Proposition 4.2.

5 A remark on nilpotent blocks

By results of Puig in [7] and [8], if a block b of a finite group algebra OG is nilpotent, then OGb is
Morita equivalent to OP , and if O has characteristic zero, then the converse holds as well. Thus,
if char(O) = 0, then Corollary 1.2 implies that b is nilpotent with a source algebra isomorphic to
OP if and only if coMack(G,B) ∼= coMack(P ). For derived equivalences, Theorem 1.1 this yields
the following.

Theorem 5.1. Let G be a finite group and b a block of OG. Suppose that O has characteristic
zero. If the categories coMack(G, b) and coMack(P ) are Rickard equivalent, then b is nilpotent,
with defect groups isomorphic to P .

Proof. Suppose that the categories coMack(G, b) and coMack(P ) are Rickard equivalent. Then, by
Theorem 1.1, the algebras OGb and OP are derived equivalent. Since OP is split local, it follows
from [15, 6.7.5] that OGb and OP are Morita equivalent. Thus, by [8, Theorem 8.2], b is nilpotent
with defect groups isomorphic to P .
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