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Application of numerical grid generation for improved CFD 
analysis of multiphase screw machines 

S Rane and A Kovačević 
City, University of London, Centre for Compressor Technology, London, UK. 
Email: sham.rane@city.ac.uk 

Abstract. Algebraic grid generation is widely used for discretization of the working domain of 
twin screw machines. Algebraic grid generation is fast and has good control over the placement 
of grid nodes. However, the desired qualities of grid which should be able to handle multiphase 
flows such as oil injection, may be difficult to achieve at times. In order to obtain fast solution 
of multiphase screw machines, it is important to further improve the quality and robustness of 
the computational grid. In this paper, a deforming grid of a twin screw machine is generated 
using algebraic transfinite interpolation to produce initial mesh upon which an elliptic partial 
differential equations (PDE) of the Poisson’s form is solved numerically to produce smooth final 
computational mesh. The quality of numerical cells and their distribution obtained by the 
differential method is greatly improved. In addition, a similar procedure was introduced to fully 
smoothen the transition of the partitioning rack curve between the rotors thus improving 
continuous movement of grid nodes and in turn improve robustness and speed of the 
Computational Fluid Dynamic (CFD) solver. Analysis of an oil injected twin screw compressor 
is presented to compare the improvements in grid quality factors in the regions of importance 
such as interlobe space, radial tip and the core of the rotor. The proposed method that combines 
algebraic and differential grid generation offer significant improvement in grid quality and 
robustness of numerical solution.  

1 Introduction 
The CFD analysis of twin screw machines is important in order to fully understand the mechanics of 
compression, gas-oil interaction, study the impact of oil injection design and modifications in particular 
and to accurately predict the performance of the machines due to variation in operating condition. 
Classically used lumped parameter models face a limitation in providing high resolution details of flow 
in such machines due to geometric and kinematic simplifications. But in the application of CFD models 
for calculation of flow in screw machines a major challenge is the treatment of highly deforming 
computational meshes. Kovačević et al [4], Kovačević [5] have successfully used an algebraic grid 
generation method with boundary adaptation and transfinite interpolation which has been implemented 
in the grid generation tool SCORG – Screw Compressor Rotor Grid Generator. In [4], Kovačević et al 
have reported CFD simulations of twin screw machines to predict flow, heat transfer, fluid-structure 
interaction, etc. A test case study of an oil injected compressor using source terms in transport equations 
with a segregated pressure based solver has also been presented. Pascu et al [7] have reported 
optimization of the discharge port of a Twin screw compressor using SCORG grid generator. 
Optimization was based on the selection of the port geometry by relative comparison of flow field 
predicted by the CFD models. In the same field of analysis, Vande Voorde et al [13] used an algorithm 
for generating block structured mesh from the solution of the Laplace equation for twin screw 



 
 
 
 
 
 

compressors and pumps using differential methods. Reports on analysis of dry air screw compressors 
and twin screw expanders with real gas models are available in literature using these techniques [8]. 
Although several attempts have been made in the recent past to extend the CFD technology to oil injected 
compressors, it has proven to be difficult to achieve the desired grid structure and the modelling 
conditions that can provide stability to the numerical solvers. Kovačević and Rane have reported in [6] 
results from the analysis of a dry air expander and it was found that CFD models deviated in prediction 
of leakage flow much more under the operating condition of low rotor speed and higher pressure 
difference then at higher rotor speeds with low pressure difference. On the other hand, Rane et al in [9] 
analyzed a twin screw compressor and found that refinement of the rotor grid in circumferential direction 
has a direct influence on the prediction of the mass flow rate. Rane [10] proposed a new analytical 
approach for grid generation that can independently refine the interlobe region of the screw rotors. It 
was demonstrated that such grid refinement improves the prediction of mass flow rates. The same 
algebraic algorithm has been extended to produce a rotor grid that eliminates the interface between two 
rotors and thereby providing a desirable grid for oil injected or multiphase modelling.  
In this paper, deforming grid of the twin screw machine is generated using these algebraic techniques 
and treated as an initial mesh upon which Elliptic PDE of the Poisson’s form is solved. The resulting 
differential grid has highly improved cell quality and distribution. In addition, a special procedure has 
been introduced that completely smooths the transition of the partitioning rack curve between the two 
rotors thus improving grid node movement and robustness of the CFD solver. A sample analysis of an 
oil injected twin screw compressor using the new Elliptic PDE grids has been presented to compare the 
improvements in grid quality factors in the regions of importance such as interlobe space, radial tip and 
core of the rotors. A significant improvement in the grid quality and robustness of numerical solver with 
higher order schemes has been obtained with this differential implementation of the deforming mesh. 
 
2 Differential grid generation principle 
In structured grid generation, techniques based on solutions of Partial Differential Equations to define 
coordinate transformation are widely used. The idea of using elliptic PDE like Laplace equation or 
Poisson equation is based on the work of Crowley [1] and Winslow [14]. Elliptic PDE’s have certain 
beneficial properties in their solution that make them preferable for body fitted curvilinear grids: 
Extremum principle – It is possible to formulate PDE’s such that the extrema of their analytical solutions 
cannot be within the domain. Hence there are fewer tendencies for folding of mesh lines. 
Inherent smoothness – The resulting coordinate curves in the interior are smooth and some 
discontinuities over the boundaries do not get propagated into the interior of the domains. 
Boundary – The coordinate points on physical boundaries can be exactly specified as boundary 
conditions in the computational space. 
But the numerical grid generation is computationally expensive and preferably an initial grid based on 
algebraic methods needs to be prescribed in order for the required derivatives to be used efficiently for 
solution of PDE’s. 

  
Figure 1. Differential construction of a 2D curvilinear grid. 

(a) (b) 



 
 
 
 
 
 

Consider a 2D domain as shown in Figure 1. The region is bounded by four curves AB, BD, CD and 
AC. To demonstrate the principle, a heat conduction problem will be used with boundary conditions T1 
and T2 as shown in Figure 1 a and b.  
For domain (a) 
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Similarly for domain (b) 
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The solution to systems (a) and (b) provides isotherms which can be written as 
 𝑇𝑇1 = 𝑇𝑇1(𝑥𝑥,𝑦𝑦), 𝑇𝑇2 = 𝑇𝑇2(𝑥𝑥,𝑦𝑦) (3) 

Each isotherm 𝑇𝑇1 and 𝑇𝑇2 thus represents a set of (𝑥𝑥,𝑦𝑦) and the two solutions get superimposed as a 
body-fitted curvilinear grid in the domain. Equation (1) and (2) can be re-written by interchanging roles 
of  𝑇𝑇 and (𝑥𝑥,𝑦𝑦), with correspondence of 𝑇𝑇1: ξ and 𝑇𝑇2:η. 
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(4) 

Where (ξ,η) are curvilinear coordinates and 𝑃𝑃(ξ,η) and 𝑄𝑄(ξ,η) are stretching functions and the system 
is a basic Poisson system of PDE. In order to determine Cartesian coordinates from equation (4) they 
must be inverted. The inverted equation in 2D reads as [2]: 
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Replacing ∅ by 𝑥𝑥 and y and  ∇2𝑥𝑥 = ∇2𝑦𝑦 = 0,    
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Equation (6) and (7) are coupled and nonlinear because of 𝛼𝛼,𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 γ . They are solved simultaneously 
using schemes like Tri-diagonal Matrix Algorithm. The boundary conditions as grid coordinates are 
specified at ξ = 0, ξ = ξ𝑚𝑚𝑚𝑚𝑚𝑚  𝑎𝑎𝑎𝑎𝑎𝑎 η = 0,η = η𝑚𝑚𝑚𝑚𝑚𝑚 . One of the difficulties with elliptic PDE’s is that 
at the boundary either Dirichlet or Neumann boundary conditions are required. 
Thompson, Thames and Mastin [12] have proposed the following stretching function in order to control 
grid clustering. 
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(9) 

Here 𝑁𝑁 is the number of clustering grid lines (coordinate lines ξ = ξ𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 η = η𝑛𝑛 ) and 𝐼𝐼 is the number 
of clustering points (with  ξ = ξ𝑖𝑖 , η = η𝑖𝑖 , 0 ≤ ξ𝑖𝑖 ,  η𝑖𝑖 ≤ 1 ) to which the grid is to be attracted. 
𝑎𝑎𝑛𝑛,  𝑐𝑐𝑛𝑛,  𝑏𝑏𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑖𝑖  are positive control parameters. The first term in 𝑃𝑃(ξ,η) has the effect with amplitude 
𝑎𝑎𝑛𝑛 of attracting ξ− 𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒𝑙𝑙 towards curves ξ = ξ𝑛𝑛 in the physical domain, while the second term attracts 
ξ − 𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒𝑙𝑙  with amplitude  𝑏𝑏𝑖𝑖 towards points. Similarly the two terms in  𝑄𝑄(ξ,η) control the grid line 
spacing. In each case the attractive effect decays with the distance in the computational space from the 
lines or points according to the decay parameters 𝑐𝑐𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑖𝑖 . 
The functions (ξ−ξ𝑛𝑛)

�ξ−ξ𝑛𝑛�
 𝑎𝑎𝑎𝑎𝑎𝑎 (η−η𝑛𝑛)

�η−η𝑛𝑛�
  are function which can take only the value ±1 and ensure the 

clustering to take place on both sides of  ξ𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 η𝑛𝑛 − 𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒𝑙𝑙. The amplitude can be set negative 
to turn attractive effects into repulsive ones. 
 
3 Differential grid generation for twin screw rotor grids 
Algebraic methods are convenient for quick adjustment and recalculation of the deforming grid. 
Kovačević et al [4], Kovačević [5], Kovačević and Rane [6] and Rane et al [9] have successfully used 
an algebraic grid generation method together with boundary adaptation and transfinite interpolation. 
Vande Voorde and Vierendeels [13] have implemented a grid conversion algorithm for unstructured to 
block structured mesh from solution of Laplace equation for twin screw compressors and pumps using 
the differential methods. Based on this grid generation, flow in a double tooth compressor and a twin 
screw compressor has been analyzed and the results have been compared with experimental data over a 
range of discharge pressure and rotor speeds. A detailed description of the algebraic grid generation for 
twin screw rotors can be found in Kovačević [5]. By use of a background blocking technique [10], the 
algebraic grid generation is able to produce a single domain structured grid for the twin rotor domains. 
With this algebraically generated single domain grid as an initial framework it is possible to solve the 
PDE system presented in Section 2 in order to produce a better quality differential mesh. 

3.1 Initial Algebraic grid generation 

The procedure of analytical grid generation of screw machine working domain is explained in Kovačević 
[5]. In order to achieve a conformal single domain mesh, a new approach of background blocking has 



 
 
 
 
 
 

been presented in Rane [10]. In this procedure, outer boundary in each background block is defined as 
a combination of the rack segment and the casing circle segment. The rack segment stretches between 
the bottom and top cusp points and is closed by the casing. The distribution obtained on the outer 
boundaries of the two blocks is used as a reference for rotor profile distribution as shown in Figure 2a. 

 
Figure 2. Background blocking for regular boundary discretization and conformal algebraic mesh. 

 
Figure 2b shows how the rack curve is used to partition the two rotor domains and the boundary 
distribution so obtained is used to generate the 2D mesh using transfinite interpolation. Using the 
blocking approach allows both conformal and non-conformal boundary map to produce fully hexahedral 
3D grid. Figure 2c shows the nodes on the rack segment between the main and the gate rotor grids with 
conformal boundary map. The 3D mesh generated from such 2D cross sections allows the rotor domains 
of the male and female rotors to be combined into a single rotor mesh. This avoids inaccuracies and 
instabilities that may arise due to the interface mismatch in non-conformal boundary map. The resultant 
grids are recommended for oil injected multiphase flow modelling. But during operation when the rotors 
turn further, the rack curve has to transition and the current algebraic methods have this transition as a 
step change at certain positions. One of the objectives of elliptic PDE mesh generation presented in this 
paper was to improve the time transition of the partitioning rack curve between the two rotor domains.  

3.2 Applying the Elliptic PDE solver to improve algebraic grid 

The treatment described in Section 2 for differential mesh generation requires the solution of the coupled 
PDE equations (6) and (7). Schemes like Tri-diagonal Matrix Algorithm can be used for the solution. 
The boundary conditions are specified as grid coordinates at ξ = 0, ξ = ξ𝑚𝑚𝑚𝑚𝑚𝑚  𝑎𝑎𝑎𝑎𝑎𝑎 η = 0,η = η𝑚𝑚𝑚𝑚𝑚𝑚 .  

 𝑃𝑃(ξ,η) = 0 (10) 

 𝑄𝑄(ξ,η) = −𝑄𝑄0 𝑙𝑙𝑠𝑠𝑎𝑎(𝑟𝑟)𝑒𝑒−|𝑟𝑟|   , 𝑟𝑟 =  (η− η𝑠𝑠) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑠𝑠𝑎𝑎(𝑟𝑟) =  
𝑟𝑟

|𝑟𝑟| (11) 

This means that for the generation of grid in twin screw rotor domain the coordinates (x, y) of the 
boundary nodes need to be prescribed as boundary condition to the equations (6) and (7). At this stage 
the grid generated by algebraic methods acts like the initial condition and also provides the boundary 
condition. In the presented work, an O grid topology has been implemented for the differential solver 
using successive-over-relaxation procedures as described in Knupp and Steinberg [3]. Also the 
stretching functions as described in equations (8) and (9) have been simplified to use only two input 
parameters based on the test function given by [3] and are listed in equations (10) and (11). η𝑠𝑠 is called 
as the Radial Bias Factor and 𝑄𝑄0 is called the Radial Bias Intensity. Both these factors contribute to the 
inflation layer control in the rotor meshes. System of equations (6) and (7) are solved over an initial grid 
generated by TFI. The control parameters of relaxation factor and tolerance factor are used to control 
the convergence of the SOR solver [3]. Finally the two O grids generated by the solution of the 



 
 
 
 
 
 

differential solver are merged to produce a single domain mesh for the two rotors as seen in Figure 3 – 
Final PDE Mesh. 

3.3 Smoothing the rack curve time transition to improve boundaries 

The PDE Mesher described in Section 3.2 is used in a selective interlobe area bounded by the top and 
bottom cusp radial nodes of the mesh to convert the rack curve into a smooth transitioning curve across 
the specified number of angular positions of the rotor. This results into a gradually changing partition 
between the two O grids of the male and female rotors as shown in Figure 3. 

    

Conformal Distribution I 
O Grid PDE Mesh  
Interlobe PDE Mesh  
Smooth Rack 

Conformal Distribution II on 
Smooth Rack Final PDE Mesh 

Figure 3. Four-step procedure for improving time transition of the rack curve. 

 

This smooth rack is then supplied 
back to a second stage of 
boundary distribution calculation 
resulting in a new conformal 
distribution. New conformal 
distribution is further used as 
boundary condition for final 
differential mesh generation. As a 
result a significant improvement 
in the mesh quality is achieved.  

Figure 4. Improvement in the 3D rack surface. 

This four-step procedure is very quick and the time required for calculation of a representative 2D mesh 
with 5000 node count, across 50 rotor positions is less than 15 seconds. Figure 4 shows the smooth rack 
surface generated on the 3D mesh. The sharp sections observed with original surface (Initial algebraic 
mesh) are eliminated and a completely smooth surface deformation with time was achieved. 

3.4 Meshing parameters for PDE Mesh generation 

Meshing parameters listed in Table 1 are used to control the stretching functions of the Poisson system 
of the PDE mesh and SOR solver convergence. Smoothness of the conformal grid described in Section 
3.3 also needs a control over the number of cells to smooth adjacent to the rack curve in the final 2D 
mesh. Using this control continuity can be achieved on the mesh lines and cell expansion factor can be 
improved by specifying a higher interlobe smoothing factor. Some examples of the outputs with 
different control factors are shown in Figure 5 (a-d). Figure 5a shows a grid generated by specifying a 
relaxation factor = 0. This produces a pure TFI based algebraic mesh with no smoothing and 
orthogonalisation. 

Table 1. Meshing parameters – Differential Mesher 



 
 
 
 
 
 

Mesh Orthogonality and Smoothing Factor 
Relaxation Factor Relaxation factor controls mesh orthogonalisation and smoothing 

by relaxing the increment in each consecutive iteration. 
Tolerance Factor Convergence criteria for PDE solver. 
Inflation Layer Control 
Radial Bias Factor - η𝒔𝒔 Factor is used to select boundary for bias. 1 – Rotor, 0 – Casing. 
Radial Bias Intensity - 𝑸𝑸𝟎𝟎 Intensity of stretching the nodes towards the boundaries. 
Conformal Mesh Control 
Interlobe Smoothing Factor Factor is used to smooth layers of mesh adjacent to the rack. 

 
Figure 5. Response of the PDE meshing parameters in a representative 2D section. 

 
Figure 5b is a grid generated by a high relaxation factor = 1. In combination with a higher tolerance 
factor makes the grid lines smooth and the rack transition becomes gradual. Radial Bias Factor is used 
to control the stretching of nodes towards the boundaries. In Figure 5c with a Radial Bias Intensity = 2 
and a Radial Bias Factor = 0.5, the radial nodes are pulled towards the rotor and the casing. The value 
of η𝒔𝒔 can range from 0 to 1. 1 pulls nodes towards the rotor while 0 pulls the nodes towards casing. An 
intermediate value can thus be used to control the inflation layers in the rotor domain. 

3.5 Improvement in grid quality 

A few examples of improvement in grid quality by the differential grid generation are presented here. 

 
Figure 6. Comparison of grid and rack transition between Algebraic (a-d) and Elliptic (e-f) meshing. 

 



 
 
 
 
 
 

Figure 6 shows a comparison of the grid and rack transition between algebraic and elliptic meshes. 
Figure 6 a-d are algebraic meshes for four successive rotor positions and Figure 6 e-h are the elliptic 
meshes for the respective rotor positions. Between position Figure 6b and c a sudden transition in the 
rack curve is noticeable.  On the other hand, in the respective Figure 6f and g the rack node transition is 
gradually. Also Figure 6e and h highlight the characteristics of the elliptic mesh that the rack nodes in 
the earlier and next rotor positions were in smooth transition. Figure 6 e-h also show that the interior 
cell structures have improved and radial mesh lines between the two rotor domains have continuity.  

 
Figure 7. Comparison of cell expansion factor between Algebraic (a) and Elliptic (b) meshing. 

 
Figure 7 a and b present a comparison of the cell expansion factor. Figure 7a corresponds to Figure 6b 
and Figure 7b corresponds to Figure 6f which are the positions just before rack transitions in the 
algebraic mesh. A high cell expansion factor of about 20 is seen in the algebraic mesh in this rotor 
position. In case of elliptic mesh, due to rack smoothing, the cell expansion factor is less than 3.6 

 
Figure 8. Comparison of cell orthogonal quality between Algebraic (a-d) and Elliptic (e-f) meshing. 

 
Figure 8 presents a comparison of the cell orthogonal quality between the algebraic meshes and the 
elliptic meshes. Figure 8(a-d) are algebraic meshes and Figure 8(e-h) are elliptic meshes in the respective 
rotor positions. The rotor positions are identical to the representations in Figure 6. It is seen that the 
minimum orthogonal angle in case of the algebraic meshes goes to about 8 degree after the rack curve 
transitions from position b to c. Many cells are in the range of 40 – 60 degree. Low orthogonality values 
are also seen in position d. In case of elliptic meshes, there is improvement in the overall orthogonality 



 
 
 
 
 
 

quality and also the minimum value is not below 25 degree. Most of the cells are in the range of 75 – 90 
degree. One particular cell at the bottom cusp shows low orthogonality of about 15 degree in both the 
algebraic and the elliptic mesh. This is mainly due to the abrupt topology change that happens at the 
cusp point. 

 
4 Application of Elliptic grid for oil injected twin screw compressor analysis 
Flow in an oil flooded twin screw compressor with a combined axial and radial suction and an axial 
discharge port was calculated with the new elliptic PDE grid. The male rotor has four lobes and the 
female rotor has five lobes with ‘N’ profiles. The nominal interlobe, radial and axial leakage gaps are 
60 µm. The operating speed of the machine is between 3000 rpm and 6000 rpm, discharge pressure can 
vary between 4.0 bar and 12.0 bar. A complete description of the model numerical setup can be found 
in Rane et al [11]. 

4.1 Oil distribution inside the compression chamber 

The fluctuating nature of the oil injection was well captured by the CFD model. Figure 9 shows the 
distribution of oil and its interaction in the discharge port. Iso-surface of 10% oil volume fraction shows 
an accumulation of oil in the rotor tips and also high concentration on the discharge port walls. Similarly 
oil accumulates in the interlobe gaps and is transported forward by the rotors. The oil distribution pattern 
in the discharge port is highly unsteady but cyclically repeating.    
 

  
Figure 9. Oil flow distribution near the discharge 

port. 
Figure 10. Discharge gas temperature 

distribution at 6000rpm, 8.0bar pressure. 

4.2 Temperature distribution 

Figure 10 shows the distribution of air temperature in the domain at 8.0bar discharge pressure, 6000rpm 
with an iso-surface of 10% oil volume fraction. With built-in Vi of 3.6 for the machine, the adiabatic 
discharge temperature without oil injection would be about 500 K but due to leakages and recompression 
effects, the temperature rise would be much higher. Due the injected oil at 323 K, the gas temperature 
is substantially lowered and does not exceed 340 K. It can be seen that the local maximum temperature 
reaches to about 360 K. Also the gas temperature is not uniformly distributed. This non-uniformity is 
due to the non-homogeneous distribution of oil in the compression chamber. 
 
5. CONCLUSIONS 
 
Algebraic grid generation is widely used for discretization of the working chamber of twin screw 
machines. In order to improve the speed and robustness of the numerical solution of multiphase flows, 
a new technique which combines differential grid generation procedure with the existing algebraic grid 
generation is presented in this paper. The deforming grid of a twin screw machine is initially generated 



 
 
 
 
 
 

using algebraic grid generation. This mesh is treated as the initial mesh upon which Elliptic PDE of the 
Poisson’s form is solved. The resulting grid has highly improved quality and distribution of 
computational cells. In addition, a special four-step procedure has been introduced that completely 
smoothens the transition of the algebraically generated partitioning rack curve between the two rotors 
thus smoothing the grid node movement in time and space. These grid features have improved the 
robustness of the solution in CFD solvers.  
Analysis of an oil injected twin screw compressor is presented in order to compare the improvements in 
the grid quality factors in the regions of importance such as interlobe space, radial tip and core of the 
rotors. Significant improvement in the grid quality and robustness of numerical solver with higher order 
advection schemes has been obtained with this new deforming mesh. The results from the simulation 
provided an exceptional visualization of the interaction of gas and oil inside the compression chamber. 
The interaction of the phases, distribution of oil, heat transfer between gas and oil and also effects on 
sealing due to high oil concentration in leakage gaps were well captured. 

Nomenclature 

PDE - Partial Differential Equation 𝑞𝑞" - Heat flux 
ξ,η - computational coordinate 𝑥𝑥,𝑦𝑦, 𝑧𝑧 - Cartesian coordinates 
𝑟𝑟,𝜃𝜃 - polar coordinates of a point 𝒓𝒓 - radius vector 

𝑃𝑃(ξ,η) - Control function for x stretching 𝑄𝑄(ξ,η) - Control function for y stretching 
α,β, γ - Coefficients of elliptic PDE J - Transformation Jacobian Matrix 
η𝑠𝑠 - Radial bias factor 𝑄𝑄0 - Radial bias intensity 
TFI - Transfinite Interpolation SOR - Successive over-relaxation 
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