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Abstract 

We compared coincidence-anticipation performance in normal vision and stroboscopic 

vision as a function of time-on-task. Participants estimated the arrival time of a real object that 

moved with constant acceleration (-0.7, 0, +0.7 m/s2) in a pseudo-randomised order across 4 

blocks of 30 trials in both vision conditions, received in a counter-balanced order. Participants 

(n=20) became more errorful (accuracy and variability) in the normal vision condition as a 

function of time-on-task, whereas performance was maintained in the stroboscopic vision 

condition. We interpret these data as showing that participants failed to maintain coincidence-

anticipation performance in the normal vision condition due to monotony and attentional 

underload. In contrast, the stroboscopic vision condition placed a greater demand on visual-

spatial memory for motion extrapolation, and thus participants did not experience the typical 

vigilance decrement in performance. While short-term adaptation effects from practicing in 

stroboscopic vision are promising, future work needs to consider for how long participants can 

maintain effortful processing, and whether there are negative carry-over effects from cognitive 

fatigue when transferring to normal vision.  
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Introduction 1 

The human visual system typically receives an intermittent flow of incoming 2 

information due to blinks, saccades and periods of transient occlusion when an object-of-3 

interest disappears from view behind another object or surface (e.g., as the ball is obscured by 4 

the defensive players during a free kick in soccer). This usually goes unnoticed, with the 5 

intermittent input transformed into a unified and continuous perceptual experience. However, 6 

even when there are longer periods of occlusion (e.g., artificial manipulation using stroboscopic 7 

vision eyewear), relevant information can be gained from intermittent visual samples to provide 8 

sufficient information for successful performance of precision interceptive actions1. Recently, 9 

it has been reported that practicing in such vision conditions can facilitate sports-specific skills 10 

in ice-hockey2 and baseball3. Analogous to altitude training for the endurance athlete4, the 11 

premise is that practicing in stroboscopic vision encourages visual-cognitive processes to adapt 12 

in order to cope with the suboptimal information available. Processes shown to transfer 13 

positively when vision is subsequently restored to normal include short-term visual memory5, 14 

coincidence-anticipation timing6, and motion coherence and attention in central vision7. 15 

Continuing with the analogy of altitude training, it follows that practicing in 16 

stroboscopic vision is effortful and attentionally demanding. Indeed, anecdotal reports suggest 17 

that participants exhibit more focussed attention on an approaching object when practicing 18 

catching tasks in stroboscopic vision8. This is consistent with related empirical work that has 19 

shown an overall increase in attention (i.e., “high-beams” effect) in order to maintain a 20 

persistent visual-spatial memory of relevant stimulus locations (i.e., object and distractors) 21 

when vision is intermittently occluded9. It is important to recognize, however, that a high 22 

attentional load and effortful processing cannot be maintained indefinitely. In accord with the 23 

overload hypothesis10, it follows that a high attentional load can eventually lead to the depletion 24 

of attentional resources and a decrement in performance. This has implications for the design 25 



of stroboscopic vision training programmes, which to date have used both experimenter-1 

determined (e.g., 25 minutes5, 5-7 minutes6, and self-determined (e.g., 10-45 minutes2) 2 

exposure duration. 3 

In the current study we sought to determine the effect of stroboscopic vision on 4 

attentional allocation while performing coincidence-anticipation timing, which is a key 5 

element to many daily life activities such as driving or in different sporting disciplines where 6 

it is necessary to avoid or intercept moving objects11. Rather than using a probe-reaction 7 

procedure to determine the amount of attention used when performing coincidence-anticipation 8 

timing in stroboscopic vision compared to normal vision, we were interested to know if 9 

stroboscopic vision influences the ability to sustain attention as a function of time-on-task. 10 

Therefore, we adopted the method used for testing psychomotor vigilance, whereby 11 

participants are required to sustain attention over time in order to respond efficiently to repeated 12 

presentation of the imperative stimulus12. Specifically, we compared vigilance in a normal 13 

vision condition and a stroboscopic vision condition (4Hz) while performing repeated trials of 14 

a coincidence-anticipation task in which the object moved with constant acceleration (-0.7, 0, 15 

+0.7 m/s2). We hypothesised that participants would exhibit deterioration in performance 16 

(accuracy and variability) as a function of time-on-task in the normal vision condition due to 17 

monotony and attentional underload13. Conversely, we hypothesised that the greater demand 18 

on visual-spatial memory for motion extrapolation in the stroboscopic vision condition would 19 

enable participants to sustain attention and thus offset the typical vigilance decrement. 20 

 21 

Methods 22 

Participants 23 

Twenty male undergraduate students (M = 23.15 years of age, SD = 2.35) volunteered 24 

to take part in the study. All participants reported having normal or corrected-to-normal vision. 25 



Participants were provided with general information about the task and stimulus prior to giving 1 

informed written consent. All procedures were conducted in accordance with the Declaration 2 

of Helsinki and were approved by the Liverpool John Moores University Research Ethics 3 

Committee. 4 

Apparatus, Task and Procedure 5 

Coincidence-Anticipation: Participants were required to press a button mounted in a 6 

hand-held joystick at the moment an object (single red LED of 5mm diameter) that moved 7 

along a 3m linear track (HEPCO) reached a fixed target position. The target comprised two red 8 

LEDs (5mm diameter) mounted on either side of the track. The object was attached to a sled 9 

that was moved along the linear track by a stepper motor controlled by in-house routines 10 

implemented in MATLAB (The Mathworks, Inc., MA, USA). The object moved with constant 11 

acceleration (-0.7, 0, +0.7 m/s2) such that it reached the target after 1000ms moving with a 12 

velocity of 1.25m/s. It then continued to move with the same acceleration for a further 100ms, 13 

after which it was brought to a standstill. The target remained stationary for 2000ms, and then 14 

moved slowly back to the start position for the next trial. The moment the button was pressed 15 

and the sled reached a switch located coincident with the target were recorded via a data 16 

acquisition card (NI PCI-6035E) and stored for offline analysis. 17 

Participants performed the coincidence-anticipation task in a normal vision condition and 18 

stroboscopic vision condition. In the latter, participants wore eyewear (Nike Vapor Strobe®) 19 

with LCD lenses that cycled between “open” and “closed” states. The “open” state had a fixed 20 

duration of 100ms, whereas the “closed” state could be set at one of eight levels. Following 21 

previous work on stroboscopic vision during coincidence-anticipation6, here we selected level 22 

3 for the closed state, which had a duration of 150ms (i.e., 4Hz cycling rate). In the “closed” 23 

state the lenses are less transparent and thereby are likely to perturb perception of motion and 24 

form (see discussion). Effectively, in the “closed” state the lenses act as neutral density filters 25 



and thus reduce light transmission. Under ambient room lighting (625 lux), which was used 1 

throughout experimental testing, a digital light meter (Lutron LX-1108, Taipei, Taiwan) 2 

located directly behind the lens of the stroboscopic vision eyewear indicated the illuminance 3 

was 128 lux in the “closed” state. An illuminance of 100 lux is similar to that of a “very dark 4 

overcast day”14, while 320 lux is the minimum illuminance for office lighting recommended 5 

by the US Department of Labour. We were unable to reliably measure illuminance when the 6 

stroboscopic eyewear were in the “open” state (100ms), although the lenses were sufficiently 7 

transparent that participants reported having normal visibility. To ensure that participants in 8 

the normal vision condition believed they were the subject of an intervention, and thus 9 

experienced similar expectation effects as the stroboscopic vision condition (i.e., Hawthorne 10 

and/or placebo effect), they performed the coincidence-anticipation task while wearing a pair 11 

of NVIDIA LCD shutter glasses (Expressway Santa Clara, CA, USA). These were not switched 12 

on and connected to a 3D graphics card, and thus permitted light transmission of 239 lux. While 13 

illuminance was reduced compared to that of ambient lighting, participants reported having an 14 

uninterrupted view of the moving object during the coincidence-anticipation task.  15 

Prior to the commencing experimental testing, the experimenter explained the procedure 16 

and provided the participant with the necessary eyewear. Half of the participants performed the 17 

coincidence-anticipation task in the stroboscopic vision condition followed by the normal 18 

vision condition, whereas the other half performed the normal vision condition followed by the 19 

stroboscopic vision condition. The participant next performed 10 familiarization trials, 20 

followed by 4 blocks of 30 experimental trials. Within each block, the level of acceleration was 21 

pseudo-randomly ordered to encourage participants to use the available visual information (e.g., 22 

not respond at a fixed distance) and to minimize boredom associated with repeated attempts 23 

with the same motion. To prevent a learning effect with respect to acceleration that could have 24 

influenced allocation of attention, knowledge of results on coincidence-anticipation accuracy 25 



was not communicated to the participant. The duration to complete each vision condition was 1 

between ten and eleven minutes depending on the participant’s response time to each trial, and 2 

was thus similar to previous studies that have shown a vigilance decrement when completing 3 

a computer-based reaction time (RT) task (see below) for an extended number of trials without 4 

a break. 5 

Psychomotor Vigilance: Between completing the coincidence-anticipation task in the 6 

normal vision and stroboscopic vision conditions, participants performed a computer-based 7 

psychomotor vigilance task (PVT). The presentation of stimuli, timing operation, and 8 

collection of responses was controlled by E-Prime software (Psychology Software Tools, 9 

Pittsburgh, PA, USA) running on a desktop computer (Dell OptiPlex). The PVT required 10 

participants to respond, as rapidly as possible, to a visual stimulus that appeared on a computer 11 

monitor located 50cm from where they were seated. During each trial of the PVT, a Gabor 12 

patch (4.20° x 4.20°) was presented with a horizontal orientation against a grey background at 13 

the center of the screen. Then, after a random time interval between 2000ms and 10000ms, the 14 

orientation of the Gabor patch was abruptly switched to vertical (see Figure 1). Participants 15 

were instructed to respond to this change of orientation as quickly as possible by pressing the 16 

space bar on a keyboard (Razr Lycosa, 1000Hz polling) with the index finger of their dominant 17 

hand. Feedback of the response time was displayed on the screen after each trial during a 300ms 18 

inter-trial interval. If no response was given within 5000ms of changing the orientation of the 19 

Gabor patch, the message ‘‘You did not answer” appeared on the screen and the next trial began. 20 

The PVT lasted for 9 minutes without interruptions and is accepted to provide a simple and 21 

reliable measure of vigilance given the monotonous, repetitive, and unpredictable nature of the 22 

target onset15. It has been reported that failures (e.g., slowing of RT or increase in lapses) in 23 

vigilance performance in the PVT can occur within 5 minutes in adults15,16, and even shorter 24 

duration in adolescents and children17,18,19 However, we decided to follow the original 25 



developers’ recommendation of a 9 minute PVT20, which also approximated the duration of 1 

coincidence-anticipation task and thus permitted between-task comparison.  2 

Data Analysis 3 

Coincidence-Anticipation: We first calculated the signed error on each trial between 4 

button press and object arrival at the target. Response with an absolute value of >300ms were 5 

classified as outliers and removed (< 1.0%) from additional analyses11. From the remaining 6 

trials, we calculated intra-participant mean constant error (accuracy) and variable error 7 

(variability) for each level of object acceleration in each of the four blocks. The intra-8 

participant mean data were submitted to separate 2 Vision (normal, stroboscopic) x 3 9 

Acceleration (-0.7, 0, +0.7 m/s2) by 4 Block (1, 2, 3, 4) repeated measures ANOVA. In cases 10 

where Mauchley’s sphericity test was significant, Greenhouse-Geisser corrections were 11 

applied. Tukey’s Honestly Significant Difference (HSD) tests were then used to determine the 12 

origin of any significant main and interaction effects. 13 

Psychomotor Vigilance: Intra-participant mean (accuracy) and standard deviation 14 

(variability) of RT was calculated for consecutive 3 minute intervals of the 9 minute total task 15 

duration. Trials with RT below 100 ms (< 1.0%) were considered to be anticipation errors and 16 

therefore discarded from the analysis15. The intra-participant mean and standard deviation data 17 

of RT submitted to a one-way ANOVA with Block (1, 2, 3) as a repeated measure. Tukey HSD 18 

post-hoc tests were used to investigate the significant main effect. 19 

 20 

Results 21 

Coincidence-Anticipation 22 

For constant error there was a significant main effect of Acceleration, F(1.26,24.03) = 23 

56.62, p < .001, η2
partial = .75. Participants exhibited greater underestimation of object arrival 24 

when it decelerated (-117ms) compared to when it had constant velocity (-101ms) or 25 



accelerated (-78ms), p < .001. There was no main effect of Block, F(3,57) = 2.47, p = .07, 1 

η2
partial = .12, or Vision, F(1,19) = 1.94, p = .18, η2

partial = .08, but there was a significant 2 

interaction between these factors, F(2.02,38.36) = 5.28, p = .008, η2
partial = .22. Participants 3 

became less accurate in the normal vision condition across the 4 blocks, whereas they 4 

maintained a similar level of accuracy in the strobe vision condition. As shown in Figure 2, 5 

constant error in the normal vision condition deteriorated from block 1 (-85 ms) to block 3 (-6 

101 ms), p = .04, and block 4 (-103ms), p < .01. As a consequence, while constant error was 7 

significantly less in the normal vision than strobe vision condition in blocks 1, there was no 8 

difference in constant error for the remaining blocks. Observation of the individual participants’ 9 

data revealed that 16 of 20 exhibited an increase in constant error between block 1 and 4 in the 10 

normal vision condition. In the strobe vision condition, an increase in error was evident in 9 of 11 

20 participants.  12 

For variable error there was a significant main effect of Acceleration, F(2,38) = 10.62, 13 

p < .001, η2
partial = .36. Participants were more variable when the object decelerated (45ms) 14 

compared to when it moved with constant velocity (40ms) or accelerated (38ms), both p < .05. 15 

There was also a significant main effect of Vision, F(1,19) = 64.68, p < .001, η2
partial = .77, 16 

but this was superseded by a significant interaction between Vision and Block, F(3,57) = 3.04, 17 

p = .04, η2
partial = .14. As shown in Figure 3, participants became more variable in the normal 18 

vision condition across the 4 blocks, whereas they maintained a similar level of variable error 19 

in the stroboscopic vision condition. As a consequence, the initial difference in variable error 20 

between the normal vision and stroboscopic vision conditions at block 1 (p < .01) and block 2 21 

(p < .03) was no longer present at block 3 and block 4 (p > .50). Observation of the individual 22 

participant data revealed that 15 of 20 exhibited an increase in variable error between block 1 23 

and 4 in the normal vision condition. In the strobe vision condition, an increase in variable 24 

error was evident in 7 of 20 participants. 25 



Additional analyses were conducted to determine if the change (between blocks 1 and 1 

4) in mean and variability of coincidence-anticipation were related. This indicated no 2 

significant correlation in either normal vision, r(20) = 0.15, p = .54) or stroboscopic vision, 3 

r(20) = 0.40, p = .08). Notably, however, observation of the individual participant data revealed 4 

that 12 of the 20 became both less accurate and more variable in the normal vision condition. 5 

Only 1 participant became more accurate and less variable in the normal vision condition. The 6 

pattern was reversed in the stroboscopic vision condition, where 10 participants became more 7 

accurate and less variable. Of the remaining 10 participants, 6 became both less accurate and 8 

more variable. 9 

Psychomotor Vigilance Task 10 

The analysis of the participants’ mean RT revealed a significant main effect of Block, 11 

F(2,38) = 6.99, p = .003, η2
partial = .27. Tukey HSD post-hoc tests indicated a significant 12 

difference between block 1 (268 ms) and block 3 (289 ms), p = .002. There was no main effect 13 

of Block on participants’ variability in RT, F(2,38) = 0.38, p > .68, η2
partial = .02. Group mean 14 

variability was 61, 53 and 67 ms, respectively. Additional analyses on the change in mean and 15 

variability of PVT indicated a significant relationship, r(20) = 0.59, p = .006. Observation of 16 

the individual participant data revealed that 9 of the 20 exhibited an increase in both mean and 17 

variability of RT. Only 3 participants reduced the mean and variability of RT between block 1 18 

and block 3.  19 

Finally, a generalised linear model with a poisson link function indicated the number 20 

of lapses was not influenced by Block (Wald Chi-Square = 1.37, p = .50), and thus did not 21 

provide a better fit of the data than the intercept-only model (Likelihood Ratio Chi-Square = 22 

1.48, p = .48). 23 

 24 

 25 



Task Specificity 1 

Pearson product-moment correlations were calculated to determine if there was a 2 

relationship between the change in performance (i.e., last block - first block) of coincidence-3 

anticipation and PVT. There was no significant correlation between change in constant error 4 

and mean RT in the either normal, r(20) = -.32, p = .18, or stroboscopic vision, r(20) = -.03, p 5 

= .90. Still, observation of the individual participant data revealed that 13 of the 20 did in fact 6 

exhibit deterioration in constant error in the normal vision condition and an increase in RT. 7 

There was no significant correlation between change in variability of coincidence-anticipation 8 

and PVT in either normal, r(20) = .23, p = .34,  or stroboscopic vision, r(20) =  -.90, p = .71.  9 

 10 

Discussion 11 

It has recently been reported that practice under stroboscopic vision conditions can 12 

facilitate the development of sport-specific skill2,21, and that this could be explained in part by 13 

adaptation of processes such as motion coherence and attention in central vision7 and visual-14 

spatial memory5. Central to this adaptation is the premise that practice in stroboscopic vision 15 

is effortful and demanding20. For instance, it has been reported that contrast sensitivity, which 16 

is important for form perception, is impaired at low levels of luminance22, and that thresholds 17 

for coherent motion (translational) and heading direction (radial) increase as luminance levels 18 

decrease23. Indeed, it is known that tracking a moving object relative to the surrounds in 19 

stroboscopic vision is an attentionally demanding task9, which likely engages areas in pre-20 

frontal cortex associated with working memory for trajectory extrapolation24. In the current 21 

study, we adapted a method used to study psychomotor vigilance12,20, in order to determine if 22 

stroboscopic vision influences the ability to sustain attention to response accurately while 23 

performing a coincidence-anticipation task. 24 



We found that the group of participants became less accurate and more variable in their 1 

coincidence-anticipation response in the normal vision condition as a function of time-on-task. 2 

Conversely, accuracy and variability were maintained a similar level in the stroboscopic vision 3 

condition. Consequently, differences in accuracy and variability that existed between normal 4 

vision and stroboscopic vision conditions during the first block of 30 trials were no longer 5 

evident during the last block of 30 trials. Consistent with explanations of the vigilance 6 

decrement, we interpret these data as showing that participants failed to sustain attention after 7 

repeated trials due to the monotony and relatively simple demands of coincidence-anticipation 8 

performed in normal vision (i.e., underload hypothesis13). At the level of individual participants, 9 

this was reflected in approximately two-thirds exhibiting deterioration in both accuracy and 10 

variability in the normal vision condition. Such a change in behaviour would not be expected 11 

if participants had developed a systematic bias (i.e., underestimation or overestimation) in their 12 

anticipation of object arrival time as a function of block. 13 

In contrast, in the stroboscopic vision condition where there was a greater demand on 14 

visual-spatial memory for trajectory extrapolation, it would seem that participants were better 15 

able to sustain attention, and thus maintain performance over time. Indeed, there was evidence 16 

that some participants improved accuracy (n = 13) and variability (n = 11) across blocks in 17 

stroboscopic vision. For half of the participants there was a concurrent change in accuracy and 18 

variability that was consistent with a systematic improvement in anticipation of object arrival 19 

time.  Importantly, this positive adaptation would not be expected had participants disengaged 20 

from the task due to high levels of boredom or fatigue. That is not to suggest, however, that 21 

coincidence-anticipation performance would be maintained indefinitely in the stroboscopic 22 

vision condition, and by all participants. Rather, in accord with the overload hypothesis10, it 23 

follows that a high attentional load and effortful processing cannot be maintained, thus 24 



eventually leading to the depletion of attentional resources and subsequently a vigilance 1 

decrement in performance. 2 

An important consideration in previous work regarding the benefit of stroboscopic 3 

vision training has been the potential influence of motivational and expectancy effects such as 4 

placebo or Hawthorne25. In the current study, we were careful to include additional 5 

experimental control to ensure that any change in coincidence-anticipation was not simply a 6 

result of expectancy. In particular, given the use of novel eyewear for both the stroboscopic 7 

vision and normal vision conditions, there is no reason to believe that participants would have 8 

associated a particular eyewear with a treatment or control condition and thus modified their 9 

response accordingly. Also, we did not provide participants with knowledge of results, thus 10 

minimizing motivational effects of learning. This was important because there could have been 11 

asymmetrical motivational effects if participants were better able to use the knowledge of 12 

results in the normal vision condition to reduce response error to very low levels (e.g., 0-30ms 13 

constant error previously reported11). Another important control was to present a real moving 14 

object rather than an apparent motion stimulus (e.g., Bassin-Anticipation timer). The idea was 15 

to minimize the possibility of asynchrony between the open state of the stroboscopic eyewear 16 

and presentation of the stimulus, thereby giving participants the opportunity to see the moving 17 

object for the duration of the 100ms intermittent “open” interval. That said, it is worth noting 18 

that we were unable to equate the amount of light transmitted through the different eyewear, 19 

and thus reaching the eye, in the “open” state. Although a potential confound, we suggest that 20 

any difference in light transmission between the stroboscopic eyewear in the “open” state and 21 

the control eyewear is unlikely to have influenced the observed results. For instance, 22 

participants in our study reported being able to see normally through both eyewear (i.e., 23 

stroboscopic eyewear in the “open” state), whereas others have found that throwing and 24 

catching drills are not sufficiently demanding when the stroboscopic eyewear are set to level 1 25 



(100ms open, 67ms closed)5. Finally, we also measured sustained attention in a computer-based 1 

vigilance task (PVT). This confirmed that the majority of participants became less accurate and 2 

more variable as a function of time-on-task. However, the vigilance decrement in the computer-3 

based task was not significantly correlated with the change in coincidence-anticipation 4 

performance (i.e., accuracy and variability). This finding was not unexpected given that the 5 

two tasks have different processing and response demands, and consequently might be affected 6 

differently by the vigilance decrement10,26. 7 

The notion that practicing coincidence-anticipation in stroboscopic vision engages 8 

attention is consistent with the “immediate benefit” reported by Smith & Mitroff6. In their study, 9 

participants’ coincidence-anticipation behaviour was significantly more accurate in a normal 10 

vision post-test immediately after practicing for 5-7 minutes in a stroboscopic vision condition 11 

compared to a normal vision condition. We concur with the authors’ suggestion that this effect 12 

was not evidence of long-term improvements due to learning, and instead that brief exposure 13 

to stroboscopic vision could be used to enhance performance when needed in specific game 14 

situations (i.e., before a baseball player prepares to bat). Interestingly, there is also some 15 

evidence that stroboscopic vision can be used to prevent and accelerate rehabilitation from 16 

injury27. However, as with studies that have shown improvements in psychomotor and function 17 

following stroboscopic vision training, it remains to be determined to what extent the benefits 18 

are due to an increase in attentional resource in order to cope with increased task difficulty 19 

and/or redirection of attention to alternative sources of information (e.g., somatosensory and 20 

vestibular inputs in the case of ACL injury).  21 

Notably, while the current study used eyewear that are no longer available, there are 22 

alternative commercial eyewear (e.g., PLATO Visual Occlusion Spectacles; Senaptec Strobe; 23 

Visionup Strobe Glasses) that permit greater control over the duration of the open and closed 24 

states. While not the aim here, in future work it will be relevant to determine whether resistance 25 



to a vigilance decrement in stroboscopic vision is influenced by factors such as the amount of 1 

light transmitted through the lenses of the eyewear and the strobe rate, both of which could 2 

influence the perception of motion and form. For instance, we used a strobe robe of 4Hz in the 3 

current study, but a lower strobe rate requiring longer intervals of extrapolation would 4 

potentially place greater demand on visual-spatial memory, thus more quickly leading to 5 

overload. Alternatively, practicing at a higher strobe rate requiring shorter intervals of 6 

extrapolation could quickly become less demanding, thus leading to disengagement. In this 7 

respect, the use of a “levelling-up” procedure whereby strobe rate is progressively reduced 8 

based on performance success7 would seem justified. Finally, an interesting question from the 9 

current study is whether alternating between periods of stroboscopic vision and normal vision 10 

during practice might have additional benefit. For instance, practice in stroboscopic vision 11 

might enable participants to offset the monotony of practicing in normal vision alone, thereby 12 

facilitating improved processing of relevant information and better learning.   13 
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Figure 1. Temporal course of the stimuli presentation in the PVT. 
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Figure 2. Group mean constant error as a function of time-on-task (Block 1-4) for the normal 

vision and stroboscopic vision conditions. Vertical bars represent standard errors of the mean. 

  



 

Figure 3. Group mean variable error as a function of time-on-task (Block 1-4) for the normal 

vision and stroboscopic vision conditions. Vertical bars represent standard errors of the mean.  


