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Abstract 

Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful 

signalling agonists and receptors for selected ligands in several different settings. They also act as 

immunostimulatory "danger signals" for the innate and adaptive immune systems. Other studies have shown 

that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease 

processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory 

properties, depending on the context in which they encounter responding immune cells.  

 

The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy 

individuals / non-diseased settings, the association of extracellular stress protein levels with a plethora of 

clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells 

now supports the concept that extracellular cell stress proteins are involved in maintaining / regulating 

organismal homeostasis and in disease processes and phenotype. Cell stress proteins therefore form a 

biologically complex extracellular cell stress protein network having diverse biological, homeostatic and 

immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel 

approaches to predict, identify, diagnose, manage and treat disease. 
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1. Background 

 

‘Chance favours the prepared mind’ - Louis Pasteur (1822 – 1895) 

 

The presence of additional new ‘puffs’ in the polytene chromosomes of cultured Drosophila larva which were 

induced following their incubation at an inadvertently high temperature and observed by Ferruccio Ritossa 

(25th February 1936 – 9th January 2014) in the early 1960s was unexpected and puzzling. He realised the 

potential importance of this first evidence that stress can influence gene transcription and induce the synthesis 

of new proteins, yet found it surprisingly difficult to publish this discovery. It was eventually published in 

Experientia (1, 2).  

 

Ritossa’s findings were extended and expanded upon during the next decade and by the mid-to-late 1960s it 

was clear that exposure of cells containing polytene chromosomes to a variety of environmental stressors 

resulted in the transcription of novel genes and, presumably, in the synthesis of specific proteins. However, it 

was not until the 1970s when Tissières at the University of Geneva and other investigators in this area (3, 4) 

applied the newly-developed technique of sodium-dodecyl sulphate (SDS)-PAGE to reveal the appearance of 

new protein bands having distinct molecular masses in salivary glands after the application of heat shock. It 

was also noted that cellular levels of some proteins that were present before the application of elevated 

temperature either decreased or disappeared after treatment. Here was the first evidence for the existence of 

heat shock or cell stress proteins, and it was now that these terms were coined. However, it is now clear that 

a range of different stressors, other than heat, such as viral infection, cytokines, oxidative stress, ionising and 

UV irradiation, glucose deprivation or exposure to toxins and certain metals, also induce the expression of 

such proteins. A more descriptively-correct term for these proteins is therefore ‘cell stress’ proteins (5).  

 

The fact that research on the heat shock response was predominantly undertaken in Drosophila during the 

1960s and 1970s led to the expectation that this response was specific to insects or even to Drosophila itself.  

However, observations that the heat shock response was present in chicken fibroblasts (6), Escherichia coli 

(7), yeast (8) and plants (9) indicated that the heat shock/cell stress response is a universal phenomenon. The 

cloning of the Drosophila genes encoding heat shock proteins and the sequencing of many of the relevant 

genes by the late 1970s/early 1980s revealed the evolutionary relationships between the response and the 

proteins involved (e.g. (10)). 

 

The relationships between stress-induced gene transcription and the roles of cell stress proteins in protein 

folding and the management of the intracellular environment took many years to be understood and 

consolidate (3, 11, 12). Larry Hightower, a pioneer in studying the physiological role of cell stress proteins, first 

suggested that, as many of the stressors were protein chaotropes (agents able to denature proteins), then the 

most obvious function of this stress response was to manage and deal with improperly folded proteins within 

the cell (13). This hypothesis was tested using a simple experimental protocol which determined the influence 

of direct microinjection of native or denatured proteins into frog oocytes on the induction of the stress response. 

Only denatured proteins induced the response, thereby establishing the link between protein unfolding within 
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the cell and the induction of the cell stress response (11).  

 

By the late 1980s it had been recognised that cellular proteins require help with their folding in some instances, 

and that this was facilitated via the actions of families of proteins termed ‘molecular chaperones’ (12), the 

accepted definition of which is ‘a large and diverse group of proteins that share the property of assisting the 

non-covalent assembly/disassembly of other macromolecular structures, but which are not permanent 

components of these structures when these are performing their normal biological functions’ (14). Molecular 

chaperones fulfil essential cellular ‘housekeeping’ and cytoprotective functions, and thereby ensure correct 

functionality. They also enable cells to cope with the plethora of insults and stresses that exist in the complex 

and dynamic intracellular environment (Table 1). 

 

Since these early studies, a growing number of proteins that are involved in protein folding and in the cell 

stress response have been identified in all three of life’s Kingdoms. Several families of the molecular 

chaperones include large numbers of proteins. For example, the Hsp40 family contains 50 members. The fact 

that the number of human molecular chaperones and protein-folding catalysts is probably in the region of 150 

proteins underlies the enormous complexity of the cell stress response. The cell stress protein families can be 

subdivided into molecular chaperones, which aid protein folding without changing the client protein in any way, 

protein-folding catalysts such as protein disulphide isomerases (PDIs), which catalyse SH-:-S-S- 

interconversions, and peptidyl prolyl isomerases which catalyse cis:trans isomerisation of prolines and thus 

induce chemical changes in their client proteins (15). The protein-folding catalysts can also be involved in 

redox interactions and this phenomenon of oxidation and reduction both within and outside the cell is now 

recognised as being a major modulator of biological behaviour (e.g. (16)). To confuse matters further, 

molecular chaperones and protein-folding catalysts can either be proteins whose genes are induced by stress, 

or be constitutively-expressed proteins whose genes fail to be modulated by stress - only the former are 

classed as cell stress proteins. 

 

Discontinuous PAGE gels enable accurate molecular masses to be identified and informed the nomenclature 

for the heat shock (cell stress) proteins (e.g. Hsp60, Hsp70, etc). However, despite the publication of 

nomenclature guidelines (17), the literature remains unclear, especially in the case of the 70 kDa family of 

molecules. The human HSP70 (gene) family consists of at least eight members, only 3 of which show stress-

inducible expression (18). Of the 13 protein members of the family, two closely linked genes, referred to as 

Hsp70-1, are the major stress-induced members (18). Although some evidence implicates Hsp70-2 in human 

cancer, the cytosolic, stress-induced Hsp70-1 is the predominant form which is overexpressed in cancer (18). 

It is therefore likely that it is this form of the molecule which is being measured in the studies that have been 

reported to date. However, it is important that the identity of the analyte being reported upon is  verified using 

information on the specificity of the antibodies that are being used in the assays.    

 

As indicated above, it is now apparent that proteins can have multiple functions, the manifestations of which 

are dictated by the context in which they are generated and encountered. For instance, can proteins such as 

stress proteins exhibit distinct profiles of physiological activities when in the intracellular and extracellular 
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environments? If so, and this indeed appears to be the case, then this would argue against the concept of ‘one 

protein, one function’. Although the concept of ‘one protein, one function’ is not universally accepted, Campbell 

and Scanes first proposed the term “protein moonlighting” to describe the capacity of certain proteins to exhibit 

more than one biological function, specifically the apparent immunological functions of “endocrine peptides” 

(19). A number of prokaryote and eukaryote proteins have been shown to exhibit ‘moonlighting functions’, and 

this concept has been expanded upon by a number of proponents (20-23). The concept of protein moonlighting 

is discussed in detail by Constance Jeffery elsewhere in this Issue. 

 

However, it should be noted that many biologically important molecules - if not all of them - express more than 

one function, and the implication that a protein has only one bone fide function and that the other functions are 

secondary, if not superfluous might not necessarily be the case. Another counterview to moonlighting functions 

of heat shock (stress) proteins in the immunological context (see below) is that these proteins might not have 

evolved a second function at all. Rather, it was the immune system that evolved to recognise and respond to 

these proteins on the basis of changed accessibility, rather than changes in physiological function. 

 

 

2. Cell stress proteins are released into the extracellular environment 

The concept that stress proteins can be released from cells in the absence of necrosis was highlighted by 

Hightower and Guidon in 1989. In this study, heat treatment was shown to increase the profile of proteins that 

were released from cultured rat embryo cells, from a small profile which included the constitutively-expressed 

member of the 70 kDa family of molecules, Hsc70, to also include its inducible counterpart, Hsp70, and Hsp110 

(24). Although protein release occurred in the absence of any overt level of cellular necrosis (and was therefore 

likely to be an ‘active’ physiological process), it was not mediated via the common secretory pathway, as 

inhibitors of this pathway (colchicine, monensin) did not block it (24). These findings aligned with the slightly 

earlier study from Tytell and colleagues in 1986 who reported the transfer of glia-axon transfer proteins 

(including Hsp70, Hsc70 and Hsp100) from adjacent glial cells into the squid giant axon (25). This response 

was proposed to reflect a mechanism which enabled glial cells to protect adjacent neuronal cells which exhibit 

a deficient ability to generate a protective response to stress. 

 

These initial findings, and the subsequent studies reporting the presence of Hsp60 and Hsp70 in the peripheral 

circulation of healthy individuals by Pockley and colleagues in the late 1990s (26, 27) were received with 

scepticism by the biological and biochemical communities, as it was unclear how these proteins could be 

released from viable cells given that they do not express the typical N-terminal signal peptide sequences that 

enable secretion. However, this argument is not a strong one, as ‘non-classical’ secretion of proteins lacking 

such sequences has been observed for several proteins, including Fibroblast Growth Factors 1 and 2 (FGF-

1,2), Interleukin- 1 (IL-1), and High Mobility Group Box 1 (HMGB-1). The mechanisms underlying non-classical 

secretion pathways have been reviewed elsewhere (28). Cell stress proteins have now been reported to be 

released from a wide range of cells including insulin-secreting  cells, rat cortical astrocytes, a human 

neuroblastoma cell line, a human keratinocyte-derived cell line, cultured vascular smooth muscle cells, and a 
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broad profile of tumour cells including murine and human prostate cancer cells and B cells (reviewed in (29)), 

and to exist in the circulation in a number of healthy and diseased states (see below).  

 

Extracellular Hsp70 exists either as a free protein, as a protein in association with lipid vesicles such as 

exosomes (30, 31) and lysosomal endosomes (32) or in the context of cholesterol-rich microdomains (33). 

Vesicular transport (34) and ubiquitination-triggered transport (35) have also been proposed. Recent studies 

have demonstrated that the minority of extracellular Hsp70 is ‘free’ Hsp70, and this is mostly derived from 

dying cells (36). 

 

Exosomes are small membrane vesicles that form within late endocytic compartments called multi-vesicular 

bodies (MVBs). They are distinct to apoptotic vesicles, in that they differ in their mode of production and protein 

composition (37). The fusion of MVBs with the plasma membrane leads to the release of exosomes into the 

extracellular space. Various haematopoietic and non-haematopoietic cell types secrete exosomes, including 

reticulocytes, B and T lymphocytes, mast cells, platelets, macrophages, alveolar lung cells, tumour cells, 

intestinal epithelial cells, and professional antigen presenting cells (APCs) such as dendritic cells (DCs), with 

the function of exosomes in different physiological processes depending on their origin (38). DC- and tumour-

derived exosomes are enriched in Hsp70, Hsc70 and Hsp90 (39, 40) and exosomes released from 

reticulocytes also contain Hsp70 (41). Exosomal release of stress proteins and the role of exosomal-associated 

heat shock proteins in cancer have been reviewed in the literature (42, 43) and by Gabriele Multhoff elsewhere 

in this issue. 

 

 

3. Cell stress proteins as immunomodulatory mediators 

Although probably not fully appreciated at the time, the concept that stress proteins can exist in the peripheral 

circulation had been established in 1977 in a study which reported the presence of a protein (‘early pregnancy 

factor’) in the serum of women in the first trimester of pregnancy (44). This protein was demonstrated to have 

immunosuppressive properties 2 years later (45) and was identified as being heat shock protein 10 (Hsp10) in 

1994 (46). It has also been shown that Hsp10, a 10-kDa monomer which caps the Hsp60 oligomer and 

facilitates protein folding (47) is also present at low levels in non-pregnant individuals (48). Hsp10 inhibits the 

secretion of several inflammatory mediators (49) and its immunosuppressive properties can attenuate a variety 

of human inflammatory diseases (50-53). The finding that circulating levels of Hsp10 in patients with 

periodontal disease are lower than those in matched, disease-free, controls and that levels only return to 

normal after effective therapy suggest the control of circulating Hsp10 levels by localised inflammation (48). 

Hsp10 therefore appears to be a homeostatic controller of inflammation, in addition to being an integral 

component of the intracellular molecular chaperone machinery. 

 

With regards to Hsp60 and Hsp70, the discovery of these proteins in the peripheral circulation of overtly normal 

individuals led to a certain degree of confusion, as these proteins were considered as being pro-inflammatory 

molecules when present in the extracellular environment. Indeed, one of the major issues for investigators 

studying the immunobiology of extracellular stress proteins is the apparently contradictory evidence which 
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indicates both pro- and anti-inflammatory roles for these proteins. The problem is that the immunological 

properties of these proteins continue to be discussed in isolation and it is essential that a more systems biology 

approach to extracellular heat shock proteins is adopted in order to better reflect their physiological context 

and roles. Although many studies indicate pro-inflammatory properties for Hsp60 and Hsp70 in their 

interactions with monocytes, macrophages and DCs (54-58), it has been speculated that at least some of these 

inflammatory effects result from the presence of contaminating endotoxin in the recombinant protein 

preparations, especially those that have been generated using bacterial expression systems (59-62). However, 

much evidence argues against this being the universal explanation for these effects, as has been reviewed 

elsewhere (23, 63). It is therefore essential to ensure that reagents and experimental design(s) are beyond 

question when it comes to undertaking experiments in this area. The influence of heat shock proteins on 

immune responses in a number of contexts has been reviewed elsewhere (64-66) and in this Issue. 

 

In contrast to their reported pro-inflammatory properties, a body of literature indicates that Hsp60 and Hsp70 

can have profound anti-inflammatory effects. Relatively historic data have reported that the induction of T cell 

reactivity to self Hsp60 and self Hsp70 promotes the development of Th2 type CD4+ T cells producing the 

regulatory cytokines IL-4 and IL-10 and down-regulates disease in a number of experimental models of 

inflammatory disease (67-71). It has also been shown that DNA vaccines encoding for these proteins inhibit 

experimental arthritis and diabetes (71, 72). The recognition of conserved (self) epitopes on these highly-

conserved molecules dominantly down-regulates the inflammatory capacity of the non-conserved (non-self) 

epitopes (73). Human Hsp60 can act as a co-stimulator and activator of CD4+CD25+ regulatory T cell 

populations by interacting with Toll-like receptor 2 (TLR2) (74) and the treatment of such cells with Hsp60 

enhances their ability to regulate the CD8+ T cell populations via direct cell-cell contact and the secretion of 

the immunoregulatory cytokines IL-10 and TGF-β (74). The anti-inflammatory potential of Hsp60 and Hsp60-

derived peptides has also been demonstrated in studies that have used these to modulate the rejection of 

murine skin allografts (75, 76) and autoimmune disease - the latter is discussed elsewhere (77-79) and by 

Willem van Eden in this Issue. It therefore appears that the net outcome of any immune response is dependent 

on the relative strengths of these antagonistic events (reviewed in (65). The interactions of Hsp60 with the 

innate and adaptive immune systems and their immunoregulatory consequences have been reviewed and 

considered by Quintana and Cohen (80). 

 

4. Extracellular cell stress proteins in health and disease 

The initial identification of Hsp60 and Hsp70 in the peripheral circulation (26, 27) stimulated interest in this 

area and the development of a range of ‘in house’ and commercial enzyme immunoassays for measuring 

stress proteins in extracellular compartments. Most commercially-available enzyme immunoassays for cell 

stress proteins are optimised for free Hsp70 in buffer, but not for Hsp70 in the serum, plasma or other body 

fluids and so it is essential that investigators are aware of the limitations of the assays which they use. It is 

also a matter of debate as to whether liposomal cell stress proteins can be detected using the standard 

detergents that are typically included in commercial enzyme immunoassay kits. Notwithstanding the above, 

these studies have led to many reports associating circulating levels of cell stress proteins with healthy and 

diseased states (Table 2), including cancer (Table 3). An immediate issue relating to these studies is the need 
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to ensure that the commercial assay kits and the ‘in-house’ assays that have been used have been properly 

validated for the analysis of the relevant analytes in the biological fluid which is under investigation (81). Such 

information is not always apparent, and differences in the levels of heat shock proteins in the circulation which 

are measured by commercial and ‘in-house’ enzyme immunoassays have been reported (82). Serum and 

plasma are complex and ‘matrix’-related effects can influence measurements in biological samples. 

Furthermore, a clinical method comparison study has revealed that commercially-available HSP27 assays are 

not equally useful for differentiating patients with non small cell lung carcinoma (NSCLC) patients from healthy 

controls (83).  

 

Reports on relationships between circulating stress protein levels and the clinical and physiological status of 

an individual (Tables 2, 3) are providing insight into the role of these proteins in the maintenance of a healthy 

state and/or the induction, progression and resolution of diseased states. As an example, the positive 

association between plasma Hsp60 levels in patients with cardiovascular disease and those with a history of 

myocardial infarction in diabetes mellitus implicates extracellular Hsp60 in the cardiovascular pathology which 

is associated with diabetes (84). Lower levels of serum Hsp70 in normal human pregnancy could provide 

insight into the maintenance of immune tolerance in pregnancy (85). Although studies have associated levels 

of Hsp70 in infection-related inflammation, the variability of the measured levels cannot distinguish patients 

from healthy subjects in this context (86). However, the variability in levels, as measured using current 

approaches, does not currently allow measurement of these analytes to be used as robust discriminatory 

approach for the identification of disease. 

 

Given that a number of studies have reported relationships between circulating antibodies and their 

corresponding antigens in the peripheral circulation and the presence, severity and progression of disease, 

one should consider the potential involvement of circulating immune complexes in this context. This is a 

commonly overlooked parameter in studies that have investigated such relationships and this might, in some 

instances at least, result from potential problems that are associated with measuring the presence of antibodies 

in a sample which includes its cognate antigen. Our own personal experience is that heat shock proteins and 

heat shock protein antibodies co-exist in the peripheral circulation (26, 27, 87-89). Although the presence of 

circulating anti-cell stress protein antibodies in the peripheral circulation might impact the measurements that 

are made, we have not found this to be the case, in that there are we have not observed any direct correlation 

between measured levels of circulating heat shock proteins and anti-heat shock protein antibody levels, at 

least using the assays that were available at the time (26, 27, 87-90). Notwithstanding this, the presence / 

differential presence of immune complexes has the potential to influence the inflammatory status of an 

individual, in that the interaction of APCs with soluble immune complexes has been shown to reduce their 

production of the Th1-biasing cytokine IL-12, to enhance their production of the regulatory cytokine IL-10 and, 

consequently, to induce a Th2-like (immunoregulatory) adaptive immune T cell response (91). In contrast, a 

more recent study has reported that grp94 in complexes with IgG, which is a soluble diagnostic marker of 

gastrointestinal tumours, exert immune-stimulating activity on peripheral blood immune cells, as demonstrated 

by the triggering of inflammatory cytokine secretion (92). It is clear that more studies aimed at understanding 
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the relationship(s) between circulating cell stress proteins in their free and lipid-associated forms and their 

corresponding antibodies is required.  

 

5. Extracellular cell stress proteins in cancer 

The presence of circulating cell stress proteins in cancer, and relationships with tumour volume and therapeutic 

response (93, 94) have been reported upon in a number of studies (Table 3). Importantly, Multhoff and 

colleagues have demonstrated that serum Hsp70 levels in patients with liver cancer are significantly higher 

than those that are measured in a control group of individuals without liver disease, and (importantly) are also 

higher than individuals with chronic hepatitis (95). The same study showed that serum Hsp70 levels in a 

subgroup of patients with liver cirrhosis who subsequently developed liver cancer were higher than those in 

individuals with liver cirrhosis alone (95). Dutta and colleagues have reported that serum Hsp70 levels are 

significantly elevated in patients with pancreatic cancer, compared to both healthy controls and individuals with 

chronic pancreatitis (96). These findings demonstrate the capacity of serum Hsp70 levels to distinguish 

between inflammatory events / disease and cancer, and suggest that circulating Hsp70 might indeed be of 

value as a biomarker in cancer.  

 

Hsp90 inhibitors are being evaluated for the treatment of cancers such as myeloma, breast, prostate and lung 

cancer, melanoma, gastrointestinal stromal tumours and acute myeloid leukaemia. Although the activity of 

Hsp90 inhibitors is currently assessed based on Hsp70 induction in peripheral blood mononuclear cells using 

Western blot analysis, this approach is laborious, only semi-quantitative and difficult to implement in the clinic 

(97). Serum Hsp70 measurements are now being used to monitor responses to Hsp90 inhibitors in the clinical 

setting, especially when access to tumour tissue is not possible (97).  

   

6. Therapeutic potential and biological role of extracellular cell stress proteins 

The concept that extracellular cell stress proteins could have therapeutic potential originally arose from studies 

into cross-reactive immunity to human Hsp60 by Irun Cohen’s group in Israel which found that T cells cross-

reactive with Hsp60 induced diabetes in mice. Curiously, the administration of Mycobacterium tuberculosis 

Hsp65 protein could either induce diabetes or prevent it (98). Analysis of the Hsp65 sequence (epitopes) 

recognised by T cells identified peptide 437-460 as a major T cell recognition epitope.  The same sequence 

was identical in mouse Hsp60, apart from K for T at position 455. Crucially, it was found that immunisation of 

non-obese diabetic (NOD) mice with this peptide (termed p277) inhibited the induction of diabetes (99).  Some 

20 years later, the evaluation of this peptide in a Phase III clinical trial showed evidence of clinical benefit 

(100). 

 

The mitochondrion and bacterial cytosol contains Hsp60 and the co-chaperone, Hsp10, which acts as a ‘lid’ to 

the Hsp60 folding chamber. This 10 kDa protein, which normally forms a heptameric structure, was identified 

as a circulating immunosuppressive factor which was required for inhibiting immunity to the implanted embryo 

(termed ‘early pregnancy factor’, EPF), in 1977 (44, 45). The potential role of this factor in the maintenance of 

pregnancy was confirmed by studies demonstrating that pregnant mice treated with anti-EPF antibodies failed 

to maintain their pregnancy (101).  It was not until 1994 that EPF was identified as Hsp10.  A number of years 
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later, Hsp10 was shown to inhibit experimental immunological models such as adjuvant arthritis (in this case 

the protein was M. tuberculosis Hsp10 (102)) and experimental autoimmune encephalomyelitis (103). Short-

term administration of M. tuberculosis Hsp10 has also been shown to inhibit experimental allergic asthma in 

mice (104). 

 

The findings that recombinant Hsp10 inhibited LPS-induced inflammatory changes in macrophages and in 

mice exposed to LPS (49), led the Brisbane-based biopharmaceutical company, CBio Ltd to attempt the 

commercialisation of human Hsp10 as a therapeutic, and several small scale clinical trials of a modified human 

Hsp10 (termed XToll) in a small number of conditions were undertaken. In a randomised, double blind study 

of 23 rheumatoid arthritis patients, the intravenous administration of Hsp10 (5, 7.5 and 10 mg twice a week) 

induced either clinical benefit or disease remission in a significant number of individuals, with only one serious 

adverse event being reported (50). Another small a randomised, double-blind study demonstrated that the 

administration of XToll (Hsp10, 5, 7.5 and 10 mg) to 24 patients with plaque psoriasis over a 12-week dosing 

regimen of 2 doses per week reduced disease parameters (52). Experimental findings that Hsp10 inhibited 

allergic encephalomyelitis prompted a double-blind randomised, placebo controlled, phase II trial to 50 patients 

with multiple sclerosis.  Although the Hsp10 was well tolerated, apart from showing a decreased circulating 

leukocyte cytokine synthetic capacity, the changes in clinical parameters were not significant (53).  Large 

peptides are not natural candidates for drug therapy and it is known that XToll, which is a modified Hsp10, 

induces antibodies in patients (52). The two alternatives for this cell stress protein as a therapeutic are either 

to: (i) couple it with an Fc receptor of with polyethylene glycol; or (ii) generate active peptide fragments. The 

anti-arthritic actions of synthetic M. tuberculosis Hsp10 was found to reside in the N-terminus (105). It is 

therefore possible that smaller fragments of Hsp10 may retain activity and could be the basis for developing 

non-peptidic isosteres of the Hsp10 peptide. 

 

Another stress protein which was originally considered as being an autoantigen which drove the progression 

of autoimmune disease, has subsequently been characterised as being a potent immunomodulatory molecule 

with clinical potential. Glucose-regulated protein 78 (grp78, Binding Immunoglobulin Protein, BiP) (106) is 

essential for the assembly of immunoglobulin molecules (107), and is required for the translocation of nascent 

polypeptides across the endoplasmic reticulum membrane and protecting cells against ER stress (108). It can 

also be expressed on the cell surface and acts as regulator of coagulation (109) and cell proliferation (110, 

111). It has also been shown to be a potent immunoregulator (106). 

 

BiP is present in the circulation of healthy individuals and at lower levels in patients with rheumatoid arthritis 

(106). It is also found in synovial and oviductal fluid (112, 113). In contrast to the stress proteins that have 

been considered above, the secretion of BiP is likely to be via a classic route as it possesses the C-terminus 

ER retention signal (lysine, aspartic acid, glutamic acid, leucine (KDEL) amino acid sequence) which is 

common to proteins that reside in the ER. The multiple activities of BiP and its potential as a therapeutic agent 

for the management of inflammatory disease have been eloquently and comprehensively studied elsewhere 

(114). With respect to therapeutic potential, a Phase I/IIA clinical trial in 24 patients with rheumatoid arthritis 
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who received a 1-hour infusion of BiP (1, 5,or 15 mg) and who were followed up for 12 weeks has reported 

evidence of remission in patients receiving 5 and 15 mg doses (115) 

 

Returning to the 70 kDa family, the constitutive member Hsc70 appears to play a role in, arguably, the most 

important biological process for the survival of species, namely reproduction. Proteomic analysis of porcine 

oviductal fluid has revealed that epithelial cells in the oviductal lumen secrete several molecules in response 

to the presence of spermatozoa, most notable of which are heat shock (stress) proteins (HSPs) (116). Heat 

shock proteins have also been identified in soluble fractions of pig and cow oviductal apical plasma membranes 

(sAPM) and in the human apical epithelium (117-119). These are potentially important findings, as the oviduct 

and oviductal sperm storage play key roles in reproduction by providing a secure reservoir in which 

spermatozoa can attain full fertilising properties. Hsc70 appears to interact with components of the sperm cell 

surface membrane (117, 118) and exposure to Hsc70 prolongs the survival of boar, bull and ram sperm (117, 

120). Studies have now shown that a recombinant form of Hsc70 (HSPA8) rapidly promotes the viability of 

uncapacitated spermatozoa, the ability of spermatozoa to bind to oviductal epithelial cells, enhances the 

performance of in vitro fertilisation procedures, and decreases sperm mitochondrial activity (121). The repair 

of membrane damage is mediated via increase in sperm membrane fluidity. The ability of HSPA8 to influence 

membrane stability and fluidity, alongside its conserved nature among mammalian species, supports the idea 

that this protein protects sperm survival through membrane repair mechanisms (121). Ongoing studies are 

elucidating the mechanisms that are involved in these protective effects and their potential impact on 

reproductive success and potential. 

 

7. Therapeutic potential and biological role of a typically intracellular cell stress protein  

Although this article has focussed on those proteins that are known to be secreted by cells and therefore to be 

present under normal circumstances in biological fluids, several cell stress proteins that are not as well 

established as being in the extracellular environment under normal conditions have also been shown to have 

contrasting effects. A good example of such proteins is glucose-regulated protein 94 (gp96, HSPC4). Gp96 is 

a 94-96 kDa member of the Hsp90 family of molecular chaperones/stress proteins which resides within the 

lumen of the endoplasmic reticulum. In addition to being an intracellular chaperone (122, 123), the 

administration of tumour-derived gp96  has been shown to induce tumour-specific cytolytic T cells and a 

protective tumour-specific immunity, the specificity of which is defined by peptides that are associated with the 

administered gp96 (124-126). In contrast, no protective effect is observed when high doses (2x10 µg 

intradermally) of tumour-derived gp96 are administered to mice (125). Furthermore, appropriate doses of gp96 

purified from normal liver can suppress the onset of diabetes in non-obese diabetic mice and myelin basic 

protein- or proteolipid protein-induced autoimmune encephalomyelitis (EAE) in SJL mice (127), as well as 

prolonging the survival of murine skin allografts (128) and rat cardiac allografts (129). The mechanisms that 

underlie these effects were originally proposed to involve the induction, activation and/or recruitment of as yet 

unidentified immunoregulatory T cell populations (127, 128). In our hands, gp96 could not be shown to be an 

activator of DCs, but did appear to activate CD3+ T cells in vitro (130), and lead to a state of peripheral T cell 

hyporesponsiveness following in vivo administration to rats bearing cardiac transplants (129). More recent 

work provides a better insight into the mechanisms via which gp96 elicits dichotomous immune responses by 
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providing evidence that low and high doses of gp96 preferentially engage conventional and plasmacytoid 

dendritic cells (pDCs) respectively via CD91. Global DNMT-dependent epigenetic modifications modify protein 

expression within these antigen-presenting cells leading to an upregulation of neuropilin1 by pDCs which 

enables long-term interactions with Treg cells, thereby enhancing suppression of Th1 anti-tumour immunity 

(131). 

 

The administration of autologous tumour-derived peptides bound to gp96 (HSPPC-96) induces individual 

tumour-specific immunity in patients with high-grade glioma (132) and has been shown to be safe for the 

treatment of patients with recurrent glioblastoma multiforme (GBM) in an open-label, single-arm, phase II study 

of 41 adult patients with surgically resectable recurrent GBM who were treated after gross total resection (133). 

In the case of patients with newly-diagnosed GBM, the addition of HSPPC-96 (Prophage™) to standard 

radiotherapy and temozolomide chemotherapy in a Phase II, single arm multi-centre trial involving 46 patients 

has been shown to have the potential to improve survival (134). That the expression of PD-L1 on circulating 

myeloid cells impacts on systemic immunity suggests that the inhibition of such immunological ‘checkpoint’ 

pathways could further enhance the efficacy of this approach (134).  

 

8. Membrane Hsp70 – a ‘third’ form of the 70 kDa cell stress protein with diagnostic, 

therapeutic and imaging potential 

Gabriele Multhoff discovered the selective expression of a membrane form of Hsp70, the major stress-

inducible member of the 70 kDa heat shock (stress) protein family, on the plasma membrane of tumour cells 

(but not normal tissue) using a unique monoclonal antibody (mAb, cmHsp70.1) (135-137). The expression of 

membrane Hsp70 has now been detected on a broad panel of cancer cell lines, and the density of membrane 

Hsp70 expression on cancer cells is increased by treatments such as radio(chemo)therapy (138). An ongoing 

screening program of over 1,300 patients with various solid tumours in the Multhoff laboratory is revealing that 

more than 50% of all patients bear a membrane Hsp70-positive tumour. Membrane Hsp70 is also highly 

expressed on metastatic disease (139), and its expression is associated with an unfavourable prognosis and 

a reduced overall survival in patients with rectal carcinoma and squamous cell carcinoma (140). Membrane 

Hsp70 expression is therefore a universal, selective tumour-specific marker of ‘aggressive’ disease.  

 

Tumour cells that express Hsp70 on their plasma membrane secrete exosomes that express Hsp70 on the 

surface of their plasma membranes (30). Given that the protein composition in the exosomal lumen reflects 

that of the cytosol of the respective cell, it would be expected that exosomes derived from normal cells contain 

low levels of Hsp70, whereas exosomes from tumour cells having a high cytosolic Hsp70 contain high levels 

of Hsp70 in their lumen and also present it on their lipid surface (141). This concept has been confirmed, at 

least in part, by studies that have reported serum Hsp70 levels to be associated with a high membrane Hsp70 

expression on tumours in patients with squamous cell carcinoma of the head and neck (94). 

 

Aligned with these studies has been the development of an enzyme immunoassay which detects liposomal 

Hsp70 (lipHsp70) in serum and plasma (36). This assay was conceived and developed based on the evidence 

that Hsp70 membrane-positive tumour cells actively release Hsp70 in exosome-like lipid vesicles and that 
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most commercial Hsp70 Enzyme-Linked Immunosorbent Assays (ELISAs) are not validated for the detection 

of liposomal Hsp70 in serum. The assay exhibits a high level of precision, and a greater recovery of ‘spiked’ 

Hsp70 than its commercially-available counterparts. The lipHsp70 ELISA is equally suitable for serum and 

plasma and the measured Hsp70 concentrations are not influenced by food intake, repeated freezing and 

thawing of the sample or moderate haemolysis. A comparison of the Hsp70 levels in patients with head and 

neck, lung, colorectal, pancreatic cancer, glioblastoma multiforme or haematological malignancies and healthy 

human volunteers has revealed significantly higher levels in patients bearing tumours, and especially in those 

bearing aggressive tumours (e.g. glioblastoma multiforme). The lipHsp70 ELISA therefore provides a highly 

sensitive and robust method for measuring liposomal and free Hsp70 in the circulation and could provide a 

clinically-approach for detecting tumours and monitoring thjerapeutic responses and clinical outcome. 

 

From a functional perspective, Hsp70 positive tumour-derived exosomes stimulate migratory and cytolytic 

activity of natural killer (NK) cells (30, 142) and activate macrophages (143). In a different context, tumour-

derived exosomes expressing surface Hsp72 can restrain tumour immune surveillance by promoting the 

suppressive functions of myeloid-derived suppressor cells (MDSCs) and plasma-derived exosomes 

expressing Hsp70 have powerful cardioprotective effects in models of cardiac ischaemia-reperfusion injury via 

a mechanism involving a membrane Hsp70/Toll like receptor 4 (TLR4) communication axis (144). 

 

The significant diagnostic, therapeutic and imaging potential of membrane Hsp70-based ‘theranostics’1 is 

considered by Gabriele Multhoff elsewhere in this Issue. 

 

9. Conclusions 

Levels of heat shock (cell stress) proteins in biological fluids have been associated with a plethora of clinical 

conditions. These proteins could therefore act as indicators, drivers and/or moderators of disease processes 

and have potential utility as biomarkers of disease. Many, if not all, of the stress proteins that are released 

from cells under normal physiological conditions possess a range of biological functions, the nature of which 

depends on the context in which they are encountered. These proteins and networks have the potential to 

deliver a wealth of valuable, clinically-relevant diagnostic and therapeutic approaches. The current challenge 

is to more fully understand these networks and establish their clinical potential. 
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‘That which drugs fail to cure, the scalpel can cure. That which the scalpel fails to cure, 

heat can cure. If the heat cannot cure, it must be determined to be incurable’ - Hippocrates 

 

                                                           
1 Theranostics: combining diagnostic and therapeutic capabilities into a single agent – a key element of Precision Medicine 
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Table 1. Mammalian cell stress response proteins, and their intracellular localisation and function. 

 

Major family, and members 

 

 

Intracellular localisation 

 

Intracellular function 

 

Small Hsps 

B-crystallin 

Hsp27 

Heme oxygenase, Hsp32 

 

Cytoplasm 

Cytoplasm / nucleus 

Cytoplasm 

 

Cytoskeletal stabilisation 

Actin dynamics 

Heme catabolism, antioxidant properties 

   

Hsp60 or chaperonins 

Hsp60 

TCP-1   

 

Mitochondria 

Cytoplasm 

 

Bind to partially folded polypeptides and 

assist correct folding 

Assembly of multimeric complexes 

Hsp70 

Hsp70 (inducible) 

Hsc70 (cognate) 

Grp78 / BiP 

mtHsp70 / Grp75 

 

 

Cytoplasm / nucleus 

Cytoplasm / peroxisome 

ER 

Mitochondria 

 

Bind to extended polypeptides 

Prevent aggregation of unfolded peptides 

Dissociate some oligomers 

ATP binding 

ATPase activity 

 

Hsp70 is involved in the regulation of HSF1 activity 

and the repression of heat shock protein gene 

transcription 

Hsp90 

Hsp90 ( and ) 

Grp94 / gp96 / Hsp100 

   

 

Cytoplasm 

ER 

 

 Bind to other proteins 

Regulate protein activity 

Prevent aggregation of re-folded peptide 

Correct assembly and folding of newly synthesised 

protein 

 

Hsp90 appears to be involved in maintaining the 

HSF1 monomeric state in non-stressful conditions.  

Represents 1-2% of total protein.  

Hsp110 

Hsp110 (human) 

Apg-1 (mouse) 

Hsp105 

 

Nucleolus / cytoplasm 

Cytoplasm 

Cytoplasm 

 

Thermal tolerance 

Protein refolding 

 

 

Abbreviations: ER, endoplasmic reticulum; TCP-1, tailless complex polypeptide; Grp, glucose regulated protein; Hsp, 

heat shock protein; BiP, immunoglobulin heavy chain binding protein; mtHsp70, mitochondrial Hsp70; HSF1, heat shock 

factor 1; Apg-1, protein kinase essential for autophagy. Adapted from (64, 145). Further information on the nomenclature 

and individual family members has been published elsewhere (17, 18). 

 

  

Both

: 

All

:: 

All

:: 
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Table 2. Circulating cell stress proteins in disease. 

 

 

 

Condition 

 

Key Findings 

 

 

Reference 

Hsp10 Periodontitis Lower plasma levels in periodontal disease and treatment increases these. Post-

treatment levels correlate with markers of clinical improvement. 

(48) 

Hsp27 Renal Disease Elevated serum and urine levels in chronic kidney disease.  (146) 

 Autoimmunity 

 

Serum levels may be a novel marker for diabetic neuropathy in patients with Type 

1 diabetes. 

(147) 

 Chronic Heart 

Failure 

Soluble Hsp27 is a novel candidate biomarker for diagnosing CHF with preserved 

ejection fraction 

(148) 

Hsp60 Stress Association between elevated levels of Hsp60, low socioeconomic status and social 

isolation in males and females, and with psychological distress in women.  

(149) 

 Cardiovascular 

Disease 

Elevated serum levels in patients with renal and peripheral vascular disease and 

individuals with borderline hypertension. Serum levels in individuals with 

hypertension are similar to normotensive controls. 

(87, 88, 150, 

151) 

  Elevated levels present in coronary eluates after myocardial infarction. (152) 

  Serum levels increase with accumulating features of the metabolic syndrome in 

postmenopausal women. 

(153) 

  Endothelium-dependent vasodilator function is impaired in children with detectable 

levels of serum Hsp60. Circulating Hsp60, or factors that stimulate the expression 

and systemic release of Hsp60, may contribute to the initiation of arterial disease in 

early life. 

(154) 

  Association between higher levels of plasma Hsp60 in subjects with clinically 

manifest cardiovascular disease and those with a history of myocardial infarction in 

diabetes mellitus. 

(84) 

 Infections Plasma Hsp60 levels are elevated in HIV-infected patients. Although levels reduce 

after anti-retroviral therapy, they remain higher than uninfected controls. Hsp60 

levels correlate with viral load, CD4+ T cell counts, and circulating soluble CD14 and 

lipopolysaccharide levels. 

(155) 

 Periodontitis A larger proportion of patients with periodontal disease exhibit intermediate levels 

of plasma Hsp60 than controls. Treatment has no influence on levels. 

(48) 

  Atherogenic dyslipidemia and elevated circulating Hsp60 levels are linked and 

associated to periodontal pathology. 

(156) 

 Autoimmunity Serum Hsp60 levels correlate with time required for remission from flare-ups in 

patients with Juvenile Idiopathic Arthritis. 

(157) 

Hsp70 Surgery / 

Trauma 

Plasma Hsp70 levels markedly increase in patients undergoing liver resection and 

are associated with postoperative infection, hepatic ischaemic time and the degree 

of postoperative organ dysfunction. 

(158) 

  Hsp70 is released into the circulation following coronary artery bypass grafting. (159) 

 Cardiovascular 

Disease 

Elevated serum levels in patients with renal and peripheral vascular disease and 

individuals with borderline hypertension. In contrast, serum levels in hypertension 

are similar to normotensive controls. 

(87, 88, 150) 
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  Low serum levels at baseline predict the development of atherosclerosis in 

individuals with established hypertension. 

(89) 

  Increased serum levels associated with low risk of coronary artery disease. (160) 

  Increased circulating levels may be associated with the progression of atrial 

fibrillation and its recurrence after catheter ablation. 

(161) 

  Serum levels correlate with the severity of atherosclerosis in patients with carotid 

artery disease and chronic lower limb ischemia. Putative role for circulating Hsp70 

in the development of arterial calcification. 

(162) 

 Infections Serum levels positively associated with the degree of inflammation in an elderly 

population living in a remote area in Cameroon, where infection and parasitosis are 

endemic. 

(163) 

  Positive correlations between serum levels and inflammatory markers. (86) 

  Serum Hsp70 levels in patients with chronic hepatitis are higher than controls, but 

lower than in patients with liver cancer. 

(95) 

 Pregnancy Serum levels are lower in normal human pregnancy, but elevated in transient 

hypertension of pregnancy, in pre-eclampsia and in superimposed pre-eclampsia. 

Increased serum levels reflect systemic inflammation, oxidative stress and 

hepatocellular injury in pre-eclampsia. 

(85, 164, 

165) 

 Asthma Induced sputum and plasma Hsp70 levels could serve as a useful marker for 

assessing airway obstruction in patients with asthma. 

(166) 

 Renal Disease Elevated urinary Hsp70 levels in stage 4 and 5 chronic kidney disease. (146) 

 Diabetes Serum levels are increased in type 1 and type 2 diabetes. 

Serum levels are increased and correlate with HbA1c values in women with 

gestational diabetes mellitus. 

(167-172) 

 Autoimmunity Plasma Hsp70 levels are high in patients with Type I diabetes. (173, 174) 

BiP Periodontitis Lower circulating levels of BiP (grp78) in periodontal disease as compared to 

controls. Treatment has no influence on levels. 

(48) 

grp94 Autoimmunity Plasma grp94 (gp96) levels are high in patients with Type I diabetes. (173, 174) 
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Table 3. Extracellular cell stress proteins in cancer. 

 

 

 

Tumour 

 

Key Findings 

 

 

Reference 

Hsp27 Ovarian Serum Hsp27 levels are increased in epithelial ovarian cancer and correlate with 

peritoneal metastases. Serum Hsp27 levels may be used as a potential 

additional indicator for peritoneal metastases and the response of patients to 

treatment. 

(175) 

 Breast Significant differences in the profiles of Annexin V+, CD66+, BCRP1+ and Hsp27+ 

microparticles are present in breast cancer patients with lymph node 

metastases, as assessed using flow cytometry. 

(176) 

 Lung Serum levels of Hsp27 are significantly elevated in patients with non-small cell 

lung cancer diagnosed at an early or at an advanced stage and can distinguish 

between early and advanced stage disease. 

(177) 

Hsp70 Leukaemia Levels of plasma Hsp70 reflect overall tumour load and patients with higher 

levels of plasma Hsp70 have significantly shorter survival in acute myeloid 

leukaemia and acute lymphoblastic leukaemia. Circulating Hsp70 might 

therefore be a biomarker for poor prognosis? 

(178) 

  Plasma Hsp70 levels above the median in chronic myeloid leukaemia are 

associated with a higher rate of progression to the accelerated/blast phase, and 

a tendency toward shorter survival. Plasma Hsp70 could be a potential marker 

for predicting disease progression in patients with chronic phase in chronic 

myeloid leukaemia. 

(179) 

 Colorectal Serum levels of Hsp70 and mortalin are independent variables, and high serum 

levels of mortalin (mitochondrial Hsp70, grp75, HSPA9) is a risk factor for shorter 

survival patients with colorectal cancer. The concurrence of high serum Hsp70 

and mortalin levels is associated with rapid disease progression. 

(180) 

  Serum Hsp70 levels have potential as a stage-independent prognostic marker 

in colorectal cancer without distant metastasis. 

(181) 

 Head & 

Neck 

Plasma Hsp70 levels are significantly higher in mice bearing membrane Hsp70 

positive FaDu human squamous cell carcinomas of the head and neck, and 

these correlate with tumour volume. Radiation-induced tumour regression is 

associated with significantly decreased Hsp70 levels, and these return to those 

of control animals after complete remission. 

(93) 

  Serum Hsp70 levels are significantly higher and associated with tumour volume 

in patients with squamous cell carcinoma of the head and neck. Following 

surgery and radiotherapy, Hsp70 levels fell without tumour relapse in the follow-

up period. Hsp70 is therefore a potential tumour biomarker for monitoring the 

clinical outcome of radiotherapy. High levels associated with high levels of 

membrane Hsp70 expression on tumour cells. 

(94) 

 Liver Serum Hsp70 levels in patients with liver cancer are significantly higher than a 

control group without liver disease, and individuals with chronic hepatitis. A 

subgroup of patients with cirrhosis who subsequently developed liver cancer 

(95) 
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exhibited higher serum Hsp70 levels than those patients with cirrhosis that did 

not progress to cancer.  

 Pancreatic Plasma Hsp70 levels are significantly higher in mice bearing membrane Hsp70 

positive spontaneous pancreatic ductal adenocarcinomas, and levels correlated 

with tumour volume. Radiation-induced tumour regression was associated with 

significantly decreased Hsp70 levels, and levels returned to those of controls 

after complete remission. 

(93) 

  Serum Hsp70 levels are significantly increased in patients and may be useful as 

an additional biomarker for the detection of pancreatic cancer 

(96) 

 Lung Serum levels of Hsp70 are significantly elevated in patients with non-small cell 

lung cancer diagnosed at an early or at an advanced stage when compared with 

healthy control groups. 

(177) 

LipHsp70  Circulating lipHsp70 levels in patients with head and neck, lung, colorectal, 

pancreatic cancer, haematological malignancies and especially glioblastoma 

are significantly higher than those in healthy human volunteers. 

(36) 

Membrane 

Hsp70 

 Membrane Hsp70 expression correlates with an improved overall survival in 

patients with colon and gastric carcinomas, whereas it is negatively associated 

with survival in patients with lower rectal and squamous cell carcinoma. 

(140) 

Hsp90  The baseline serum HSP90 levels of melanoma patients are significantly higher 

than those of the control subjects, but are not associated with clinical variables 

or survival. 

 

Abbreviations: LipHsp70, liposomal Hsp70  
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