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Abstract

Thermal limits of overhead transmission lines create network constraints that can

result in curtailment of renewable energy generation. Thermal limits are conven-

tionally static and based on worst-case, non-cooling ambient weather conditions,

leading to under-utilization of overhead lines. Utilization can be increased and

network constraints reduced by rating overhead lines dynamically, based on actual

conductor temperature. Installation and maintenance of temperature and weather

sensors along an overhead line is expensive and laborious. A more cost-effective

solution is to derive average conductor temperature from overhead line impedance

parameters, which can be calculated from measurements of electrical signals at

each line end. Synchronized phasor measurement technology is becoming increas-

ingly available in substations to capture voltage and current signals with high

accuracy and reporting rates. It is known that the substation instrumentation

channel can introduce significant systematic errors to the phasor measurements,

which in turn cause inaccurate line impedance parameter and temperature values.

This thesis presents novel methods for accurate, real-time monitoring of over-

head line impedance parameters using synchronized phasor measurements that

have systematic errors. In contrast to previous research, the time-variance and

temperature dependence of line resistance as well as compensation of systematic

errors is taken into account in the system model to increase parameter estima-

tion accuracy. In addition, an algorithm for the selection of the best parameter

estimates from different measurement sets is given.

The effectiveness of the novel methods is demonstrated in several case studies

on measurement data from simulations and an actual overhead line. The results

show that the identified correction factors compensate systematic measurement

errors, leading to a reduction in impedance parameter estimation errors of at least

one order of magnitude compared to existing methods. Furthermore, the accuracy

of real-time estimation of average conductor temperature was increased by at least

one order of magnitude relative to previously proposed methods.
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Chapter 1

Introduction

This chapter provides an introduction to this thesis. First of all, Section 1.1

discusses background and motivation; a problem statement is given in Section 1.2;

the contributions made in this thesis are outlined in Section 1.3, followed by a list

of publications in Section 1.4 and details of the thesis structure in Section 1.5.

1.1 Background and motivation

Individuals and organizations across the world rely on availability of electricity to

carry out essential daily activities. Global electricity generation is set to increase by

69 % by 2040 while commitments to reduce greenhouse gas emissions are predicted

to lead to 3 % average annual growth in electricity generation from renewable

resources, as illustrated in Figure 1.1 [1]. These developments are transforming

transmission and distribution of electric power.

System operators have to manage generation that is less controllable and more

decentralized, but must still provide security and economy of supply. To meet

these deliverables, system operators rely on effective monitoring, protection and

control of the power system. Accurate knowledge of the system state is crucial

for recognising, preventing and isolating catastrophic failures that can compromise

safety and lead to financial losses.

Over the past three decades a new generation of power system measurement

technology has evolved, which is revolutionizing system operation. Through syn-

chronized phasor measurement technology it has become possible to simultane-

ously measure magnitude, phase angle and frequency of voltage and current sig-

nals across a power system spanning hundreds of kilometres [2]. Worldwide, Wide

Area Monitoring, Protection And Control (WAMPAC) systems are being devel-

oped and deployed on the basis of synchrophasor measurement capabilities [3–5].
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Figure 1.1: World net electricity generation by energy source, 2010-40 [1]

A WAMPAC includes communications infrastructure that allows system-wide syn-

chrophasor measurement data to be collected at a central point, where the data

is fed into numerous applications that ensure system reliability through increased

situational awareness. Key application areas are real-time system visualization,

prevention as well as post-event analysis of faults, validation of system models,

advanced state estimation, real-time congestion management, real-time angular,

voltage, and frequency stability, improved damping of inter-area oscillations, de-

sign of adaptive protection and control systems [6].

Validation of system model parameters is a synchrophasor measurement ap-

plication that stands out since power system models underpin fundamental oper-

ational activities including contingency analysis, state estimation, protection and

fault location [7–9]. An important set of network data that feed into the system

model are impedance parameters of overhead lines. Measurement accuracies of

0.1 % or better, synchronization to Coordinated Universal Time (UTC) within 1 µs

and reporting rates of up to 50 per second [10] make synchrophasor measurements

suitable candidates for overhead line impedance determination. High accuracy

measurements are required because the impedance derives from differences that

are often at least one order of magnitude smaller than the absolute quantities.

Moreover, impedance parameters can be linked to the thermal state of overhead

line conductors and thus used to obtain dynamic line ratings, which in turn have

the potential to increase system security and reduce operational costs [11].
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By utilizing synchrophasor measurements to determine overhead line impe-

dance parameters, a more accurate model representation of power systems can

be achieved as well as real-time awareness of asset health. For these reasons,

synchrophasor-based overhead line impedance monitoring is considered to be of

significant value to increased system reliability; hence, in this thesis novel con-

tributions are made to advance the methodology that is required to realize this

powerful application.
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1.2 Problem statement

The central problem of this thesis is the identification of overhead line impedance

parameters from synchronized measurements of voltage and current such that av-

erage conductor temperature can be tracked. An overall framework is needed,

which takes synchrophasor measurements as inputs and returns values of conduc-

tor temperature as outputs. To establish such a framework, the physical processes

and relationships that are relevant to link voltage and current, line impedance

parameters and temperature with sufficient accuracy must be identified; notably,

the synchrophasor measurement process, transmission line theory and conductor-

temperature relationship. It must be resolved which parameters can be drawn

from a priori knowledge and which are unknown. To complete the framework, ef-

fective estimation methods are required to identify values of unknown parameters.

The problem is illustrated in Figure 1.2.

Figure 1.2: Illustration of the problem addressed in this thesis

Existing methods for overhead line impedance parameter identification assume

that series resistance is constant. To track changing parameter values, only volt-

age and current measurements from a short moving time window can be used

for parameter estimation. The lack of variation in system state can cause under-

determination and ill-conditioning of the parameter estimation problem, which

leads to numerical inaccuracy of estimated values; this problem intensifies if other

parameters must be determined in addition to overhead line impedance, such as

measurement calibration factors. These aspects will be outlined in detail in Chap-

ter 2, which reviews previous research on this problem.
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1.3 Contributions

In light of the problem statement given in Section 1.2, this thesis makes the fol-

lowing contributions:

Comparative assessment of existing methods for synchrophasor-based

impedance parameter identification. It is shown that there is at least one

actual overhead line system, for which different types of existing methods cannot

track impedance parameters with an accuracy suitable for temperature monitoring.

Various strengths and weaknesses of the methods in terms of robustness to real-

world, non-ideal conditions are revealed; in particular, systematic errors in the

phasor measurements as well as poor conditioning of the parameter estimation

problems are identified as practical obstacles.

Novel methods for accurate monitoring of overhead line impedance

parameters and average conductor temperature. New methods are pre-

sented, which treat series resistance as a time-variant parameter. It is recognized

that more system information in addition to synchrophasor measurements of volt-

age and current is needed to identify all relevant parameters. The first novel de-

velopment is to incorporate knowledge of variation of impedance parameters over

time to identify correction factors for systematic measurement errors. A further

innovation is the utilization of conductor temperature measurements such that

correction factors and resistance-temperature parameters can be estimated for the

system using synchrophasor measurements from an unlimited time span; in ad-

dition, an algorithm for selecting the best parameter values from different time

spans is given. The key strengths of the novel methodology are increased numeri-

cal accuracy and consistency of estimated parameters through better conditioned

estimation problems as well as increased reliability of estimated temperature val-

ues.
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1.4 Publications

The work that will be presented in this thesis has been disseminated through the

following publications:

� D. Ritzmann, J. Rens, P. S. Wright, W. Holderbaum and B. Potter, “A novel

approach to noninvasive measurement of overhead line impedance parame-

ters,” IEEE Transactions on Instrumentation and Measurement, vol. 66, no.

6, pp. 1155–1163, Jun. 2017

� D. Ritzmann, P. S. Wright, W. Holderbaum and B. Potter, “A method for

accurate transmission line impedance parameter estimation,” IEEE Trans-

actions on Instrumentation and Measurement, vol. 65, no. 10, pp. 2204–

2213, Oct. 2016

� D. Ritzmann, W. Holderbaum, B. Potter and P. Wright, “Improving the

accuracy of synchrophasor-based overhead line impedance measurement,”

in 2015 IEEE International Workshop on Applied Measurements for Power

Systems (AMPS), IEEE, Sep. 2015, pp. 132–137

� D. Ritzmann, P. S. Wright, W. Holderbaum and B. Potter, “Application and

analysis of synchrophasor-based online impedance measurement methods,”

in 23rd International Conference on Electricity Distribution (CIRED), Lyon,

2015
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1.5 Thesis structure

This section gives an overview of the structure of this thesis.

Chapter 2 is a literature review that provides a theoretical foundation and

justification for the research in this thesis. The fields of transmission line theory,

synchrophasor measurement and estimation theory are first considered on an in-

dividual basis. Subsequently, previous research that has combined concepts from

these three fields to produce methods for synchrophasor-based overhead line impe-

dance parameter identification will be examined carefully. The need for further

research is outlined at the end of the chapter.

Chapter 3 presents two comparative studies. In the first study, the results

of implementation of different types of existing methods for impedance parameter

identification from synchrophasor measurements on an actual overhead line are

presented. The effectiveness of the methods is assessed and compared according

to a set of criteria defined in the chapter. Since none of the selected methods

gives results with acceptable accuracy, the second study uses a software simulation

of the overhead line to understand the limits of the selected existing methods.

Impedance parameters are estimated in different scenarios under ideal and non-

ideal measurement conditions. The results reveal systematic measurement errors

as a cause for unacceptable field measurement results.

Chapter 4 proposes a method for real-time monitoring of overhead line impe-

dance parameters from synchrophasor measurements with systematic errors. The

novelty of the method is distinguished by its utilization of information about the

dynamic behaviour of overhead line impedance and admittance; specifically, time-

variance of series resistance and time-invariance of series reactance and shunt pa-

rameters. The effectiveness of the innovative method is demonstrated in two case

studies. The first case study is on measurements from a laboratory-based short

transmission line model; the second case study tests the method on different cases

of systematic measurement errors taken from a software simulation of an overhead

line. While the shift in fundamental assumptions elevates the method with respect

to existing work, its limits are recognised.

Chapter 5 builds on the findings of the previous chapters to introduce ro-

bust methodology for accurate real-time monitoring of overhead line impedance.

A new parameter estimation problem is defined, which seeks to find values of not

only measurement correction factors but also parameters of the linear resistance-

temperature relationship. Two methods are presented for estimation of the un-

knowns from voltage, current and conductor temperature measured over an arbi-

trary time span.
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The first method is an extension of the work from Chapter 4, while the second

method is developed from existing work. In addition, an algorithm for selection of

the best parameter estimates from various measurement sets is given. The novel

methods are first verified in a case study on a laboratory-based emulation of a

transmission line and then in a second case study on field data from the same

overhead line investigated in Chapter 3.

Chapter 6 concludes the thesis by summarizing the contributions to knowl-

edge and outlining areas for future work.
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Chapter 2

Literature review

2.1 Introduction

Knowledge of accurate overhead line impedance parameters is important for vari-

ous power system operational activities, including state estimation, fault location,

line protection and conductor temperature monitoring. Therefore, overhead line

impedance parameter identification has been the subject of a wealth of previous

research. To determine overhead line impedance in real-time, technological and

theoretical concepts behind synchrophasor measurements must be combined with

transmission line theory and modelling as well as system parameter identification.

This chapter provides a foundation that supports the research in this the-

sis and reviews strengths and weaknesses of previous research. Section 2.2 gives

background knowledge on topics that underpin synchrophasor-based overhead line

impedance monitoring including transmission line theory, synchrophasor measure-

ments and estimation theory; Section 2.3 reviews recently proposed impedance

estimation methods and identifies gaps that need to be addressed to advance

synchrophasor-based overhead line impedance monitoring. Section 2.4 concludes

this chapter.
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2.2 Background

The purpose of electric power systems is to generate and deliver electrical energy to

customers for industrial or domestic consumption. Since the places of generation

are often far from the load centres, bulk transfer of electrical power over hundreds

of kilometres is necessary and achieved through transmission along overhead power

lines. To minimize resistive losses, power is transmitted at high voltage levels; for

instance, at 400 kV and 275 kV in the United Kingdom (UK) and at 765 kV, 500 kV

and 345 kV in the United States of America (USA) [16].

Overhead power lines consist of bare metal conductors that are suspended

from supporting towers via insulators. Modern power systems normally have three

phases, and each phase of an overhead line consists of one conductor or several

in a bundle. The arrangement of the conductors depends on the structure of the

supporting towers, examples of which are shown in Figure 2.1; many structures

are designed to support multiple three-phase circuits, the tower in Figure 2.1b

supports a double-circuit line.

(a) 380 kV transmission line tower 7610-
74 in Wittighausen, Baden-Württemberg,
Germany1

(b) 400 kV L6 D transmission line tower
with quad conductor bundles near Aust,
Gloucestershire, England2

Figure 2.1: Examples of transmission line towers
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The actual conducting cables consist of layered strands of aluminium in compo-

sition with other materials. Common conductor types are Aluminium Conductor

Steel Reinforced (ACSR), Aluminium Conductor Alloy Reinforced (ACAR), All

Aluminium Conductor (AAC) and All Aluminium Alloy Conductor (AAAC) [17,

18]. The selection of conductor type and size must be such that various limiting

factors satisfy the requirements for the transmission line, including maximum al-

lowable conductor current, line power and voltage loss, required spans and sags as

well as resilience to environmental conditions [18].

The material properties and physical arrangement of the conductors deter-

mine the electrical properties of the transmission line, which are series resistance

and inductance as well as shunt conductance and capacitance. These electrical

parameters in turn influence the drops in voltage and current across the line. Re-

lationships between line voltage and current and electrical parameters are given

by transmission line theory, which will be discussed next.

1Photo credit: Zonk43 (own work) via Wikimedia Commons, https://commons.wikimedia.
org/wiki/File:Anlage7610 Mast74 22072016 1.JPG, accessed on 11/02/2017, reproduced with-
out modification under the Creative Commons Attribution-Share Alike 3.0 Unported licence,
https://creativecommons.org/licenses/by-sa/3.0/deed.en

2Photo credit: Yummifruitbat (own work) via Wikimedia Commons, https://commons.
wikimedia.org/wiki/File:Pylon ds.jpg, accessed on 11/02/2017, reproduced without modifi-
cation under the Creative Commons Attribution-Share Alike 2.5 Generic licence, https://
creativecommons.org/licenses/by-sa/2.5/deed.en
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2.2.1 Transmission line theory

The theory of transmission lines evolved in the 19th century through significant

contributions from Lord Kelvin and Oliver Heaviside [19, 20], in the wake of the

invention of the telegraph and installation of the first transatlantic communication

cables. Transmission line theory gives mathematical relationships that describe

the propagation of electrical signals along conductors with respect to distance and

time. The speed of propagation, attenuation and phase shift of the signals along

the line depend on the electrical properties of the conductors and surrounding

medium. The following aspects of transmission line theory will be discussed:

� Single-phase telegraph equations

– Time domain solutions

– Frequency domain solutions

� Three-phase telegraph equations

� Other overhead line modelling aspects

– Non-uniformity

– Untransposed overhead lines

– Thermal and mechanical coupling

� Calculation of line parameters from handbook formulae

2.2.1.1 Single-phase telegraph equations

Overhead line conductors are normally assumed to be uniform, i.e. to have con-

stant circular cross-section and to be parallel to each other and the earth at

all points along the line. The surrounding air is assumed to be a homogeneous

medium, which means that the permittivity and permeability are constant through

time and space. Overhead transmission lines are lossy since they have series resis-

tance and shunt conductance. Under these assumptions, the relationship between

voltage and current at any given time and distance along the line is given by the

telegraph equations [20], which can be derived from Maxwell’s equations for trans-

verse electromagnetic fields, or by applying Kirchhoff’s laws to an infinitely small

line section modelled by the circuit in Figure 2.2.
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Figure 2.2: Small transmission line section

Define v(x, t), i(x, t) ∈ R as line voltage and current signals at time t ∈ R≥0 and

distance x ∈ R≥0 along the line; r, l, g, c ∈ R≥0 are the per-unit-length resistance,

inductance, conductance and capacitance, respectively. The telegraph equations

for a single-phase line are

∂v(x, t)

∂x
= −ri(x, t)− l ∂i(x, t)

∂t
(2.1)

∂i(x, t)

∂x
= −gv(x, t)− c∂v(x, t)

∂t
. (2.2)

Equations (2.1) and (2.2) are coupled, first-order differential equations in the time

domain. In the following paragraphs, solutions of these time domain equations are

discussed.

A. Time domain solutions

The advantage of analysing the time domain telegraph equations is that voltage

v(x, t) and current i(x, t) can be arbitrary functions of time and thus describe any

non-steady state transient signal. For a lossless line (r = g = 0), d’Alembert’s

formula can be used to obtain a general solution consisting of forward travelling

waves i+, v+ : R2 → R and backward travelling waves i−, v− : R2 → R [21]:

v(x, t) = v+(x− νt) + v−(x+ νt) (2.3)

i(x, t) = i+(x− νt) + i−(x+ νt), (2.4)

where ν = 1/
√
lc is the velocity of propagation. The method of characteristics,

also known as Bergeron’s method [22], can be used to obtain a full solution using

the terminal conditions at x = 0 and x = xl for a line of length xl ∈ R≥0:

i(0, t) =
v(0, t)

zc
− v(xl, t− τ)

zc
− i(xl, t− τ) (2.5)

i(xl, t) =
v(xl, t)

zc
− v(0, t− τ)

zc
− i(0, t− τ), (2.6)
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where τ = xl/ν is the time it takes to travel along the line at the propagation

velocity and zc =
√
l/c is the line’s characteristic impedance. Equations (2.5)

and (2.6) correspond to the equivalent circuit shown in Figure 2.3, known as the

Bergeron model, whereby the current sources are defined as i0(t−τ) = −v(xl,t−τ)
zc

−
i(xl, t− τ), ixl(t− τ) = −v(0,t−τ)

zc
− i(0, t− τ) [23].

Figure 2.3: Bergeron model equivalent circuit

For lossy lines (r, g 6= 0), there is no general analytical solution to the telegraph

equations [24, 25]. The Bergeron model can be extended to approximate lines with

resistive losses [23]. Define the total line resistance R = rxl; Z = zc + R/4;h =

(zc−R/4)/Z. In Figure 2.3, zc must be replaced with Z to incorporate the resistive

losses. The equations for a lossy line with g = 0 are

i(0, t) =
1 + h

2

(
1 + h

Z
v(xl, t)− hi(xl, t− τ)

)
+

1− h
2

(
1 + h

Z
v(0, t− τ)− hi(0, t− τ)

)
(2.7)

i(xl, t) =
1 + h

2

(
1 + h

Z
v(0, t)− hi(0, t− τ)

)
+

1− h
2

(
1 + h

Z
v(xl, t− τ)− hi(xl, t− τ)

)
. (2.8)

The Bergeron model does not represent frequency-dependent line parameters. As

an alternative, the telegraph equations can be solved in the frequency domain and

transformed back to the time domain to obtain a solution, but the inverse Fourier

transform results in convolution integrals that are not directly integrable [25]. The

convolution integrals must be evaluated numerically, for instance by the Finite

Difference Time Domain method [25, 26]. It is far easier to model frequency-

dependent line parameters in the frequency domain, which will be discussed next.
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B. Frequency domain solutions

The frequency domain telegraph equations and general solution will be given first,

thereafter, transmission line models based on a particular solution are discussed.

In the frequency domain, voltage and current signals are decomposed into dif-

ferent frequency components by a Fourier transform. The time domain signals

can be recovered through inverse transformation. For each frequency, the tele-

graph equations can be analysed individually. Define voltage and current phasors

V (x), I(x) ∈ C as signal components at angular frequency ω ∈ R≥0. The telegraph

equations in V (x), I(x) are

dV (x)

dx
= −rI(x)− jωlI(x) (2.9)

dI(x)

dx
= −gV (x)− jωcV (x). (2.10)

Define line impedance z ∈ C and admittance y ∈ C as z = r + jωl, y = g +

jωc, where r, l, g, c are per-unit-length resistance, inductance, conductance and

capacitance at frequency ω. Then (2.9) and (2.10) become

dV (x)

dx
= −zI(x) (2.11)

dI(x)

dx
= −yV (x). (2.12)

By differentiating with respect to x and substitution, equations (2.11) and (2.12)

become wave equations:

d2V (x)

dx2
= zyV (x) (2.13)

d2I(x)

dx2
= yzI(x). (2.14)

The general solutions are

V (x) = a1 exp(
√
zyx) + a2 exp(−√zyx) (2.15)

I(x) = b1 exp(
√
zyx) + b2 exp(−√zyx), (2.16)

where a1, a2, b1, b2 ∈ C are general constants. Define γ =
√
zy as the propagation

constant. Particular solutions are found using boundary conditions of voltage and

current. In the following paragraphs, different line models are discussed that arise

when boundary conditions V (0) = Vs, V (xl) = Vr, I(0) = Is, I(xl) = Ir are used to

determine constants a1, a2, b1, b2.
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Line model 1: Distributed line

Given boundary conditions V (0) = Vs, V (xl) = Vr, I(0) = Is, I(xl) = Ir for a line

of length xl ∈ R≥0, solutions (2.15) and (2.16) become

Vs = cosh(γxl)Vr + Zc sinh(γxl)Ir (2.17)

Is =
1

Zc
sinh(γxl)Vr + cosh(γxl)Ir, (2.18)

where Zc =
√
z/y is the characteristic impedance. Equations (2.17) and (2.18) are

known as the distributed line model, relating sending and receiving end currents

and voltages to per-unit-length line parameters [27].

Line model 2: Two-port network equivalent

As a general equivalent circuit, a transmission line can be replaced by a two-port

network as shown in Figure 2.4 [28].

Transmission
line

Is Ir

Vs Vr

Figure 2.4: Diagram of a two-port network

The two-port network model consists of two linear equations that relate the ter-

minal voltages and currents. Depending on the choice of independent terminal

quantities, the network parameters are classified into impedance parameters, hy-

brid parameters and chain parameters as well as their corresponding inverses [29].

In the case of a transmission line, the voltage and current at one line end are

considered to be independent, while those at the other end are dependent; hence,

Vs, Is, Vr, Ir are related by the chain parameters A,B,C,D ∈ C:[
Vs

Is

]
=

[
A B

C D

]
=

[
Vr

Ir

]
. (2.19)

By comparing equations (2.17,2.18) with (2.19), it can be observed that the two-

port network becomes equivalent to the distributed line model if A = D =

cosh(γxl), B = Zc sinh(γxl) and C = 1/Zc sinh(γxl). The equivalent two-port

network is symmetric since A = D and reciprocal since AD − BC = 1; therefore

the network can consist only of passive, linear components, without dependent

sources.
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Line model 3: Equivalent and nominal circuits

In principle, the equivalent two-port network can be resolved into any symmetric

circuit consisting of linear elements. However, there are only two equivalent circuits

that consist of the minimum number of three elements; the T-circuit and the

pi-circuit are the simplest equivalent circuit models to represent a transmission

line [30]. Both configurations are shown in Figure 2.5.

(a) Diagram of a pi-circuit (b) Diagram of a T-circuit

Figure 2.5: Transmission line equivalent circuits

The pi-circuit equations are

Vs − Vr = (Is − VrYπ/2)Zπ (2.20)

Is − Ir = 2(Vs + Vr)Yπ, (2.21)

where Zπ = Zc sinh(γxl) is referred to as series impedance and Yπ = 2/Zc tanh(γxl/2)

as shunt admittance of a line of length xl. For lines that are sufficiently short

relative to the signal wavelength, pi-circuit parameters can be approximated as

Zπ = zxl, Yπ = yxl; the circuit is then an approximate representation of the dis-

tributed line model, referred to as the nominal pi-circuit. The T-circuit equations

are

Vs − Vr = (Is + Ir)ZT/2 (2.22)

Is − Ir = (Vs − IsZT/2)YT , (2.23)

where YT = 1/Zc sinh(γxl) and ZT = 2Zc tanh(γxl/2) for an equivalent repre-

sentation of the distributed line model and YT = yxl, ZT = zxl for a nominal

T-circuit.
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2.2.1.2 Three-phase telegraph equations

The models discussed in the preceding paragraphs are for single-phase transmission

lines. For a three-phase line, the voltages and currents are summarized by the

vectors v(x, t), i(x, t) ∈ R3 and the electrical properties by the matrices r, l,g, c ∈
R3×3, such that the time domain telegraph equations become

∂v(x, t)

∂x
= −ri(x, t)− l

∂i(x, t)

∂t
(2.24)

∂i(x, t)

∂x
= −gv(x, t)− c

∂v(x, t)

∂t
. (2.25)

Suppose voltage and current signals v(x, t), i(x, t) are transformed to the frequency

domain by a Discrete Fourier Transform (DFT). Let V(x), I(x) ∈ C3 be vectors

of voltage and current phasors, and z,y ∈ C3×3 per-unit-length impedance and

admittance matrices for angular frequency ω ∈ R≥0. Then the second order fre-

quency domain telegraph equations are

d2V(x)

dx2
= −zyV(x) (2.26)

d2I(x)

dx2
= −yzI(x). (2.27)

The parameter matrices r, l,g, c, z,y are non-diagonal, thus, voltage and current

are coupled between the three phases both in the time and in the frequency domain,

which means there is no general, closed-form solution to the differential equations.

However, decoupling can be achieved through a similarity transformation of the

three-phase voltage and current vectors. The decoupling process is the same for

the time and frequency domain, but for simplicity a brief overview will be given in

the frequency domain only. Define modal voltage and current vectors Vm, Im ∈ C3

and constant transformation matrices Tv,Ti ∈ C3×3, then

V(x) = TvVm(x) (2.28)

I(x) = TiIm(x). (2.29)

Substitution into (2.26) and (2.27) gives

d2Vm(x)

dx2
= −T−1

v zyTvV(x) = −γ2
vV(x) (2.30)

d2Im(x)

dx2
= −T−1

i yzTiI(x) = −γ2
i I(x). (2.31)

In order for (2.30) and (2.31) to decouple, γ2
v and γ2

i must be diagonal matri-

ces, which implies that their diagonal elements are eigenvalues of zy and yz,
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respectively, while the column vectors of Tv and Ti are the corresponding eigen-

vectors [31]. Since z and y are symmetric matrices, zy = [yz]T , which implies that

zy and yz have the same eigenvalues, hence, γ2
v = γ2

i = γ2 [32]. Once Tv,Ti are

chosen such that the modal wave equations decouple, each mode can be treated as

a single-phase system using the solution methods and equivalent models discussed

previously.

In general, knowledge of the impedance and admittance matrices is required to

select decoupling transformation matrices. However, if the self and mutual param-

eters are equal for all three phases, i.e. if the diagonal elements of the impedance

(and admittance) matrix are equal and all off-diagonal elements are equal, decou-

pling transformation matrices can be chosen without knowledge of the parameter

values. This assumption holds if the three overhead line phase conductors are

transposed, as illustrated in Figure 2.6.

Figure 2.6: Example of a line transposition pattern

There are two general transformations that are commonly used in power systems

analysis: the symmetrical component transformation into zero, positive and neg-

ative sequence components, and the Clarke transformation into alpha, beta and

gamma components [33, 34].

2.2.1.3 Other overhead line modelling aspects

In the previous paragraphs, transmission line equations and models for uniform,

transposed lines have been considered, describing only the relationship between

electrical signals and parameters. In the following paragraphs, modelling ap-

proaches for non-uniform and untransposed lines are discussed, as well as modelling

of mechanical and thermal line properties.

A. Non-uniformity

In practice, overhead transmission lines are not uniform; the line parameters are

functions of distance along the line due to sagging of the conductors and temper-

ature gradients. Representation of non-uniformity in transmission line models has

been studied extensively, with one dominant approach being the segmentation of

the line into uniform sections with different parameters [35–37]. Common applica-

tions of non-uniform line models are analysis of waves travelling on transmission
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line towers, overhead lines that pass through mountainous regions, across rivers or

different climatic zones [36, 37].

B. Untransposed overhead lines

For overhead lines that are untransposed and do not have a vertically symmetrical

conductor arrangement, the Clarke and symmetrical component transformations

do not result in decoupled modes. Assuming that the per-unit-length line param-

eters are known, individual transformation matrices for untransposed lines can be

computed numerically in the frequency domain. The computation is more compli-

cated in the time domain due to frequency dependence [38, 39], and not possible

if line impedance and admittance parameters are not known a priori. An alterna-

tive approach is the use of approximate transformation matrices or to avoid modal

transformation by working with phase-domain models [40, 41].

C. Thermal and mechanical coupling

Transmission line theory is first and foremost concerned with the electrical states

and parameters, but in practical overhead power line operation, modelling of ther-

mal and mechanical properties is also of interest. The thermal state of the conduc-

tors is defined by their temperature, which is a result of internal Joule heating and

external warming and cooling effects [42, 43]. Conductor temperature is coupled

to the electrical line model via the series resistance; define R0 ∈ R≥0 as the conduc-

tor resistance at a reference temperature T0 ∈ R, R : R → R≥0 as the conductor

resistance at temperature T ∈ R and α ∈ [−1, 1] as the resistance-temperature

coefficient. Then the linear resistance-temperature relationship is

R(Tc) = R0(1 + α(T − T0)). (2.32)

In equation (2.32), R0 and R(Tc) are per-unit-length DC values; however, the

relationship can also be defined for AC values [43]. The coefficient α is then based

on two reference points (R0, T0), (R1, T1):

α =
1

R0

R1 −R0

T1 − T0

. (2.33)

Temperature is related to the conductor length via thermal expansion, which de-

termines the height above ground via the mechanical sag-tension model [44, 45].

Conductor height in turn influences line inductance and capacitance as will be

discussed next, hence, the electrical properties are also coupled to the mechanical

model.
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2.2.1.4 Calculation of line parameters from handbook formulae

A. Series impedance matrix

In the 1920s, John Carson developed formulae for the calculation of self and mutual

impedance of bare overhead conductors with ground return [46]. These formulae

are based on the solution of Maxwell’s equations for transverse electromagnetic

waves propagating along straight, uniform, parallel conductors and are functions

of conductor resistance, spacing and earth resistivity. To the present day, Carson’s

equations form the basis for impedance calculations in handbooks and computer

programs [47, 48]. The formulae are based on the method of images, whereby a

reflection of the conductors below the ground is considered as shown in Figure 2.7.

Actual conductors

Image conductors

i

k

i

k

Figure 2.7: Schematic diagram of the geometrical configuration of two actual con-
ductors and their images [48]
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Define the following variables:

zsi ∈ C per-unit-length self impedance of the ith conductor with ground return

zmik ∈ C per-unit-length mutual impedance between the ith and kth conductors

with ground return

gi ∈ R≥0 geometric mean radius of ith conductor

hi ∈ R≥0 height of ith conductor

ri ∈ R≥0 AC resistance of ith conductor

dik ∈ R≥0 distance between the ith and kth conductors

Dik ∈ R≥0 distance between the ith conductor and image of kth conductors

f ∈ R≥0 frequency, ω = 2πf - angular frequency

µ ∈ R≥0 permeability of the conductor

Ig ∈ C infinite integral that models the effect of earth resistivity

Then

zsi = ri+j
ωµ

2π
ln(hi/gi) +4ωIg (2.34)

zmik = j
ωµ

2π
ln(Dik/dik)+4ωIg. (2.35)

Calculated values of zsi and zmik are used to construct impedance matrices with

dimension n × n, where n is the total number of conductors including ground

wires. Equations (2.34) and (2.35) show that the earth’s resistivity introduces

mutual resistance into the overhead line model. However, when positive sequence

impedance is computed for a transposed three-phase line as

zsi − zmik = ri + j
ωµ

2π
ln(

hidik
giDik

), (2.36)

the term 4ωIg vanishes such that positive sequence resistance equals AC resistance.

B. Shunt admittance matrix

Shunt admittance is calculated by considering the potential of a conductor due

to its own charge and that of other transmission line conductors; since shunt

conductance is normally several orders of magnitude smaller than susceptance, it

is often neglected in admittance calculations [34, 49]. Define

n number of conductors above ground

qi ∈ C charge per-unit-length of ith conductor, i = 1, 2, 3, . . . , n

dii ∈ R≥0 radius of ith conductor

dik ∈ R≥0 distance between the ith and kth conductor, i 6= k

Dii ∈ R≥0 distance between the ith conductor and its image
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Dik ∈ R≥0 distance between the ith conductor and image of kth conductors, i 6= k

ε ∈ R≥0 permittivity of the medium

Vi ∈ C voltage of ith conductor to ground

By derivation from Gauss’s law for electric fields, Vi is given by [34]:

Vi =
1

2πε

n∑
m=1

qm ln

(
Dim

dim

)
(2.37)

Define the following matrices:

P ∈ Cn×n - potential coefficient matrix with elements

pij =
1

2πε
ln

(
Dii

dij

)
. (2.38)

V ∈ Cn - voltage vector, V = [V1 V2 V3 . . . Vn]T ,

Q ∈ Cn - charge vector, Q = [q1 q2 q3 . . . qn]T

Based on (2.37), the voltages for n conductors can be summarized by the matrix

equation

V = PQ. (2.39)

Capacitance is defined as the ratio of charge to voltage, C = q/V . Given matrices

Q and V, let C be the matrix of capacitance coefficients (also known as Maxwell’s

coefficients [34]), where

C = QV−1 = P−1. (2.40)

The shunt admittance matrix is thus given by

Y = jωC. (2.41)

By making use of conditions relating to bundling of conductors into three

phases and assuming ground wires are at zero potential, the dimension of the

impedance and admittance matrices Z and Y can be reduced to 3× 3 for use with

three-phase models [47, 50, 51].

In terms of power network modelling, Carson’s formulae provide a static es-

timate of overhead line impedance and admittance matrices that depends on the

chosen input values. To obtain a real-time estimate, the resistance must be ad-

justed for the actual conductor temperature, and inductance and capacitance val-

ues for the actual conductor height and spacing. Alternatively, the transmission

line models discussed earlier in this section can be used to calculate impedance

and admittance values if voltage and current measurements are available.
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2.2.2 Synchronized phasor measurements

Synchronized phasor (synchrophasor) measurement is the estimation of the am-

plitude and phase angle of the fundamental frequency component of waveforms

with respect to a common time reference. The concept became technologically

feasible in the 1980s with the widespread availability of the Global Positioning

System (GPS) as a synchronization source. Since then, synchronized measure-

ment devices have been installed in many power networks, often spanning large

geographical areas; they are collectively referred to as a Wide Area Monitoring

System (WAMS) [52]. In this section, an overview will be given of the hardware

behind the synchrophasor measurement process, phasor estimation algorithms and

measurement accuracy.

2.2.2.1 Synchrophasor measurement technology

The earliest instruments with synchrophasor measurement capability were spe-

cially designed Phasor Measurement Units (PMUs); a prototype was built at Vir-

ginia Polytechnic Institute in 1988 [53]. Figure 2.8 shows the main hardware

components required for the synchrophasor measurement process.

Figure 2.8: Main hardware components of the synchrophasor measurement pro-
cess [54]

The analogue signals first pass through an anti-aliasing filter and are then sampled

by an analogue-to-digital (A/D) converter, whose sampling clock is phase-locked

to the 1 PPS (Pulse Per Second) signal provided by a GPS receiver. The mi-

croprocessor estimates phasors from the sampled signals as well as frequency and

its rate of change, adds a UTC time tag and produces an output data file that

can be communicated to a phasor data concentrator for system wide monitoring.

Since the 1990s, a number of manufacturers around the world have developed
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commercially available instruments. In recent years, there has been a move away

from single-purpose PMUs towards integrating synchrophasor measurement into

other substation instruments such as fault recorders, power quality analysers or

multi-functional intelligent electronic devices [55].

To support interoperability of instruments from different manufacturers, the

IEEE has produced a Standard for Synchrophasor Measurements for Power Sys-

tems that defines the phasor and frequency measurement as well as accuracy and

synchronization requirements under static and dynamic conditions [56].

2.2.2.2 Phasor estimation

A phasor is a frequency domain representation of a sinusoidal waveform in the time

domain. Given the waveform x(t) = X0 cos(ωt + φ) with amplitude X0 ∈ R and

phase angle φ ∈ [−π, π] at angular frequency ω ∈ R≥0, the phasor representation

is X = X0/
√

2(cos(φ) + j sin(φ)); the concept is illustrated by the waveform and

phasor diagram in Figure 2.9.

Figure 2.9: Sinusoidal waveform and its phasor representation in the complex plane
[57]

The Discrete Fourier Transform (DFT) is the classical method of extracting the

amplitude and phase angle of the fundamental frequency component from one cy-

cle of sampled voltage and current signals. The phasor X describes a signal with

constant amplitude and phase angle. Actual waveforms in power systems vary over

time, therefore the phasor estimates are continuously updated using a sliding one-

cycle window. The computational cost of the DFT can be reduced through recur-

sive evaluation [58]. In addition to amplitude and phase angle modulation, power

system voltage and current waveforms are subject to off-nominal frequencies and

harmonic distortion, which can introduce errors in the phasor estimates. To max-

imize the accuracy of phasor estimation under off-nominal frequency and dynamic

25



conditions, a wide range of algorithms have been proposed. Examples include

modifications of the classical, one-cycle DFT such as the Smart DFT [59], Shift-

ing Window Average Method [60], Short Time Fourier Transform [61] or Fourier

Transform with Taylor series derivatives [62]; other approaches are estimation by

Kalman filter [63], Newton’s method [64] and Prony’s method [65]. Comparative

analysis of phasor estimation algorithms has shown that the conventional one-

cycle DFT satisfies standard requirements when the input signals are in steady-

state close to nominal frequency (±1 Hz), but other algorithms must be used to

maintain accuracy at off-nominal frequencies and under dynamic conditions [66].

2.2.2.3 Synchrophasor measurement accuracy

The accuracy of synchrophasor measurement devices depends on the technical

specifications of the instruments such as the resolution and sampling rate of the

A/D converter, the synchronization and stability of the internal clock and the pha-

sor estimation algorithm. The IEEE Standard for Synchrophasor Measurements

for Power Systems sets the minimum accuracy level for synchrophasor measure-

ments to 1 % Total Vector Error (TVE) [56], a metric that combines errors in

magnitude and phase angle. However, instruments that are currently on the mar-

ket can achieve 0.1 % or better [10, 67] and synchronization to within 1µs of UTC.

Before the voltage and current signals are processed for synchrophasor mea-

surement, they must pass through the substation instrumentation channel, which

consists of instrument transformers, burdens and cables [52]. These components

can alter the signal magnitude and phase angle and thus the overall accuracy of

the phasor measurements can be an order of magnitude worse than that of the

synchrophasor measurement device [68]. Physical, on-site calibration of substa-

tion instrumentation channels is rare since it is time-consuming and expensive.

One alternative is to calculate calibration factors through modelling and simula-

tion of the entire instrumentation channel [69], which requires detailed knowledge

of the properties of all components. Another approach are state estimation tech-

niques, based on synchronized phasor measurements at various network nodes and

accurate knowledge of the system model, including transmission line impedance

parameters [70–73].
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2.2.3 Estimation theory

The central topic of this thesis is the determination of the parameters of a math-

ematical overhead line model using synchrophasor data, thus, a system identifica-

tion problem. According to Ljung, the system identification procedure consists of

three basic entities [74]. The first entity is the data, which in this case arises from

the synchrophasor measurements at the line ends during normal operation. The

second entity are the set of candidate models. For overhead lines, parametrized

model structures can be drawn from transmission line theory as reviewed in Sec-

tion 2.2.1; the selected set are then classed as grey box models since transmission

line theory derives from physical laws and the model parameters have a physical

interpretation. Given a parametrized model structure, the task of system identifi-

cation is to estimate parameter values such that the model satisfies an equivalence

criterion, which is “a rule by which candidate models can be assessed using the

data” and forms the third entity [74]. Different parameter estimation methods

and their assessment criteria are discussed in the rest of this section, including:

� Bayes’ estimator

� Maximum likelihood estimator

� Least-squares estimators for linear models

� Recursive methods

� Non-linear parameter estimation

2.2.3.1 Bayes’ estimator

A Bayes’ estimator assumes that the probability density function of the measured

system variables, probability density function of parameter values and cost func-

tion that is minimized when the parameter estimate equals the actual parameter

values of the system are known a priori. Once the system measurements have been

made, the a posteriori conditional probability density function of the parameters

can be computed using Bayes’ theorem [75]. The risk of choosing a parameter

estimate given the available measurements is defined as the expected value of the

cost function. A Bayes’ estimator yields the parameter values that minimize this

risk [75].

A commonly chosen cost function is the mean square error, defined as the

expectation of the errors between estimated and true parameter values. The best

parameter estimate gives the minimum mean square error.
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2.2.3.2 Maximum likelihood estimator (MLE)

MLEs, as introduced by Fisher in 1912 [76], assume less a priori knowledge than

Bayes’ estimators; only the probability density function of the measured system

variables is assumed to be known. The model parameters are assumed to be

constant values, i.e. uniformly distributed, instead of random variables. The

a posteriori probability density function of observing the measured values given

certain parameter values is said to be the likelihood function [75]. The MLE gives

the parameter values that maximize this likelihood function.

2.2.3.3 Least-squares estimators for linear models

Define a matrix of input variables X ∈ Rn×m, a vector of output variables Y ∈ Rn,

a parameter vector θ ∈ Rm and vector of errors ε ∈ Rn related by a linear model

Y = Xθ + ε. (2.42)

There are various estimators with closed-form solutions that yield best parameter

estimates under different assumptions about the error terms ε. Four prominent

methods are discussed in the following paragraphs.

A. Generalized least-squares (GLS) estimator

The GLS method assumes knowledge of the variances and correlations of the errors

in measured system variables [77]. The expected value of the errors is assumed to

be zero, E(ε) = 0, and their conditional variance is given by a known symmetric

matrix Ω ∈ Rn×n, Var(ε) = Ω. Define a cost function C : Rm → R. By solving

the optimization problem

minimize
θ

C(θ) = (Y −Xθ)TΩ−1(Y −Xθ), (2.43)

the GLS estimator gives a parameter estimate

θ̂ = (XΩ−1X)−1XTΩ−1Y. (2.44)

The Gauss-Markov theorem applies to the GLS estimator, thus it is the best linear

unbiased estimator (BLUE) for the parameters θ.

A.1 Weighted least-squares (WLS) estimator

The WLS estimator is a special case of the GLS estimator in that the off-diagonal

elements of the conditional variance matrix Ω are zero, i.e. the errors are not
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correlated. The diagonal elements of Ω are the variances of the system variables.

By minimizing the sum of squared errors weighted by the reciprocals of these

variances, a parameter estimate is found.

C. Ordinary least-squares (OLS) estimator

The OLS estimator can be applied if it can be assumed that the error terms are

uncorrelated and all measurements have the same variance. The best parameter

estimate is then given by

θ̂ = (XTX)−1XTY. (2.45)

The product (XTX)−1XT is the pseudo-inverse of X, which implies that X must

have full rank. Application of the OLS method dates back to Gauss and Legen-

dre [78] and is probably one of the most commonly used estimation methods.

D. Total least-squares (TLS) estimator

The linear model given by (2.42) assumes that measurements of output variables

Y have errors modelled by ε. In addition, it can be assumed that input variables

X are also subject to errors E ∈ Rn:

Y = (X + E)θ + ε. (2.46)

The TLS estimator seeks to minimize the Frobenius norm ||Ω(E|ε)Λ||F , where

Ω,Λ ∈ Rn×n are weighting matrices for measurements in Y and X, respectively.

The best parameter estimate is computed using the singular value decomposition

of Ω(X|Y)Λ [79].

2.2.3.4 Recursive methods

Recursive estimation methods, also referred to as adaptive filters, update estimated

parameter values as new measurements become available, without having to in-

clude all previously available measurements in the calculation. Such methods can

have the benefit of computational efficiency while tracking changes in parameter

values over time (real-time identification).

Define Yi ∈ R as measured system output values and Xi ∈ Rk as a vector of

k system input values at time ti ∈ R≥0, i = 1, 2, 3, . . . related linearly by a vector

θi ∈ Rk of k parameters, i.e. Yi = XT
i θi. Furthermore, define Ŷi ∈ R as the

calculated output for a parameter estimate θ̂i, i.e. Ŷi = XT
i θ̂i.
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Recursive parameter estimates are computed as [75]:

θ̂i+1 = θ̂i + Giei, (2.47)

where Gi ∈ Rk is a gain matrix and ei is an error term given by

ei = Yi − Ŷi. (2.48)

There are two types of adaptive filters, those based on a statistical framework

(stochastic) and those based on a deterministic framework. Three commonly used

recursive estimation methods are discussed in the following paragraphs.

A. Recursive least-squares (RLS) estimator

The RLS estimator is based on a deterministic framework. RLS can also be traced

back to Gauss’ work in the 19th century, however, it was mostly unused until a

rediscovery by Plackett in 1950 [80]. Suppose that N consecutive measurements

are available; a parameter estimate θ̂N is obtained by minimizing the weighted

sum of squares

N∑
i=1

wie
2
i , (2.49)

where ei is as defined by (2.48), wi are weighting factors, conventionally chosen as

wi = λN−i, λ ∈ (0, 1). λ is referred to as a forgetting factor since λ < 1 reduces

the weight of older error terms. The RLS estimator computes θ̂N as

eN = YN −XT
N θ̂N−1 (2.50)

ΨN = λΨN−1 + XNXT
N (2.51)

GN = Ψ−1
N XT

N (2.52)

θ̂N = θ̂N−1 + GNeN . (2.53)

Conventionally, the RLS algorithm is initialized with θ̂1 = 0 and Ψ1 = δI, where

δ is a small positive value and I ∈ Rk×k is the identity matrix. The RLS esti-

mator converges faster than stochastic algorithms, but has higher computational

complexity [81].
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B. Least mean squares (LMS) estimator

The LMS estimator is a stochastic estimator developed by Widrow and Hoff [82];

parameter estimates are found recursively by minimizing the expected value of the

squared error, E(e2
i ), which gives the following expression

θ̂i+1 = θ̂i + µ∇e2
i = θ̂i + 2µeiXi, (2.54)

where ei is as defined by (2.48), µ ∈ R is the step size and∇ = [ ∂
∂θ1
, ∂
∂θ2
, ∂
∂θ3
, . . . , ∂

∂θk
].

The LMS estimator is a very popular adaptive filter due to its simplicity and as-

sociated computational efficiency.

C. Kalman filter

The Kalman filter is a stochastic recursive estimator for linear dynamic systems

described by a state-space model [83, 84]. Define Yi ∈ Rn as system output

measurements and θi ∈ Rk as a state vector at time ti ∈ R≥0, let Xi ∈ Rn×k

be a matrix that relates the system state vector and measurements, Ai ∈ Rk×k a

matrix that relates consecutive state vectors and ei,ui ∈ Rk be vectors that model

white noise. Then the state-space model is given by

θi = Aiθi−1 + ei (2.55)

Yi = Xiθi + ui, (2.56)

where (2.56) and (2.55) are commonly called the process model and measurement

model, respectively. The recursive computation of the state vector estimate θ̂i at

time ti can be divided into two steps. The first step is a prediction:

θ̂i|i−1 = Aiθ̂i−1|i−1 (2.57)

Pi|i−1 = AiPi−1A
T
i + Qi, (2.58)

where Pi and Qi ∈ Rk×k are covariance matrices of θ̂i|i and ei, respectively. The

second step is an update:

ri = Yi −Xiθ̂i|i−1 (2.59)

Si = XiPi|i−1X
T
i + Ri (2.60)

Ki = Pi|i−1X
T
i S−1

i (2.61)

θ̂i|i = θ̂i|i−1 + Kiri (2.62)

Pi|i = (I−KiXi)Pi|i−1, (2.63)
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where ri is a vector of measurement residuals, Si is the residual covariance matrix,

Ri ∈ Rk×k is the covariance matrix of the measurement noise ui, Ki is the Kalman

gain, θ̂i|i is the updated state estimate and Pi|i is the updated covariance of the

estimate. The Kalman filter is suitable if the dynamic and stochastic model of the

state vector are known a priori.

2.2.3.5 Non-linear parameter estimation

The parameter estimation problem is more difficult for a non-linear model. Sup-

pose the system output measurement Y ∈ R is a function of system inputs X ∈ Rm

and parameters θ ∈ Rk, then a non-linear model is given by

Y = f(X,θ) + ε, (2.64)

where f : Rm+k → R is a non-linear function and ε ∈ R is an error term. Some

common algorithms for finding a parameter estimate for non-linear systems are

discussed in the following paragraphs.

A. Non-linear least-squares estimation

The least-squares criterion can be applied to non-linear models in the same way

as for linear models. Given the model (2.64), the best parameter estimate is found

by minimizing the sum of squares of the error terms,

n∑
i=1

e2
i =

n∑
i=1

(Yi − f(Xi,θ))2, (2.65)

where the subscript i = 1, 2, 3, . . . , n labels errors from n measurements. In con-

trast to the linear least-squares problem, there is no closed-form solution to this

optimization problem. Instead, an iterative numerical algorithm is normally used

to find an approximate local minimum for a given initial estimate. Gradient meth-

ods require evaluation of the derivatives of the objective function, examples are

the Gauss-Newton, steepest descent and Levenberg-Marquardt methods [75]. If

the derivatives cannot be calculated, pattern or direct search methods can be used

such as Nelder and Mead’s simplex algorithm.

B. Extended Kalman filter (EKF)

The EKF extends the Kalman filter to non-linear estimation problems. Define

θi ∈ Rk as a state vector, Xi ∈ Rm as system input measurements and Yi ∈ R as

system output measurements at time ti ∈ R≥0;
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furthermore, let ui ∈ R and ei ∈ Rk be white noise terms and f : Rk+m → R,

h : Rk → Rk be non-linear, differentiable functions. The state-space model can

then be expressed as

θi = f(θi−1) + ei−1, (2.66)

Yi = h(Xi,θi) + ui. (2.67)

Define Jfi ,Jhi ∈ Rk as the Jacobians of f and h, i.e.

Jfi =
∂f

∂θi
(2.68)

Jhi =
∂h

∂θi−1

. (2.69)

The prediction step of the EKF is given by:

θ̂i|i−1 = f(θ̂i−1|i−1) (2.70)

Pi|i−1 = Jfi−1
Pi−1J

T
i−1 + Q1i , (2.71)

where Pi and Q1i ∈ Rk×k are covariance matrices of θ̂i|i and ei, respectively. The

update is as follows:

ri = Yi − h(Xi, θ̂i|i−1) (2.72)

Si = JhiPi|i−1J
T
hi

+ Q2i (2.73)

Ki = Pi|i−1J
T
hi

S−1
i (2.74)

θ̂i|i = θ̂i|i−1 + Kiri (2.75)

Pi|i = (I−KiJhi)Pi|i−1, (2.76)

where ri is a vector of measurement residuals, Si is the residual covariance matrix,

Ki is the Kalman gain, θ̂i|i is the updated state estimate and Pi|i is the updated

covariance of the estimate. The EKF is effectively a Kalman filter applied to a

linearisation of the model around the current state vector estimate.

2.2.3.6 Summary

An overview has been given of parameter estimation algorithms for linear and non-

linear models. The algorithms differ in their assumptions about a priori knowl-

edge of parameter values, system state variables and noise, optimization criteria,

computational complexity and between batch and recursive computation. In the

next section, previous research that uses estimation theory to solve the parameter

identification problem for overhead transmission lines will be reviewed.
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2.3 Review of overhead line impedance parame-

ter identification

In Section 2.2, background was given on transmission line theory, synchrophasor

measurements and parameter estimation methods - the major theoretical and prac-

tical building blocks that underpin the task of synchrophasor-based overhead line

impedance monitoring. In this section, previous research that pulls these build-

ing blocks together will be assessed. Firstly, power system parameter estimation,

which has evolved from power system state estimation will be considered; then,

identification methods for individual lines are discussed, including those that utilize

data from transient events, Supervisory Control And Data Acquisition (SCADA)

and synchrophasor measurements. At the end of this section, the need for fur-

ther research on synchrophasor-based overhead line impedance monitoring will be

outlined.

2.3.1 Power system state and parameter estimation

Power system state estimation was developed in the late 1960s [85–87] and is the

process of estimating voltage phasors for all nodes of the system using a network

model as well as measurements of voltage, current and power taken at some of

the nodes. The network model consists of transmission lines, shunt capacitors or

reactors and transformers [7]. Classically, the state vector of voltage phasors is es-

timated using WLS, which has been discussed in Section 2.2.3.3. The errors in the

system measurements are assumed to be independent and to have a Gaussian dis-

tribution, in this case WLS is a maximum likelihood estimator. An integral part of

ensuring accuracy of the state estimation process is the detection and identification

of bad data, which are measurements with errors that are not due to uncertainty.

A common bad data detection method is Chi-square testing of the measurement

residuals; if bad data is detected, largest normalized residual or hypothesis testing

can be used to identify and discard the erroneous measurement [7].

Soon after the inception of power system state estimation, it was realized that

errors in line impedance parameters assumed in the system model can significantly

deteriorate the accuracy of the estimated state vector [88, 89]. Therefore, state

estimators have been adapted and extended to detect and correct parameter er-

rors. Zarco and Exposito have grouped existing state and parameter estimation

methods into two main categories; the first category are methods based on residual

sensitivity analysis and the second category are methods that augment the state

vector [90]. Methods belonging to the first category use a calculated residual sen-
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sitivity matrix to estimate the parameter error [91], while methods in the second

category estimate system states and parameters simultaneously. The simultaneous

state and parameter estimation problem can be solved using a batch method such

as WLS [92, 93] or using recursive algorithms based on Kalman filter theory [89,

94, 95]. Other proposals include application of genetic algorithms [96], innovation

graph methods [97] and particle filtering [98].

The parameter estimation methods that have been developed to improve the

accuracy of power system state estimation are designed to optimize the system

model by utilizing measurements from different points in the network to estimate

the parameters of one or more transmission lines. These methods take a top-down

approach that is not primarily concerned with the physical interpretation and vali-

dation of the parameter values. Alternatively, the line parameter estimation prob-

lem can be approached from a bottom-up perspective, whereby the sub-problem of

identifying the impedance parameters that cause differences in voltage and current

values across an individual line is considered. Previous research on solving this

sub-problem will be reviewed in the rest of this section.

2.3.2 Estimation methods based on transient signal mea-

surements

The first applications of synchronized voltage and current measurements to over-

head line impedance estimation were reported in the mid-1990s. Philippot and

Maun used digital fault recorders to sample three-phase voltages and currents

at both ends of a 44.3 km, 380 kV overhead line [99]. The signals were post-

synchronized with respect to UTC as provided by GPS receivers and phasors

were estimated using a DFT-based algorithm. Measurements were taken dur-

ing different system conditions including light and heavy line loading, while all

phases were open at one end, and during single-pole tripping and auto-reclosing

at one and both ends. Before impedance parameter estimation, the phase quan-

tities were transformed into Clarke components. The distributed line model was

assumed. The configuration of the line conductors had horizontal symmetry with-

out transposition, meaning that the modal equations did not decouple fully. The

non-linear least-squares problem was solved using Nelder and Mead’s simplex algo-

rithm. Once a parameter estimate was obtained, the Chi-square test was applied

to check for gross measurement errors and the covariance matrix of the parameters

was estimated to compute confidence intervals. Based on the confidence intervals

and comparison with parameter calculation by Carson’s formulae, the parameter

accuracy was stated to be 1 % to 3 %.

35



Koglin and Schmidt presented a similar study [100]. However, measurements

reported by digital relays instead of digital fault recorders were used to estimate

line parameters. The relays were triggered by external transient events, thereby

building a fault data record. Furthermore, the line was assumed to be trans-

posed and the symmetrical component transformation was applied to obtain de-

coupled positive, negative and zero sequence modes. For each mode, a weighted

least-squares problem was solved to obtain estimates of the short-circuit input

impedance and open-circuit output admittance of a symmetric, reciprocal two-

port network. Results from a case study on a 22 km, 400 kV transmission line

were reported; specifically, zero and positive sequence reactance values estimated

from 19 external phase-to-ground faults. The estimated values were within 10 %

of handbook calculations.

The argument for including recordings of transient events in impedance param-

eter estimation is that they provide excitation of zero sequence components [101,

102]. This excitation is particularly relevant for untransposed lines whose modal

equations are coupled, which implies that the positive sequence parameters cannot

be determined independently from the zero sequence. Schulze and Schegner have

proposed a method specifically for untransposed, unsymmetrical lines, assuming

a phase domain, lumped parameter model and using synchronized measurements

from protective relays [101]. To describe the transient signals more accurately,

voltage and current phasors are assumed to be time-varying and their derivatives

are included in the estimation model; parameters are estimated using the linear

least-squares method. Application to a laboratory-based dynamic network model

resulted in estimated impedance parameters within ±6 % of reference values. In a

later contribution Schulze et al. decreased parameter errors to below 1 % by using

Prony’s method instead of a DFT to decompose the transient voltage and current

signals [9]; this approach assumes that the current contains damped transients and

that the correct signal model order is known a priori.

Hu and Chen also proposed a time-domain method to estimate self and mu-

tual parameters using the time domain first-order differential equations for paral-

lel transmission lines and synchronized transient signal samples [103]; first-order

derivatives are estimated as the gradient between consecutive samples. Zero and

positive sequence parameters are calculated from the estimated phase domain val-

ues. Results of field application of the proposed method to two 30 km, 220 kV

parallel transmission lines were within 2.5 % of independently measured reference

values.
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Voltage and current measurements of transient events provide a range of exci-

tation states of the overhead line system for comprehensive impedance parameter

identification. One of the main objectives of the methods discussed in the previous

paragraphs is to estimate zero sequence parameters, which are used in setting pro-

tective relays. With respect to real-time monitoring of line impedance parameters,

it must be remembered that transient signals are only available occasionally as the

power system is usually in steady-state. In the rest of this section, methods that

utilize steady-state measurements only are discussed.

2.3.3 Steady-state estimation methods for transposed lines

For transposed lines, the self and mutual impedance parameters are assumed to

be equal for all three phases. In Section 2.2.1, it was explained that through

the symmetrical component or Clarke transformation the three-phase transmis-

sion line equations of transposed lines can be decomposed into three decoupled

modes. Each mode is then equivalent to a single-phase system. In the following

paragraphs, existing methods for identification of positive sequence parameters

will be discussed. The methods are equally applicable to determine zero sequence

parameters, but in steady-state operation, voltage and current do normally not

contain zero sequence components.

2.3.3.1 Estimation methods using SCADA data

SCADA systems have been in use since the 1960s to support power system moni-

toring and operation. Remote terminal units installed in substations report mea-

surements of voltage and current magnitude as well as active and reactive power

as part of SCADA. Such SCADA measurements typically have lower accuracy and

reporting rates compared to synchrophasor measurements [104]. To maximize the

accuracy of estimated line impedance parameters, synchrophasor measurements

are the preferable choice over conventional SCADA measurements. However, as

opposed to SCADA measurements, synchrophasor measurement facilities are not

widely available across all power networks. For this reason, Wang et al. have pre-

sented an algorithm for tracking line parameters using SCADA data only. The

algorithm uses measurements of voltage magnitude as well as active and reac-

tive power at each line end; the measurements are assumed to be average values

across three phases. A single-phase nominal pi-circuit models the transmission

line. The non-linear model equations are solved in a least-squares sense using

the Levenberg-Marquardt method [106, 107] with theoretically calculated param-
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eter values as starting points. If the propagation speed along the overhead line is

assumed to be known, one measurement of sending and receiving end quantities

suffices; otherwise, line parameters are estimated using multiple measurements of

different levels of power flow. The line resistance is assumed to be constant over

30 min intervals, from which multiple measurements are chosen. The parameter

estimation process is repeated for different combinations of measurements and the

sum of squared residuals is evaluated; the final parameter estimate is the mean of

the best 5 % of results. The proposed SCADA data method was implemented to

estimate line parameters of two 240 kV transmission lines. For each line, tracked

values over one summer and one winter 24-hour period were reported, as well as

average values for each 24-hour period. The estimated average values are con-

sistent with theoretically calculated line parameters; resistance was higher in the

summer than in the winter, while reactance and susceptance did not differ signif-

icantly. However, from the reported results it cannot be concluded whether the

variation of the resistance values during the 24-hour periods was consistent with

changes in conductor temperature.

If synchrophasor measurements are available at one line end, but only conven-

tional SCADA measurements are available at the other line end, the hybrid ap-

proach proposed by Mousavi-Seyedi et al. is suitable [108]. It is assumed that the

SCADA data provides magnitudes of voltage and current; hence, the phase angles

are eliminated from the positive sequence equivalent pi-circuit model equations.

Line impedance parameters are estimated by non-linear WLS using multiple mea-

surements of different line loading conditions and assuming line parameters remain

constant. The proposed method has been extended to three-terminal transmission

lines. The parameter estimation results from a study on a laboratory network

simulator were within 3 % of reference values.

A different hybrid approach has been proposed by Sivanagaraju et al. [109];

the phase angles of voltage and current signals at the end of the transmission line

that has only SCADA measurements are estimated using the available voltage and

current magnitude and power, synchrophasor measurements from the other line

end and assuming that the line’s shunt conductance is zero. Once the phase angles

are estimated, voltage and current phasors from both line ends are available and

methods that use only synchrophasors can be used to estimate line parameters.

The reported parameter error was lower than 0.5 %, however, the uncertainty in

the parameter values reached up to 70 %.

SCADA-based methods have a practical advantage in that they are not de-

pendent on availability of synchrophasor measurement technology, which has not
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yet become standard substation equipment. Moreover, if synchrophasor measure-

ments are available at one or two line ends, the methods are still applicable since

synchrophasors contain conventional SCADA quantities. On the other hand, the

magnitude accuracy of synchrophasor measurements is one order of magnitude

better than conventional SCADA measurements, and synchronization to within

1 µs of UTC allows for a more accurate measurement of the instantaneous dif-

ference in phase angles across the line. Hence, the overall achievable parameter

estimation accuracy is higher when synchrophasor measurements are used [109].

2.3.3.2 Estimation methods assuming a distributed line model

The frequency-domain distributed parameter model as described by (2.17) and

(2.18) in Section 2.2.1.1 relates voltages and currents at the two ends of an overhead

line through hyperbolic functions; the line’s electrical properties are represented

by the characteristic impedance and propagation constant, which are defined in

terms of per-unit-length impedance and admittance. Methods that estimate the

parameters of the distributed line model using synchrophasor measurements are

discussed in the following paragraphs.

A. Single measurement method

The distributed parameter transmission line model consists of two equations, which

can be solved simultaneously for the two unknowns. The characteristic impedance

and propagation constant can be calculated by substituting a single synchrophasor

measurement of voltage and current [110]. This algorithm is very simple, however,

it does not attempt to filter measurement errors.

B. Non-linear least-squares estimation

To estimate accurate per-unit-length impedance parameters from noisy synchropha-

sor measurements, Du and Liao have proposed to use a weighted non-linear least-

squares estimator [111]. In addition to the impedance parameters, voltage and

current variables are included in the vector of unknowns, imitating augmented

state estimation. Moreover, the distributed line model is extended by a synchro-

nization angle. After a first round of iterative parameter estimation, the Chi-

square test is applied to the residuals to detect measurements with gross errors,

including unsynchronized measurements; parameter estimation is repeated with-

out such ‘bad’ measurements to obtain a more accurate result. Adaptations of the

method to lines with series compensation, double-circuit lines and lines sharing
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one bus have also been presented. The method has been tested in a simulation

study on a 320 km, 500 kV transmission line; synchrophasor measurements were

contaminated with Gaussian noise [112]. In each parameter estimation, three mea-

surements of different line loading conditions were used. Gross errors such as a

synchronization error of 10° or 20 % magnitude error in a single voltage or current

measurement were detected successfully. Per-unit-length resistance was estimated

to within 10 %, while errors in reactance and susceptance were less than 1 %.

2.3.3.3 Estimation methods assuming a two-port network model

As discussed in Section 2.2.1.1, a transmission line can be represented by a sym-

metric and reciprocal two-port network with chain parameters.

A. Double measurement method

Wilson et al. proposed to obtain a closed-form solution for the chain parame-

ters using Cramer’s rule with two synchrophasor measurements [113]. The two

measurements must be from different power flow conditions to ensure linear in-

dependence. The method was verified with actual synchrophasor measurements

of a 530 km, 525 kV transmission line. One pair of measurements was used to

calculate chain parameter values, which were then used to compute active and

reactive power at one line end for six other measurements; finally, the difference

between parameter-based, predicted power values and actual measurements was

calculated. It was found that the synchrophasor-based chain parameter values gave

better power predictions than parameter values obtained by theoretical calculation

or software simulation.

Wilson et al.’s study demonstrated that synchrophasor measurements can be

used to improve the accuracy of a two-port network representation of a transmis-

sion line compared to theoretical parameter identification methods. However, the

authors also recognized that the reported values are not absolute measurements

since the substation instrument transformers were not calibrated. Therefore, the

chain parameter values do not necessarily reflect the actual electrical conductor

properties.

B. Linear least-squares estimation

Shi et al. used the double measurement method to compute chain parameter values

and from these pi-circuit series impedance and shunt admittance were computed.

The parameter estimates were robust to bias errors in the synchrophasor measure-
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ments, however, measurements with 1 % Gaussian noise caused parameter errors

in excess of 200 %. To reduce sensitivity to Gaussian noise, it was proposed to

compute the chain parameters by ordinary least-squares estimation using more

than two measurements. This approach decreased errors in reactance and sus-

ceptance estimates to below 10 % and errors in resistance remained above 20 %.

While the error level was reduced by a factor of ten, errors in resistance values in

excess of 20 % are unacceptable as they would correspond to an error in conductor

temperature of 50 ◦C.

2.3.3.4 Estimation methods assuming a pi-circuit model

The per-unit-length line parameters can be calculated from pi-circuit impedance

and admittance parameters. The equivalent pi-circuit model as described by (2.20)

and (2.21) in Section 2.2.1.1 is one of the most commonly used transmission line

models and various proposals for estimation of series impedance and shunt admit-

tance from synchrophasor measurements at the transmission line ends exist.

A. Single measurement method

The single measurement method is the simplest way to obtain an estimate of the

pi-circuit parameters. The two pi-circuit equations are solved for the unknown

series impedance and shunt admittance through algebraic manipulation, giving a

closed-form solution [114, 115]. Only one synchrophasor measurement of voltage

and current at both line ends is required to compute parameter values, which

makes the method ideal for real-time impedance parameter calculation. However,

the disadvantage of using only one measurement is that random errors due to un-

certainty are not filtered. A simulation study on a 19 km, 230 kV line by Shi et

al. has shown that the method can give very accurate parameter values (less than

0.1 % error) when synchrophasor measurements have no errors. When synchropha-

sors have random or systematic errors of magnitude 1 %, the errors in parameter

estimates increased to over 100 %, demonstrating high error sensitivity of the single

measurement method [114].

B. Non-linear least-squares estimation

Like any measurement, reported synchrophasors are subject to random noise due to

uncertainty. One approach to filter random measurement errors is to estimate pa-

rameters in a least-squares sense from multiple measurements. Since the pi-circuit

equations are non-linear in impedance and admittance parameters, a non-linear
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least-squares estimation problem must be solved using an iterative algorithm. Shi

et al. presented this approach and the results of their simulation study showed

that non-linear least-squares parameter estimates are more robust to systematic

measurement errors than the single measurement method [114]; given random

measurement errors, reactance estimates had a higher accuracy while shunt sus-

ceptance was less accurate than single measurement method results. It was also

found that the parameter error decreased as the number of measurements of dif-

ferent loading conditions increased. The common iterative algorithms require an

initial parameter estimate to search for an optimal value; hence, the final estimate

depends on a priori knowledge.

C. Linear least-squares estimation

Through a change of variable, the pi-circuit model equations become linear in the

unknown parameters. Therefore, parameter values can be estimated from multiple

measurements by the method of linear least-squares, as proposed by Bi et al. [116].

The voltage measurements are taken as input quantities, while the currents form

the output measurement vector. Similarly to non-linear least-squares estimation,

the parameter estimation accuracy has been found to increase with the number

of utilized measurements [116, 117]. One advantage of the linear least-squares

problem is that it has a closed-form solution and no initial parameter guess is

required, as opposed to non-linear least-squares estimation.

D. Total least-squares estimation

Ding et al. proposed application of the TLS estimator to obtain pi-circuit pa-

rameter values [118]. In contrast to the ordinary least-squares estimator, random

errors are assumed in the current measurement vector and voltage input measure-

ments. In addition to Kirchhoff’s laws, the power flow equations for the pi-circuit

are included in the estimation model. Line impedance parameters are estimated

continuously through time from a moving window of measurements. To assess

the credibility of parameter estimates, probability density curves are estimated to

obtain confidence intervals. In a simulation study of a 500 kV transmission line,

voltage and current measurements were contaminated with Gaussian and uniform

random noise to compare the TLS estimator with the single measurement method.

Both methods gave the same mean parameter values for a given time period, but

the TLS estimator resulted in much lower fluctuation; for instance, the standard

deviation of resistance estimates from measurements with 0.2 % Gaussian noise

was 20 % of the mean value by the single measurement method, while the TLS
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estimator resulted in only 7 %. TLS parameter estimates from field data were also

reported with low fluctuation, but only for a time span of 60 s.

Dasgupta and Soman made a similar proposal to employ a TLS estimator for

computing impedance parameters of the equivalent pi-circuit, but without the use

of power flow equations [119]. The importance of selecting measurements from

different operating conditions was emphasized by suggesting a selection criterion

based on the difference in voltage measurements. To increase the robustness of

the parameter estimation process, the Durbin-Watson test is used to check for

serial correlation in the measurement residuals after parameter estimation. The

argument is that such correlation can be caused by a bias error introduced by

a faulty voltage transformer. The proposed TLS estimator was compared to the

OLS estimator in a simulation study on a 220 km, 230 kV transmission line; 1 %

Gaussian noise was added to the phasor measurements. Both estimation methods

gave root-mean-square (rms) errors of the parameter values below 5 %, and in

particular the accuracy of the series impedance was significantly higher for the

TLS estimator. When one of the capacitive voltage transformers was simulated to

have a 20 % drift in the capacitor, the Durbin-Watson test successfully indicated

bad data and thus unreliable parameter estimation results.

E. Extended Kalman filter

Hering and Janecek’s method uses the extended Kalman filter to recursively es-

timate line impedance parameters as well as conductor temperature [120]. For

the temperature, a dynamic model based on the heat-balance equation for bare

overhead line conductors is assumed. In contrast to other methods, the series resis-

tance at a reference temperature is estimated instead of the actual line resistance.

Hence, all line impedance parameters are assumed constant. Furthermore, it is as-

sumed that the synchrophasor measurements of the currents can have a systematic

error, which is included in the pi-circuit model equations and unknown parameter

vector. At each time step, the line impedance parameters are updated in accor-

dance with the latest synchrophasor measurements and the estimated conductor

temperature is updated based on the latest measurements of ambient temperature,

wind speed and direction. Estimation results based on field measurements of two

110 kV overhead lines over several months were presented. Series reactance val-

ues and reference resistance converged to constant values after approximately two

months. Estimated conductor temperature was also reported and within normal

operating range, however, there was no independent temperature measurement

available for validation. Inclusion of the current calibration factor improved the
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parameter estimation results significantly. Hering et al. have made an innovative

proposal by focussing on a constant resistance parameter at a given reference tem-

perature, since this approach allows estimation from synchrophasor measurements

taken over an unlimited time period. The previously discussed linear and non-

linear least-squares estimators assume that the actual line resistance is constant

over the measurement period, which limits the number of available measurements

from different line loading conditions and thus the achievable parameter estimation

accuracy. On the other hand, Hering et al.’s approach requires ambient weather

data, which is not necessarily available for all overhead lines.

F. Non-linear constrained optimization

Dan and Raisz have defined a constrained non-linear optimization problem to find

accurate pi-circuit parameter values [122]. The objective function is the rms error

between synchrophasor measurements from one line end and voltage and current

phasors calculated from possible parameter values and synchrophasor measure-

ments from the other line end. The initial parameter estimate is obtained by

theoretical calculation. A non-linear constraint is introduced based on the fact

that the propagation speed must not exceed the speed of light. Possible param-

eter values were subject to feasible upper and lower bounds based on expected

variations in line sag and earth resistivity. Additionally, magnitude and phase

angle correction factors for all voltage and current variables were included in the

estimation model to take account of constant, systematic errors introduced by

instrument transformers. The proposed optimization problem was solved for a

14 km, 400 kV overhead line using field measurements collected over one week to

find a parameter estimate that reduces the objective function compared to the

theoretical estimate. This method can be used to obtain a more accurate model

description of the overhead line. However, it cannot be known to what extent

the parameter estimate describes the physical properties of the line. By including

correction factors for all measurements, the number of unknowns to be estimated

increased from 6 to 30, which means that more measurements of different operat-

ing conditions are necessary to achieve numerical accuracy. Impedance parameters

were assumed to be constant over the measurement period, hence, the method is

not suitable for real-time monitoring.
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2.3.4 Steady-state estimation methods for untransposed

lines

For overhead lines that are not transposed, the symmetrical component and Clarke

transformations do not result in decoupled modes. The system can be treated in

the same way as a transposed line by ignoring the coupling and estimating individ-

ual modal parameters as described in the previous paragraphs. This approach was

taken by Asti et al. [123]; simulation study results showed that errors in resistance

can be as high as 10 % while errors in reactance reached above 20 %.

To avoid parameter estimation errors arising from an approximate decoupling

assumption for untransposed lines, several researchers have proposed to estimate

self and mutual parameters using a coupled three-phase model without any modal

transformation.

2.3.4.1 Estimation methods assuming a pi-circuit model

The conventional representation of three-phase transmission lines is a lumped el-

ement, pi-circuit model consisting of six equations that contain twelve unknown

parameters. Thus, the system of equations is under-determined and does not have

a single measurement, closed-form solution.

A. Kalman filter

Mishra et al. suggested to estimate self and mutual impedance parameters recur-

sively using a Kalman filter [124]. The parameters are assumed to be constant

over time and the synchrophasor measurements are assumed to have zero mean

Gaussian noise. In a simulation study, the proposed method was shown to give

more accurate parameter estimates than a WLS estimator; all parameter errors

were below 1 %.

B. Non-linear least-squares estimation

Wu et al. proposed to estimate impedance parameters simultaneously with cali-

bration factors for instrument transformers at one line end [125]. The non-linear

estimation problem is solved in a least-squares sense using the Newton-Raphson

method. It is argued that if synchrophasor measurements are pre-calibrated at one

bus of a network, the method can be used to estimate calibration factors for all

other network buses. A simulation study of a 500 kV, 30-bus network consisting of

36 transmission lines was presented. It was assumed that synchrophasor measure-

ments are available from all buses and pre-calibrated at one bus. Ten snapshots
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of network measurements taken over a 24-hour variable load profile were used to

estimate impedance parameters of all lines and calibration factors for 29 buses.

The calibration errors were up to 10 % in magnitude and 5° in phase angle, no

random noise was added to the measurements. The proposed method estimated

line impedance parameters to within 0.1 %, voltage magnitude was calibrated to

within 0.03 %, current magnitude to 1 % and voltage and current phase angles to

within 0.1° and 1°, respectively.

While Wu et al. recognize the importance of taking account of instrumenta-

tion channel errors in the impedance parameter estimation process, they do not

consider problems of ill-conditioning and numerical instability that can arise by

increasing the number of unknowns in the estimation problem; furthermore, impe-

dance parameters were assumed to be constant over a 24-hour period, such that

measurements from different line loading conditions became available. To monitor

changes in impedance parameters, measurements snapshots taken over one hour

or less must suffice to estimate parameters.

C. Non-linear constrained optimization

Zhou et al. formulated a non-linear constrained optimization problem [126]. The

objective function is the euclidean norm of measurement residuals based on the

three-phase pi-model equations. The parameter search space is limited by upper

and lower bounds around theoretically calculated parameter values. In addition,

inequality constraints are set based on the relative size of impedance parameters,

i.e. resistance must be smaller than reactance. One synchrophasor measurement

of voltage and current at both line ends is used to solve the optimization problem

and obtain a parameter estimate. Using all parameter estimates from a five-second

interval, a re-sampling technique is used to obtain an estimate of the parameter

variance, which is used to judge the credibility of the parameter mean. Estimation

results from field data over a one-hour period were reported, series impedance and

shunt admittance differed from theoretical values by 8 %.

D. Linear least-squares estimation

In the same manner as the single-phase pi-model, the three-phase model equations

can be made linear in the unknown impedance parameters. Shi et al. proposed to

use ordinary least-squares estimation to compute a parameter estimate [127]. A

simulation study on a 230 kV transmission line was presented to demonstrate the

effectiveness of the method compared to assuming a transposed line model and

using the single and double measurement methods. An unbalanced load with
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14 % negative sequence current was assumed as well as zero-mean, 1 % Gaussian

measurement noise. Assuming a line length over 150 km, the single and double

measurement methods gave errors in resistance and reactance of at least 10 %,

while the linear least-squares estimator achieved 1 %. For shorter lines, errors rose

above 10 %, but remained below the single and double measurement methods,

which reached over 30 %.

In contrast to non-linear estimation approaches, the linear least-squares estima-

tor gives a closed-form solution and does not rely on initial parameter estimates as

inputs, which means that the final estimate is not distorted by inaccurate a priori

knowledge or theoretical calculations. On the other hand, systematic measurement

errors have not been considered explicitly.

2.3.4.2 Estimation methods assuming a two-port network model

A three-phase transmission line can also be represented by three coupled two-port

networks characterized by four chain parameter matrices, which are identified by

ordinary least-square estimation as proposed by Lowe [128]. From the chain pa-

rameters, pi-circuit impedance and admittance parameters can be calculated. In

a simulation study of a 150 kV line, the proposed method was compared with Shi

et al.’s linear least-squares estimator for the pi-circuit [127]; the error in estimated

parameters for measurements with ±1 % systematic errors and zero-mean, 1 %

Gaussian noise was reported. Series resistance and reactance estimates by Lowe’s

method had less than 5 % error even if the synchrophasor measurements had sys-

tematic errors, while Shi et al.’s method resulted in errors over 10 %. The relative

performance of the two methods was the opposite for shunt susceptance estimates.

In a similar manner, resistance and reactance estimated by Lowe’s method were

more robust to random measurement errors, while susceptance was more accu-

rately estimated by Shi et al.’s method.

2.3.5 Summary

In this section, a detailed review of past research on overhead line impedance pa-

rameter identification has been presented. Initially, parameter estimation meth-

ods that were developed to increase the accuracy of network models used in power

system state estimation were discussed. The focus then shifted to research that in-

vestigated the fundamental problem at the heart of network parameter estimation:

how to accurately determine the impedance parameters of an individual overhead

line from signal measurements at both line ends.
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Table 2.1: Overview of steady-state methods for overhead line impedance parameter identification

Pi-circuit Distributed line Two-port network

T
ra

n
sp

o
se
d

Single measurement methods:

� Shengfang et al. [115]

� Shi et al. [114]

Linear least-squares estimation:

� Bi et al. [116]

� Rubesa et al. [117]

Total least-squares estimation:

� Ding et al. [118]

� Dasgupta and Soman [119]

Non-linear least-squares estima-

tion:

� Shi et al. [114]

� Borda et al. [129]

� Dan and Raisz [122]1

� Mousavi-Seyedi et al. [108]2

� Wang et al. [105]2

Extended Kalman filter:

� Hering and Janecek [120]1

Single measurement

methods:

� Jiang et al. [110]

Non-linear least-squares

estimation:

� Liao and Kezunovic

[112]1, Du and Liao [111]1

Double measurement

methods:

� Wilson et al. [113]

Linear least-squares

estimation:

� Shi et al. [114]

U
n
tr
a
n
sp

o
se
d

Linear least-squares estimation:

� Shi et al. [127]

Kalman filter:

� Mishra et al. [124]

Non-linear least-squares estima-

tion:

� Wu et al. [125]1

Non-linear constrained optimiza-

tion:

� Zhou et al. [126]

Single measurement

methods:

� Asti et al. [123]

Linear least-squares

estimation:

� Lowe [128]

1 Inclusion of one or more calibration factors
2 Use of classical SCADA measurements
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A distinction has been made between methods that rely on transient signal mea-

surements (Section 2.3.2) and those that utilize only steady-state measurements.

Methods in the latter category are of interest for real-time monitoring applications,

and have been grouped into those for transposed lines (Section 2.3.3) and those

for untransposed lines (Section 2.3.4). Table 2.1 provides a structured overview

of both transposed and untransposed line methods, which differ in their choice of

model (distributed line, pi-circuit, two-port network), estimation method (single

measurement, double measurement, linear and non-linear estimators) as well as

assumptions about measurement errors and parameter time-variance. The com-

bination of these choices and assumptions determines the parameter estimation

accuracy and whether a given method is suitable for real-time line impedance

monitoring.

The single measurement method [114, 115] is the simplest algorithm for over-

head line impedance parameter identification due to its ease of implementation

and low computational cost; furthermore, the method is ideal for real-time moni-

toring since impedance parameters can be updated with every new measurement

that becomes available. However, the single measurement method has been shown

to be sensitive to random and systematic measurement errors.

Linear [114, 116, 118] and non-linear [111, 129] least-squares estimators can

reduce sensitivity to random noise by filtering from multiple measurements taken

under different line loading conditions; simultaneous estimation of line impedance

parameters and measurement calibration factors has been suggested to compensate

for systematic errors [122, 125]. These estimators assume that resistance is a

constant parameter; changes in resistance can still be tracked by estimating from

a sliding time window of measurements [118]. But it is not known if the parameter

estimation accuracy remains acceptable if there is no change in line loading during

a time window.

Recursive estimation by a Kalman filter is an alternative approach to track

changes in impedance parameters while filtering random measurement noise and

estimating calibration factors [121]; yet, this method requires weather data from

the vicinity of the overhead line in addition to voltage and current measurements.
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2.4 Discussion and conclusion

In this chapter, a literature review of previous research relating to the real-time

monitoring of overhead line impedance parameters has been presented. Relevant

concepts in transmission line theory, synchrophasor measurement and estimation

theory have been discussed. The previous section has focussed on how these fields

overlap in past research on overhead line impedance parameter identification.

It is desirable to maximize the accuracy of estimated impedance parameter

values to obtain the most accurate system representation. The minimum accuracy

requirements depend on the specific practical application and the discretion of

power system operators. For conductor temperature monitoring, the error level

should be at least one order of magnitude smaller than the operating temperatures,

which can reach up to 150 ◦C [43]. Hence, errors in resistance estimates should

not exceed 4 %, which corresponds to 10 ◦C given a temperature coefficient of

0.004 ◦C−1.

To the best of the author’s knowledge, there is no existing method capable

of monitoring overhead line impedance parameters in real-time such that average

conductor temperature can be tracked using synchrophasor measurements that

are subject to random and systematic measurement errors. This conclusion is

supported by recent field studies, which have demonstrated difficulties in achieving

consistently accurate overhead line impedance parameter tracking [4, 130]. This

gap will be addressed by the work presented in this thesis. In order to build

upon the existing methods, their relative strengths and weaknesses must first be

understood.

Previous comparative studies have been limited since they have compared a

maximum of four methods at a time, in some cases using only simulated phasor

measurements [114, 127]. The parameter estimation accuracies reported from

different studies cannot be compared directly since they are based on different types

of error quantities and on data sets from a range of overhead line systems with

varying types and levels of measurement noise; furthermore, some studies report

accuracies only for average parameter estimates rather than real-time monitoring.

In the next chapter, eight different existing methods are compared under the

same conditions, using field data as well as a simulation study. Chapters 4 and 5

will build on strengths such as the simplicity of the single measurement method

and compensation of systematic errors with correction factors, to develop novel

methods that can track overhead line impedance parameters with acceptable ac-

curacy.
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Chapter 3

Comparison of existing

synchrophasor-based impedance

parameter estimation methods

3.1 Introduction

In Chapter 2, existing research relating to synchrophasor-based impedance pa-

rameter estimation of transmission lines was reviewed; in particular, an overview

was given of assumptions about line models, phasor measurements and estimation

methods. The choice of assumptions and estimation method is crucial, since it de-

termines the achievable accuracy of the determined impedance parameter values.

Existing approaches assume either a single-phase model, which can be used as

an equivalent of a transposed three-phase line, or a full three-phase model, which

is more complex but reflects the asymmetry of untransposed lines. In terms of

system dynamics, impedance parameters are often assumed to be constant over

time. On the one hand, there is an incentive to keep the assumed line model

as simple as possible, with the minimum number of unknown variables, as this

reduces the complexity and improves the conditioning of the parameter estimation

problem. On the other hand, it is vital for the model to reflect the system with

sufficient detail, such that the relevant electrical properties can be extracted with

the required accuracy.

With regards to the phasor measurements, most approaches assume that they

are subject to random noise with a Gaussian distribution. Based on this assump-

tion, several previous works propose least-squares estimation from an overdeter-

mined set to obtain parameter values; in addition, they may use statistical tests

to detect and remove outliers. If the assumptions about line models and measure-
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ments hold for the system under consideration, the existing approaches produce

parameter estimates with good accuracy, as has been demonstrated in many case

studies. But transmission line systems and field measurement conditions vary

widely, which means that these assumptions can be too general and rigid, and the

methods will fail to be effective in all cases. In order to monitor thermal changes

in resistance, parameter values need to be reported in real-time, based on a limited

set of measurements. In addition to random errors, phasor measurements can be

subject to systematic errors that can distort impedance parameter estimates if not

reflected in the system model.

In this chapter, it will be shown that there is at least one overhead line system

for which a range of existing impedance parameter estimation methods is not

effective for real-time monitoring, and that systematic measurement errors are a

key barrier to achieving acceptable parameter estimation accuracy. A minimum

acceptable level of parameter estimation accuracy is a 4 % error, corresponding

to 10 ◦C given a resistance-temperature coefficient of 0.004 ◦C−1. The content of

this chapter is structured as follows: firstly, a representative selection of existing

parameter estimation methods is given and assessment criteria are defined; the

third section gives results of application of the methods to field data, revealing

their limitations; the fourth section gives results of application to simulated phasor

measurement with the aim of reproducing failures observed in field data results;

the final section concludes the chapter.

3.2 Overview of methods under consideration

In Chapter 2, a wide range of existing approaches for line impedance parameter

estimation have been identified, consisting of different combinations of possible

transmission line models and calculation or estimation methods. It is not feasible

to consider each of the identified approaches individually in this chapter. However,

many approaches are similar in their assumptions and thus a sample of eight meth-

ods has been selected. Table 3.1 lists the selected estimation methods, grouped

by the assumed transmission line model. The sample includes methods assuming

transposed and untransposed lines, pi-circuit and two-port network models, linear

and non-liner estimation as well as methods with and without calibration factors.

Sections 3.2.1 and 3.2.2 will give details on how each selected method works.
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Table 3.1: Selection of parameter estimation methods, grouped by transmission
line model

Model: Pi-circuit Two-port network

Transposed Single Measurement (SM1)
Total Least-squares (TLS1)
Non-linear Optimal Estimator
(NLOE1)

Two-port Linear Least-
squares - Single-phase
(TPLL1)

Untransposed Linear Least-squares (LLS3)
Non-linear Constraint Optimization
(NLCO3)
Non-linear Least-squares with Cali-
bration Factors (NLLC3)

Two-port Linear Least-
squares - Three-phase
(TPLL3)

3.2.1 Single-phase methods

In this thesis, the term ’single-phase methods’ refers to methods that identify pos-

itive sequence impedance and admittance parameters for transposed transmission

lines. The positive sequence is modelled as a single-phase pi-circuit as shown in

Figure 3.1. There are two unknowns: the positive sequence impedance Z and pos-

itive sequence admittance Y to be determined from synchronized phasor measure-

ments of voltage and current; let Vs, Is, Vr, Ir be the positive sequence quantities,

subscripts r and s denote sending and receiving ends, respectively.

R L

C

2

C

2

G

2

G

2

Y

2

Y

2

Z

Vs V
r

I
s

I
r

Figure 3.1: Diagram of a pi-circuit

By Kirchhoff’s Current and Voltage Laws,

Vs = (Is −
Y

2
Vs)Z + Vr (3.1)

Is = (Vs + Vr)
Y

2
+ Ir, (3.2)

where Vs, Is, Vr, Ir, Z, Y ∈ C, Z = R + jX, X = 2πfL, Y = G + jB, B = 2πfC

and R,X,G,B, L, C, f ∈ R≥0. R is the resistance, X is the inductive reactance, G

is the conductance and B is the capacitive susceptance. It is assumed that sets of

measurements Vs, Is, Vr, Ir are reported at regular time intervals.
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3.2.1.1 Single Measurement (SM1)

The SM1 method calculates positive sequence impedance Z and admittance Y

from a single set of measurements Vs, Is, Vr, Ir measured at the same time instant

[115]. The two measurement equations (3.1) and (3.2) form a fully determined set,

hence, they can be rearranged to give formulae for Z and Y :

Z =
V 2
s − V 2

r

VsIr + VrIs
(3.3)

Y = 2
Is − Ir
Vs + Vr

. (3.4)

Equations (3.3) and (3.4) are used to calculate parameter estimates in real time

for every available set of measurements Vs, Is, Vr, Ir.

3.2.1.2 Total Least-squares (TLS1)

The TLS1 method is based on a similar principle as ordinary least-squares, with the

difference that random errors are not only assumed to occur in the measurement

vector, but also in the design matrix [118, 119]. The existing total least-squares

approaches assume that shunt conductance G is zero. Based on (3.1) and (3.2),

the following model equations are used:

Is = (Vs − Vr)YZ + Vs
Y

2
(3.5)

Ir = (Vs − Vr)YZ − Vr
Y

2
, (3.6)

where YZ = 1/Z = GZ + jBZ , Y = jB. These equations can be expanded and

written in matrix form by taking real and imaginary parts. Suppose n ∈ N mea-

surement sets from consecutive time instants are available. Let ∆V = Vs − Vr =

Re(∆V ) + j Im(∆V ) and define matrices H ∈ R4n×3,x ∈ R3 and M ∈ R4n, where

M =


Re(Is)

Im(Is)

Re(Ir)

Im(Ir)

 ,H =


Re(∆V ) − Im(∆V ) − Im(Vs)

Im(∆V ) Re(∆V ) Re(Vs)

Re(∆V ) − Im(∆V ) − Im(Vr)

Im(∆V ) Re(∆V ) Re(Vr)

 ,x =

GZ

BZ

B/2

 . (3.7)

Then (3.5) and (3.6) are summarized by the matrix equation

M = Hx. (3.8)
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To model random measurement noise, equation (3.8) is extended by two matrices

E ∈ R4n×3, ε ∈ R4n:

M + ε = (H + E)x, (3.9)

which can be rewritten using augmented matrices:

([H M] + [E ε])

[
x

−1

]
= 0. (3.10)

The best estimate of parameter vector x minimizes the sum of squares of the

elements of matrix [E ε] and is found from the singular value decomposition of

matrix [H M] [119].

3.2.1.3 Non-linear Optimal Estimator (NLOE1)

The NLOE1 uses only one of the pi-circuit model equations, equation (3.1), with

an additional unknown variable, synchronization angle α ∈ R [111]. Impedance

parameter estimates are found from n ∈ N sets of phasor measurements by mini-

mizing a cost function that is based on the model equation (3.1) and estimates of

the measured quantities and synchronization angle. Rewrite (3.1) as

Vs − IsZ + VsZ
Y

2
− Vr exp(jα) = 0. (3.11)

Define a vector of variables to be estimated, P ∈ R5+6n,

P = [R,X,G,B, vsk , wsk , vrk , θsk , ρsk , θrk , α], k = 1, 2, 3, . . . , n,

where v and w are voltage and current magnitude, respectively, and θ, ρ ∈ [−π, π]

are voltage and current phase angle, respectively. Let F(P) ∈ R8n+1, F(P) =

[f1k , f2k , g1k , g2k , g3k , g4k , g5k , g6k , h]T be the vector of measurement functions, where

fpk : R10 → R, p = 1, 2, gqk , h : R→ R, q = 1, 2, 3, . . . , 6, and

f1k = Re(Vsk − IskZ + VskZY/2− Vrk exp(jα)),

f2k = Im(Vsk − IskZ + VskZY/2− Vrk exp(jα))
(3.12)

g1k = vsk , g2k = wsk , g3k = vrk ,

g4k = θsk , g5k = ρsk , g6k = θrk , h = α.
(3.13)

The voltage and current magnitudes v, w and phase angles θ, ρ as well as syn-

chronization angle α are included in the vector of unknowns P and vector of

measurement functions F(P) such that the residuals between estimated values

and measured or assumed values can be used to detect individual measurements
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with errors larger than the measurement uncertainty; these can be caused by tran-

sient failure of the measurement instrumentation. Hence, define the measurement

vector M ∈ R8n+1 such that

M = [Mi, ṽsk , w̃sk , ṽrk , θ̃sk , ρ̃sk , θ̃rk , 0]T ,Mi = 0, i = 1, ..., 2n, k = 1, 2, 3, . . . , n,

where the tilde denotes measured values of current and voltage magnitude and

phase angle. The first 2n entries of M are set to zero since for exact measurements

and parameter values, f1k , f2k = 0 according to the model equation (3.11). The

estimation model can then be expressed as

M = F(P) + ε, (3.14)

where ε ∈ R8n+1 models measurement uncertainty. Define J ∈ R:

J = [M− F(P)]T [M− F(P)]. (3.15)

The best estimate of parameter vector P is computed iteratively such that J is

minimized. The Chi-square test is applied to detect any bad measurements, which

can then be removed and to obtain a new, more accurate parameter estimate from

the remaining measurements.

3.2.1.4 Two-port Linear Least-squares - Single-phase (TPLL1)

Figure 3.2 shows a two-port network that models a transmission line.

Transmission
line

Is Ir

Vs Vr

Figure 3.2: Diagram of a two-port network

The sending end signals can be expressed in terms of the receiving end signals:

Vs = AVr +BIr (3.16)

Is = CVr +DIr. (3.17)

A,B,C,D ∈ C are constant parameter values. In general, these two equations

decouple the sending end voltage and current. Constants A,B can be used to

calculate Vs from Vr, Ir and independently, C,D can be used to calculate Is.
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In order to infer values of transmission line impedance and admittance, assump-

tions must be made about the internal structure of the two-port network. If a

symmetrical pi-circuit is assumed, the following relationships hold:

A = 1 + ZY/2 (3.18)

B = Z (3.19)

C = Y + ZY 2/4 (3.20)

D = 1 + ZY/2. (3.21)

Thus it suffices to find constants A and B in order to calculate values for Z and Y .

Given n, n ≥ 2, sets of phasor measurements, the linear least-squares estimates of

A and B are computed as follows [114]. Firstly, equation (3.16) is split into real

and imaginary parts:

Re(Vs) = Re(Vr) Re(A)− Im(Vr) Im(A) + Re(Ir) Re(B)− Im(Ir) Im(B) (3.22)

Im(Vs) = Im(Vr) Re(A) + Re(Vr) Im(A) + Im(Ir) Re(B) + Re(Ir) Im(B) .(3.23)

Define matrices M ∈ R2n,H ∈ R2n×4,θ ∈ R4, where

H =

[
Re(Vrk) − Im(Vrk) Re(Irk) − Im(Irk)

Im(Vrk) Re(Vrk) Im(Irk) Re(Irk)

]
, M =

[
Re(Vsk)

Im(Vsk)

]
,

θ =
[
Re(A) Im(A) Re(B) Im(B)

]
with k = 1, 2, 3, . . . , n. Then (3.22) and (3.23) can be summarized by the matrix

equation

M = Hθ + ε, (3.24)

where ε ∈ R2n is an error term. The linear least-squares estimate of θ is computed

using

θ̂ = (HTH)−1HTM. (3.25)

From θ = [θ̂1, θ̂2, θ̂3, θ̂4], estimates of A and B are obtained:

Â = θ̂1 + jθ̂2, B̂ = θ̂3 + jθ̂4.

Estimates of impedance parameters Z and Y are then calculated as follows, using

(3.18) and (3.19):

Ẑ = B̂ (3.26)

Ŷ = 2(Â− 1)/Ẑ. (3.27)
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Parameters are estimated at regular time intervals from a moving window consist-

ing of the last n measurement sets.

3.2.2 Three-phase methods

The methods that identify impedance and admittance matrices for the general

three-phase transmission line model are referred to as ’three-phase methods’ in

this thesis. This section first gives an overview of the general three-phase line

model. Figure 3.3 shows a diagram of a three-phase pi-circuit.

Ground

a

b

c

Za

Zb

Zc

Vsa

Vsb

Vsc

Vra

Vrb

Vrc

Isa

Isb

Isc

Ira

Irb

Irc

Zab

Zbc

Zca

Figure 3.3: Diagram of a three-phase equivalent pi-circuit

Each of the phases, labelled a, b and c, has a series component Za, Zb, Zc ∈ C,

which represents the self impedance, and a shunt component Ya, Yb, Yc ∈ C, which

represents the self admittance to ground. There is mutual impedance between

each pair of phases, modelled by Zab, Zbc, Zca ∈ C, as well as mutual admit-

tance, Yab, Ybc, Yca ∈ C. Measurements of voltage and current are modelled by

Vsa , Vsb , Vsc , Vra , Vrb , Vrc ∈ C and Isa , Isb , Isc , Ira , Irb , Irc ∈ C, respectively, and sets

of these are assumed to be reported at regular time intervals.
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For ease of manipulation, the three-phase measurements are summarized as vectors

Vs, Is,Vr, Ir ∈ C3, where

Vs =
[
Vsa Vsb Vsc

]T
, Vr =

[
Vra Vrb Vrc

]T
,

Is =
[
Isa Isb Isc

]T
, Ir =

[
Ira Irb Irc

]T
.

Self and mutual impedance and admittance are summarized as matrices Z,Y ∈
C3×3, where

Z =

Za Zab Zac

Zab Zb Zbc

Zac Zbc Zc

 =

 Ra + jXa Rab + jXab Rac + jXac

Rab + jXab Rb + jXb Rbc + jXbc

Rac + jXac Rbc + jXbc Rc + jXc

 ,

Y =

Ya Yab Yac

Yab Yb Ybc

Yac Ybc Yc

 =

 Ga + jBa Gab + jBab Gac + jBac

Gab + jBab Gb + jBb Gbc + jBbc

Gac + jBac Gbc + jBbc Gc + jBc

 .
Ra, Rb, Rc, Rab, Rbc, Rac, Xa, Xb, Xc, Xab, Xbc, Xac, Ga, Gb, Gc, Gab, Gbc, Gac, Ba, Bb,

Bc, Bab, Bbc, Bac ∈ R≥0 are the self and mutual resistance, reactance, conductance

and susceptance values. The voltages, currents, impedance and admittance com-

ponents are related by the following matrix equations:

Vs −Vr = Z(Is −YVs/2) (3.28)

Is − Ir = Y(Vs + Vr)/2. (3.29)

Four methods that are designed to estimate values of Z and Y from sets of mea-

surements Vs, Is,Vr, Ir have been selected for comparison in this chapter; each

method is explained in the following paragraphs.

3.2.2.1 Linear Least-squares (LLS3)

The impedance and admittance matrices Z and Y of a three-phase transmission

line can be estimated using linear least-squares estimation [127]. Shunt conduc-

tance is assumed to be zero, hence, Y = jB. Define matrices ∆V = Vs −Vr,

∆I = Is − Ir ∈ C3. The model equations (3.28) and (3.29) are rewritten as

∆V = Z(Is −YVs/2) (3.30)

∆I = Y(Vs + Vr)/2. (3.31)
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Equation (3.30) can be made linear in unknown matrices by multiplying with

y = g + jb = Z−1:

Is = YVs/2 + y∆V (3.32)

Equations (3.31) and (3.32) each contain three scalar equations; if real and imag-

inary parts are taken, the system is described by twelve real, scalar equations. To

summarize these into one matrix equation, let ΣV = Vs + Vr and define vectors

M ∈ R12,θ ∈ R18 and matrix H ∈ R12×18, where

M =[Re(Is), Im(Is),Re(∆I), Im(∆I)]T ,θ = [g,b,B]T ,

with

g = [ga, gab, gac, gb, gbc, gc],b = [ba, bab, bac, bb, bbc, bc],

B = [Ba, Bab, Bac, Bb, Bbc, Bc],

and

H =



−V Imsa 0 0 V Resa
0 0 −ΣV Imsa 0 0 ΣV Resa

0 0

−V Imsb −V Imsa 0 V Resb
V Resa

0 −ΣV Imsb
−ΣV Ima 0 ΣV Resb

ΣV Rea 0

−V Imsc 0 −V Imsa V Resc
0 V Resa

−ΣV Imsc 0 −ΣV Imsa ΣV Resc
0 ΣV Resa

0 −V Imsb 0 0 V Resb
0 0 −ΣV Imsb

0 0 ΣV Resb
0

0 −V Imsc −V Imsb 0 V Resc
V Resb

0 −ΣV Imsc −ΣV Imsb
0 ΣV Resc

ΣV Resb

0 0 −V Imsc 0 0 V Resc
0 0 −ΣV Imsc 0 0 ΣV Resc

∆V Rea 0 0 ∆V Ima 0 0 0 0 0 0 0 0

∆V Reb ∆V Rea 0 ∆V Imb ∆V Ima 0 0 0 0 0 0 0

∆V Rec 0 ∆V Rea ∆V Imc 0 ∆V Ima 0 0 0 0 0 0

0 ∆V Reb 0 0 ∆V Imb 0 0 0 0 0 0 0

0 ∆V Rec ∆V Reb 0 ∆V Imc ∆V Imb 0 0 0 0 0 0

0 0 ∆V Rec 0 0 ∆V Imc 0 0 0 0 0 0

−∆V Ima 0 0 ∆V Rea 0 0 0 0 0 0 0 0

−∆V Imb −∆V Ima 0 ∆V Reb ∆V Rea 0 0 0 0 0 0 0

−∆V Imc 0 −∆V Ima ∆V Rec 0 ∆V Rea 0 0 0 0 0 0

0 −∆V Imb 0 0 ∆V Imb 0 0 0 0 0 0 0

0 −∆V Imc −∆V Imb 0 ∆V Imc ∆V Reb 0 0 0 0 0 0

0 0 −∆V Imc 0 0 ∆V Rec 0 0 0 0 0 0



T

.

Superscripts Re and Im refer to real and imaginary parts. The matrix equation

that summarizes the twelve real equations is

M = Hθ. (3.33)

Given n, n ≥ 2 sets of phasor measurements, matrices M and H are expanded

to give M ∈ R12n,H ∈ R12n×18. Linear least-squares estimates of g,b and B are

obtained using

θ̂ = [ĝ, b̂, B̂] = (HTH)−1HTM. (3.34)
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Estimates of impedance Z and admittance Y are given by

Ẑ = (ĝ + jb̂)−1 (3.35)

Ŷ = jB̂. (3.36)

Estimates Ẑ and Ŷ are computed at regular time intervals from the most recent

n measurement sets.

3.2.2.2 Non-linear Least-squares with Calibration Factors (NLLC3)

The calibration factors of instrument transformers that are part of the phasor

measurement chain are often unknown. To increase the accuracy of estimated

impedance parameter values, the NLLC3 method assumes that instrument trans-

formers at one line end have been calibrated and calibration factors for the other

line end are estimated simultaneously with the parameter values [125].

Let KV,KI ∈ C3×3 be diagonal matrices of calibration factors for the voltage

and current measurements Vr, Ir at the receiving line end. The three-phase model

equations are then

Vs = KVVr + Z(Is −YVs/2) (3.37)

Vs = KVVr + Z(KIIr + YKVVr/2). (3.38)

Let

X1 = (I + ZY)KV,X2 = (I + ZY)2,X3 = (I + ZY)Z,X4 = ZKI,

where I ∈ R3×3 is the three-dimensional identity matrix. Then (3.37) and (3.38)

can be rewritten as

0 = X2Vs −X1Vr −X3Is (3.39)

0 = −Vs + X1Vr + X4Ir. (3.40)

The diagonal elements KVa , KVb , KVc ∈ R of KV can be expressed as

0 = KVa −

√
X1a

(X1
−1X2)a

, 0 = KVb −

√
X1b

(X1
−1X2)b

, 0 = KVc −

√
X1c

(X1
−1X2)c

,

(3.41)

where subscripts a, b, c refer to the three diagonal elements of the respective ma-

trices. Notice that the negative square root is ignored as the calibration factors
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must have a positive real part. Further, define X5 ∈ C3×3, where

0 = X5 −X1KV. (3.42)

Then

0 = Z−X5
−1X3 (3.43)

0 = Y − Z−1(X5
−1 − I) (3.44)

0 = KIa −
X4a

Za
, 0 = KIb −

X4b

Zb
, 0 = KIc −

X4c

Zc
. (3.45)

Equations (3.39) to (3.45) are used to define a vector of objective functions F ∈ C39

to be minimised to obtain an optimal estimate θ̂ of θ ∈ C63, the vector of unknowns

that consists of the non-zero elements of matrices X1,X2,X3,X4,X5,KV,KI,Z,Y.

Multiple measurement sets Vs, Is,Vr, Ir are required to compute a value for θ̂;

given n ∈ N measurement sets, the function vector expands to F ∈ C6n+33. At

each time instant, parameter vector θ̂ is computed by a non-linear least-squares

estimator such as the Newton-Raphson method, using the most recent n measure-

ment sets.

3.2.2.3 Non-linear Constraint Optimization (NLCO3)

The parameter estimation problem for the untransposed line model can also be for-

mulated as a non-linear constrained optimization problem [126]. Firstly, a variable

D ∈ C3×3,D = ZY, is introduced, and let

D =

Da DabDac

Dab Db Dbc

DacDbc Dc

 =

 Sa + jTa Sab + jTab Sac + jTac

Sab + jTab Sb + jTb Sbc + jTbc

Sac + jTac Sbc + jTbc Sc + jTc

 ,
Da, Db, Dc, Dab, Dbc, Dac ∈ C, Sa, Sb, Sc, Sab, Sbc, Sac, Ta, Tb, Tc, Tab, Tbc, Tac ∈ R.

The model equations become

∆V = ZIs −DVs/2 (3.46)

∆I = Y(Vs + Vr)/2. (3.47)
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Matrix equations (3.46) and (3.47) can be expanded into six scalar equations that

are used to formulate objective functions f1, f2, f3 : C6 → C, f4, f5, f6 : C3 → C:

f1 = ZaIsa + ZabIsb + ZacIsc − (DaVsa +DabVsb +DacVsc)/2 (3.48)

f2 = ZabIsa + ZbIsb + ZbcIsc − (DabVsa +DbVsb +DbcVsc)/2 (3.49)

f3 = ZacIsa + ZbcIsb + ZcIsc − (DacVsa +DbcVsb +DcVsc)/2 (3.50)

f4 = (Ya(Vsa + Vra) + Yab(Vsb + Vrb) + Yac(Vsc + Vrc))/2 (3.51)

f5 = (Yab(Vsa + Vra) + Yb(Vsb + Vrb) + Ybc(Vsc + Vrc))/2 (3.52)

f6 = (Yac(Vsa + Vra) + Ybc(Vsb + Vrb) + Yc(Vsc + Vrc))/2 (3.53)

Define the parameter vector θ ∈ R30,

θ = [Ra, Rb, Rc, Rab, Rbc, Rac, Xa, Xb, Xc, Xab, Xbc, Xac,

Sa, Sb, Sc, Sab, Sbc, Sac, Ta, Tb, Tc, Tab, Tbc, Tac,

Ba, Bb, Bc, Bab, Bbc, Bac]

and let F(θ) ∈ R12 be the vector of objective functions,

F(θ) = [fRe1 , fRe2 , fRe3 , f Im1 , f Im2 , f Im3 , fRe4 , fRe5 , fRe6 f Im4 , f Im5 , f Im6 ]T .

From the relation D = ZY, six non-linear functions g1, g2, g3, g4, g5, g6 : C6 → C
are formulated:

g1 = ZaYa + ZabYab + ZacYac (3.54)

g2 = ZabYab + ZbYb + ZbcYbc (3.55)

g3 = ZacYac + ZbcYbc + ZcYc (3.56)

g4 = ZaYab + ZabYb + ZacYbc (3.57)

g5 = ZaYac + ZabYbc + ZacYc (3.58)

g6 = ZabYac + ZbYbc + ZbcYc, (3.59)

which can be expanded into real and imaginary parts to define twelve equality

constraints:

Re(g1) = Sa Re(g2) = Sb Re(g3) = Sc (3.60)

Im(g1) = Ta Im(g2) = Tb Im(g3) = Tc (3.61)

Re(g4) = Sab Re(g5) = Sac Re(g6) = Sbc (3.62)

Im(g4) = Tab Im(g5) = Tac Im(g6) = Tbc. (3.63)
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Additionally, inequality constraints can be defined based on the fact that line series

resistance is normally smaller than series reactance,

Ra ≤ Xa Rb ≤ Xb Rc ≤ Xc (3.64)

Rab ≤ Xab Rbc ≤ Xbc Rac ≤ Xac. (3.65)

Define the measurement vector M ∈ R12 as M = [∆VT,∆IT]T . An optimal

parameter estimate is found by solving the following non-linear constrained opti-

mization problem:

minimize
θ

|F(θ)−M|2

subject to (3.60) to (3.65),

θi − 0.1|θi| ≤ θi ≤ θi + 0.1|θi|. (3.66)

θi, i = 1, . . . , 30, are the starting points for the optimization and equal to theoret-

ically calculated parameter values. Lower and upper bounds are set to θi±10 %.

Given n measurement sets, the dimensions of vectors F and M increase to F,M ∈
R12n. At each time instant, a window of the most recent n measurements is used to

obtain an estimate θ̂, from which estimated impedance and admittance matrices

Ẑ and Ŷ are obtained.

3.2.2.4 Two-port Linear Least-squares - Three-phase (TPLL3)

As was explained in Section 3.2.1.4, a single-phase transmission line can be mod-

elled by a two-port network whereby the sending and receiving end signals are

related by the chain parameters A,B,C,D as in (3.16) and (3.17). This rep-

resentation can be extended to the three-phase case [128]. Firstly, rearrange the

three-phase model equations such that Vs, Is are expressed in terms of Vr, Ir,Z,Y:

Vs = (I + ZY)Vr/2 + ZIr (3.67)

Is = (Y + YZY)Vr/4 + YZIr/2. (3.68)

Then, define matrices A,B,C,D ∈ C3×3, where

A = I + ZY/2,B = Z,C = YZY/4 + Y,D = I + YZ/2, (3.69)

and I ∈ R3×3 is the identity matrix.
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Substitute (3.69) into (3.67) and (3.68) to get

Vs = AVr + BIr (3.70)

Is = CVr + DIr. (3.71)

As for the single-phase case, it suffices to consider (3.70) and to find values for A

and B, from which estimates of Z and Y are derived. Define θ ∈ C18 as the vector

of unknown elements of A and B,

θ = [A11, A12, . . . , Aij, B11, B12, . . . , Bij]
T ,

where i, j = 1, 2, 3 refer to the rows columns of A and B. In addition, define

H ∈ C3×18, H = [HV HI],HV,HI ∈ C3×9, where

HV =

VT
r 0 0

0 VT
r 0

0 0 VT
r

 , HI =

ITr 0 0

0 ITr 0

0 0 ITr

 .
Then (3.70) can be expressed as the matrix equation

Vs = Hθ. (3.72)

For n sets of measurements, the dimensions of Vs and H become Vs ∈ C3n,H ∈
C3n×18. The linear least-squares estimate of θ is calculated using

θ̂ = (H∗H)−1H∗Vs, (3.73)

where the superscript ∗ denotes the conjugate transpose of a matrix. θ̂ gives

estimates of the elements of A and B, θ̂ = [Â11, Â12, . . . , Âij, B̂11, B̂12, . . . , B̂ij]
T ,

such that

Â =

Â11 Â12 Â13

Â21 Â22 Â23

Â31 Â32 Â33

 , B̂ =

B̂11 B̂12 B̂13

B̂21 B̂22 B̂23

B̂31 B̂32 B̂33

 .
Hence, estimates of the impedance and admittance matrices Z and Y are calcu-

lated:

Ẑ = B̂ (3.74)

Ŷ = 2(Â− I)Ẑ
−1
. (3.75)

Ẑ and Ŷ are computed at regular time steps from the last n sets of measurements.
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3.2.2.5 Computation of positive sequence parameters for three-phase

methods

To compare estimated impedance parameters from single-phase and three-phase

methods, positive sequence components are obtained from the impedance and

admittance matrices Ẑ and Ŷ through the sequence transformation: Ẑ0 Ẑ01 Ẑ02

Ẑ10 Ẑ1 Ẑ12

Ẑ20 Ẑ21 Ẑ2

 =
1

3

1 1 1

1 a2 a

1 a a2


 Ẑa Ẑab ẐacẐab Ẑb Ẑbc

Ẑac Ẑbc Ẑc


1 1 1

1 a a2

1 a2 a

 (3.76)

where a ∈ C, a = exp(j 2π
3

), Ẑ0, Ẑ1, Ẑ2 ∈ C are the zero, positive and negative

sequence self impedances, respectively, and Ẑ01, Ẑ10, Ẑ02, Ẑ20, Ẑ12, Ẑ21 ∈ C are mu-

tual sequence impedances, which are zero for lines with perfect phase symmetry.

Ẑ1 is computed as follows:

Ẑ1 =
1

3
(Ẑa + Ẑb + Ẑc − (Ẑab + Ẑbc + Ẑac)). (3.77)

Thus, the positive sequence impedance is the difference between the average self

impedance and average mutual impedance of the three phases. Ẑ1 is the quantity

that is compared to the estimated positive sequence impedance from the single-

phase methods. Ŷ1 is calculated in the same manner.
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3.3 Assessment criteria for parameter estimation

results

A set of criteria must be defined to assess and compare the effectiveness of the eight

selected impedance parameter estimation methods. An ideal numerical criterion

is the error between synchrophasor-based parameter estimates and independently

measured reference values. In practice, such reference values are rarely available.

But theoretical reference values can be calculated using knowledge of geometrical

and electrical properties of the overhead line [46]. Furthermore, measurements of

conductor temperature or ambient weather conditions can be used to calculate

thermal variation of the impedance parameter values over time [43].

Table 3.2 lists two assessment criteria for the synchrophasor-based estimated

values of positive sequence impedance and admittance, defined with respect to the-

oretically calculated values. The first criterion is based on the median parameter

estimates for a given time period and assesses whether the estimates are physically

possible and consistent with electromagnetic theory. Negative parameter values,

for instance, are unphysical and therefore unacceptable. A generous acceptability

margin of ±50 % is set as the impedance of the actual overhead line system can

differ from the theoretical reference values due to incorrect assumptions in the

theoretical calculation; for instance, the line properties can change through ageing

or alterations by the network operator. For conductance, the limit of the first cri-

terion is defined such that an acceptable estimated value accounts for a difference

in current across the line of less than 10 % of minimum current. The reason for

this choice is that a conductance estimate can be further than ±50 % from the

theoretical value, yet cause a difference in current that is negligible compared to

the measurement uncertainty (up to 1 % according to TVE limits [56]), and thus

the estimate is still acceptable.

The second criterion, the Interdecile Range (IDR) of the estimated parameter

values, assesses the level of variation over time. Resistance-temperature coefficients

of common overhead line conductors are of the order of 0.004 ◦C−1; therefore resis-

tance can change by several percent of the reference value at 20 ◦C, depending on

the conductor temperature during the given time period. If the theoretically pre-

dicted range is below 0.4 % of the reference value (less than 1° change in conductor

temperature), interdecile ranges of the synchrophasor-based resistance estimates

of up to 0.8 % are acceptable to allow for measurement uncertainty; otherwise, the

measured IDR is deemed acceptable if it does not exceed theoretical predictions

by more than 50 %.

67



Table 3.2: Assessment criteria for acceptable parameter estimates

Median of estimated parameter
values over a given time period

Interdecile Range (IDR) of
estimated parameter values over

a given time period

Resistance
within ±50 % of the theoretical

value

less than maximum of {0.8 % of
theoretical reference value, 150 %

of theoretical range}

Reactance less than 5 % of the theoretical
parameter value

Susceptance

Conductance
within ±10 % of (minimum line
current/nominal phase voltage)

less than 10 % of (minimum line
current/nominal phase voltage)

The self and mutual inductive reactance and capacitive susceptance are related

to conductor height above ground and can thus change due to thermal expansion

of the overhead line. But the changes in the positive sequence quantities are negli-

gible as discussed in Appendix A.1, hence, series reactance and shunt susceptance

are assumed constant in this instance. The limit of 5 % for IDR has been chosen

since repeated estimations of reactance and susceptance will not yield exactly the

same value due to random measurement uncertainty; a 5 % limit means that a

measurement uncertainty of 1 %, which corresponds to an expanded uncertainty

of ±2 %, is acceptable. Conductance can change with the level of humidity and the

estimates have uncertainty; therefore variation within the limits of associated cur-

rent difference of up to 10 % of minimum current is acceptable. This set of criteria

forms the basis for the comparison of synchrophasor-based parameter estimation

results that will be presented in Sections 3.4 and 3.5.
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3.4 Application of methods to field data

All of the methods introduced in Section 3.2 have been applied to field measure-

ments to estimate impedance parameters for an actual transmission line. In the

first part of this section, details are given of the known properties of the trans-

mission line system and the synchrophasor measurements; in the second part,

the results of the parameter estimation are presented, followed by a comparative

discussion of the methods.

3.4.1 Properties of the line and the data

The transmission line under consideration is a fully transposed three-phase over-

head line of length 521 km located in Namibia. The nominal voltage and frequency

are 330 kV and 50 Hz, respectively, and the line supplies electricity generated at a

hydroelectric power plant in the north of the country to load centres in the south.

3.4.1.1 Field measurements

During a field measurement campaign, GPS-synchronized power quality instru-

ments recorded rms amplitudes and phase angles of the fundamental frequency

components of voltage and current signals at 0.1 s intervals with an accuracy of

0.1 %. The rms values and phase angles were combined into complex phasors and

averaged over one-minute intervals (600 measurements), giving 1440 sets of send-

ing and receiving end voltage and current phasors for each 24-hour period that

were used for parameter estimation. By taking averages of the measurements,

random uncertainty was reduced by a factor of
√

600 = 24.5. The interval length

of one minute was chosen such that thermal variation in impedance can be tracked;

typical thermal time constants are between 5 min and 20 min [43].

For the purpose of comparing the parameter estimates given by the methods

explained in Section 3.2, measurements from one 24-hour period with a variable

load profile have been chosen for presentation in this chapter such that the methods

can be tested under a range of conditions. There are differences between daily load

profiles, but the chosen period is not atypical for the overhead line.

The magnitude of the positive sequence line-to-line voltage phasors at each line

end is shown in Figure 3.4; the sending end voltage is less variable and closer to

the nominal voltage level than the receiving end values as expected for the voltage

near a large generation plant.
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Figure 3.4: Positive sequence line-to-line voltage amplitude

In Figure 3.5, it can be observed that the receiving end voltage lags the sending

end for the majority of the period, except in the initial hours, between 22:30 and

01:30.
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Figure 3.5: Positive sequence voltage phase angle
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The voltage measurements were taken line-to-line (in delta configuration) be-

cause no neutral or direct ground connection was available in the substations.

Zero sequence components are lost if voltages are measured in delta configuration,

but the positive sequence is fully preserved as shown in Appendix A.2. Since the

selected algorithms for impedance parameter estimation require line-to-neutral or

line-to-ground (star configuration) voltages, the following delta-star conversion has

been applied:

Vstar =
1√
3
Vdelta exp(−jπ/6), (3.78)

where Vdelta ∈ C3 is substituted by the three-phase measurements from each line

end.

Figure 3.6 shows that the current magnitude is lowest in the hours around

midnight and peaks at 600 A at 18:00; in general, the sending end current is larger

than the receiving end, which points to significant capacitive leakage along the

line.
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Figure 3.6: Positive sequence current amplitude

The level of active power is shown in Figure 3.7; more power is transferred

in the daytime, especially during the morning and early evening hours. Around

midnight, when demand is below 20 MW, active power is actually negative, which

implies a reversal of the direction of power flow; this observation corresponds to

the time when the receiving end voltage phase angle leads the sending end.
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Figure 3.7: Positive sequence active power

3.4.1.2 Theoretical impedance parameter calculation

The MATLAB® SimscapeTM Power SystemsTM program power lineparam was

used to calculate per unit length values of resistance, inductance and capacitance.

The inputs to the program are number and types of conductors as well as tower

geometry and ground resistivity; formulae derived from electromagnetic theory

are used to compute per unit length positive sequence parameters [48]. Pi-circuit

equivalent parameter values are shown in Table 3.3. The parameter values obtained

in this manner are likely to differ from actual values since conductor properties

change over time due to ageing and exposition to the elements; however, this

calculation method is a standard procedure and provides the best estimates in the

absence of independent line impedance measurements.

Table 3.3: Equivalent pi-circuit positive sequence transmission line parameter val-
ues at Tc = 20 ◦C

Resistance R 16.2 Ω
Inductance L 600 mH
Reactance X at f = 50 Hz 189 Ω
Conductance G 3.74µS
Capacitance C 5.00µF
Susceptance B at f = 50 Hz 1.57 mS

The conductor temperature was estimated from the current magnitude and
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ambient weather conditions including air temperature, wind speed and direction

and solar radiation using the heat balance equation [43]. Details of the itera-

tive calculation for the line under consideration are given in Appendix A.3, the

estimated temperature and resulting resistance values are shown in Figure 3.8.
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Figure 3.8: Calculated conductor temperature and resistance as well as mean
ambient temperature during the chosen 24-hour period

The range of estimated conductor temperature is 16 ◦C, which leads to an in-

terval of resistance values of [16.5,17.5] Ω. In order to obtain accurate temperature

estimates (±5 ◦C), data from various weather stations installed in the vicinity and

spread along the length of the line is required [131, 132]. Since it was only possi-

ble to obtain historical hourly weather data from two stations 200 km from each

line end, the estimated conductor temperature may deviate from the actual value.

However, the estimate provides an indication of a realistic level of daily variation

in line temperature, given the location of the overhead line. Based on the theoret-

ical parameter calculation, numerical values can be assigned to the acceptability

limits introduced in Section 3.3. The values are given in Table 3.4.
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Table 3.4: Numerical limits for acceptable parameter estimates

Median of estimated parameter
values over a given time period

Interdecile range of estimated
parameter values over a given

time period

Resistance
±50 % of 16.2 Ω gives

[8.1, 24.3] Ω

less than maximum of {0.8 % of
16.2 Ω = 0.13 Ω,150 % of

17.5− 16.5 = 1 Ω} gives < 1.5 Ω

Reactance ±50 % of 189 Ω gives [95, 284] Ω
less than 5 % of 189 Ω gives

< 9.45 Ω

Susceptance
±50 % of 1.57 mS gives

[0.79, 2.36] mS
less than 5 % of 1.57 mS gives

< 0.079 mS

Conductance
within ±10 % of (minimum line
current/nominal phase voltage)
gives ±0.1 190

330e3
√

3
= ±0.06 mS

less than 10 % of (minimum line
current/nominal phase voltage)

gives < 0.06 mS
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3.4.2 Analysis of parameter estimation results

The names and acronyms of the methods that have been implemented to estimate

line parameters are summarized in Table 3.5.

Table 3.5: Selection of parameter estimation methods, grouped by transmission
line model

Model: Pi-circuit Two-port network

Transposed Single Measurement (SM1)
Total Least-squares (TLS1)
Non-linear Optimal Estimator
(NLOE1)

Two-port Linear Least-
squares - Single-phase
(TPLL1)

Untransposed Linear Least-squares (LLS3)
Non-linear Constraint Optimization
(NLCO3)
Non-linear Least-squares with Cali-
bration Factors (NLLC3)

Two-port Linear Least-
squares - Three-phase
(TPLL3)

By the SM1 method, parameter estimates for positive sequence resistance R,

reactance X, conductance G and susceptance B have been calculated from each

available set of phasor measurements Vsi , Isi , Vri , Iri from time ti. In this instance,

one set of measurements Vsi , Isi , Vri , Iri was available every minute. Hence, this

method uses only the system state captured by the most recent measurement. In

contrast, the other methods require multiple measurement sets that reflect different

system states such that their problem formulation becomes fully or overdetermined

and well-conditioned. To get an estimate as close as possible to the current average

line temperature, the moving window must be as short as possible. However, it was

found that for the chosen data set of the line under consideration, the consistency

of the parameter estimates with theoretical predictions decreased with the length

of the time window. With the aim of balancing these two opposing factors, 60

measurement sets from a moving window of one hour were used in each estimation.

3.4.2.1 Exclusion of measurements from impedance parameter estima-

tion

Initially, measurements from the entire 24-hour period were used for parameter

estimation. But it was found that three of the selected methods produced extreme

parameter estimation results between 23:00 and 01:00. This phenomenon can be

observed in Figures 3.9 and 3.10.

75



23:00 00:00 01:00 02:00 03:00 04:00

UTC (hh:mm)

-600

-400

-200

0

200

400

600

800

1000

P
o

si
ti

v
e 

S
eq

u
en

ce
 R

es
is

ta
n

ce
 R

 (
Ω

)

NLOE1 TPLL1 LLS3

Figure 3.9: Positive sequence resistance estimates for the first six hours of the
24-hour period
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Figure 3.10: Positive sequence reactance estimates for the first six hours of the
24-hour period

During the two-hour period, the NLOE1, TPLL1 and LLS3 methods yield

estimates of resistance whose magnitudes are greater than ten times the theoretical

reference value of 16.2 Ω and some estimates are negative.
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Similarly, negative reactance values have been estimated for this time period

and estimates with magnitudes exceeding 500 Ω, more than double the theoretical

reference value of 189 Ω. It is not physically possible for the overhead line to have

impedance parameters that are negative and/or of this magnitude.

These extreme impedance parameter estimates can be explained by unusual

synchrophasor measurements between 23:00 and 00:00, which form part of the

60-minute moving windows used to calculate estimates by the NLOE1, TPLL1

and LLS3 methods until 01:00. In Figure 3.11, the black rectangle highlights the

fact that the phase angle between sending and receiving end voltages increases

continuously between 23:00 and 00:00, while there is no response in the current

magnitude. But during the rest of the 24-hour period the current magnitude is

responsive to changes in the magnitude of the voltage phase angle across the line.

This phenomenon has also occurred in the hour to midnight on other days. Because

these measurements are untypical and resulting in unphysical parameter estimates,

measurements before 00:00 will not be considered from this point onwards.
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Figure 3.11: Voltage phase angle and negative current magnitude over the 24-hour
period

In the following paragraphs, the acceptability of parameter estimation results

from field measurements will be assessed with respect to the criteria defined in

Table 3.4. Values of the median and interdecile range for all parameters are given

in Appendix A.4.
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3.4.2.2 Resistance

Table 3.6 gives an evaluation of the resistance estimates for the chosen 22-hour

period for the eight selected methods against the criteria in Table 3.4. A check

mark (3) indicates an acceptable value, while a cross (7) indicates an unacceptable

value. The median parameter estimate is only acceptable for the NLCO3 method,

and none of the selected methods gives resistance estimates with an acceptable

interdecile range.

Table 3.6: Acceptability of resistance estimates - field measurements, numerical
values are given in Table A.2

Single-phase Three-phase
Median Interdecile range Median Interdecile range

SM1 7 7 LLS3 7 7

TLS1 7 7 NLLC3 7 7

NLOE1 7 7 NLCO3 3 7

TPLL1 7 7 TPLL3 7 7

Figures 3.12 and 3.13 show the estimated resistance values for the selected eight

methods over the 22-hour period. It can be seen that for the majority of the

time, the single-phase methods give resistance values between 20 Ω and 40 Ω. In

contrast, resistance estimates by the three-phase methods occupy a greater range:

estimates by the TPLL3 method oscillate between40 Ω and 140 Ω, while the LLS3

gives values ranging from −20 Ω to 80 Ω and results for the NLLC3 method have

a median value of 0.3 Ω and IDR of 40.6 Ω. The NLCO3 method’s estimates are

between 10 Ω and 30 Ω and are thus closest to the theoretically calculated positive

sequence resistance of 16.2 Ω; furthermore, the values are lower at the beginning

and end of the time period, which is consistent with predicted thermal variation.
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Figure 3.12: Resistance estimates from field measurements, single-phase methods
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Figure 3.13: Resistance estimates from field measurements, three-phase methods

Figures 3.12 and 3.13 also show that for the SM1, TLS1 and LLS3 methods,

resistance values are diverging at the beginning and end of the time period, when

power flow is lowest. The other methods produce non-systematic variation over

time, which is not linked to the system state. Figure 3.14 shows a scatter plot of

resistance values against active power for the single-phase methods; the distribu-

tion of points for the SM1 method suggests an inverse relationship, which points

to a systematic error in the phasor measurements.
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Figure 3.14: Resistance estimates from field measurements against active power,
single-phase methods

Figure 3.15 shows the condition numbers of the design matrices for the TLS1,

TPLL1, LLS3 and TPLL3 methods, and of the final Jacobian matrices for the

NLOE1 and NLLC3 methods. The condition number gives a worst case upper

bound for the sensitivity of parameter estimates to errors in the input measure-

ments. For the three-phase methods, the condition numbers are above 105, which

implies that deviations in phasor measurements of 0.1 % can cause parameter er-

rors of 104 % and is a possible explanation for the wider range of estimated values

given by the three-phase methods. The poor conditioning relative to single-phase

methods is due to the fact that the three-phase methods attempt to estimate up

to three times the number of unknown parameters; besides, the phase voltages are

approximate and have lost their zero sequence component due to the line-to-line

measurement.

The single-phase methods have condition numbers below 105; the TLS1 method

has the lowest condition numbers over the time period and hence its problem

formulation is better conditioned and has lower sensitivity to measurement errors

in this particular case.
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Figure 3.15: Condition number of the design matrix for linear estimation methods,
and of the final Jacobian matrix for the non-linear methods

3.4.2.3 Reactance

Both the median and interdecile range of reactance estimates are acceptable for the

SM1, TLS1 and LLS3 methods, while neither value is acceptable for the NLLC3

method, as Table 3.7 shows. The other non-linear estimators (NLOE1, NLCO3)

and two-port methods (TPLL1, TPLL3) have acceptable median values, but their

interdecile range of reactance estimates is inconsistent with the theoretical predic-

tion.

Table 3.7: Acceptability of reactance estimates - field measurements, numerical
values are given in Table A.2

Single-phase Three-phase
Median Interdecile range Median Interdecile range

SM1 3 3 LLS3 3 3

TLS1 3 3 NLLC3 7 7

NLOE1 3 7 NLCO3 3 7

TPLL1 3 7 TPLL3 3 7

Figures 3.16 and 3.17 show that for the methods with acceptable median and

interdecile range (SM1, TLS1 and LLS3), the reactance estimates are between

140 Ω and 150 Ω for the majority of the 22-hour period (03:00 to 18:00). The

NLOE1, TPLL1 and TPLL3 methods on the other hand, give estimates that oc-

cupy a wider range, mainly 100 Ω to 160 Ω.
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Results from the NLLC3 method are oscillating around zero, concentrating be-

tween ±50 Ω, which makes them unacceptable.
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Figure 3.16: Reactance estimates from field measurements, single-phase methods

03:00 06:00 09:00 12:00 15:00 18:00 21:00
UTC (hh:mm)

-50

0

50

100

150

200

Po
si

tiv
e 

Se
qu

en
ce

 R
ea

ct
an

ce
 X

 (
Ω

)

LLS3 NLLC3 NLCO3 TPLL3

Figure 3.17: Reactance estimates from field measurements, three-phase methods
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3.4.2.4 Conductance

For shunt conductance, the TLS1, LLS3 and NLCO3 methods assume a zero value

and thus give acceptable values for median and interdecile range. Out of the

remaining five methods, only the SM1 method gives an acceptable median as can

be seen in Table 3.8.

Table 3.8: Acceptability of conductance estimates - field measurements, numerical
values are given in Table A.2

Single-phase Three-phase
Median Interdecile range Median Interdecile range

SM1 3 7 LLS3 3 3

TLS1 3 3 NLLC3 7 7

NLOE1 7 7 NLCO3 3 3

TPLL1 7 7 TPLL3 7 7

Figures 3.18 and 3.19 show the conductance estimates over the 22-hour period.

The SM1 method gives the narrowest range of non-zero estimates, within ±0.5 mS

and negative at the start and end of the period. The NLOE1 method gives mostly

negative conductance values, some of which fall below −1 mS, while the TPLL1

method has three peaks that rise above 1 mS.
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Figure 3.18: Conductance estimates from field measurements, single-phase meth-
ods
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Out of the three-phase methods, the NLLC3 and TPLL3 methods give un-

acceptable results, including estimates outside ±10 mS, as can be observed in

Figure 3.19.
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Figure 3.19: Conductance estimates from field measurements, three-phase methods

3.4.2.5 Susceptance

As for reactance, the SM1, TLS1 and LLS3 methods give acceptable values for

median and interquartile range of susceptance estimates over the 22-hour period.

The acceptability for all selected methods is given in Table 3.9.

Table 3.9: Acceptability of susceptance estimates - field measurements, numerical
values are given in Table A.2

Single-phase Three-phase
Median Interdecile range Median Interdecile range

SM1 3 3 LLS3 3 3

TLS1 3 3 NLLC3 7 7

NLOE1 3 7 NLCO3 3 7

TPLL1 3 7 TPLL3 7 7

Figure 3.20 shows the stability of susceptance estimates from the SM1 and

TLS1 methods over time, with all values lying between 2 mS and 2.2 mS. The

NLOE1 and TPLL1 methods give values that are mostly between 1.6 mS and

2.4 mS and hence have acceptable median values, but at approximately 04:00,
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10:00 and 15:00, both methods yield extreme values, which cause the interdecile

range to become unacceptable.
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Figure 3.20: Susceptance estimates from field measurements, single-phase methods

As for conductance, the NLLC3 and TPLL3 methods give unacceptable results,

including estimates outside ±10 mS, as shown in Figure 3.21.
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Figure 3.21: Susceptance estimates from field measurements, three-phase methods
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3.4.3 Summary and discussion of results

Table 3.10 summarizes the acceptability of the parameter values estimated by the

eight selected methods for the chosen 22-hour period. The resistance estimates

have the lowest acceptability, while reactance and susceptance estimates agreed

more closely with theoretical reference values.

Table 3.10: Acceptability of all parameter estimates - field measurements, numer-
ical values are given in Table A.2

Resistance Reactance Conductance Susceptance Score3

M1 IDR2 M IDR M IDR M IDR

SM1 7 7 3 3 3 7 3 3 5
TLS1 7 7 3 3 3 3 3 3 6
NLOE1 7 7 3 7 7 7 3 7 2
TPLL1 7 7 3 7 7 7 3 7 2
LLS3 7 7 3 3 3 3 3 3 6
NLLC3 7 7 7 7 7 7 7 7 0
NLCO3 3 7 3 7 3 3 3 7 5
TPLL3 7 7 3 7 7 7 7 7 1

1 Median
2 Interdecile Range
3 Number of acceptable values, i.e. number of check marks in each row

(maximum 8)

The Total Least-squares (TLS1) and Linear Least-squares (LLS3) methods

have performed best as they have produced acceptable values for three out of four

impedance parameters, whereas Non-linear Least-squares with Calibration Factors

(NLLC3) is the worst method with no acceptable results. The methods assum-

ing two-port networks (TPLL1 and TPLL3) have also scored poorly, achieving

no more than two acceptable values. The Non-linear Constraint Optimization

(NLCO3) method has scored highly and is the only method with an acceptable

median resistance estimate. The reason is that this method uses the theoreti-

cally calculated values as starting points in the optimization algorithm, combined

with upper and lower bounds of ±10 % around these starting points. Thus the

results from this method do not serve as independent, experimental validation of

the theoretical predictions.

The three-phase method LLS3 achieved the same number of acceptable param-

eter values as a single-phase method TLS1, given that the phase voltages used in

the estimation were approximated from delta measurements without zero sequence

components.
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The other two three-phase methods NLLC3 and TPLL3 scored particularly poorly,

giving rise to the question whether whether some three-phase methods require zero

sequence components.

Overall, none of the selected methods has given acceptable results for all four

parameters. The results are least accurate for resistance, the parameter with

the highest temperature sensitivity, which means tracking of changes in average

conductor temperature is not possible with the selected methods.

In this comparative study, synchrophasor measurements from only one trans-

mission line were utilized. The observed performance of the methods cannot be

generalized to all overhead line systems as they differ in their locations, lengths,

geometries, operational states and other properties. However, the results demon-

strate that there is at least one type of system, for which a variety of existing

methods has limitations.

In order to accurately monitor impedance parameters of lines such as that

considered in this section, the mechanisms behind the failure of existing methods

must be understood. Then, specific problems can be defined and put at the centre

of the development of new, more effective parameter estimation algorithms. In

the next section, a software simulation of the line will be used to reproduce the

failures of the selected methods that were observed in the practical application to

field data.
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3.5 Application of methods to data from a trans-

mission line simulation

Section 3.4 has shown that the existing methods have limitations with regards to

accurately identifying transmission line impedance and admittance parameters in

real-time. In order to extend and develop methods that overcome these problems,

it must first be understood how the methods are failing. In this section, possible

mechanisms will be investigated using a transmission line simulation, whereby

line parameter values and measurement accuracy can be controlled. Details of

the simulation set-up will be given as well as the results of impedance parameter

estimation from simulated measurements in various scenarios.

3.5.1 Properties of the simulation

The simulation of the transmission line whose parameters were estimated in Sec-

tion 3.4, was implemented using MATLAB® SimscapeTM Power SystemsTM soft-

ware. Figure 3.22 shows a block diagram of the components: three voltage sources

at each line end as network equivalents, a distributed transmission line and signal

measurement blocks.
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Figure 3.22: Schematic diagram of the simulation circuit

88



The values of measured line-to-line voltage phasors (see Figures 3.4 and 3.5)

were converted to star voltages as inputs to the simulation. Specifically, 1440

60-second mean values from the chosen 24-hour period were used, such that 1440

individual states were simulated. The frequency was set to 50 Hz. The properties

of the transmission line were set to the theoretically calculated values as given in

Table 3.3. Measurements of line-to-ground voltage and current waveforms at the

line ends were taken and a Discrete Fourier Transform was applied to calculate

rms amplitude and phase angles [57]. Figure 3.23 shows the resulting positive

sequence current measurements as well as field measurement values; the magnitude

of the simulated values is lower compared to the field values for both sending and

receiving end and the difference between the line ends is smaller.
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Figure 3.23: Measured and simulated current amplitude, SE refers to Sending end
and RE to Receiving end
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3.5.2 Simulated scenarios

Six different scenarios have been created to reproduce the failures of existing pa-

rameter estimation algorithms as demonstrated in Section 3.4. Table 3.11 describes

each scenario.

Table 3.11: Description of simulated scenarios

1 Ideal Scenario
Line impedance parameters are kept constant throughout. The volt-
age and current phasors are used directly in the parameter estimation
algorithms.

2 Delta-star Scenario
Line impedance parameters are kept constant throughout. Voltages are
measured in delta configuration and converted to star voltages before
parameter estimation, as explained in Section 3.4.1.1.

3 Variation Scenario
For every simulated state, the line resistance values are updated in
accordance with the calculated average conductor temperature given
in Section 3.8.

4 Uncertainty Scenario
Line impedance parameters are kept constant throughout. Magnitude
and phase angles of voltage and current are contaminated with Gaus-
sian noise before impedance parameter estimation.

5 Systematic Error Scenario
Line impedance parameters are kept constant throughout. Constant
proportional errors in magnitudes and additive errors in phase angles
are added to simulated voltage phasors before parameter estimation.

6 Realistic Scenario
Scenarios 2 to 5 are combined: voltage measurements are converted
from delta to star, resistance is varied over time, Gaussian noise and
systematic errors are added to the measurements.

In the Uncertainty Scenario, random errors from a normal distribution with

standard deviations of 0.05 % in magnitude and 0.5 mrad in phase angle were

added to the measurements. These standard deviations correspond to expanded

uncertainties of 0.1 % and 1 mrad, respectively, with a coverage probability of 95 %

and are chosen in line with the accuracy of the power quality instruments that were

used in the field measurement campaign [67]. For each of the 1440 simulated states,

the measurement set of voltage and current phasors was duplicated 600 times to

represent measurements taken at 0.1-second intervals; random errors were added

and the measurements were then averaged to return to 1440 sets.
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Table 3.12 lists the systematic errors that were applied to all measurements

before parameter estimation in the Systematic Error Scenario. The errors were

chosen as a possible set based on previous characterization of instrumentation

channels and existing accuracy classes of instrument transformers [68]. Standard

Table 3.12: Systematic errors in the Systematic Error Scenario

Vs Vr Is Ir

Magnitude (%) 1 -2 2 3
Phase angle (mrad) -0.01 0.03 -0.02 0.01

accuracy classes for voltage transformers range from 0.1 to 3 [133], hence, the

chosen errors in the voltages are at the high end of the spectrum. Standard

accuracy classes for current transformers range from 0.1 to 5 [134], which places

the errors in the Systematic Error Scenario midway between best and worst case

accuracies.

3.5.3 Analysis of parameter estimation results

In the following paragraphs, the acceptability of parameter estimation results from

each scenario will be assessed with respect to the criteria defined in Table 3.4.

Values of the Median (M) and Interdecile Range (IDR) for all parameters and

scenarios are given in Appendix A.5.

3.5.3.1 Ideal Scenario

Table 3.13 lists the acceptability of the Median (M) and IDR of parameter esti-

mates from the eight selected methods in the Ideal Scenario. Six of the methods

achieve a score of eight, which means the median and IDR are acceptable for all

four parameters. The remaining two three-phase methods, LLS3 and NLCO3,

have unacceptable values for the IDR of the resistance. These two methods as-

sume a constant value of zero for conductance, which causes variation in the best

estimates of resistance between the different system states that occurred over the

time period. This variation can be observed in Figure 3.24: the IDR is increased

due to the estimated values at the beginning and end of the period, when power

flow is lowest.
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Table 3.13: Acceptability of estimates in the Ideal Scenario, numerical values are
given in Table A.3

Resistance Reactance Conductance Susceptance Score1

M IDR M IDR M IDR M IDR

SM1 3 3 3 3 3 3 3 3 8
TLS1 3 3 3 3 3 3 3 3 8
NLOE1 3 3 3 3 3 3 3 3 8
TPLL1 3 3 3 3 3 3 3 3 8
LLS3 3 7 3 3 3 3 3 3 7
NLLC3 3 3 3 3 3 3 3 3 8
NLCO3 3 7 3 3 3 3 3 3 7
TPLL3 3 3 3 3 3 3 3 3 8

1 Number of acceptable values, i.e. number of check marks in each row
(maximum 8)
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Figure 3.24: Positive sequence resistance, three-phase methods - Ideal Scenario

The results for the Ideal Scenario show that six of the selected methods esti-

mate impedance parameters effectively given perfect measurements without zero

sequence components from the line under consideration. Furthermore, it has been

established that negligence of conductance can reduce the accuracy of estimated

resistance to an unacceptable level. In field applications, measurements are made

under non-ideal conditions. The remaining scenarios will demonstrate how these

conditions can affect the acceptability of parameter values estimated by the se-

lected methods.
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3.5.3.2 Delta-star Scenario

Table 3.14 summarizes the acceptability of the parameter estimates for the eight

selected methods in the Delta-star Scenario.

Table 3.14: Acceptability of estimates in the Delta-star Scenario, numerical values
are given in Table A.4

Resistance Reactance Conductance Susceptance Score1

M IDR M IDR M IDR M IDR

SM1 3 3 3 3 3 3 3 3 8
TLS1 3 3 3 3 3 3 3 3 8
NLOE1 3 3 3 3 3 3 3 3 8
TPLL1 3 3 3 3 3 3 3 3 8
LLS3 3 7 3 3 3 3 3 3 7
NLLC3 7 7 7 7 7 7 7 7 0
NLCO3 3 7 3 3 3 3 3 3 7
TPLL3 7 3 3 3 7 3 3 3 6

1 Number of acceptable values, i.e. number of check marks in each row
(maximum 8)

All of the single-phase methods give fully acceptable values, which is as ex-

pected since the positive sequence is preserved through the delta-star transforma-

tion as explained in Appendix A.2. In the same manner as in the Ideal Scenario,

the LLS3 and NLLC3 methods score seven because of an unacceptable IDR of

resistance estimates, but are otherwise unaffected. The NLCO3 method, on the

other hand, has produced no acceptable values in this scenario; the approximation

of phase voltages caused by the delta-star transformation have made the method

completely ineffective. The three-phase two-port network method, TPLL3, gives

acceptable values for reactance and susceptance as well as for the IDR of resistance

and conductance. However, the delta-star conversion of the voltage measurements

causes the median of resistance and conductance to lie outside of the acceptable

range.

3.5.3.3 Variation Scenario

Acceptability of parameter estimates in the Variation Scenario are shown in Ta-

ble 3.15. Half of the methods (SM1, TLS1, LLS3, NLCO3) achieved the maximum

score by giving acceptable values for resistance, reactance, conductance and sus-

ceptance. The NLOE1, TPLL1 and TPLL3 methods follow closely with a score

of seven; all three methods have unacceptable values for the IDR of estimated

resistance over the time period.
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Table 3.15: Acceptability of estimates in the Variation Scenario, numerical values
are given in Table A.5

Resistance Reactance Conductance Susceptance Score1

M IDR M IDR M IDR M IDR

SM1 3 3 3 3 3 3 3 3 8
TLS1 3 3 3 3 3 3 3 3 8
NLOE1 3 7 3 3 3 3 3 3 7
TPLL1 3 7 3 3 3 3 3 3 7
LLS3 3 3 3 3 3 3 3 3 8
NLLC3 3 7 3 7 3 7 3 7 4
NLCO3 3 3 3 3 3 3 3 3 8
TPLL3 3 7 3 3 3 3 3 3 7

1 Number of acceptable values, i.e. number of check marks in each row
(maximum 8)

The NLLC3 method lags behind with a score of four; only the median values

are acceptable. To illustrate the extent to which the methods track changing

parameter values, plots of estimated resistance over time are shown in Figures 3.25

and 3.26.
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Figure 3.25: Positive sequence resistance, single-phase methods - Variation Sce-
nario

It can be observed that the SM1, TLS1 and NLCO3 methods give estimates

that form a smooth curve over time with a crest during the day when conductor

temperature is increased (c.f. Figure 3.8). In contrast, the other five methods have

several peaks and troughs that lie outside the nominal range of [16.5, 17.5] Ω.
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Figure 3.26: Positive sequence resistance, three-phase methods - Variation Scenario

3.5.3.4 Uncertainty Scenario

From Table 3.16 it can be seen that the SM1 and TLS1 methods are robust to the

level of Gaussian noise introduced in the measurements, as the median and IDR

are acceptable for all parameters.

Table 3.16: Acceptability of estimates in the Uncertainty Scenario, numerical val-
ues are given in Table A.6

Resistance Reactance Conductance Susceptance Score1

M IDR M IDR M IDR M IDR

SM1 3 3 3 3 3 3 3 3 8
TLS1 3 3 3 3 3 3 3 3 8
NLOE1 3 7 3 3 3 3 3 3 7
TPLL1 3 7 3 3 3 3 3 3 7
LLS3 3 7 3 3 3 3 3 3 7
NLLC3 3 7 3 7 7 7 3 7 3
NLCO3 7 7 7 7 3 3 3 3 4
TPLL3 3 7 3 7 3 7 3 7 4

1 Number of acceptable values, i.e. number of check marks in each row
(maximum 8)

All methods give acceptable median values of susceptance estimates in this

scenario and all but the NLCO3 method give acceptable median values of resis-

tance and reactance. The added measurement noise causes increased variation of

the parameter estimates for several methods, as can be seen from the number of

unacceptable values of the IDR across all four parameters.
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3.5.3.5 Systematic Error Scenario

Table 3.17 shows the impact of systematic measurement errors on the acceptability

of impedance and admittance parameter estimates.

Table 3.17: Acceptability of estimates in the Systematic Error Scenario, numerical
values are given in Table A.7

Resistance Reactance Conductance Susceptance Score1

M1 IDR M IDR M IDR M IDR

SM1 7 7 3 7 3 3 3 7 4
TLS1 7 7 3 7 3 3 3 7 4
NLOE1 7 3 3 3 7 3 3 3 6
TPLL1 3 3 3 3 7 3 3 3 7
LLS3 3 7 3 7 3 3 3 7 5
NLLC3 3 3 3 3 3 3 3 3 8
NLCO3 7 7 3 7 3 3 3 3 5
TPLL3 3 3 3 3 7 3 3 3 7

3 Number of acceptable values, i.e. number of check marks in each row
(maximum 8)

In contrast to the other scenarios, the SM1 and TLS1 score poorly with only

four acceptable values. On the other hand, the NLLC3 method gave acceptable

values for median and IDR for all parameters and is thus robust to the systematic

measurement errors. The two-port network methods (TPLL1 and TPLL3) follow

closely with seven acceptable values. All methods give acceptable estimates of

the median values of reactance and susceptance. In this scenario, the number of

acceptable values is lowest for resistance.

Figure 3.27 illustrates the effect of systematic errors in the synchrophasor mea-

surements on the resistance values estimated by the single-phase methods. The

NLOE1 and TPLL1 methods both give constant estimates over time, with errors

of 61 % and 20 % relative to the nominal value, respectively. The resistance val-

ues estimated by the SM1 and TLS1 methods follow a sinusoidal pattern between

06:00 and 18:00, but diverge before and after this time interval, when power flow

is lowest.
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Figure 3.27: Positive sequence resistance, single-phase methods - Systematic Error
Scenario

The characteristic variation of resistance values estimated by the SM1 method

can be understood by considering the scatter plot in Figure 3.28, which shows

an inverse relationship between the SM1 resistance values and the level of active

power in the line.
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Figure 3.28: Positive sequence resistance against active power, single-phase meth-
ods - Systematic Error Scenario

The same observation was made for the resistance values estimated from field data

in Section 3.4.2.2, Figure 3.14.
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3.5.3.6 Realistic Scenario

In the Realistic Scenario, voltages were converted from delta to star, resistance

values were varied over time according to changes in average conductor temper-

ature, and Gaussian noise as well as systematic errors were added to the phasor

measurements. The aim of this combination is to imitate the field measurement

case. Table 3.18 lists the acceptability of parameter estimates in this scenario.

Table 3.18: Acceptability of estimates in the Realistic Scenario, numerical values
are given in Table A.8

Resistance Reactance Conductance Susceptance Score1

M IDR M IDR M IDR M IDR

SM1 7 7 3 7 3 3 3 7 4
TLS1 7 7 3 7 3 3 3 7 4
NLOE1 7 7 3 3 7 3 3 3 5
TPLL1 3 7 3 3 7 3 3 3 6
LLS3 3 7 3 7 3 3 3 7 5
NLLC3 7 7 3 7 7 7 7 7 1
NLCO3 3 7 3 7 3 3 3 7 5
TPLL3 7 7 3 7 7 7 3 7 2

3 Number of acceptable values, i.e. number of check marks in each row
(maximum 8)

The TPLL1 method is most effective with six acceptable values, followed by the

NLOE1 and LLS3 methods with a score of five. The NLLC3 and TPLL3 methods

perform worst, with scores of one and two, respectively. None of the methods gives

an acceptable IDR for resistance. The accuracy of estimated variation in reactance

and susceptance is unacceptable for six of the methods. Yet, all methods give

acceptable median values for reactance estimates.
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3.5.4 Summary and discussion of results

The parameter estimation results presented in Section 3.5.3 have revealed a variety

of strengths and weaknesses of the eight selected methods in estimating impedance

parameters for the line under consideration. Table 3.19 lists the scores achieved by

the selected methods in the six simulated scenarios. In addition, the cumulative

score across the scenarios is given as well as the scores from field measurement

application presented in Section 3.4.3, Table 3.10.

Table 3.19: Summary of acceptability scores

Field Scenario
measurements 1 2 3 4 5 6 Total (out of 48)1

SM1 5 8 8 8 8 4 4 40
TLS1 6 8 8 8 8 4 4 40
NLOE1 2 8 8 7 7 6 5 41
TPLL1 2 8 8 7 7 7 6 43
LLS3 6 7 7 8 7 5 5 39
NLLC3 0 8 0 4 3 8 1 24
NLCO3 5 7 7 8 4 5 5 36
TPLL3 1 8 6 7 4 7 2 34

1 Sum of scores for scenarios 1 to 6 in each row, the maximum score
per scenario is 8, hence the maximum total score is 48

The TPLL1 and NLOE1 methods score highest in the Realistic Scenario and

cumulatively across all scenarios and are thus the strongest of the eight selected

methods in this comparison. However, in field measurement application, TPLL1

and NLOE1 are in joint fifth place. This difference in ranking implies that the

failure of TPLL1 and NLOE1 in estimating impedance parameters with acceptable

accuracy from field measurements has not been explained by the simulation study.

Nevertheless, the results from the simulation scenarios give insights into the

failure of the SM1 and TLS1 methods, which are among the methods with the

highest acceptability of parameter estimates from field measurements. In the sim-

ulated scenarios, these two methods have demonstrated robustness to delta-star

conversion of voltage measurements, variation of line resistance and random mea-

surement noise. But the Systematic Error and Realistic Scenarios have exposed

the weaknesses of the SM1 and TLS1 methods in response to phasor measurements

that have constant, systematic errors. The analysis of the resistance estimates in

the Systematic Error Scenario suggests that systematic errors are the cause of the

unacceptable values given by the SM1 when field measurements are used.
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Hence, a specific problem can be defined: how to calculate line impedance param-

eters with acceptable accuracy given synchronized phasor measurements that are

subject to systematic errors. The NLLC3 method is designed to tackle this prob-

lem by introducing calibration factors to the system model. Indeed, this method

gives fully acceptable values in the Systematic Error Scenario, but it is not robust

to other non-ideal conditions as shown by its low score of one in the Realistic

Scenario.

The identified advantages and limitations of the selected methods are based

on their performance for a specific data set from one transmission line and cannot

be generalized for all overhead line systems. However, the occurrence of non-ideal

measurement conditions is not limited to the line under consideration. Therefore,

solutions to the identified specific problem can be extended to other systems.

3.6 Conclusion

The main finding of this chapter is the fact that there is at least one overhead

line system, for which a variety of existing methods is not effective at real-time

monitoring of impedance parameters.

An overview was given of a representative selection of eight methods that were

used to obtain parameter estimates from actual synchrophasor data from a long

transmission line as well as from simulated phasor measurements. Acceptability

criteria were defined for the assessment of the effectiveness of the methods. Against

these criteria, none of the selected methods gave fully acceptable parameter es-

timation results from field measurements; acceptability was particularly low for

resistance estimates.

The results from six simulation scenarios that imitated ideal and non-ideal mea-

surement conditions revealed individual strengths and weaknesses of the methods

under consideration. Systematic measurement errors were identified as a specific

obstacle to acceptable impedance parameter estimation accuracy. Hence, there is

a practical need to develop new methodology that is robust to this type of error

and able to track changes in impedance parameters in real-time. Chapter 4 will

analyse in detail how systematic measurement errors propagate to the parameter

estimates and propose a new method to reduce their negative impact on parameter

estimation accuracy.
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Chapter 4

A new method for reducing

variability in impedance

parameter values estimated from

measurements with systematic

errors

4.1 Introduction

In Chapter 3, a selection of eight existing methods was used to estimate impedance

parameters from field measurements for an actual overhead line. It was found that

none of these methods produced results with acceptable accuracy; for seven of the

methods the median estimated value for resistance had an error greater than 50 %

and for all eight methods the interdecile range of resistance values exceeded the

reference value by at least 50 %. A software simulation of the overhead line showed

that certain non-ideal measurement conditions cause the selected methods to give

unacceptable parameter estimation results for the line under consideration. In

particular, systematic errors in the phasor measurements have been identified as

an obstacle to sufficient parameter estimation accuracy. Systematic errors refer to

errors in magnitude and phase angle that are constant through time. The presence

of such errors is a known problem and various proposals for calibration exist [70–

73, 125]. To the best of the author’s knowledge, the existing approaches assume a

priori knowledge of line impedance parameter values. Often, these values are only

based on theoretical calculations instead of system measurements. Therefore the

problem of measurement calibration and impedance parameter estimation should
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be tackled jointly. The Non-linear Least-squares with Calibration Factors (NLLC3)

method attempts to find an optimal solution to this combined problem [125], and in

Section 3.5, the method proved to be effective with simulated phasor measurements

that were contaminated with systematic errors. However, the NLLC3 method

gave unacceptable parameter estimation results under other simulated non-ideal

measurement conditions: when voltage measurements were converted from delta

to star, when resistance was changing over time and when the measurements were

contaminated with Gaussian noise. For this reason, there is a need to develop

methods by which overhead line impedance parameters can be estimated with

acceptable accuracy, in real-time and under non-ideal measurement conditions.

In this chapter, an innovative method for identifying both impedance parame-

ters and calibration constants will be presented. Initially, single-phase short trans-

mission lines are considered due to the simplicity of the circuit model. A modified

impedance parameter estimation problem that includes calibration constants will

be introduced in the next section; thereafter, the new method will be explained,

followed by a case study on measurements from a laboratory-based line model.

The novel method is then extended to medium-length lines and its effectiveness

is demonstrated in a second case study that involves software simulation of 105

different cases of systematic errors.
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4.2 A new method for accurate impedance pa-

rameter estimation from synchrophasor mea-

surements with systematic errors

In this chapter, impedance parameter estimation is restricted to single-phase trans-

mission lines as the model is simpler with fewer equations and unknowns than the

general three-phase model (see Section 3.2). However, the proposed method will

also be applicable to obtain positive sequence impedance parameters of transposed

three-phase lines.

4.2.1 A modified parameter estimation problem for short

lines

Firstly, the short line model is modified to include systematic measurement errors;

Figure 4.1 shows the relevant circuit diagram [135].

R L

Z

Vs Vr

I I

Figure 4.1: Diagram of a circuit for a short transmission line

For lines shorter than 80 km, the capacitive leakage current is negligible; therefore

the line is assumed to have no shunt admittance and the current to be uniform

along its length [136]. Series impedance Z ∈ C is to be estimated from synchro-

nized phasor measurements of sending and receiving end voltages Vs, Vr ∈ C and

current I ∈ C. The circuit equation is

Vs − Vr = ZI, (4.1)

where Z = R+ jX. R ∈ R≥0 and X ∈ R≥0 are the series resistance and reactance,

respectively, with X = 2πfL, where f ∈ R≥0 is the frequency and L ∈ R≥0 is the

inductance. Z is calculated using

Z =
Vs − Vr

I
. (4.2)

This model equation needs to be adapted to reflect systematic errors in the phasor

measurements.
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The adaptation consists of multiplicative and additive constants that model de-

viations in the magnitude and phase angle of voltage and current [70–73, 125].

Define Ṽs, Ṽr, Ĩ ∈ C as synchronized phasor measurements that have systematic

errors −as,−ar,−b ∈ R in magnitude and −φs,−φr,−θ ∈ [−π, π] in phase angle,

respectively. Then the corrected phasors are given by

Vs = (1 + as)Ṽs exp(jφs) (4.3)

Vr = (1 + ar)Ṽr exp(jφr) (4.4)

I = (1 + b)Ĩ exp(jθ). (4.5)

Figure 4.2 shows a schematic diagram of Vs and Ṽs in the complex plane. It can

be observed that the error −φs in phase angle causes a rotation, while −as scales

the magnitude of Vs. Equivalent diagrams of Vr, Ṽr and I, Ĩ can be drawn.

Figure 4.2: Phasor diagram of sending end voltage, rotation and scaling due to
systematic errors are shown

The model equation (4.2) is modified to include systematic errors by substi-

tuting Vs, Vr and I with expressions (4.3) to (4.5):

Z =
(1 + as)Ṽs exp(jφs)− (1 + ar)Ṽr exp(jφr)

(1 + b)Ĩ exp(jθ)
. (4.6)

The new parameter estimation problem is as follows: given measurements Ṽs, Ṽr, Ĩ,

determine values for as, φs, ar, φr, b, θ such that Z can be calculated. Next, this

problem is analysed by considering the effect of errors −as,−φs,−ar,−φr,−b,−θ
on calculated impedance Z.
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4.2.2 Propagation of systematic measurement errors

The propagation of the systematic errors to impedance Z is considered before

the new method is explained. Define ∆Z ∈ C as the error in impedance due to

as, φs, ar, φr, b, θ:

∆Z =
Ṽs − Ṽr

Ĩ
− Vs − Vr

I
(4.7)

=
1

I

(
Vs(1 + b)

1 + as
exp(j(θ − φs))−

Vr(1 + b)

1 + ar
exp(j(θ − φr))− Vs + Vr

)
. (4.8)

To simplify this expression, the following first order approximations are made:

(1 + as,r)
−1 ≈ 1− as,r (4.9)

exp(−jφs,r) ≈ 1− jφs,r (4.10)

exp(jθ) ≈ 1 + jθ, (4.11)

since as,r, φs,r, θ << 1. Then

∆Z ≈ 1

I

[
(1 + b)(1 + jθ) [(1− as)(1− jφs)Vs − (1− ar)(1− jφr)Vr]− Vs + Vr

]
(4.12)

=
1

I
[(1 + b+ jθ + jbθ) [(1− as − jφs + jasφs)Vs − (1− ar − jφr + jarφr)Vr]

− Vs + Vr] (4.13)

≈ (b+ jθ − as − jφs)Vs − (b+ jθ − ar − jφr)Vr
I

(4.14)

= (b+ jθ)Z +
(ar + jφr)Vr − (as + jφs)Vs

I
, (4.15)

where the terms in jasφs, jarφr, jbθ, bas, bar, jbφs, jbφr, jasθ, jarθ, θφs, θφr have been

ignored to obtain (4.14). Let

∆Z1 = (b+ jθ)Z, ∆Z2 =
(ar + jφr)Vr − (as + jφs)Vs

I
. (4.16)

The following observations are made:

1. ∆Z1 gives the error in Z caused by errors −b,−θ in current I. The term is a

constant proportion of the impedance value that is independent of the system

state Vs, Vr, I. The correct value of impedance Z acts as the sensitivity

coefficient.

2. ∆Z2 gives the error in Z caused by errors −as,r,−φs,r in voltages Vs, Vr. The

response of ∆Z to different system states Vs, Vr, I depends on the values of
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as,r, φs,r. If, for instance, as + jφs = ar + jφr,

∆Z = (b+ jθ)Z + (ar + jφr)
Vr − Vs

I
= (b+ jθ − ar − jφr)Z. (4.17)

In this case, ∆Z is a fixed proportion of Z, regardless of the measured system

state. On the other hand, if as + jφs = −(ar + jφr), i.e. the errors in the

sending and receiving end voltages are equal and opposite,

∆Z = (b+ jθ)Z + (as + jφs)
Vr + Vs

I
. (4.18)

In this case, the second term in the expression for ∆Z is proportional to

Vs +Vr and inversely proportional to the current I. Hence, the sensitivity of

∆Z to the system state Vs, Vr, I depends on the ’net error’ εnet = as + jφs−
(ar + jφr) = as − ar + j(φs − φr).

The second observation implies that if εnet 6= 0, the errors in calculated series

impedance Z vary over time in response to changes in line loading. This increased

variability in estimated impedance parameter values due to systematic measure-

ment errors will be exploited by the new method.

4.2.3 Explanation of the new method for short lines

The new method identifies correction factors for the synchrophasor measurements

by minimizing the variability of calculated impedance parameters over time. To

simplify the problem initially, a correction factor is only included for the receiving

end voltage. The problem is formally stated as follows:

Given n ∈ N sets of phasor measurements Ṽsi , Ṽri , Ĩi, each taken at time

instants ti ∈ R≥0, i = 1, 2, 3, . . . , n over the time period tn − t1, identify

optimal values of correction constants a, φ such that impedance Zi can be

calculated accurately.

Ṽsi , Ṽri , Ĩi, a, φ are related by

Zi =
Ṽsi − (1 + a)Ṽri exp(jφ)

Ĩi
, (4.19)

where resistance is given by Ri = Re(Zi) and reactance by Xi = Im(Zi).

Note that for a given set of measurements, the resistance and reactance can

be defined as functions of the correction factors, Ri, Xi : R2 → R. a and φ will

be found by making the variation of Ri(a, φ), Xi(a, φ) with respect to ti consistent

with physical expectations.
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To quantify increased variation in the calculated parameter values, assumptions are

made about the actual behaviour of line resistance and reactance over time. Since

the resistance can vary significantly with conductor temperature, it is assumed

to change linearly between t1 and tn [43]. Reactance is assumed to be constant

as it has very low temperature sensitivity (see Appendix A.1). Based on these

assumptions, the measure of variation is the sum of the residuals between Ri and

a fitted linear model and between Xi and a constant value. Hence, define two

model functions fR, fX : R≥0 → R,

fR(ti) = qrti + rR (4.20)

fX(ti) = rX , (4.21)

where qr, rR, rX ∈ R are constants. Values for qr, rR are obtained by linear least-

squares estimation from calculated values Ri. Define matrices R ∈ Rn,H ∈
Rn×2,Q ∈ R2, where

R =
[
R1 . . . Rn

]T
, H =

[
t1 . . . tn

1 1 1

]T
, Q =

[
qr rr

]T
.

Based on (4.20), define the n-dimensional model

R = HQ + ε, (4.22)

where ε ∈ Rn, ε = [ε1 . . . εn]T are error terms. The least-squares estimate of Q is

computed using

Q̂ =
(
HTH

)−1
HTR. (4.23)

Constant rX is calculated as the mean value of Xi:

rX =
1

n

n∑
i=1

Xi. (4.24)

The sums of the squared residuals SR, SX ∈ R≥0 between the calculated parameter

values Ri, Xi and fitted linear functions fR, fX are given by

SR =
n∑
i=1

(Ri(a, φ)− fR(ti))
2 (4.25)

SX =
n∑
i=1

(Xi(a, φ)− fX(ti))
2. (4.26)
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Now an optimization problem can be formulated:

minimize
a,φ

g(a, φ) = SR + SX

subject to |a| < la, |φ| < lφ, (4.27)

where la, lφ ∈ (0, 1) are bounding values that are chosen as the maximum expected

systematic error values. Equation (4.27) is a non-linear, constrained optimization

problem. The objective function g : R2 → R≥0 is convex since it is the sum of

independent variables SR, SX ∈ R≥0; therefore, any local minimum of g(a, φ) is

a global minimum. Various algorithms are available that can efficiently identify

local minima for non-linear, constrained optimization problems. In this instance,

the interior-point method is used [137]. Figure 4.3 shows a schematic diagram that

illustrates the optimization process of the new method.

The identified correction constants a, φ are used to calculate impedance Zi from

measurements Vsi , Ṽri , Ii at time ti using (4.19). As only the most recent set of

measurements is used, parameters are calculated in real-time such that changes

can be monitored.
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Figure 4.3: Schematic diagram illustrating the steps of the new method. Initially,
the calculated parameter values have step changes over time due to systematic
measurement errors. A linear function of time is fitted and the residuals are
calculated. Over the iterations of the optimization process, correction factors
are identified such that the residuals are reduced. At the end of the optimization
process, residuals are minimized and calculated parameter values follow a constant
time model.
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4.3 Case study 1: short transmission lines

The novel method that was presented in the previous section was implemented to

estimate the series impedance of a laboratory-based, single-phase, short transmis-

sion line model from synchronized phasor measurements. Firstly, a description of

the set-up and operation of the physical overhead line model is given, thereafter

the results are presented and discussed.

4.3.1 Experimental set-up and operation

4.3.1.1 Overhead line equivalent circuit

The laboratory-based overhead line model consisted of an equivalent short line

circuit. Figure 4.4 shows a schematic diagram of the arrangement.

Arbitrary
waveform
generator

Amplifier

Voltage
source

Voltage
source

Coil

Current
transformer

Resistive
burden

Digitizer

Measurement circuit

Frequency lock

Channel 1

Channel 2

Figure 4.4: Schematic diagram showing the set-up of the overhead line model and
measurement circuit

Two Alternating Current (AC) voltage sources were used to model the net-

work at either end of the line. The voltage signals were produced with a fixed

phase relationship at a frequency of 50 Hz by two channels of a multi-channel ar-

bitrary waveform generator and then amplified to the required magnitude (using

two channels of a three-phase amplifier). The lumped impedance was provided by

an inductor coil with internal resistance.

4.3.1.2 Measurement circuit

A calibrated digitizer instrument was used to synchronously sample voltage and

current [138]. The inductor coil was fitted with voltage outputs, which were con-

nected directly to the two 230 V input channels of the instrument.
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The current was stepped down by a calibrated current transformer connected in

series with the inductor. The secondary circuit consisted of a calibrated, resistive

burden (nominal value of 10 Ω); the voltage across the burden was fed into the

instrument’s 1 V channel. The sampling frequency of 20.48 kHz was locked to the

nominal power system frequency of 50 Hz, which was generated by the arbitrary

waveform generator. Voltage and current phasors were estimated using a DFT

from signal samples at 0.1 s intervals. This window length was chosen as it is the

minimum period to match an integer number of samples (2048) at 20.48 kHz with

an integer number of sinusoidal cycles (five) at a signal frequency of 50 Hz, thereby

increasing the accuracy of estimated phasors.

4.3.1.3 Operating conditions

Each automated test was configured to last 15 minutes (900 s), during which the

current was varied to produce a range of line loading conditions. The current

was controlled by varying the amplitude of the two voltage sources to produce a

potential difference as shown in Figure 4.5; the resulting current magnitude was

in the interval [0,3] A as shown in Figure 4.6. The direction of power flow was

reversed three times during the test, which can be seen in Figure 4.7, where the

active power value changes sign at times 280 s, 550 s and 830 s.
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Figure 4.5: Amplitude of the voltages at each line end over the test period
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Figure 4.6: Amplitude of the line current over the test period
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4.3.2 Analysis of parameter estimation results

An impedance estimate was calculated from each set of voltage and current phasors

Vsi , Vri , Ii. The impedance values were further averaged over 10 s intervals. A

longer interval can be chosen to achieve greater reduction in random measurement

uncertainty; however, the resolution of observed changes in impedance decreases

at the same time. The appropriate interval length must be selected in line with

the thermal time constant of the system and specific application requirements.

4.3.2.1 Reference values of impedance

Initially, phasor measurements Vsi , Vri , Ii were utilized to determine reference val-

ues for the impedance parameters R and X using (4.2); the results are shown in

Figures 4.8 and 4.10. The shaded area shows the expanded uncertainties, which

have a coverage probability of 95 %. The uncertainties were estimated in accor-

dance with the Guide to the Expression of Uncertainty in Measurements [139],

details are referred to Appendix B.1.

It can be observed in Figure 4.8 that there is a 0.3 % increase in resistance

over the test period, of approximately 2 mΩ, which is attributed to Joule heating

of the copper coil. Given that the resistance-temperature coefficient for copper is

0.004 ◦C−1, the change in resistance corresponds to an increase in the coil temper-

ature of 0.7 ◦C, according to the linear resistance-temperature relationship (2.32).

Figure 4.9 shows the average measured surface temperature of the coil, indicating

an increase of approximately 0.6 ◦C. There is a lack of reliability in this measure-

ment because of the uncertainty of ±0.16 ◦C of the temperature sensors (27 % of

the measured change); nevertheless the change in coil temperature is tracked to

within 0.1 ◦C by the calculated resistance.
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Figure 4.8: Measured reference resistance values
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Figure 4.9: Average surface temperature of copper coil over the test period

As there is no significant change in the geometry such as thermal expansion of

the copper coil, the reactance values in Figure 4.10 do not have variation that is

linked to temperature; instead, the values oscillate about a mean value of 3.209 Ω.
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Figure 4.10: Measured reference reactance values

4.3.2.2 Systematic errors

A systematic error was added to the receiving end voltage measurement as mod-

elled in (4.19), with a = −5.00× 10−4, φ = 100 µrad. These correspond to a

TVE of 0.05 %, which is well below the 1 % limit suggested in the standard for

synchrophasor measurements [56]. In practice, such errors are present if the in-

strument calibration is unknown or outdated.

Since the resistance only changes by 0.3 % and approximately linearly over the

test period (correlation coefficient of 0.94), all measurement sets Vsi , Vri , Ii, t1 =

10 s, tn = 900 s were used to solve optimization problem (4.27) with la = lφ = 0.01;

the following values were identified for the correction constants: a = −4.99× 10−4,φ =

99.1 µrad. In Table 4.1 it can be seen that the correction constants reduce the sums

of the squared residuals SR, SX (given by (4.25) and (4.26)), thus the calculated

parameter values are closer to physically consistent, linear behaviour over time.

Table 4.1: Sum of squared residuals SR and SX with and without correction con-
stants

SR SX

No correction constants (Ω2) 1.17 0.84
With correction constants (Ω2) 6.46× 10−6 7.19× 10−6
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Figures 4.11 to 4.13 show the resistance and reactance values calculated from

measurements with systematic errors using (4.19), both including and excluding

the correction constants a, φ that were identified using the newly proposed method.

The percentage error E was calculated relative to the reference parameter values

R0i , X0:

ERi = 100(Ri −R0i)/R0i (4.28)

EXi = 100(Xi −X0)/X0, (4.29)

where subscript i refers to calculations for time instant ti. R0i is the calculated

reference resistance at each ti, whileX0 is the mean value of the calculated reference

values over the time period.
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Figure 4.11: Resistance values calculated without correction constants
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Figure 4.13: Calculated reactance values over the test period

From the graphs, it can be observed that without any error correction, resis-

tance and reactance values vary non-linearly and periodically, with asymptotic

behaviour at the times of reversal of the direction of power flow, as predicted by

the observations on propagation of systematic errors in (4.16). Errors in resistance

exceed ±40 % and errors in reactance reach up to 17 %, while the maximum un-

certainties in the reference values are ±0.6 % and ±0.06 %, respectively. When the

identified error constants are included in the impedance calculation, errors in both

parameters are reduced to below 1 %.
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4.3.3 Discussion of results

The results presented in the previous section have shown that constant deviations

in voltage phasor measurements can cause significant errors in calculated impe-

dance parameters and hide thermal variation of the resistance. Moreover, the new,

optimization-based method identified correction constants that compensated for

the systematic errors with the effect of increasing parameter estimation accuracy.

The strength of the method is that it makes use of knowledge about the dynamic

behaviour of line impedance; in contrast to existing approaches, time is included

in the problem formulation. This additional information is used to estimate the

correction constants only, and impedance is calculated more accurately in another

step. The need to solve a parameter estimation problem with many unknowns

(impedance parameters and correction constants) and the associated potential is-

sue of ill-conditioning are avoided. The case study was somewhat realistic as actual

phasor measurements with uncertainty were used and the size of the impedance

was typical for a short line. However, overhead lines are often longer than 80 km,

especially at transmission level, with significant capacitive leakage currents that

require a pi-circuit representation using impedance and admittance parameters. In

addition, resistance is likely to be more and the load profile less variable. There-

fore, the proposed method requires further development and validation under more

realistic assumptions.
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4.4 Extension of the method to the pi-model for

longer lines

In this section, the parameter estimation problem for a pi-circuit is modified to

include systematic measurement errors. Thereafter, the new method presented

in Section 4.2 for short lines is extended to the pi-circuit, which conventionally

serves as a model for medium-length (up to 240 km) and long (more than 240 km)

transmission lines [140].

4.4.1 Modification of the pi-circuit model

Figure 4.14 shows the circuit diagram of the pi-circuit model. Series impedance

Z ∈ C and shunt admittance Y ∈ C are to be determined from measurements

Vs, Is, Vr, Ir ∈ C. Z = R + jX, Y = G + jB, where R,X,G,B ∈ R≥0, X =

2πfL,B = 2πfC, f, L, C ∈ R≥0. R is the line resistance, X the reactance, G

is conductance, B is susceptance, L is inductance, C is capacitance and f is the

frequency.
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Figure 4.14: Diagram of a pi-circuit

The circuit equations are

Vs = (Is −
Y

2
Vs)Z + Vr (4.30)

Is = (Vs + Vr)
Y

2
+ Ir. (4.31)

Equations (4.30) and (4.31) can be rearranged to give formulae for Z and Y :

Z =
V 2
s − V 2

r

VsIr + VrIs
(4.32)

Y = 2
Is − Ir
Vs + Vr

. (4.33)
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In the same manner as in Section 4.2.1, define Ṽs, Ṽr, Ĩs, Ĩr ∈ C as synchronized

phasor measurements that have systematic errors −as,−bs,−ar,−br ∈ R in mag-

nitude and −φs,−θs,−φr,−θr ∈ [−π, π] in phase angle, respectively. Then the

corrected phasors are given by

Vs = (1 + as)Ṽs exp(jφs) (4.34)

Is = (1 + bs)Ĩs exp(jθs) (4.35)

Vr = (1 + ar)Ṽr exp(jφr) (4.36)

Ir = (1 + br)Ĩr exp(jθr). (4.37)

By substituting (4.34) to (4.37) into (4.32) and (4.33), the model equations for

measurements with systematic errors are obtained as

Z =
(1 + as)

2Ṽ 2
s exp(j2φs)− (1 + ar)

2Ṽ 2
r exp(j2φr)

(1 + br)(1 + as)ĨrṼs exp(j(θr + φs)) + (1 + bs)(1 + ar)ĨsṼr exp(j(θs + φr))
(4.38)

Y = 2
(1 + bs)Ĩs exp(jθs)− (1 + br)Ĩr exp(jθr)

(1 + as)Ṽs exp(jφs) + (1 + ar)Ṽr exp(jφr)
. (4.39)

From (4.39), it can be observed that admittance Y is proportional to the differ-

ence between sending and receiving end current, thus the sensitivity to systematic

errors bs, br, θs, θr is high and correction constants for voltage as well as current

measurements will be estimated.

4.4.2 Explanation of the new method for the pi-circuit

model

In a similar manner as in Section 4.2.3, the problem can be simplified by observing

that the error in Y caused by bs, θs is approximately equal and opposite to the

error caused by br, θr. Therefore bs, br, θs, θr are combined into net errors b, θ in

Ĩr, where b = (br − bs), θ = (θr − θs). Equivalently, the error in Z caused by

as, φs is approximately equal and opposite to the error caused by ar, φr, hence,

error constants as, ar, φs, φr are combined into net errors a, φ in Ṽr, where a =

(ar − as), φ = (φr − φs). A detailed derivation of these approximations is given in

Appendix B.2. The problem is thus formally stated as follows:
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Given n ∈ N sets of phasor measurements Ṽsi , Ĩsi , Ṽri , Ĩri ∈ C, each taken at

time instants ti ∈ R≥0, i = 1, 2, 3, . . . , n over the time period tn− t1, identify

optimal values of correction constants a, φ, b, θ ∈ R such that impedance Zi

and admittance Yi can be calculated accurately.

Ṽsi , Ĩsi , Ṽri , Ĩri , a, φ, b, θ are related by

Zi =
Ṽ 2
si
− (1 + a)2Ṽ 2

ri
exp(j2φ)

(1 + b)ĨrI ṼsI exp(jθ) + (1 + a)ĨsI ṼrI exp(jφ)
(4.40)

Yi = 2
ĨsI − (1 + b)ĨrI exp(jθ)

ṼsI + (1 + a)ṼrI exp(jφ)
. (4.41)

where resistance is given by Ri = Re(Zi), reactance by Xi = Im(Zi), conductance

by Gi = Re(Yi) and susceptance by Bi = Im(Yi).

Constants a, φ, b, θ are identified using the same principle that was introduced

in Section 4.2.3. Since there are more constants and an additional model equation

than for the short line model, two optimization problems will be defined. The first

is based on (4.40) and exploits the higher sensitivity of Z to a and φ; values for

a and φ are found by minimizing residuals between calculated values of R,X and

fitted linear functions of time. The second optimization problem is based on (4.41)

and finds values for b and θ by minimizing residuals between calculated values of

G,B and fitted linear functions of time.

Optimization problem 1 As in Section 4.2.3, resistance R is assumed to vary

linearly over time and reactance X is assumed to have a constant value. Func-

tions fR, fX , SR, SX are defined in the same way and the optimization problem is

formulated as

minimize
a,φ

gZ(a, φ) = SR + SX

subject to |a| < la, |φ| < lφ, (4.42)

and la, lφ ∈ (0, 1) are bounding values that are chosen as the maximum expected

systematic error values. On each iteration, Ri and Xi, i = 1, 2, 3, . . . , n, are calcu-

lated using

Zi = Ri + jXi =
Ṽ 2
si
− (1 + a)2Ṽ 2

ri
exp(j2φ)

ĨriṼsi + (1 + a)ĨsiṼri exp(jφ)
, (4.43)

where subscript i refers to measurements taken at time instant ti. By the same

justification as given in Section 4.2.3, equation (4.42) is a non-linear, constraint,

convex optimization problem and optimal values afinal, φfinal are identified using

the interior-point method [137]. The optimal values are used in the objective func-
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tion of the second optimization problem, which is defined in the next paragraph.

Optimization problem 2 For the second optimization problem, define linear

functions fG, fB : R≥0 → R, where

fG(ti) = rG (4.44)

fB(ti) = rB, (4.45)

since conductance G and susceptance B are assumed to be constant over time. In

the same way as rX , constants rG, rB ∈ R are calculated as the mean of the n

parameter values Gi, Bi ∈ R, calculated at time instants ti, i = 1, . . . , n:

rG =
1

n

n∑
i=1

Gi (4.46)

rB =
1

n

n∑
i=1

Bi. (4.47)

Gi, Bi are calculated using

Yi = Gi + jBi = 2
Ĩsi − (1 + b)Ĩri exp(jθ)

Ṽsi + (1 + afinal)Ṽri exp(1 + φfinal)
, (4.48)

where optimal values afinal, φfinal from optimization problem 1 have been included

to correct voltage phasor measurements. The variation of Gi, Bi over time is

measured by the sums of squared residuals SG, SB:

SG =
n∑
i=1

(Gi − fG(ti))
2 (4.49)

SB =
n∑
i=1

(Bi − fB(ti))
2. (4.50)

The second optimization problem is then defined as

minimize
b,θ

gY (b, θ) = µ(SG + SB)

subject to |b| < lb, |θ| < lθ, (4.51)

where µ ∈ R≥0 is a factor to avoid bad scaling as Gi and Bi are of the order of

10−6 and 10−4, respectively, and lb, lθ ∈ (0, 1) are bounding values that are chosen

as the maximum expected systematic error values. By the same reasoning given

in Section 4.2.3, equation (4.51) is a convex, non-linear constrained optimization

problem that can be solved using the interior-point algorithm [137] to obtain op-

timal values bfinal, θfinal.
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Optimal values afinal, φfinal, bfinal, θfinal are obtained from a moving window

of n measurement sets spanning time period tn − t1 and are then used to calcu-

late accurate values for R,X,G,B using (4.40) and (4.41). The entire process is

summarized by the flow chart in Figure 4.15.

n

Figure 4.15: Flow chart that summarizes the steps of the proposed method for the
pi-circuit model
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4.5 Case study 2: medium-length and long lines

The Proposed Method (PM) presented in the last section has been applied to

measurements from a simulated, medium-length transmission line. To provide a

comparison, the Two-port Linear Least-squares - Single-phase (TPLL1) method

as defined in Section 3.2.1.4 has also been implemented to estimate impedance pa-

rameters. This method was chosen as it achieved the highest number of acceptable

values in the simulation study in 3.5. In Section 4.3, one sole case of systematic

errors was studied. In this section, 105 cases will be considered to demonstrate the

robustness of the new method.

4.5.1 Properties of the simulation

A single phase of the 400 kV, 102 km long transmission line located between sub-

stations Grendon and Staythorpe, East Midlands, England [141], was simulated in

MATLAB® SimscapeTM Power SystemsTM software. A circuit diagram is shown

in Figure 4.16.
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Figure 4.16: Schematic diagram of the simulation circuit

The pi-equivalent parameter values are R0 = 2.98 Ω, X0 = 32.3 Ω, G0 = 33.8 nS

and B0 = 3.68× 10−4 S at 20 ◦C. The resistance was set to vary sinusoidally within

±4 % of the nominal value, which corresponds to a change in line temperature of

approximately ±10 ◦C over the period of the simulation.
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The network at either end of the line was modelled by an equivalent voltage

source; Figure 4.17 shows the rms magnitude of the sending and receiving end

voltages. A variable load profile ranging from 15 % to 100 % of rated current was

assumed to occur over a seven hour period; rms values of current magnitude are

shown in Figure 4.18.
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Figure 4.17: Amplitude of the sending and receiving end voltages over the period
of the simulation
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Figure 4.18: Amplitude of the sending and receiving end currents over the period
of the simulation, their difference is very small compared to the individual values
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Synchronized measurements of steady-state current and voltage phasors at each

line end were taken at time intervals of ∆t = 2 min for blocks of 10 s. In order to

reflect the measurement uncertainty that is present in practice, the measurements

were contaminated with Gaussian noise of mean zero and standard deviations of

0.03 % and 0.04 % in magnitudes of voltage and current, respectively, and 0.3 mrad

in all phase angles. These values are typical for commercially available phasor

measurement units [10].

Systematic errors in both sending and receiving end voltages and currents as

modelled in (4.34) to (4.37) were applied to all synchrophasor measurements. The

mean of the synchrophasors was taken over each 10 s block to generate an individual

set of measurements every two minutes; in total there were 203 measurement sets.

A moving window of n = 8 measurement points, spanning 16 min, was used to

estimate the impedance and admittance parameters of the line in real-time. Thus,

203− 8 + 1 = 196 estimated values were computed for each of R,X,G and B.

In order to test the effectiveness of the PM and existing TPLL1 method un-

der a range of conditions, different sets of systematic errors were applied to the

measurements. In each case, the magnitude and phase errors were selected ran-

domly from a uniform distribution in the interval [−0.01, 0.01]. In total, 105 cases

were studied, giving sufficiently small confidence intervals on the relevant metrics,

which will be defined in Section 4.5.2.

4.5.2 Metrics for evaluation of method performance

Two metrics are used to evaluate the accuracy of the impedance and admittance

parameter estimates over the simulation period. The first is the rms error E∆P

calculated over all parameter estimates; it indicates how far the estimates are from

the actual values.

Let the errors in the individual parameter estimates be ∆Pi = Pi − P0. Pi

refers to the parameter estimates Ri, Xi, Bi evaluated at each time instant ti, i =

[1, . . . , 196] using (4.40) and (4.41) by the PM and as described in Section 3.2.1.4

by the TPLL1 method. P0 refers to the nominal parameter values R0, X0, B0 given

in Section 4.5.1. Then

E∆P =
1

P0

√√√√ 1

196

196∑
i=1

∆P 2
i . (4.52)
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The second metric is Σ∆P , the standard deviation of the parameter errors

as a fraction of the nominal values. This metric indicates the variability of the

parameter error over the simulation period. Σ∆P is given by

σ∆P =
1

P0

√√√√ 1

195

196∑
i=1

(∆Pi − µ∆P )2, (4.53)

where µ∆P = 1/196
∑196

i=1 ∆Pi is the mean parameter error.

The reference conductance value of 33.8 nS causes a loss of current of less than

0.1 A at 400 kV, which is 0.02 % of the minimum line current of 500 A. Given

a typical measurement uncertainty of 0.1 %, only current losses greater than 1 %

become measurable and thus significant; these losses require conductance values

greater than 7 µS. It is therefore more useful to consider the absolute errors in

conductance, rather than a proportion of the reference value:

E∆G =

√√√√ 1

196

196∑
i=1

∆G2
i ,Σ∆G =

√√√√ 1

195

196∑
i=1

(∆Gi − µ∆G)2, µ∆G =
1

196

196∑
i=1

∆Gi.

(4.54)

Equations (4.52) to (4.54) were used to calculate the results presented in Section

4.5.3.

4.5.3 Analysis of parameter estimation results

The results of the case study are presented in two parts: first, one individual case

with a specific set of systematic errors is considered; then the aggregated results

for 105 cases of systematic errors are given.

4.5.3.1 Individual case

Table 4.2 lists the values of one set of systematic errors that was applied to the

voltage and current phasors as well as the resulting TVE. Figure 4.19 shows the

values of the correction constants that were identified from a moving window of

n = 8 measurements by solving the two optimization problems (4.42) and (4.51)

with bounds la = lφ = lb = lθ = 0.02.

It can be observed that a ≈ −0.003 ≈ ar − as (from Table 4.2), which is

consistent with the assumption that a corrects the net error, as described by (4.40)

and (4.41). Similar observations can be made for φ, b, θ.

127



Table 4.2: Systematic errors in the synchrophasor measurements - individual case

Magnitude Phase Angle
(rad)

TVE

Ṽs as = 0.0008 φs = 0.0059 0.60 %

Ṽr ar =−0.0021 φr = −0.0076 0.78 %

Ĩs bs = −0.0016 θs = 0.0095 1.02 %

Ĩr br = 0.0037 θr = −0.0034 0.38 %
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Figure 4.19: Values of the identified correction constants over time for the indi-
vidual simulation case

Figures 4.20 to 4.23 show the final estimates of resistance, reactance, conduc-

tance and susceptance over the simulation period. It can be observed that the

estimated values obtained by the PM are closer to the nominal values than for

the TPLL1 method, and for resistance the thermal changes are tracked more ac-

curately.
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Figure 4.20: Nominal and estimated values of resistance R over time for the indi-
vidual simulation case
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Figure 4.21: Nominal and estimated values of reactance X over time for the indi-
vidual simulation case
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Figure 4.22: Nominal and estimated values of conductance G over time for the
individual simulation case
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Figure 4.23: Nominal and estimated values of susceptance B over time for the
individual simulation case
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In Table 4.3, E∆ and Σ∆ as defined by (4.52) to (4.54) are given for R,X,B

and G. E∆ for estimated parameter values by the PM is significantly smaller than

for values estimated by the TPLL1 method. Similarly, Σ∆ is lower, indicating less

non-thermal variability in the parameter estimates.

Table 4.3: Parameter errors for one individual case

R X B G

E∆ (%)
PM1 2.5 0.14 1.5 4.7 µS
TPLL12 13.1 0.21 38.5 819.0 µS

Σ∆ (%)
PM1 0.9 0.07 1.1 4.1 µS
TPLL12 2.9 0.11 20.8 52.3 µS

1 Proposed Method
2 Two-port Linear Least-squares - Single-phase

4.5.3.2 Large number of cases

Tables 4.4 to 4.7 summarize the results from the simulation of 105 different cases

of systematic errors. The 50th, 75th and 95th percentiles of the distributions of

E∆ and Σ∆ as defined by (4.52) to (4.54) are listed to give an indication of the

level of accuracy and consistency of the applied methods. For each percentile, the

95 % confidence interval is given in brackets.

Table 4.4: Errors in resistance R for 105 cases

Percentile
50th 75th 95th

E∆R (%)
PM1 6.4± 0.1 10.8± 0.1 16.9± 0.1
TPLL12 7.2± 0.0 11.6± 0.1 17.9± 0.1

Σ∆R (%)
PM 0.9± 0.0 0.9± 0.0 1.1± 0.0
TPLL1 2.9± 0.0 2.9± 0.0 2.9± 0.0

1 Proposed Method
2 Two-port Linear Least-squares - Single-phase

Table 4.4 show that for resistance R, the distributions of E∆R occupy a similar

range for both the PM and the TPLL1 method, with the 95th percentiles at 17 %

and 18 %, respectively. However, the PM yields significantly lower values of Σ∆R

at around 1 %, whereas the TPLL1 method yields 2.9 %. For reactance X, both

methods produce lower values of E∆X and Σ∆X , of the order of 1 % and 0.1 %,

respectively, as shown in Table 4.5.
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Table 4.5: Errors in reactance X for 105 cases

Percentile
50th 75th 95th

E∆X (%)
PM1 0.58± 0.00 0.98± 0.01 1.52± 0.01
TPLL12 0.60± 0.01 1.01± 0.01 1.56± 0.01

Σ∆X (%)
PM 0.06± 0.00 0.07± 0.00 0.08± 0.00
TPLL1 0.11± 0.00 0.11± 0.00 0.11± 0.00

1 Proposed Method
2 Two-port Linear Least-squares - Single-phase

For conductance G and susceptance B the level of errors differs between the meth-

ods to a greater extent than for R and X.

Table 4.6: Errors in conductance G for 105 cases

Percentile
50th 75th 95th

E∆G (µS)
PM1 4.7± 0.0 5.6± 0.0 7.3± 0.0
TPLL12 364.0± 3.0 617.0± 3.0 955.0± 4.0

Σ∆G (µS)
PM 4.1± 0.0 4.1± 0.0 4.2± 0.0
TPLL1 53.1± 0.0 54.1± 0.0 55.5± 0.0

1 Proposed Method
2 Two-port Linear Least-squares - Single-phase

Values of E∆G reach up to approximately 7 µS for the PM, but the TPLL1 method

results in values of almost 1 mS. Results for Σ∆G are more than ten times higher

for the TPLL1 method than for the PM.

Table 4.7: Errors in susceptance B for 105 cases

Percentile
50th 75th 95th

E∆B (%)
PM 1.2 ± 0.0 1.5 ± 0.0 1.9 ± 0.0
TPLL1 99.9 ± 0.7 168.0 ± 1.0 261.0 ± 1.0

Σ∆B (%)
PM 1.1 ± 0.0 1.1 ± 0.0 1.1 ± 0.0
TPLL1 21.5 ± 0.0 21.9 ± 0.0 22.3 ± 0.0

1 Proposed Method
2 Two-port Linear Least-squares - Single-phase

While the PM gives values of E∆B of 1 % to 2 % for susceptance, the TPLL1

method gives results for E∆B of over 100 %. Values for Σ∆B are also an order of

magnitude greater for the TPLL1 method.
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4.5.4 Discussion of results

4.5.4.1 Comparison of methods

Based on the case study results presented in Section 4.5.3, the Proposed Method

(PM) demonstrated equal or better performance compared to the existing Two-

port Linear Least-squares - Single-phase (TPLL1) method. The TPLL1 method

finds an optimal estimate for the parameters of a two-port network; these are then

used to calculate impedance and admittance parameters of the pi-circuit. The ad-

vantage of this approach over calculating the pi-circuit parameters directly, is that

it makes use of redundant measurements such that constant systematic errors, as

modelled in (4.34) to (4.37), either cancel or only cause a constant offset in the

estimated parameter values. However, the TPLL1 method also assumes constant

parameters in time, and even small variations over a moving window lead to vari-

able parameter errors. This robustness to systematic errors, yet weak accuracy for

variable parameters, explains the relatively similar results in the rms errors in the

resistance and reactance parameters in the case study for both methods. Therefore

it may appear that the PM does not have a significant advantage. However, one of

the crucial differences is that the PM has demonstrated approximately 60 % lower

variability in the errors in resistance over the simulation period (standard devia-

tion of errors of 1 % versus 3 %). The resistance is the parameter with the highest

temperature sensitivity, hence, it is of interest for safety monitoring. Expanded un-

certainties of 2 % and 6 % in resistance errors correspond to uncertainties of 5 ◦C

and 15 ◦C in temperature error, respectively, assuming a resistance-temperature

coefficient of 0.4 %. Hence, for the line under consideration, the safety margin

for maximum temperature can be reduced by 10 ◦C when the PM is used, thus

creating more transmission capacity.

4.5.4.2 Limitations of the proposed method

While the PM has demonstrated its capability to improve the accuracy of impe-

dance parameter estimation, it does have limitations. Correction factors for sys-

tematic errors are found by minimizing residuals of constant or linear functions

fitted to estimated parameter values from a given time window. For residuals to be

increased by systematic errors, load variation must occur during this time window.

There is an open question about how to determine the minimum level of load vari-

ation that is required for the method to be effective. At a minimum, the difference

in line loading must be clearly distinguishable from random measurement noise

and must therefore be at least ten times the measurement uncertainty.
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Assuming a maximum TVE of 1 %, a minimum level of variation of 10 % is pro-

posed. However, further work is necessary to give a comprehensive answer to this

question.

The extent to which impedance and admittance parameters are constant or

change linearly over time can differ between time windows. To maximize load

variation, the window length can be increased, but the rate of thermal change of

resistance can also change. On the one hand, it can be argued that the PM only

relies upon relative changes in the residuals. As long as the residuals are increased

by systematic measurement errors, it does not matter how well the variation in

resistance is described by a linear function. On the other hand, it has not yet

been generally proven that the identified correction constants restore the actual

parameter estimates regardless of the non-linearity of resistance variation.

The PM in its current form only corrects net errors, i.e. the difference between

the sending and receiving end. If the errors are equal at both line ends, the error

in impedance and admittance is independent of the system state (see (4.17) and

(B.20)), and residuals of fitted linear functions are not increased. In these cases,

the method does not increase parameter estimation accuracy. This failure is due

to the fact that the PM is designed to restore parameter variation to correct levels,

but it lacks a mechanism to restore the correct absolute level of parameter values.

A calibration procedure must be developed to tackle this limitation.

In presenting the PM, systematic errors were assumed to be constant, directly

proportional in magnitude and additive in phase angle. The systematic errors can

follow different, non-linear models. These variations can still be approximated by a

linear error model. A useful extension of the PM is to test different systematic error

models and select the one that achieves the most accurate impedance parameter

estimates.
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4.6 Conclusion

In this chapter, a novel method has been presented that can be used to accu-

rately estimate impedance and admittance parameters of an overhead line from

synchrophasor measurements with systematic errors. Building from a simple short

line model, the method was extended to be applicable to the general pi-circuit,

which can model medium-length and long transmission lines. An innovative fea-

ture of the method is that it takes into account the time dimension, that means the

dynamic behaviour of the electrical properties of an overhead line. Through the

assumption of constant or linearly changing parameters over short periods of time,

correction constants for systematic errors are identified through optimization, al-

lowing subsequent calculation of impedance parameters with increased accuracy.

The effectiveness of the proposed method was demonstrated in two case stud-

ies: initially, using measurements from a physical, laboratory-based line model

and thereafter with a software-simulated transmission line. In comparison to an

existing parameter estimation method, the new method has achieved 60 % lower

variation in errors in resistance, which is especially useful with respect to real-time

monitoring of changes in temperature.

Limitations of the proposed method have been discussed, highlighting that

further work is necessary to facilitate accurate real-time monitoring of overhead

line impedance parameters under a wide range of conditions. This is the objective

of Chapter 5, which will build on the contributions made in this chapter. A method

will be presented that is designed to correct for systematic errors even if individual

windows have low levels of load variation; correction factors for measurements at

both line ends are included; in addition, line temperature measurements are used

to maximize the accuracy of absolute parameter values as well as of variation over

time.
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Chapter 5

An innovative approach to

increasing the accuracy of

real-time impedance parameter

monitoring

5.1 Introduction

The aim of this thesis is to contribute methodology for synchrophasor-based, real-

time monitoring of overhead line impedance parameters with acceptable accuracy.

This objective is translated into a requirement to calculate series impedance and

shunt admittance with acceptable accuracy from a set of synchronized phasor

measurements of voltage and current signals taken at any given time at the two

ends of an overhead line.

In Chapter 3 it was shown that systematic errors in the synchrophasor mea-

surements can reduce the accuracy of calculated parameters to unacceptable level.

To solve this problem, Chapter 4 proposed an adaptation of standard transmission

line models, consisting of correction factors for the synchrophasor measurements,

and a novel method for their identification. The novel method showed to be ef-

fective in two case studies, but it does have some weaknesses: correction factors

are estimated for one line end only; moreover, the factors are continually updated

based on a moving time window of measurements such that variation in impedance

and admittance is physically consistent within each time window, but not neces-

sarily over longer time scales; there is also no control to achieve acceptability of

absolute values of impedance and admittance.
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This chapter seeks to address these weaknesses by introducing a new problem

formulation. As in Chapter 4, correction factors for systematic errors in syn-

chrophasor measurements are added to the transmission line model. Furthermore,

the linear resistance-temperature relationship is included since recent research has

shown that handbook parameters for the resistance-temperature relationship may

not describe individual systems with sufficient accuracy [130, 142]. Correction fac-

tors as well as resistance-temperature parameters are assumed constant through

time, thus they can be estimated using measurements from an unlimited time

span. Two novel methods will be proposed for this estimation, making use of syn-

chrophasor as well as conductor temperature measurements. The first method will

be based directly on the method proposed in Chapter 4, while the second method

derives more closely from some of the existing impedance parameter estimation

methods. Moreover, a procedure for selecting the optimal correction factors and

resistance-temperature parameters obtained from different measurement sets is

given.

The next section will outline the new methods and selection procedure in detail.

Thereafter, two case studies on the overhead line that was considered in Chapter 3

will be presented; the first one in Section 5.3 compares the new methods to existing

ones using synchronized measurements from a laboratory-based emulation of the

overhead line; the second case study in Section 5.4 tests the new methods using

actual field measurements spread over a ten-month period. Section 5.5 concludes

this chapter.
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5.2 Methods

To begin with, this section will introduce a new parameter estimation problem and

then go on to explain two novel parameter estimation methods in detail as well as

a procedure for selecting the optimal parameter estimates.

5.2.1 A different parameter estimation problem

The overhead line system model is built from the pi-circuit, which is shown in

Figure 5.1, the standard model for medium-length and long transmission lines

[135].
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Figure 5.1: Diagram of a pi-circuit

Define the following variables:

Vs, Is, Vr, Ir ∈ C positive sequence voltage and current at nominal system fre-

quency at the sending (s) and receiving (r) transmission line

ends,

Z, Y ∈ C are positive sequence series impedance and shunt admittance at

fundamental system frequency, where Z = R+jX, Y = G+jB,

R ∈ R resistance,

X ∈ R reactance, X = 2πfL

G ∈ R conductance,

B ∈ R susceptance, B = 2πfC

f ∈ R frequency,

L inductance,

C capacitance,

Ṽs, Ĩs, Ṽr, Ĩr ∈ C synchrophasor measurements with systematic errors,

as, ar, bs, br ∈ C correction factors.
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The linear relationship between measurements and actual voltage and current is

given by [70–73, 125]:

Vs = asṼs, Is = bsĨs

Vr = arṼr, Ir = brĨr. (5.1)

The electro-thermal system model consists of three equations. The first two are

the pi-circuit equations with correction constants (see Section 4.4.1):

asṼs = (bsĨs − Y/2)Z + arṼr (5.2)

bsĨs = (asṼs + arṼr)Y/2 + brĨr. (5.3)

Let Tc ∈ R be measurements of conductor temperature and R0 ∈ R≥0 be the

line resistance value at a reference temperature T0, with resistance-temperature

coefficient α ∈ [−1, 1]. The third equation is the linear resistance-temperature

relationship [43]:

R = R0(1 + α(Tc − T0)). (5.4)

The three equations are coupled by R = Re(Z). The new parameter estimation

problem is stated as follows:

Given n measurements Ṽsi , Ĩsi , Ṽri , Ĩri , Tci taken at time instants ti ∈ R≥0, i =

1, 2, 3, . . . , n and a reference temperature T0, find values for correction con-

stants as, ar, bs, br as well as resistance-temperature parameters R0 and α.

Once as, ar, bs, br have been identified, values of impedance Zi and Yi at fixed

time ti, i = 1, . . . , N,N ≥ n can be calculated from the set of measurements

Ṽsi , Ĩsi , Ṽri , Ĩri by rearranging (5.2) and (5.3):

Zi = Ri + jXi =
asṼ

2
si
− arṼ 2

ri

asṼsibrĨri + arṼribsĨsi
(5.5)

Yi = Gi + jBi = 2
bsĨsi − brĨri
asṼsi + arṼri

. (5.6)

In addition, conductor temperature can be calculated from estimates of R0 and α

by rearranging (5.4):

Tci = T0 +
1

αR0

(Ri −R0). (5.7)

In the following paragraphs, two methods will be proposed for solving the new

parameter estimation problem.
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5.2.2 Estimation of correction factors and resistance-temperature

parameters

Two novel approaches to estimating the unknown parameters from voltage and

current measurements will be presented in this section.

5.2.2.1 New Method - Linear Time (NMLT)

The first approach is based on the novel method presented in Chapter 4, which is

based on the assumption that parameter values change linearly over time or remain

constant. Hence, this method is referred to as New Method - Linear Time (NMLT).

The method is explained in two steps: firstly, an optimization problem for the

identification of correction factors is defined and secondly, resistance-temperature

parameter values are obtained by linear least-squares estimation.

Step 1: Estimation of correction factors

Suppose that measurements of voltage, current and temperature are available

from N ∈ N time instants, where N is a constant. Unknown parameters will

be estimated from a subset of measurements from n ≤ N time instants. Let

Ri = Re(Zi), Xi = Im(Zi), Gi = Re(Yi), Bi = Im(Yi) be values of resistance, re-

actance, conductance and susceptance, respectively, calculated at time instant ti

using (5.5) and (5.6). Resistance is known to change with conductor temperature

[43] and is therefore assumed to vary linearly over time, while reactance and suscep-

tance are assumed constant as explained in Appendix A.1. Conductance depends

on the conductor surface and can vary with humidity, but its overall magnitude

is normally below 10 µS [143]; therefore, conductance is modelled as a constant

value of zero. Hence, the following functions fR, fX , fG, fB ∈ R → R are defined

for modelling Ri, Xi, Gi and Bi:

fR(ti) = qRti + rR (5.8)

fX(ti) = rX (5.9)

fG(ti) = 0 (5.10)

fB(ti) = rB (5.11)

Constants qR, rR are found through a linear least-squares fit of Ri, i = 1, 2, 3, . . . , n,

which was explained in Section 4.2.3.
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Constants rX , rB are calculated as the mean values of Xi, Bi, respectively:

rX =
1

n

n∑
i=1

Xi (5.12)

rB =
1

n

n∑
i=1

Bi (5.13)

Systematic errors in the voltage and current measurements cause the calculated

values Ri, Xi, Gi, Bi to deviate from their physically expected, linear behaviour

with respect to time, that means an increase in the residuals between fR, fX , fG, fB

and Ri, Xi, Gi, Bi, respectively. Define SR ∈ R≥0 as the sum of the squares of the

residuals of the linear least-squares fit of (5.8), where

SR =
n∑
i=1

(Ri − fR(ti))
2, (5.14)

SX , SG and SB are defined similarly in terms of Xi, fx, Bi, fB and Gi, fG, respec-

tively:

SX =
n∑
i=1

(Xi − fX(ti))
2, (5.15)

SB =
n∑
i=1

(Bi − fB(ti))
2, (5.16)

SG =
n∑
i=1

G2
i . (5.17)

The objective is to find values for correction factors as, ar, bs, br that maximise

the goodness of fit, which is achieved by minimizing SR, SX , SG, SB. Hence, the

following optimization problem is defined:

let h ∈ R8, h = (|as|, arg(as), |ar|, arg(ar), |bs|, arg(bs), |br|, arg(br)),

minimize
h

g(h) = µ2
RSR + µ2

XSX + µ2
GSG + µ2

BSB

subject to |as|, | arg(as)|, |ar|, | arg(ar)| < 0.1,

|bs|, | arg(bs)|, |br|, | arg(br)| < 0.1, (5.18)

with initial values as = ar = bs = br = 1.

SR, SX , SG, SB are functions of h sinceRi, Xi, Gi, Bi are calculated using as, ar, bs, br.

Constants µR, µX , µG, µB ∈ R≥0 are weighting factors that can be used to adjust

the relative magnitudes of the terms of g(h). The choice of weighting factors has

an effect on the optimized goodness of fit of fR, fX , fB to Ri, Xi, Bi and the overall

magnitude of Gi, that means to what extent the identified correction factors make
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the calculated impedance and admittance more compliant to expected physical

behaviour. For instance, if µR = µX = µG = µB = 1, SR and SX will dominate

and no significant improvement occurs in SG, SB.

The inequality constraints arise from existing accuracy classes of instrument

transformers [133, 134] and characterization of instrumentation channels [52],

which imply that systematic errors in voltage and current magnitude do typically

not exceed ±10 %, and errors in phase angle are less than ±0.1 rad.

Equation (5.18) is a non-linear, constrained optimization problem. The ob-

jective function g : R8
≥0 → R≥0 is a linear combination of the four independent

variables SR, SX , SG, SB with positive constants µR, µX , µG, µB. Therefore g(h) is

a convex function and any local minimum of g(h) is a global minimum. In this in-

stance, the interior-point method is used to identify local minima of the non-linear,

constrained optimization problem [137].

Let âs, âr, b̂s, b̂r be the identified correction factors, which are used to calculate

values of Zi = Ri + jXi and Yi = Gi + jBi, i = 1, 2, 3, . . . , N by substituting into

(5.5) and (5.6). Since X,G and B are assumed constant, a single estimate can be

obtained by taking the mean values

X̄ = 1/N
N∑
i=1

Xi, Ḡ = 1/N
N∑
i=1

Gi, B̄ = 1/N
N∑
i=1

Bi. (5.19)

Step 2: Estimation of resistance-temperature parameters

To obtain estimates for R0 and α, express the linear resistance-temperature rela-

tionship (5.4) as

Ri = x0 + x1Tc, (5.20)

where x0, x1 ∈ R are unknown constants with x0 = R0(1−αT0), x1 = R0αT0. x0, x1

are identified through linear least-squares estimation from temperature measure-

ments Tci and calculated resistance values Ri. Define vectors R,T ∈ RN ,x ∈ R2

where R = [R1, R2, . . . , RN ]T ,T = [Tc1 , Tc2 , . . . , TcN ]T ,x = [x0, x1]. The vectors

are related by the N -dimensional matrix equation

R = Tx + ε, (5.21)

which is based on the theoretical model (5.20). ε = [ε1, ε2, . . . , εN ]T models the

deviation between synchrophasor-based values R and temperature-based values

Tx.
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An estimate x̂ = [x̂0, x̂1] of x is computed by satisfying the least-squares criterion,

min
∑n

i=1 ε
2
i :

x̂ = (TTT)−1TTR. (5.22)

Estimated values of reference resistance R̂0 and coefficient α̂ are calculated from

x̂0 and x̂1. R̂0, α̂, X̄, Ḡ, B̄ and temperature measurements Tci are combined to give

estimates of impedance and admittance, Ẑi, Ŷ :

Ẑi = R̂0(1 + α̂(Tci − Tc0)) + jX̄, Ŷ = Ḡ+ jB̄. (5.23)

Conversely, temperature estimates T̂ci can be obtained from calculated resistance

using the resistance-temperature model:

T̂ci = (Ri − x̂0)/x̂1. (5.24)

Ẑi, Ŷ and T̂ci will be used in Section 5.2.3. Next, the second novel method will be

explained.

5.2.2.2 New Method - Non-linear Least-squares (NMNL)

The second approach uses non-linear least-squares estimation, similarly to some

of the existing impedance parameter estimation methods [111, 125]. Hence, the

method is referred to as New Method - Non-linear Least-squares (NMNL). Suppose

that measurements of voltage, current and temperature are available from N ∈ N
time instants, where N is a constant. Unknown parameters will be estimated from

a subset of measurements from n ≤ N time instants. Define a vector of unknowns

P ∈ R13,

P = [α,R0, X,G,B,Re(as), Im(as),Re(bs), Im(bs),Re(ar), Im(ar),Re(br), Im(br)].

Rearrange (5.2) and (5.3) to give

Ĩsi =
1

bs

(
(asṼsi − arṼri)/Zi + asṼsiY/2

)
(5.25)

Ĩri =
1

br

(
(asṼsi − arṼri)/Zi − arṼriY/2

)
, (5.26)

where subscript i = 1, 2, 3, . . . , n refers to measurements taken at time ti, Zi =

R0(1 + α(Tci − T0)) + jX and Y = G+ jB.
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Define functions f1i , f2i , f3i , f4i : R13 → R,

f1i = Re

(
1

bs
((Ṽsi − Ṽri)/Zi + ṼsiY/2)

)
(5.27)

f2i = Im

(
1

bs
((Ṽsi − Ṽri)/Zi + ṼsiY/2)

)
(5.28)

f3i = Re

(
1

br
((Ṽsi − Ṽri)/Zi − ṼriY/2))

)
(5.29)

f4i = Im

(
1

br
((Ṽsi − Ṽri)/Zi − ṼriY/2))

)
. (5.30)

Note that f1i , f2i , f3i , f4i are functions of the elements of P by the definition of

Zi and Y . Combine f1i , f2i , f3i , f4i into a vector of functions F ∈ R4n,F =

[f1i , f2i , f3i , f4i ]. Furthermore, define the measurement vector M ∈ R4n,M =

[Re(Ĩsi), Im(Ĩsi),Re(Ĩri), Im(Ĩri)]. The estimation model is given by the vector

equation

M = F(P) + ε, (5.31)

where ε ∈ R4n models measurement uncertainty. To find an optimal estimate of

P, minimize the J ∈ R, which is defined according to the least-squares criterion,

J = [M− F(P)]T [M− F(P)]. (5.32)

The optimal estimate

P̂ = [α̂, R̂0, X̂, Ĝ, B̂,Re(âs), Im(âs),Re(b̂s), Im(b̂s),Re(âr), Im(âr),Re(b̂r), Im(b̂r)]

can be computed using an iterative algorithm such as a trust-region method [144].

Estimates for impedance and admittance are given by

Ẑi = R̂0(1 + α̂(Tci − T0)) + jX̂, Ŷ = Ĝ+ jB̂. (5.33)

Estimated correction factors âs, b̂s, âr, b̂r are used in (5.5) to calculate resistance

estimates R̂i, from which temperature estimates can be obtained:

T̂ci = T0 +
1

α̂R0

(R̂i − R̂0). (5.34)

Ẑi, Ŷ and T̂ci will be used in the next subsection to select optimal estimates of

correction factors and resistance-temperature parameters.
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5.2.3 Selection of optimal parameter estimates

Both methods introduced in Section 5.2.2 make use of n sets of measurements

Ṽsi , Ĩsi , Ṽri , Ĩri , Tci taken at times ti, i = 1, 2, 3, . . . , n to obtain values for correc-

tion factors as, ar, bs, br, and resistance-temperature parameters R0, α. Estimated

parameter values vary with the choice of measurement set, depending on load vari-

ation over the time window and the level and distribution of measurement noise.

For this reason, it is proposed to estimate parameters from a range of measurement

sets and to select the best results according to an optimality criterion.

Let Λ ∈ N be the number of subsets selected according to steps detailed in Ap-

pendix C.1 and Ẑiλ and Ŷλ, λ = 1, 2, 3, . . . ,Λ the impedance parameter estimates

obtained from each subset by the methods proposed in Section 5.2.2. To assess the

accuracy of impedance parameter values, residuals SVλ , SIλ of calculated receiving

end voltage and current V̂ri , Îri are evaluated. V̂ri , Îri are calculated by rearranging

(5.2) and (5.3):

V̂ri = (1 + ŶλẐiλ/2)(asλṼsi)− Ẑλ(bsλ Ĩsi) (5.35)

Îri = (1 + ŶλẐiλ/2)(bsλ Ĩsi)− (Ŷλ + Ŷ 2
λ Ẑiλ)(asλVsi). (5.36)

SVλ , SIλ ∈ R≥0 are the rms of the voltage and current residuals, respectively, given

by:

SVλ =

√√√√ 1

N

N∑
i=1

|V̂ri − arλṼri |2 (5.37)

SIλ =

√√√√ 1

N

N∑
i=1

|Îri − brλ Ĩri |2. (5.38)

In addition, the rms of the temperature residuals STλ is evaluated using tempera-

ture estimates T̂ci and temperature measurements Tci . STλ ∈ R≥0 is given by

STλ =

√√√√ 1

N

N∑
i=1

[T̂ci − Tci ]2. (5.39)

SVλ , SIλ , STλ are combined to give a single quantity SV ITλ : R3 → R≥0,

SV ITλ(SVλ , SIλ , STλ) = SVλSIλSTλ . (5.40)
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Once SV ITλ has been evaluated for all Λ measurement sets, the optimal set of cor-

rection factors and resistance-temperature parameters is that with the minimum

value of SV ITλ . The selected correction factors can then be used to calculate Zi, Yi

and Tci from a set of synchrophasor measurements taken at any given time ti.
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5.3 Case study 1: physical simulation of three-

phase measurements

This section presents the first of two case studies that will demonstrate the effec-

tiveness of the novel methodology proposed in Section 5.2. The transmission line

that was considered in Chapter 3 is also the subject of both case studies in this

chapter. Details of the properties of the 330-kV, 521-km overhead line are there-

fore referred to Section 3.4.1. Measurements from the same 24-hour period were

used. In the same manner as in Section 3.5.1, voltage measurements, theoretically

calculated impedance parameters and conductor temperature were combined into

a software simulation that provides ideal measurements from a line with known

parameters.

5.3.1 Laboratory-based measurements

Values of voltage and current at the line ends were taken from the software simu-

lation and used as input files for two physical waveform generators. The voltage

and current signals were played out simultaneously, then captured by two power

quality instruments that report time-tagged phasors at the fundamental frequency.

A diagram of the experimental setup is shown in Figure 5.2. The waveform gener-

ators have a stated accuracy of ±0.02 % in magnitude and ±0.005° in phase angle

[145], while the power quality instruments have a stated accuracy of 0.1 % [67].

The GPS antennae provide UTC to within 1µs to both the waveform generators

and the power quality instruments.

Waveform
generator

Power quality
instrument

GPS

GPS

I

Synchro-
phasors

Transmission Line

Waveform
generator

Power quality
instrumentGPS

V V I

Figure 5.2: Experimental setup for laboratory-based synchrophasor measurements
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By physically measuring the voltage and current signals, a realistic level of

uncertainty due to the measurement units and time-tagging is introduced. Sys-

tematic errors in magnitudes and phase angles due to the remaining instrumenta-

tion channel were added to the reported phasors. Based on the accuracy classes

of instrument transformers and characterization of instrumentation channels [52,

133, 134], errors in voltage and current magnitude were assumed to be up to ±4 %

and ±6 %, respectively, and errors in phase angle up to ±0.04 rad and ±0.07 rad

for voltage and current, respectively. 100 cases of randomly selected systematic

errors were applied to the phasor measurements.

5.3.2 Analysis of parameter estimation results

The phasor measurements from the 24-hour period gave Λ = 34, 924 subsets that

were chosen as detailed in Appendix C.1. From each subset of measurements, val-

ues of correction factors as, bs, ar, br were obtained by NMLT by solving optimiza-

tion problem (5.18), and resistance temperature parameters R0, α were determined

using (5.20) to (5.22) assuming a value of T0 = 20 ◦C; the non-linear least-squares

problem defined by (5.27) to (5.32) was solved for each subset of measurements

to identify as, bs, ar, br, R0, α by NMNL. The optimal estimates from all subsets

were chosen as described by (5.35) to (5.40) and then used to calculate impedance

and admittance for the entire set of measurements using (5.5) to (5.7). For com-

parison, impedance parameters were also estimated by the selection of existing

methods from Section 3.2. For the existing methods, a moving window spanning

one hour of measurements was used in each estimation. The estimated values

of positive sequence resistance were used to estimate average conductor tempera-

ture according to the linear-resistance temperature relationship (5.4), assuming a

handbook value for α [17] and the theoretically calculated reference value for R0.

Firstly, the results for one individual case of systematic errors will be considered

in detail, followed by a comparison of the effectiveness of new and existing methods

across 100 cases. The accuracy of the impedance parameter estimation results will

be assessed using the rms and standard deviation of the parameter errors as defined

in Section 4.5.2. In the same manner as for conductance, the metrics E∆Tc and

Σ∆Tc for temperature are calculated as absolute values rather than percentages

(see equation (4.54)).
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5.3.2.1 Individual case

Table 5.1 lists the systematic errors in magnitude and phase angle of voltage and

current that have been applied in one individual case, together with the correction

factors identified by the proposed methods NMLT and NMNL. It can be recog-

nized that the corrections for Vs, Vr, Is, Ir individually differ substantially from the

systematic error; for example, the magnitude error in Vs is 0.79 %, but the correc-

tion factors identified by the NMLT and NMNL methods are −0.0058 % and 1.2 %,

respectively. However, the ’net’ correction, i.e. the difference between receiving

and sending end values for each quantity matches the ’net’ systematic errors more

closely.

Table 5.1: Systematic errors and corrections for one individual case

Vs Vr Net1 Is Ir Net1

Magnitude
(%)

Systematic error 0.79 1.1 -0.31 -0.64 2.1 -2.7
NMLT -0.0058 -0.29 0.28 5.6 2.7 2.9
NMNL 1.2 0.88 0.29 1.5 -1.2 2.7

Phase
angle
(mrad)

Systematic error -5.9 28 -34 2.7 2.8 -0.10
NMLT 12 -22 34 6.7 6.0 0.70
NMNL 14 -20 34 2.2 1.9 0.35

1 Difference between sending and receiving end values

Identified values of resistance-temperature parameters R0 and α are 15.9 Ω

and 0.0039, respectively, by NMLT and 15.6 Ω and 0.0041 by NMNL, compared

to reference values of 16.2 Ω and 0.0039.

Figure 5.3 shows values of positive sequence resistance R estimated by the two

new methods and single-phase methods SM1, TLS1, NLOE1, TPLL1 as well as

the nominal values that were put into the software simulation. It can be observed

that the parameter values estimated by the proposed methods agree more closely

with the nominal values than the selected existing methods. In contrast, the exist-

ing methods give parameter estimates with greater and more variable deviations.

Similar observations can be made from graphs of estimated reactance, conductance

and susceptance, which can be found in Appendix C.2.1.
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Figure 5.3: Nominal and estimated values of resistance R over time for the individual case
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The observations from the graphs are confirmed by the values in Table 5.2,

which lists the rms of errors in estimated impedance parameter and temperature

values. While the rms error in resistance E∆R takes values of 1.8 % and 3.8 %

for NMLT and NMNL, respectively, the existing methods give at least 16 % and

reach beyond 100 %. For reactance, E∆X is lowest for estimates by NMNL at 1.1 %,

followed by 4.0 % by NMLT; the existing methods give at least double these values,

ranging from 10 % to 134 %. Some of the existing methods give lower values of

rms error for susceptance E∆B: SM1, TLS1, LLS3 and NLCO3 give 0.8 %, while

the new methods NMLT and NMNL resulted in 4.1 % and 1.2 %, respectively.

With regards to estimates of conductance, the new method NMLT has an rms

error E∆G of 3.9 µS, which is the same as three of the existing methods (TLS1,

LLS3, NLCO3), which assume a constant value of zero for conductance. Both new

methods give a value of 1.1 ◦C for E∆Tc , while the existing methods have much

larger errors ranging from 45 ◦C to over 1000 ◦C.

Table 5.2: Rms of parameter errors for one individual case

E∆R (%) E∆X (%) E∆B (%) E∆G (µS) E∆Tc (◦C)

NMLT 1.8 4.0 4.1 3.9 1.1
NMNL 3.8 1.1 1.2 6.2 1.1

SM1 103 29 0.8 31 271
TLS1 82 25 0.8 4 217
NLOE1 36 10 6.7 428 97
TPLL1 31 10 12.4 496 83

LLS3 170 16 0.8 4 447
NLLC3 3346 134 6.0e+05 4.9e+06 8764
NLCO3 16 10 1.4 4 45
TPLL3 404 85 236.7 1726 1079

Table 5.3 lists the standard deviation of errors Σ∆ in estimated impedance and

admittance parameters as well as temperature. The values of Σ∆R are 0.64 % and

0.75 % for NMLT and NMNL, respectively, but above 10 % for the selected existing

methods; hence, the new methods give more consistent resistance estimates, with

lower error variability. Equivalent observations can be made for values of Σ∆X . The

difference in Σ∆B between new and existing methods is not as stark: NMLT and

NMNL give a value of 0.2 % and the SM1, TLS1, LLS3 and NLCO3 give greater

standard deviations of error in susceptance, but all below 1 %. For conductance,

Σ∆G is two orders of magnitude smaller for the new methods than for the existing

methods, except for TLS1, LLS3, NLCO3, which assume a constant value of zero.

Errors in temperature estimates also have lower variability when the new methods
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are used, which is indicated by values of Σ∆Tc of 1.1 ◦C compared to the existing

methods, which give values ranging from 33 ◦C to over 1000 ◦C.

Table 5.3: Standard deviation of parameter errors for one individual case

Σ∆R (%) Σ∆X (%) Σ∆B (%) Σ∆G (µS) Σ∆Tc (◦C)

NMLT 0.64 0.19 0.22 0.22 1.1
NMNL 0.75 0.19 0.21 0.19 1.1

SM1 102 29 0.5 21 269
TLS1 82 25 0.4 0 217
NLOE1 26 10 6.6 353 71
TPLL1 30 9 11.9 453 81

LLS3 168 16 0.4 0 441
NLLC3 3346 99.6 6.0e+05 4.9e+06 8763
NLCO3 12 9 0.8 0 33
TPLL3 175 15 83.5 1726 463

5.3.2.2 All cases

The results given in the previous paragraphs were for one individual case of sys-

tematic measurement errors. Tables 5.4 and 5.5 show the 95th percentiles of the

rms and standard deviation of the errors in estimated impedance parameter and

temperature values for 100 cases of systematic errors. 95 % confidence intervals

are given in square brackets next to the values; their width can be reduced by

considering a larger number of cases. In this instance, 100 cases give confidence

intervals that are of a smaller or the same order of magnitude as the percentile

values, which allows for comparison of the methods.

The 95th percentile of rms errors in estimated resistance and temperature is

significantly lower when the newly proposed methods are used compared to the

eight existing methods. While the value for E∆R is below 10 % for both NMLT

and NMNL, the other methods give values ranging from 30 % to over 400 %. Sim-

ilarly for temperature, NMLT and NMNL achieve a 95th percentile of 1.1 ◦C and

1.2 ◦C for E∆Tc , respectively, whereas the existing methods give at least 84 ◦C. For

reactance, three of the existing methods (NLOE1, TPLL1, NLCO3) achieve 95th

percentiles of E∆X as low as 10 % and 11 %, however, the new method NMLT has

lower errors at 8.4 % and NMNL even yields 3.1 %. For susceptance, the SM1,

TLS1, and LLS3 methods give slightly lower 95th percentiles of E∆B of about

7.5 % than NMLT at 8.4 %, but still double the value of NMNL at 3.1 %. The

same three existing methods assume a constant value of zero for conductance, giv-

ing a value of 4µS for E∆G, which is the same as NMLT.
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Table 5.4: 95th percentiles of the rms of parameter errors for 100 cases,
95 % confidence bounds are given in brackets

E∆R (%) E∆X (%) E∆B (%) E∆G (µS) E∆Tc (◦C)

NMLT 5.4[4.8,6.0] 7.7[7.2,8.6] 8.4[7.8,9.3] 4.0[4.0,4.1] 1.1[1.1,1.1]

NMNL 7.0[6.0,7.7] 3.2[2.5,4.2] 3.1[2.5,4.1] 6.3[6.3,6.4] 1.2[1.2,1.2]

SM1 430[330,480] 31[27,38] 7.5[6.3,8.1] 120[94,130] 1100[860,1200]

TLS1 370[280,410] 27[23,32] 7.6[6.4,8.2] 4[4,4] 960[740,1100]

NLOE1 58[53,62] 11[11,11] 27.0[23.0,33.0] 590[540,650] 160[140,170]

TPLL1 65[57,73] 11[11,12] 29.0[26.0,34.0] 680[660,750] 170[150,200]

LLS3 420[350,500] 37[29,43] 7.5[6.4,8.2] 4[4,4] 1100[920,1300]

NLLC3 3700[1400,6000] 210[160,870] 4.7e+06[3.6e+06,6.6e+06] 6.5e+07[5.2e+07,1.2e+08] 1.0e+04[3.7e+03,1.6e+04]

NLCO3 31[25,36] 10[9,11] 5.1[4.6,6.0] 4[4,4] 84[69,96]

TPLL3 450[440,460] 92[91,93] 300.0[290.0,310.0] 2700[2300,3200] 1200[1200,1200]
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In contrast, the other existing methods give values greater than 100µS, which

would account for a current loss along the line of the order of 33 kA.

Table 5.5 shows the 95th percentiles of the standard deviation of the errors in

estimated impedance parameter and temperature values for 100 cases of systematic

errors. It can be seen that the error variability is lower for the new methods NMLT

and NMNL than for the existing methods. More specifically, the values are below

1 % for resistance, reactance and susceptance when the new methods are used, but

at least 15 %, 7 % and 2 %, respectively, for the existing methods. Similarly, for

conductance, the 95th percentile of Σ∆G is at 0.3 µS for new methods, but reaches

beyond 1 mS for some of the existing methods. For temperature estimates, the

new methods give values below 1.5 ◦C, while the existing methods give values at

least ten times larger.
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Table 5.5: 95th percentiles of the standard deviation of parameter errors for 100 cases,
95 % confidence bounds are given in brackets

Σ∆R (%) Σ∆X (%) Σ∆B (%) Σ∆G (µS) Σ∆Tc (◦C)

NMLT 0.7[0.7,0.7] 0.2[0.2,0.2] 0.23[0.22,0.23] 0.3[0.3,0.3] 1.1[1.1,1.2]

NMNL 0.8[0.8,0.8] 0.2[0.2,0.2] 0.22[0.22,0.22] 0.3[0.3,0.4] 1.2[1.2,1.2]

SM1 430[330,470] 31[27,38] 3.0[2.6,3.3] 42[37,48] 1100[870,1200]

TLS1 370[280,410] 27[23,32] 2.9[2.5,3.1] 0[0,0] 960[740,1100]

NLOE1 30[29,31] 10[10,11] 9.3[8.6,10.0] 440[430,440] 82[78,83]

TPLL1 32[32,33] 10[10,10] 16.0[15.0,17.0] 550[540,550] 86[85,87]

LLS3 420[340,500] 36[28,43] 2.8[2.5,3.1] 0[0,0] 1100[900,1300]

NLLC3 3700[1400,6000] 190[140,870] 5e+06[4e+06,7e+06] 7e+07[5e+07,1e+08] 1e+04[4e+03,2e+04]

NLCO3 15[14,16] 7[6,9] 2.1[1.9,2.6] 0[0,0] 41[37,43]

TPLL3 210[200,210] 19[18,20] 210.0[200.0,240.0] 2700[2300,3200] 560[530,570]
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5.3.3 Discussion of results

The results of the case study show that the parameter identification methods that

have been proposed in Section 5.2 can be used to calculate values of overhead line

impedance and admittance as well as temperature with higher accuracy than a

selection of eight existing methods. For a variety of cases of systematic errors,

estimates of resistance, reactance and susceptance within 10 % of known values

were achieved. The superior performance of the new methods is attributed to

various factors.

In contrast to all but one of the existing methods (NLLC3), the new methods

include systematic measurement errors in the estimation model. Moreover, instead

of treating resistance as a constant parameter, resistance-temperature variation is

taken into account, such that longer measurement periods can be utilized to esti-

mate correction factors, reference resistance and resistance-temperature coefficient.

Finally, a range of possible measurement sets are considered and the best results

are chosen based on data validation. On the other hand, the existing methods

treat resistance as a quasi-constant quantity, which limits the time span and thus

operational states of the measurements that are utilized in real-time parameter es-

timation. Especially the three-phase methods are thus prone to badly conditioned

problem formulations, resulting in high error sensitivity in the estimation process.

Since the two new methods estimate and validate model parameters from a

large number of measurement subsets, there is an initial computational burden.

However, once correction factors and resistance-temperature parameters are iden-

tified, the real-time calculation of impedance parameters has the same computa-

tional cost as the SM1 method, which is lower than most other existing methods

that are based on linear or non-linear estimation theory. While both new methods,

NMLT and NMNL, have performed better in this case study than the selection of

existing methods and achieved the same accuracy for estimated temperature, they

have some differences. Errors in resistance and conductance as given by NMLT

occupy lower ranges than those given by NMNL, but the opposite is true for re-

actance and susceptance. However, the level of variation in parameter estimation

accuracy is the same.

In this case study, transmission line measurements have been emulated using

laboratory-based apparatus, providing a partially realistic, and controllable sce-

nario. The effectiveness of the new methods when field measurements from an

actual overhead line system are used will be investigated in the next section.
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5.4 Case study 2: field measurements

In the last section, the newly proposed methods have been used to estimate line

impedance parameter and temperature values with greater accuracy than a selec-

tion of existing methods. The utilized synchrophasor measurements were taken

from a laboratory-based, emulated transmission line and contaminated with sys-

tematic errors.

In this case study, the novel and existing methods will be tested on actual field

measurements from the same line that was considered in Sections 3.4 and 5.3. Up

to this point, only measurements from one 22-hour period have been used. For

comparison, results for the same measurements will be presented in detail in this

section. Moreover, the correction factors and resistance-temperature parameters

identified from measurements from this time period have been used to calculate line

impedance parameters and temperature in real-time for nine other 22-hour periods

spread over ten months, which will also be presented. Furthermore, results from

a cross validation will be given, whereby all ten 22-hour periods have been used

to estimate correction factors and resistance-temperature parameters that were

then used to calculate real-time impedance, admittance and temperature values

for all ten 22-hour periods. The ten 22-hour periods will be referred to as Days

1 to 10; Day 8 refers to the 22-hour period that was considered in Chapter 3 and

Section 5.3.

Figure 5.4 shows the level of active power for each 22-hour period, averaged

between the sending and receiving ends; the graph illustrates the differences in

overall level of power flow and daily load variation. In addition to synchrophasor

measurements, the new methods require values of average conductor temperature

as inputs. Since this field measurement campaign did not include such measure-

ments, conductor temperature has been calculated from known conductor proper-

ties, weather data and line current measurements as described in Section 3.4.1.2

and Appendix A.3. The resulting temperature profiles are shown in Figure 5.5.

The daily variation of 15 ◦C to 20 ◦C is similar for all 22-hour periods, however,

the overall temperature levels differ due to seasonal levels of ambient temperature,

solar radiation and line current.
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Figure 5.4: Mean values of sending and receiving end active power for ten 22-hour periods
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Figure 5.5: Calculated average conductor temperature for ten 22-hour periods
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5.4.1 Analysis of parameter estimation results

The accuracy of calculated impedance and admittance will be assessed by the ac-

ceptability criteria defined in Section 3.3, a summary of which is given in Table 5.6.

Table 5.6: Limits for acceptable parameter estimates

Median of estimated parameter
values over a given time period

Interdecile Range (IDR) of
estimated parameter values over

a given time period

Resistance
within ±50 % of the theoretical

value

less than maximum of {0.8 % of
theoretical reference value, 150 %

of theoretical range}

Reactance less than 5 % of the theoretical
parameter value

Susceptance

Conductance
within ±10 % of (minimum line
current/nominal phase voltage)

less than 10 % of (minimum line
current/nominal phase voltage)

5.4.1.1 Results for Day 8

The following results have been obtained by estimating correction factors for

synchrophasor measurements (as, ar, bs, br) as well as reference resistance R0 at

Tc = 20 ◦C and resistance-temperature coefficient α as described in Section 5.2.2

using measurements from Day 8 and then calculating impedance parameters and

temperature using (5.5) to (5.7). Table 5.7 shows the identified values of the cor-

rection factors for both methods NMLT and NMNL. As for the first case study,

the two methods give differing values for the correction factors of Vs, Vr, Is, Ir, but

the net error values match more closely.

Table 5.7: Values of identified correction factors for Day 8

Vs Vr Net1 Is Ir Net1

Magnitude (%)
NMLT -3.8 -2.8 -0.95 -3.7 7.6 -11
NMNL 5.6 6.7 -1.05 -9.9 0.49 -10

Phase angle (mrad)
NMLT 41 47 -5.5 -30 -55 26
NMNL 33 39 -5.6 -43 -68 25

1 Difference between sending and receiving end values
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Figure 5.6 shows the resistance estimates for Day 8 obtained in this way, as

well as resistance estimates obtained by the single-phase methods as presented

in Section 3.2.1. It can be observed that the new methods NMLT and NMNL

give values between 10 Ω to 20 Ω, forming smooth curves over the entire time

period, while the single-phase methods result in values occupying the range 0 Ω to

60 Ω. Graphs of reactance, conductance and susceptance estimates can be found

in Appendix C.3.1.
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Figure 5.6: Estimated values of resistance R over time for Day 8, by the new methods and existing single-phase methods
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Identified values of resistance-temperature parameters R0 and α are 14.6 Ω

and 0.0037, respectively, by NMLT and 16.4 Ω and 0.0032 by NMNL, compared

to reference values of 16.2 Ω and 0.0039. Figure 5.7 shows the estimated temper-

ature values, including the nominal, i.e. the theoretically calculated values. The

estimates from the new methods fall within 0 ◦C to 50 ◦C and follow the curve

described by the theoretical values. The existing single-phase methods, on the

other hand, mainly give estimates between 150 ◦C and 400 ◦C, which is outside the

normal operating range of typical Aluminium Conductor Steel Reinforced (ACSR)

conductors [146].
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Figure 5.7: Estimated values of conductor temperature Tc over time for Day 8, by the new methods and existing single-phase
methods
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Table 5.8 lists the acceptability of estimated impedance parameters for Day 8,

according to the criteria in Table 3.4. The two novel methods, NMLT and NMNL,

give acceptable values for estimated resistance, reactance, conductance and suscep-

tance and are thus the only methods that have an overall score of 8. The highest

scoring existing methods, TLS1 and LLS3, lag behind with a score of 6 because

of unacceptable values of median and IDR of estimated resistance over the time

period. Numerical values of median and IDR for each parameter are given in the

Appendix in Table C.1.

Table 5.8: Acceptability of estimated impedance and admittance parameters for
Day 8, numerical values are given in Table C.1

Resistance Reactance Conductance Susceptance Score3

M1 IDR2 M IDR M IDR M IDR

NMLT 3 3 3 3 3 3 3 3 8
NMNL 3 3 3 3 3 3 3 3 8

SM1 7 7 3 3 3 7 3 3 5
TLS1 7 7 3 3 3 3 3 3 6
NLOE1 7 7 3 7 7 7 3 7 2
TPLL1 7 7 3 7 7 7 3 7 2

LLS3 7 7 3 3 3 3 3 3 6
NLLC3 7 7 7 7 7 7 7 7 0
NLCO3 3 7 3 7 3 3 3 7 5
TPLL3 7 7 3 7 7 7 3 7 2

1 Median
2 Interdecile Range
3 Number of acceptable values (maximum 8)

Table 5.9 gives the rms error E∆Tc and standard deviation of errors Σ∆Tc in

estimated temperature for Day 8. NMLT and NMNL both give a value of 2.4 ◦C

for E∆Tc , while the existing methods reach values between 85 ◦C and 1200 ◦C.

Similarly, Σ∆Tc is 3 ◦C for the new methods, but at least ten times as large for the

existing ones.

Table 5.9: Rms error E∆Tc and standard deviation of errors Σ∆Tc in estimated
temperature for Day 8

NMLT NMNL SM1 TLS1 NLOE1 TPLL1 LLS3 NLLC3 NLCO3 TPLL3

E∆Tc
(◦C) 2.4 3.1 374 331 195 239 344 518 85 1181

Σ∆Tc
(◦C) 2.4 2.9 293 198 125 77 200 464 37 512
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The values for correction factors as, ar, bs, br and resistance-temperature param-

eters R0, α that were identified by NMLT and NMNL from Day 8 measurements

were used to calculate impedance parameters and temperature estimates not only

for Day 8, but all ten 22-hour periods, Days 1 to 10. For comparison, values were

also calculated using the selection of eight existing methods. Table 5.10 lists the

number of days out of ten, for which each method resulted in acceptable values

for median and IDR of resistance, reactance, conductance and susceptance. The

rightmost column lists the sum of the scores in each row, hence, the maximum

total score is 80. All numerical values are given in the Appendix, Table C.2. In

Table 5.10, it can be observed that the new method NMLT gives acceptable values

for median and IDR of reactance, conductance and susceptance on all ten days;

NMNL follows closely, only failing on one day for the IDR of reactance. Both new

methods achieve acceptable values for the IDR of resistance estimates on seven

days, which is 30 % below the ideal score of ten, but still more than twice the

maximum score achieved by existing methods.

Table 5.10: Estimation day 8 - number of days with acceptable estimated values of
Median (M) and Interdecile Range (IDR) of each parameter, and the total number
of acceptable values over ten days, numerical values are given in Table C.2.

Resistance Reactance Conductance Susceptance Total
M IDR M IDR M IDR M IDR (max 80)

NMLT         77

NMNL         76

SM1         44

TLS1         59

NLOE1         21

TPLL1         23

LLS3         55
NLLC3         2

NLCO3         69

TPLL3         14

Legend:
0 1 2 3 4 5 6 7 8 9 10
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Table 5.11 shows values of rms and standard deviation of temperature estimates

for Days 1 to 10 obtained by the new and existing methods, numerical values are

given in the Appendix, Table C.3. Table 5.11 illustrates that errors in estimated

conductor temperature across the ten days are lower and less variable if the new

methods NMLT and NMNL are employed, compared to the use of the eight existing

methods. In fact, both rms error E∆Tc and standard deviation of error Σ∆Tc are

less than 20 ◦C on six days for NMLT, which does not apply for any of the existing

methods on any one day.

Table 5.11: Estimation day 8 - rms error E∆Tc and standard deviation of error
Σ∆Tc of estimated temperature values, numerical values are given in Tables C.3
and C.4

Day 1 2 3 4 5 6 7 8 9 10

NMLT  u  u  u  u  u  u  u  u  u  u

NMNL  u  u  u  u  u  u  u  u  u  u

SM1  u  u  u  u  u  u  u  u  u  u

TLS1  u  u  u  u  u  u  u  u  u  u

NLOE1  u  u  u  u  u  u  u  u  u  u
TPLL1  u  u  u  u  u  u  u  u  u  u

LLS3  u  u  u  u  u  u  u  u  u  u

NLLC3  u  u  u  u  u  u  u  u  u  u
NLCO3  u  u  u  u  u  u  u  u  u  u

TPLL3  u  u  u  u  u  u  u  u  u  u

Legend:
Value in ◦C ≤ 20 ≤ 40 ≤ 60 ≤ 80 ≤ 100 ≤ 250 ≤ 500 ≤ 750 ≤ 1000 > 1000

E∆Tc           
Σ∆Tc u u u u u u u u u u

5.4.1.2 Cross validation

In addition to Day 8, synchrophasor measurements from the other nine 22-hour

periods have also been used to identify values for correction factors as, ar, bs, br

and resistance-temperature parameters R0, α by the new methods, NMLT and

NMNL. To validate the correction factors and resistance-temperature parameters

for each estimation day, they have been used to estimate impedance parameters

and temperature for Days 1 to 10. Tables 5.12 and 5.13 show the number of days

with acceptable values of impedance parameters for each estimation day for NMLT

and NMNL, respectively. Tables C.5 and C.6 in the Appendix list the numerical

scores.

168



From Table 5.12 it can be seen that values of median resistance, reactance,

conductance as well as IDR of conductance and susceptance are acceptable for

all ten days regardless of which measurement period was used for estimation of

as, ar, bs, br, R0, α. The IDR of resistance is always acceptable for at least half

of the validation days, with scores ranging from five to eight; scores for existing

methods are between zero and three as shown in Table 5.10. For the median of

susceptance, acceptability has fallen to two out of ten days for estimation day 6.

The reason is that the median for the remaining eight days is 2.38 mS, which

exceeds the theoretical line susceptance by 52 %, whereas the acceptable range is

defined as ±50 %.

Table 5.12: Number of days with acceptable estimated values of Median (M)
and Interdecile Range (IDR), when correction factors and resistance-temperature
parameters are estimated from Days 1 to 10 by NMLT, numerical values are given
in Table C.5

Estimation Resistance Reactance Conductance Susceptance Total
day M IDR M IDR M IDR M IDR (max 80)

1         71

2         74

3         78

4         77

5         78

6         69

7         77

8         77

9         75

10         74

Legend:
0 1 2 3 4 5 6 7 8 9 10

           

In contrast, if NMNL is used, median values for all impedance parameters are

acceptable on all days, irrespective of the estimation day as can be seen in Ta-

ble 5.13. The same is true for the IDR of calculated conductance and susceptance.

In the same manner as for NMLT, the IDR of resistance estimates is unacceptable

for a number of days. In fact, the score is five out of ten for estimation days 1, 7

and 10 and only on estimation day 6 does the score reach eight acceptable days.
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Table 5.13: Number of days with acceptable estimated values of Median (M)
and Interdecile Range (IDR), when correction factors and resistance-temperature
parameters are estimated from Days 1 to 10 by NMNL, numerical values are given
in Table C.6

Estimation Resistance Reactance Conductance Susceptance Total
day M IDR M IDR M IDR M IDR (max 80)

1         71

2         77

3         77

4         77

5         76

6         78

7         75

8         76

9         75

10         74

Legend:
0 1 2 3 4 5 6 7 8 9 10

           

Tables 5.14 and 5.15 illustrate the size of the rms and standard deviation of

errors in temperature estimates obtained from the cross validation of methods

NMLT and NMNL, respectively. Numerical values are given in the Appendix in

Tables C.7 to C.10. Both Tables 5.14 and 5.15 show that E∆Tc and Σ∆Tc are less

than or equal to 20 ◦C for the majority of validations; in particular, estimation

days 6 to 10 give low errors on all validation days, except for Day 2, when rms

errors reach 50 ◦C and 54 ◦C for NMLT and NMNL, respectively. Day 2 is also the

weakest estimation day, giving rms errors above 20 ◦C on eight out of ten validation

days. The days on which both E∆Tc and Σ∆Tc are below 20 ◦C are the same for the

two methods NMLT and NMNL. However, on some other days, NMNL has been

less effective than NMLT: on validation day 1, NMNL resulted in rms errors up

to 105 ◦C whereas the maximum rms error for NMLT is 68 ◦C and on validation

day 8, NMNL gives rms errors up to 60 ◦C whereas the maximum rms error for

NMLT is 48 ◦C.
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Table 5.14: Cross validation of NMLT - each column gives the rms error E∆Tc and
standard deviation of errors Σ∆Tc in calculated temperature, numerical values are
given in Tables C.7 and C.8

Validation day
1 2 3 4 5 6 7 8 9 10

E
st

im
at

io
n

d
ay

1  u  u  u  u  u  u  u  u  u  u

2  u  u  u  u  u  u  u  u  u  u

3  u  u  u  u  u  u  u  u  u  u

4  u  u  u  u  u  u  u  u  u  u

5  u  u  u  u  u  u  u  u  u  u

6  u  u  u  u  u  u  u  u  u  u

7  u  u  u  u  u  u  u  u  u  u

8  u  u  u  u  u  u  u  u  u  u

9  u  u  u  u  u  u  u  u  u  u

10  u  u  u  u  u  u  u  u  u  u

Legend:
Value in ◦C ≤ 20 ≤ 40 ≤ 60 ≤ 80
E∆Tc     
Σ∆Tc u u u u

Table 5.15: NMNL - each column gives the rms and standard deviation of errors
in calculated temperature, numerical values are given in Tables C.9 and C.10

Validation day
1 2 3 4 5 6 7 8 9 10

E
st

im
at

io
n

d
ay

1  u  u  u  u  u  u  u  u  u  u

2  u  u  u  u  u  u  u  u  u  u

3  u  u  u  u  u  u  u  u  u  u

4  u  u  u  u  u  u  u  u  u  u

5  u  u  u  u  u  u  u  u  u  u

6  u  u  u  u  u  u  u  u  u  u

7  u  u  u  u  u  u  u  u  u  u

8  u  u  u  u  u  u  u  u  u  u

9  u  u  u  u  u  u  u  u  u  u

10  u  u  u  u  u  u  u  u  u  u

Legend:
Value in ◦C ≤ 20 ≤ 40 ≤ 60 ≤ 80 ≤ 100 ≤ 250

E∆Tc       
Σ∆Tc u u u u u u
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5.4.2 Discussion of results

The case study results presented in this section clearly show that for the field mea-

surements of the overhead line under consideration, the novel methods are more

effective than the selection of eight existing methods. Especially the acceptability

of estimated resistance and conductor temperature with respect to theoretically

calculated values has been increased. Further, it has been demonstrated that one

day of measurements suffices for the new methods to identify correction factors

for systematic errors as well as parameters of the resistance-temperature relation-

ship that can be used to calculate impedance parameter estimates with acceptable

accuracy, in particular from independent measurements from other time periods.

A fundamental difference between the newly proposed methods and existing

ones is that measurement correction factors as well as thermal variability of resis-

tance are taken into account in the system model. Moreover, these parts of the

model are assumed to be unknown, and only by their identification is it possible

to establish a measurement model that can be used in real-time calculations. The

identified model is validated using conductor temperature measurements, creating

a means to assess the reliability of real-time parameter estimation results, which

is necessary for practical implementation purposes.

Out of the two proposed methods, NMLT has shown slightly stronger perfor-

mance in this case study than NMNL, and may thus be the preferred method.

However, NMNL has the benefit of easier implementation as this method consists

of only one non-linear least-squares problem, whose solution simultaneously yields

estimates of correction factors and resistance-temperature parameters. NMNL on

the other hand, requires the solution of two sub-problems, the first being a non-

linear constraint optimization problem to identify correction factors, and the sec-

ond a linear least-squares fit to obtain estimated values of resistance-temperature

parameters.

Both methods require temperature measurements as initial inputs, but subse-

quent real-time overhead line monitoring is entirely based on synchrophasor mea-

surements of voltage and current. This case study provided a semi-simulated

scenario since synchrophasor measurements from the field were used, but weather

data, line current and calculated conductor properties were used to calculate a

realistic temperature profile. The next step towards further validation of the new

methods is a case study based on direct conductor temperature measurements.

Furthermore, validation on other overhead lines with different lengths and load

profiles is desirable, since the results from this case study cannot necessarily be

generalized to other systems.
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5.5 Conclusion

In this chapter, a modified problem formulation for parameter estimation of over-

head line systems has been presented. Instead of focusing on direct estimation of

impedance parameters, two novel methods for estimation of correction factors and

resistance-temperature parameters as well as a procedure for selecting optimal pa-

rameter values from different measurement sets of voltage, current and conductor

temperature have been proposed. The identified correction factors and resistance-

temperature parameters serve as a refinement to the overhead line electro-thermal

model, such that series impedance and shunt admittance can be monitored in

real-time using simple closed-form calculations. Of the two proposed methods,

one uses traditional non-linear least-squares estimation while the other method

consists of an optimization procedure that minimizes variability of impedance and

admittance over time.

In two case studies, one fully and another semi-simulated, both methods have

shown superior performance in comparison to existing synchrophasor-based impe-

dance parameter estimation methods, especially with regards to providing an ac-

ceptable level of accuracy for calculated resistance and temperature values. The

optimization-based method was slightly more accurate than the method based on

non-linear least-squares estimation, especially when applied to field measurements.

For practical applications in power networks, the proposed methods can be uti-

lized to determine correction factors and resistance-temperature parameters that

can then be stored in databases of network management systems and thus support

applications such as state estimation, protection, fault location, dynamic thermal

line rating and safety monitoring. An initial measurement campaign for collecting

synchrophasor and line temperature data is necessary, but all or at least some of

the instrumentation does not have to be installed permanently.
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Chapter 6

Conclusion

This chapter concludes this thesis. Section 6.1 gives a summary of how the contri-

butions address the problem statement and discusses their relevance with respect

to wider developments in power systems research and Section 6.2 provides an

overview of future research directions.

6.1 Summary and discussion of contributions to

knowledge

The central problem of this thesis was the identification of overhead line impe-

dance parameters from synchronized phasor measurements of voltage and current

such that average conductor temperature can be tracked. The motivation for in-

vestigation of this problem arises primarily from the importance of line impedance

parameter values to a range of power system monitoring and control applications.

These applications underpin the reliable and safe operation of electricity networks,

as was described in the introduction to this thesis in Chapter 1, Section 1.1. A

detailed problem statement was also given in the first chapter in Section 1.2, along

with the summarizing illustration shown in Figure 6.1.
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Figure 6.1: Illustration of the problem addressed in this thesis

To begin with, a literature review was presented in Chapter 2, examining pre-

vious work related to overhead line impedance parameter identification. Existing

methods were analysed in terms of their assumptions about the synchrophasor

measurement process, transmission line theory and parameter estimation. It was

found that there is a lack of methods designed to identify line impedance param-

eters in real-time with an accuracy that is sufficient to track changes in average

conductor temperature under practical, real-world field conditions such as random

and systematic measurement errors. The need to understand specific strengths and

weaknesses of existing methods was recognised to provide a basis for development

of new methodology.

This need was met in Chapter 3 of this thesis. Two main findings resulted

from a comparative assessment based on synchrophasor measurement data from

an actual overhead line:

1. Out of eight methods that were found in the literature review in Chapter 2,

with differing assumptions about measurement and overhead line modelling

as well as numerical estimation, none was able to identify impedance param-

eters consistently with acceptable accuracy for the line under consideration.

2. Systematic errors in the phasor measurements as well as poor conditioning

of the parameter estimation problems are practical obstacles to accurate

tracking of overhead line impedance and average conductor temperature.

Thus, a concrete problem formulation of practical relevance emerged from Chap-

ter 3: how can impedance parameters be monitored accurately using synchrophasor

measurements with unknown systematic errors? This question became the sub-

ject of Chapter 4, which contributed a novel method for the identification of mea-

surement correction factors, enabling increased accuracy of real-time impedance

parameter calculation. The novelty of the method is distinguished by its utiliza-
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tion of information about the dynamic behaviour of overhead line impedance and

admittance; specifically, time-variance of series resistance and time-invariance of

series reactance and shunt parameters. The effectiveness of the innovative method

was demonstrated in two case studies, the first involving a laboratory-based short

line model and the second a software simulation of a medium-length line. The

results show that the proposed method can reduce the variability in impedance

parameter estimates compared to an existing method.

The contribution of Chapter 5 centres around achieving reliability in impedance-

based conductor temperature estimation as well as robustness in the identification

of correction factors and impedance parameters. The parameters of the resistance-

temperature relationship for the overhead line are assumed to be unknown and

identified from measured data, instead of assuming fixed values found in hand-

books. The conditioning of the estimation problem is improved by making use

of conductor temperature measurements. Two estimation methods were proposed

to obtain values for correction factors and resistance-temperature parameters, in

addition to an algorithm for finding optimal results from different measurement

sets. The effectiveness of this innovative approach was demonstrated in two case

studies; one on a laboratory-based, emulated overhead line and the second study

validated the novel methods on field data spanning a ten-month period. The case

study results show that the novel methods can increase the accuracy of estimated

impedance parameters and temperature values by at least one order of magnitude

compared to previously proposed methods.

The development and effectiveness of the novel methods presented in this thesis

have shown that a fundamental shift in assumptions has the potential to greatly

advance power network modelling. Conventionally, fixed model structures were

assumed for overhead lines and other network components; some parameter val-

ues were even assumed to be known based on theoretical calculations and gen-

eral material properties. The improvements in synchrophasor-based overhead line

impedance monitoring in this thesis were achieved by questioning these modelling

assumptions, importantly by including additional model parameters. The demon-

strated strengths of this approach should initiate a move towards more adaptive

network modelling, taking into account the individual and dynamic characteristics

of each power system component and associated data collection instrumentation.

The wide-spread development of WAMPAC systems means that synchrophasor

measurements are becoming available at an increasing number of nodes in power

systems, hence, wide-area adaptive and dynamic system identification is becoming

a practical possibility.
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The creation of more accurate and dynamic network models is not only an applica-

tion of WAMPAC systems, but supplements a range of other operational activities

that are facilitated or enhanced by synchrophasor measurements. Operational

planning, real-time state estimation, protection as well as fault analysis and pre-

vention are some of the tasks that are critical to security of electricity supply and

which benefit from increased system visibility and situational awareness.

To summarize, in this thesis, practical limitations of existing work on overhead

line impedance parameter identification were revealed and addressed with novel

contributions. Building on the contributions in this thesis, directions for further

research are outlined in the next section.
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6.2 Future work

In this thesis, novel contributions have been made to increase the accuracy of

synchrophasor-based overhead line impedance parameter monitoring. In this final

section, attention is brought to potential areas for further research.

Comparison with other novel methods The calibration of synchrophasor

measurements within the context of overhead line impedance parameter monitor-

ing is an imminent challenge that is attracting the attention of many researchers.

During the final stages of writing this thesis, Pisani et al. have presented an

adaptive sensing framework for overhead line conductor monitoring using syn-

chrophasor measurements [147], including a preliminary calibration process using

line temperature measurements. Since synchrophasor-based overhead line impe-

dance monitoring is an ongoing area of research, further publications of different

novel methods are expected in the near future. Therefore, an interesting piece of

future work will be a comparative study that investigates the estimation accuracy

and sensitivity to various non-ideal conditions of the methods proposed in this

thesis, Pisani et al.’s work and further relevant publications. Based on such a

comparison, the strongest aspects of each method can be combined to further gen-

eralize and advance the reliability of synchrophasor-based overhead line impedance

monitoring.

Detection and modelling of systematic measurement errors The novel

methods contributed in this thesis have focussed on addressing the problem of

monitoring line impedance parameters using synchrophasor measurements with

systematic errors. A useful topic for further research is the automated detection of

systematic measurement errors; an effective detection mechanism can facilitate a

more customized selection of impedance parameter estimation methods. Potential

approaches include residual analysis, or as recently proposed by Khandeparkar et

al., analysing the bias of calculated shunt conductance values [148].

Another specific point for further investigation is the model of the systematic

errors; in this thesis, a constant, multiplicative complex factor was assumed that

linearly scales amplitudes and is additive to phase angles. However, the systematic

errors can be non-linear and vary significantly over time or along the measurement

range of the instruments. By developing an adaptive error model, for instance

using genetic algorithms, compensation of systematic errors can be generalized to

further increase impedance parameter estimation accuracy.
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More efficiency in selection of measurements Estimated measurement cor-

rection factors and resistance-temperature parameters depend on the selection of

measurements which differ due to uncertainty as well as variation in operating

conditions. In this thesis an enumerative algorithm for selection of the best pa-

rameter estimates from different measurement sets was given. There is an incentive

to increase numerical efficiency through a more systematic selection algorithm.

Time sensitivity of measurement campaign In this thesis, novel methods

have been proposed to improve the accuracy of real-time line impedance monitoring

through estimation of measurement correction factors and resistance-temperature

parameters. A further aspect of investigation is the optimal timing and length of

the initial required measurement campaign including conductor temperature mea-

surements. The need to save time and minimize costs has to be balanced against

the requirement to validate estimated parameter values under diverse environ-

mental and system operating conditions. Hence, determination of the sensitivity

of parameter values to time and length of the measurement campaign is an impor-

tant area for future work.

Untransposed lines The focus of this thesis is on real-time monitoring of posi-

tive sequence impedance parameters, assuming a transposed line with geometrical

symmetry. For untransposed lines, the sequence components do not decouple,

which means the single-phase equivalent model is an approximate representation.

It would be of interest to apply and adapt the newly proposed methods to three-

phase transmission line models to obtain self and mutual impedance parameters as

well as calibration factors for the individual phases. Measurement of unbalanced

conditions, including faults, can help to reduce ill-conditioning of the parameter

estimation problems.

Application in medium and low voltage networks The novel methodology

was applied mostly on high voltage overhead transmission lines. However, network

constraints can also occur in low voltage distribution networks, especially due to

increases in embedded generation. Therefore, a possible area for future work is

extension of the proposed methods to measurements from medium and low voltage

distribution lines, which are often underground cables. Another consequence of

embedded generation of solar and wind power are higher levels of harmonics in

distribution networks, which are considered to be a power quality problem that

can reduce the lifetime of transformers and other network assets. Knowledge of
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harmonic impedance is required for network modelling and design of harmonic fil-

ters. The proposed methodology can be adapted to increase accuracy of harmonic

impedance determination.
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en Electricité. Paris: Dunod, 1950.

[23] H. W. Dommel, “Digital computer solution of electromagnetic transients in

single- and multiphase networks,” IEEE Transactions on Power Apparatus

and Systems, vol. PAS-88, no. 4, pp. 388–399, 1969.

[24] T. Sekine, K. Kobayashi and S. Yokokawa, “Transient analysis of lossy

nonuniform transmission line using the finite difference time domain method,”

Electronics and Communications in Japan (Part III: Fundamental Elec-

tronic Science), vol. 85, no. 8, pp. 1–10, Aug. 2002.

[25] C. R. Paul, “A brief history of work in transmission lines for EMC appli-

cations,” IEEE Transactions on Electromagnetic Compatibility, vol. 49, no.

2, pp. 237–252, May 2007.

[26] K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method

for Electromagnetics. CRC Press, 1993.

[27] O. Heaviside, Electromagnetic Theory Volume I. London: The Electrician,

1893.

[28] F. Breisig, Theoretische Telegraphie: Eine Anwendung der Maxwellschen

Elektrodynamik auf Vorgänge in Leitungen und Schaltungen. Braunschweig:

Druck und Verlag von Friedrich Vieweg & Sohn, 1924.

[29] F. Strecker and R. Feldtkeller, Grundlagen der Theorie des allgemeinen

Vierpols: Mitteilg aus d. Patentabt. u. d. Zentrallaboratorium d. Wernerw-

erkes d. Siemens u. Halske A.-G. Berlin: Siemens u. Halske A.-G., 1929.

[30] A. E. Kennelly, The Application Of Hyperbolic Functions To Electrical En-

gineering Problems, 2nd ed., New York, NY: Mcgraw-Hill Book Company,

1916, p. 28.

[31] L. Wedepohl, “Application of matrix methods to the solution of travelling-

wave phenomena in polyphase systems,” Proceedings of the Institution of

Electrical Engineers, vol. 110, no. 12, pp. 2200–2212, 1963.

185



[32] D. E. Hedman, “Propagation on overhead transmission lines I - Theory of

modal analysis,” IEEE Transactions on Power Apparatus and Systems, vol.

84, no. 3, pp. 200–205, Mar. 1965.

[33] C. L. Fortescue, “Method of symmetrical co-ordinates applied to the so-

lution of polyphase networks,” Proceedings of the American Institute of

Electrical Engineers, vol. 37, no. 6, pp. 629–716, Jun. 1918.

[34] E. Clarke, Circuit Analysis of A-C Power Systems Volume I: Symmetrical

and Related Components. New York, NY: John Wiley & Sons, 1943.

[35] H. V. Nguyen, H. W. Dommel and J. R. Marti, “Modelling of single-phase

nonuniform transmission lines in electromagnetic transient simulations,”

IEEE Transactions on Power Delivery, vol. 12, no. 2, pp. 916–921, Apr.

1997.

[36] A. Semlyen, “Some frequency domain aspects of wave propagation on nonuni-

form lines,” IEEE Transactions on Power Delivery, vol. 18, no. 1, pp. 315–

322, Jan. 2003.

[37] V. Cecchi, A. S. Leger, K. Miu and C. O. Nwankpa, “Incorporating tem-

perature variations into transmission-line models,” IEEE Transactions on

Power Delivery, vol. 26, no. 4, pp. 2189–2196, 2011.

[38] J. R. Marti, H. W. Dommel, L. Marti and V. Brandwajn, “Approximate

transformation matrices for unbalanced transmission lines,” in 9th Power

System Computation Conference, London, 1987, pp. 416–422.

[39] F. Castellanos, J. Mart́ı and F. Marcano, “Phase-domain multiphase trans-

mission line models,” International Journal of Electrical Power & Energy

Systems, vol. 19, no. 4, pp. 241–248, May 1997.

[40] J. Brandao Faria and J. Hildemaro Briceno, “On the modal analysis of

asymmetrical three-phase transmission lines using standard transformation

matrices,” IEEE Transactions on Power Delivery, vol. 12, no. 4, pp. 1760–

1765, 1997.

[41] A. Prado, S. Kurokawa, J. P. Filho and L. F. Bovolato, “Step by step

analyses of Clarke’s matrix correction procedure for untransposed three-

phase transmission line cases,” in IEEE PES General Meeting, IEEE, Jul.

2010, pp. 1–9.

[42] CIGRE Working Group 22.12, “The thermal behavior of overhead conduc-

tors,” Tech. Rep., 2002.

186



[43] IEEE Standard for Calculating the Current-Temperature Relationship of

Bare Overhead Conductors. IEEE Standard 738-2012, 2013.

[44] H. B. Dwight, “Sag calculations for transmission lines,” Transactions of

the American Institute of Electrical Engineers, vol. XLV, pp. 796–805, Jan.

1926.

[45] D. O. Ehrenburg, “Transmission line catenary calculations,” Transactions

of the American Institute of Electrical Engineers, vol. 54, no. 7, pp. 719–

728, Jul. 1935.

[46] J. R. Carson, “Wave propagation in overhead wires with ground return,”

Bell System Technical Journal, vol. 5, no. 4, pp. 539–554, Oct. 1926.

[47] H. W. Dommel, “Overhead line parameters from handbook formulas and

computer programs,” IEEE Transactions on Power Apparatus and Systems,

vol. PAS-104, no. 2, pp. 366–372, Feb. 1985.

[48] ——, Electromagnetic Transients Program Theory Book. Portland, OR:

Bonneville Power Administration, 1987.

[49] A. Russell, A Treatise on the Theory of Alternating Currents Volume I.

Cambridge: University Press, 1904, pp. 99–102.

[50] G. Kron, Tensor Analysis of Networks. New York, NY: John Wiley & Sons,

1939.

[51] M. Hesse, “Electromagnetic and electrostatic transmission-line parameters

by digital computer,” IEEE Transactions on Power Apparatus and Systems,

vol. 82, no. 66, pp. 282–291, Jun. 1963.

[52] IEEE Guide for Synchronization, Calibration, Testing, and Installation of

Phasor Measurement Units (PMUs) for Power System Protection and Con-

trol. IEEE Standard C37.242, 2013.

[53] A. G. Phadke, “Synchronized phasor measurements - a historical overview,”

in IEEE/PES Transmission and Distribution Conference and Exhibition,

IEEE, 2002, pp. 476–479.

[54] A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and

Their Applications, ser. Power Electronics and Power Systems. Boston, MA:

Springer US, 2008.

[55] P. Castello, P. Ferrari, A. Flammini, C. Muscas and S. Rinaldi, “A New IED

with PMU functionalities for electrical substations,” IEEE Transactions

on Instrumentation and Measurement, vol. 62, no. 12, pp. 3209–3217, Dec.

2013.

187



[56] IEEE Standard for Synchrophasor Measurements for Power Systems. IEEE

Standard C37.118.1, 2011.

[57] J. De La Ree, V. A. Centeno, J. S. Thorp and A. G. Phadke, “Synchronized

phasor measurement applications in power systems,” IEEE Transactions on

Smart Grid, vol. 1, no. 1, pp. 20–27, Jun. 2010.

[58] A. G. Phadke, J. S. Thorp and M. G. Adamiak, “A new measurement

technique for tracking voltage phasors, local system frequency, and rate of

change of frequency,” IEEE Power Engineering Review, vol. PER-3, no. 5,

pp. 23–23, May 1983.

[59] J.-Z. Yang and C.-W. Liu, “A precise calculation of power system frequency

and phasor,” IEEE Transactions on Power Delivery, vol. 15, no. 2, pp. 494–

499, Apr. 2000.

[60] P. Zhang, H. Xue, R. Yang and J. Zhang, “Shifting window average method

for phasor measurement at offnominal frequencies,” IEEE Transactions on

Power Delivery, vol. 29, no. 3, pp. 1063–1073, 2014.

[61] M. Wang and Y. Sun, “A practical method to improve phasor and power

measurement accuracy of DFT algorithm,” IEEE Transactions on Power

Delivery, vol. 21, no. 3, pp. 1054–1062, 2006.

[62] R. K. Mai, Z. Y. He, L. Fu, B. Kirby and Z. Q. Bo, “A dynamic synchropha-

sor estimation algorithm for online application,” IEEE Transactions on

Power Delivery, vol. 25, no. 2, pp. 570–578, Apr. 2010.

[63] H. C. Wood, N. G. Johnson and M. S. Sachdev, “Kalman filtering applied

to power system measurements relaying,” IEEE Transactions on Power

Apparatus and Systems, vol. PAS-104, no. 12, pp. 3565–3573, Dec. 1985.

[64] V. V. Terzija, M. B. Djuric and B. D. Kovacevic, “Voltage phasor and

local system frequency estimation using newton type algorithm,” IEEE

Transactions on Power Delivery, vol. 9, no. 3, pp. 1368–1374, Jul. 1994.

[65] J. A. de la O Serna, “Synchrophasor estimation using Prony’s method,”

IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 8,

pp. 2119–2128, Aug. 2013.

[66] G. Barchi, D. Macii and D. Petri, “Synchrophasor estimators accuracy: A

comparative analysis,” IEEE Transactions on Instrumentation and Mea-

surement, vol. 62, no. 5, pp. 963–973, May 2013.

[67] CT LAB, Impedo DUO Power Quality Recorder User Manual, Stellenbosch,

South Africa, 2015.

188



[68] North American SynchroPhasor Initiative (NASPI), “Synchrophasor mea-

surement accuracy characterization,” Performance & Standards Task Team,

Tech. Rep., 2007.

[69] A. P. S. Meliopoulos and G. J. Cokkinides, “Visualization and animation of

instrumentation channel effects on DFR data accuracy,” in Proceedings of

the 2002 Georgia Tech Fault and Disturbance Analysis Conference, Atlanta,

Georgia, 2002, pp. 1–7.

[70] Q. Zhang, V. Vittal, G. T. Heydt, N. Logic and S. Sturgill, “The integrated

calibration of synchronized phasor measurement data in power transmission

systems,” IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2573–

2581, Oct. 2011.

[71] D. Shi, D. J. Tylavsky and N. Logic, “An adaptive method for detection

and correction of errors in PMU measurements,” IEEE Transactions on

Smart Grid, vol. 3, no. 4, pp. 1575–1583, Dec. 2012.

[72] M. Zhou, V. A. Centeno, J. S. Thorp and A. G. Phadke, “Calibrating instru-

ment transformers with phasor measurements,” Electric Power Components

and Systems, vol. 40, no. 14, pp. 1605–1620, Oct. 2012.

[73] A. Pal, P. Chatterjee, J. S. Thorp and V. A. Centeno, “Online calibration

of voltage transformers using synchrophasor measurements,” IEEE Trans-

actions on Power Delivery, vol. 31, no. 1, pp. 370–380, Feb. 2016.

[74] L. Ljung, System Identification: Theory for the User, 2nd ed., Upper Saddle

River, NJ: Prentice-Hall, 1997.

[75] P. Eykhoff, System Identification: Parameter and State Estimation, 1st ed.,

Chichester: John Wiley & Sons, 1974.

[76] R. Fisher, “On an absolute criterion for fitting frequency curves,” Messenger

of Mathematics, vol. 41, no. 1, pp. 155–160, 1912.

[77] A. C. Aitken, “IV. On least squares and linear combination of observations,”

Proceedings of the Royal Society of Edinburgh, vol. 55, pp. 42–48, Sep. 1936.

[78] S. M. Stigler, “Gauss and the invention of least squares,” The Annals of

Statistics, vol. 9, no. 3, pp. 465–474, May 1981.

[79] G. H. Golub and C. F. van Loan, “An analysis of the total least squares

problem,” SIAM Journal on Numerical Analysis, vol. 17, no. 6, pp. 883–

893, Dec. 1980.

[80] R. L. Plackett, “Some theorems in least squares,” Biometrika, vol. 37, no.

1-2, pp. 149–57, Jun. 1950.

189



[81] B. Farhang-Boroujeny, Adaptive Filters. Chichester: John Wiley & Sons,

Apr. 2013.

[82] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” in 1960 IRE

WESCON Convention Record, Los Angeles, CA, 1960, pp. 96–104.

[83] R. E. Kalman, “A new approach to linear filtering and prediction problems,”

Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, Mar. 1960.

[84] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction

theory,” Journal of Basic Engineering, vol. 83, no. 1, pp. 95–108, Mar. 1961.

[85] F. Schweppe and J. Wildes, “Power system static-state estimation, Part I:

Exact model,” IEEE Transactions on Power Apparatus and Systems, vol.

PAS-89, no. 1, pp. 120–125, Jan. 1970.

[86] F. Schweppe and D. Rom, “Power system static-state estimation, Part II:

Approximate model,” IEEE Transactions on Power Apparatus and Sys-

tems, vol. PAS-89, no. 1, pp. 125–130, Jan. 1970.

[87] F. Schweppe, “Power system static-state estimation, Part III: Implementa-

tion,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-89,

no. 1, pp. 130–135, Jan. 1970.

[88] T. Stuart and C. Herczet, “A sensitivity analysis of weighted least squares

state estimation for power systems,” IEEE Transactions on Power Appa-

ratus and Systems, vol. PAS-92, no. 5, pp. 1696–1701, Sep. 1973.

[89] A. S. Debs, “Estimation of steady-state power system model parameters,”

IEEE Transactions on Power Apparatus and Systems, vol. PAS-93, no. 5,

pp. 1260–1268, Sep. 1974.

[90] P. Zarco and A. G. Exposito, “Power system parameter estimation: A sur-

vey,” IEEE Transactions on Power Systems, vol. 15, no. 1, pp. 216–222,

Feb. 2000.

[91] W.-H. E. Liu, F. F. Wu and S.-M. Lun, “Estimation of parameter errors

from measurement residuals in state estimation,” IEEE Transactions on

Power Systems, vol. 7, no. 1, pp. 81–89, Feb. 1992.

[92] W.-H. E. Liu and S.-L. Lim, “Parameter error identification and estimation

in power system state estimation,” IEEE Transactions on Power Systems,

vol. 10, no. 1, pp. 200–209, Feb. 1995.

[93] O. Alsac, N. Vempati, B. Stott and A. Monticelli, “Generalized state esti-

mation,” IEEE Transactions on Power Systems, vol. 13, no. 3, pp. 1069–

1075, Aug. 1998.

190



[94] S. Arafeh and R. Schinzinger, “Estimation algorithms for large-scale power

systems,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-

98, no. 6, pp. 1968–1977, Nov. 1979.

[95] I. W. Slutsker, S. Mokhtari and K. a. Clements, “Real time recursive pa-

rameter estimation in energy management systems,” IEEE Transactions on

Power Systems, vol. 11, no. 3, pp. 1393–1399, Aug. 1996.

[96] A. Abel Augusto, J. C. Stacchini de Souza and M. Brown Do Coutto Filho,

“Correction of power grid parameters using genetic algorithms,” in 2015

18th International Conference on Intelligent System Application to Power

Systems (ISAP), IEEE, Sep. 2015, pp. 1–6.

[97] S. Zhou, L. Zhang, Y. Zhang, Y. Xu, G. Lin, B. Li, L. Li and C. Gong,

“A new approach to branch parameter estimation of power grid based on

PMU,” in 2011 Asia-Pacific Power and Energy Engineering Conference,

IEEE, Mar. 2011, pp. 1–5.

[98] X. Bian, X. R. Li, H. Chen, D. Gan and J. Qiu, “Joint estimation of state

and parameter with synchrophasors - Part II: Parameter tracking,” IEEE

Transactions on Power Systems, vol. 26, no. 3, pp. 1209–1220, Aug. 2011.

[99] L. Philippot and J.-C. Maun, “An application of synchronous phasor mea-

surement to the estimation of the parameters of an overhead transmission

line,” in Fault Disturbance Analysis & Precise Measurements in Power Sys-

tems, Arlington, VA, 1995.

[100] H. Koglin and M. Schmidt, “Estimation of transmission line parameters by

evaluating fault data records,” in 12th Power System Computation Confer-

ence, Dresden, 1996, pp. 135–141.

[101] R. Schulze and P. Schegner, “Parameter identification of unsymmetrical

transmission lines,” in 2009 IEEE Bucharest PowerTech, IEEE, Jun. 2009,

pp. 1–7.

[102] M. Kato, T. Hisakado, H. Takani, H. Umezaki and K. Sekiguchi, “A method

of measuring three phase transmission line parameters for relay settings,”

in 2009 Transmission & Distribution Conference & Exposition: Asia and

Pacific, IEEE, Oct. 2009, pp. 1–4.

[103] Z. Hu and Y. Chen, “New method of live line measuring the inductance

parameters of transmission lines based on GPS technology,” IEEE Trans-

actions on Power Delivery, vol. 23, no. 3, pp. 1288–1295, Jul. 2008.

191



[104] IEEE Standard for SCADA and Automation Systems. IEEE Std C37.1,

2008.

[105] Y. Wang, W. Xu and J. Shen, “Online tracking of transmission-line param-

eters using SCADA data,” IEEE Transactions on Power Delivery, vol. 31,

no. 2, pp. 674–682, Apr. 2016.

[106] K. Levenberg, “A method for the solution of certain non-linear probles in

least squares,” Quarterly of Applied Mathematics, vol. 2, no. 2, pp. 164–168,

Jul. 1944.

[107] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear

parameters,” Journal of the Society for Industrial and Applied Mathematics,

vol. 11, no. 2, pp. 431–441, Jun. 1963.

[108] S. S. Mousavi-Seyedi, F. Aminifar and S. Afsharnia, “Parameter estimation

of multiterminal transmission lines using joint PMU and SCADA data,”

IEEE Transactions on Power Delivery, vol. 30, no. 3, pp. 1077–1085, Jun.

2015.

[109] G. Sivanagaraju, S. Chakrabarti and S. Srivastava, “Uncertainty in trans-

mission line parameters: Estimation and impact on line current differential

protection,” IEEE Transactions on Instrumentation and Measurement, vol.

63, no. 6, pp. 1496–1504, Jun. 2014.

[110] J.-a. Jiang, J.-z. Yang, Y.-h. Lin, C.-w. Liu and J.-c. Ma, “An adaptive PMU

based fault detection/location technique for transmission lines. I. Theory

and algorithms,” IEEE Transactions on Power Delivery, vol. 15, no. 2,

pp. 486–493, Apr. 2000.

[111] Y. Du and Y. Liao, “On-line estimation of transmission line parameters,

temperature and sag using PMU measurements,” Electric Power Systems

Research, vol. 93, pp. 39–45, Dec. 2012.

[112] Y. Liao and M. Kezunovic, “Online optimal transmission line parameter es-

timation for relaying applications,” IEEE Transactions on Power Delivery,

vol. 24, no. 1, pp. 96–102, Jan. 2009.

[113] R. E. Wilson, G. A. Zevenbergen, D. L. Mah and A. J. Murphy, “Calcu-

lation of transmission line parameters from synchronized measurements,”

Electric Machines & Power Systems, vol. 27, no. 12, pp. 1269–1278, Nov.

1999.

192



[114] D. Shi, D. J. Tylavsky, N. Logic and K. M. Koellner, “Identification of

short transmission-line parameters from synchrophasor measurements,” in

40th North American Power Symposium, IEEE, Sep. 2008, pp. 1–8.

[115] L. Shengfang, F. Chunju, Y. Weiyong, C. Huarong and K. K. Li, “A new

phase measurement unit (PMU) based fault location algorithm for double

circuit lines,” in Eighth IEE International Conference on Developments in

Power System Protection, Amsterdam, Netherlands: IEE, 2004, pp. 188–

191.

[116] T. Bi, J. Chen, J. Wu and Q. Yang, “Synchronized phasor based on-line

parameter identification of overhead transmission line,” in 2008 Third In-

ternational Conference on Electric Utility Deregulation and Restructuring

and Power Technologies, IEEE, Apr. 2008, pp. 1657–1662.

[117] R. Rubesa, V. Kirincic and S. Skok, “Transmission line positive sequence

impedance estimation based on multiple scans of phasor measurements,” in

2014 IEEE International Energy Conference (ENERGYCON), IEEE, May

2014, pp. 644–651.

[118] L. Ding, T. Bi and D. Zhang, “Transmission line parameters identification

based on moving-window TLS and PMU data,” in 2011 International Con-

ference on Advanced Power System Automation and Protection (APAP),

IEEE, Oct. 2011, pp. 2187–2191.

[119] K. Dasgupta and S. A. Soman, “Line parameter estimation using phasor

measurements by the total least squares approach,” in 2013 IEEE Power

& Energy Society General Meeting, IEEE, 2013, pp. 1–5.

[120] P. Hering and E. Janecek, “A technique for simultaneous parameter iden-

tification and measurement calibration for overhead transmission lines,”

in Proceedings of the 3rd European Conference of Control (ECC ’12), O.

Arslan and S. Oprisan, Eds., Paris: WSEAS Press, 2012, pp. 75–80.

[121] P. Hering, P. Janeck and E. Janecek, “On-line ampacity monitoring from

phasor measurements,” in Preprints of the 19th World Congress The In-

ternational Federation of Automatic Control, Cape Town, 2014, pp. 3164–

3169.

[122] A. M. Dan and D. Raisz, “Estimation of transmission line parameters using

wide-area measurement method,” in 2011 IEEE Trondheim PowerTech,

IEEE, Jun. 2011, pp. 1–6.

193



[123] G. A. Asti, S. Kurokawa, E. C. M. Costa and J. Pissolato, “Real-time

estimation of transmission line impedance based on modal analysis theory,”

in 2011 IEEE Power and Energy Society General Meeting, IEEE, Jul. 2011,

pp. 1–7.

[124] C. Mishra, V. A. Centeno and A. Pal, “Kalman-filter based recursive regres-

sion for three-phase line parameter estimation using synchrophasor mea-

surements,” in 2015 IEEE Power & Energy Society General Meeting, IEEE,

Jul. 2015, pp. 1–5.

[125] Z. Wu, L. T. Zora and A. G. Phadke, “Simultaneous transmission line

parameter and PMU measurement calibration,” in 2015 IEEE Power &

Energy Society General Meeting, IEEE, Jul. 2015, pp. 1–5.

[126] H. Zhou, X. Zhao, D. Shi, H. Zhao and C. Jing, “Calculating sequence

impedances of transmission line using PMU measurements,” in 2015 IEEE

Power & Energy Society General Meeting, IEEE, Jul. 2015, pp. 1–5.

[127] D. Shi, D. J. Tylavsky, K. M. Koellner, N. Logic and D. E. Wheeler, “Trans-

mission line parameter identification using PMU measurements,” European

Transactions on Electrical Power, vol. 21, no. 4, pp. 1574–1588, May 2011.

[128] B. S. Lowe, “A new method of determining the transmission line parameters

of an untransposed line using synchrophasor measurements,” M.S. thesis,

Virginia Polytechnic Institute and State University, 2015.

[129] C. Borda, A. Olarte and H. Diaz, “PMU-based line and transformer pa-

rameter estimation,” in 2009 IEEE/PES Power Systems Conference and

Exposition, IEEE, Mar. 2009, pp. 1–8.

[130] G. M. Giannuzzi, C. Pisani, A. Vaccaro and D. Villacci, “Overhead trans-

mission lines dynamic line rating estimation in WAMS environments,” in

2015 International Conference on Clean Electrical Power (ICCEP), IEEE,

Jun. 2015, pp. 165–169.

[131] R. Puffer, M. Schmale, B. Rusek, C. Neumann and M. Scheufen, “Area-wide

dynamic line ratings based on weather measurements,” in CIGRE Session

2012 B2-106, Paris: Cigre, 2012, pp. 1–10.

[132] A. Arroyo, P. Castro, R. Martinez, M. Manana, A. Madrazo, R. Lecuna and

A. Gonzalez, “Comparison between IEEE and CIGRE thermal behaviour

standards and measured temperature on a 132-kV overhead power line,”

Energies, vol. 8, no. 12, pp. 13 660–13 671, Dec. 2015.

194



[133] IEC Standard for Instrument Transformers - Part 3: Additional Require-

ments for Inductive Voltage Transformers. IEC 61869-3:2011, 2012.

[134] IEC Standard for Instrument Transformers - Part 2: Additional Require-

ments for Current Transformers. IEC 61869-2:2012, 2012.

[135] A. E. Kennelly, “Artificial lines for continuous currents in the steady state,”

Proceedings of the American Academy of Arts and Sciences, vol. 44, no. 4,

pp. 97–130, 1908.

[136] J. J. Grainger and W. D. Stevenson, Power System Analysis. McGraw-Hill,

1994.

[137] R. H. Byrd, M. E. Hribar and J. Nocedal, “An interior point algorithm for

large-scale nonlinear programming,” SIAM Journal on Optimization, vol.

9, no. 4, pp. 877–900, Jan. 1999.

[138] P. S. Wright and P. Clarkson, “Development of an ethernet-enabled digitizer

for on-site AC measurements,” IEEE Transactions on Instrumentation and

Measurement, vol. 60, no. 7, pp. 2229–2234, Jul. 2011.

[139] Joint Committee for Guides in Metrology (JCGM), Evaluation of Mea-

surement Data: Guide to the Expression of Uncertainty in Measurement

(GUM), 2008.

[140] J. Zaborszky and J. W. Rittenhouse, Electric Power Transmission: the

Power System in the Steady State. New York, NY: The Ronald Press Com-

pany, 1954.

[141] National Grid. (2014). Electricity Ten Year Statement 2014 Appendix B

- System Data, [Online]. Available: http://www2.nationalgrid.com/UK/

Industry- information/Future-of-Energy/Electricity-ten-year-statement/

ETYS-Archive/ (visited on 23/03/2017).

[142] E. M. Carlini, C. Pisani, A. Vaccaro and D. Villacci, “Dynamic line rating

monitoring in WAMS: Challenges and practical solutions,” in 2015 IEEE

1st International Forum on Research and Technologies for Society and In-

dustry Leveraging a better tomorrow (RTSI), IEEE, Sep. 2015, pp. 359–

364.

[143] A. Fernandes, W. Neves, E. Costa and M. Cavalcanti, “Transmission line

shunt conductance from measurements,” IEEE Transactions on Power De-

livery, vol. 19, no. 2, pp. 722–728, Apr. 2004.

195

http://www2.nationalgrid.com/UK/Industry-information/Future-of-Energy/Electricity-ten-year-statement/ETYS-Archive/
http://www2.nationalgrid.com/UK/Industry-information/Future-of-Energy/Electricity-ten-year-statement/ETYS-Archive/
http://www2.nationalgrid.com/UK/Industry-information/Future-of-Energy/Electricity-ten-year-statement/ETYS-Archive/


[144] T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear

minimization subject to bounds,” SIAM Journal on Optimization, vol. 6,

no. 2, pp. 418–445, 1996.

[145] Omicron. (2017). CMC 256plus Technical Data, [Online]. Available: https:

//www.omicronenergy.com/fileadmin/user upload/pdf/literature/CMC-

256plus-Technical-Data-ENU.pdf (visited on 23/01/2017).

[146] EPRI, Increased Power Flow Guidebook: Increasing Power Flow in Trans-

mission and Substation Circuits. Palo Alto, CA, 2005.

[147] C. Pisani, A. Vaccaro and D. Villacci, “Conceptualization and experimen-

tal deployment of an adaptive synchronized sensing system for power line

thermal monitoring,” IEEE Transactions on Industrial Informatics, vol. 12,

no. 6, pp. 2158–2165, Dec. 2016.

[148] K. V. Khandeparkar, S. A. Soman and G. Gajjar, “Detection and correction

of systematic errors in instrument transformers along with line parameter

estimation using PMU data,” IEEE Transactions on Power Systems, vol.

PP, no. 99, pp. 1–10, 2016.

[149] National Climatic Data Center - US Department of Commerce. (2016).

NNDC Climate Data Online, [Online]. Available: http : / / www7 . ncdc .

noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505&countryabbv=

&georegionabbv=&resolution=40 (visited on 01/05/2016).

[150] Weather Underground. (2016). Historical Weather, [Online]. Available: https:

//www.wunderground.com/history/ (visited on 24/06/2016).

196

https://www.omicronenergy.com/fileadmin/user_upload/pdf/literature/CMC-256plus-Technical-Data-ENU.pdf
https://www.omicronenergy.com/fileadmin/user_upload/pdf/literature/CMC-256plus-Technical-Data-ENU.pdf
https://www.omicronenergy.com/fileadmin/user_upload/pdf/literature/CMC-256plus-Technical-Data-ENU.pdf
http://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505&countryabbv=&georegionabbv=&resolution=40
http://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505&countryabbv=&georegionabbv=&resolution=40
http://www7.ncdc.noaa.gov/CDO/cdopoemain.cmd?datasetabbv=DS3505&countryabbv=&georegionabbv=&resolution=40
https://www.wunderground.com/history/
https://www.wunderground.com/history/


Appendices

197





Appendix A

Chapter 3

A.1 Sensitivity of series inductance and shunt

capacitance to conductor temperature

A.1.1 Series inductance

Carson’s formulae for the self and mutual impedance of conductors with ground

return are considered to assess the sensitivity of positive sequence inductance to

conductor height above ground [46]. Define the following variables,

Zsi ∈ C per unit length self impedance of the ith conductor with ground return

Zmik ∈ C per unit length mutual impedance between the ith and kth conductors

with ground return

gi ∈ R≥0 geometric mean radius of ith conductor

hi ∈ R≥0 height of ith conductor

Ri ∈ R≥0 AC resistance of ith conductor

dik ∈ R≥0 distance between the ith and kth conductors

Dik ∈ R≥0 distance between the ith conductor and image of kth conductors

f ∈ R≥0 frequency, ω = 2πf - angular frequency

µ ∈ R≥0 permeability of the conductor

Ig ∈ C infinite integral that models the effect of earth resistivity
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The geometrical quantities are illustrated in Figure A.1.

Actual conductors

Image conductors

i

k

i

k

Figure A.1: Schematic diagram of the geometrical configuration of two actual
conductors and their images

Self and mutual impedance are given by

Zsi = Ri+j
ωµ

2π
ln(2hi/gi) +4ωIg (A.1)

Zmik = j
ωµ

2π
ln(Dik/dik)+4ωIg. (A.2)

Consider the positive sequence inductance L, given by

L =
µ

2π
ln(2hi/gi)−

µ

2π
ln(Dik/dik) (A.3)

=
µ

2π
ln(

2hi
gi

dik
Dik

). (A.4)

By making the approximation Dik ≈ 2hi, the expression for L becomes

L ≈ µ

2π
ln(

2hi
gi

dik
2hi

) =
µ

2π
ln(

dik
gi

). (A.5)

Hence, the positive sequence inductance is approximately independent of the con-

ductor height, and has low sensitivity to changes in sag caused by changes in

conductor temperature.
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A.1.2 Shunt capacitance

Shunt capacitance is calculated by considering the potential of a conductor due to

its own charge and that of other transmission line conductors [34, 49]. Define

n number of conductors above ground

qi ∈ C charge per unit length of ith conductor, i = 1, 2, 3, . . . , n

dii ∈ R≥0 radius of ith conductor

dik ∈ R≥0 distance between the ith and kth conductor, i 6= k

Dii ∈ R≥0 distance between the ith conductor and its image

Dik ∈ R≥0 distance between the ith conductor and image of kth conductors, i 6= k

ε ∈ R≥0 permittivity of the medium

Vi ∈ C voltage of ith conductor to ground

By derivation from Gauss’s law for electric fields, Vi is given by [34]:

Vi =
1

2πε

n∑
k=1

qk ln

(
Dik

dik

)
(A.6)

Define the following matrices:

P ∈ Cn×n - potential coefficient matrix with elements

pij =
1

2πε
ln

(
Dik

dik

)
. (A.7)

V ∈ Cn - voltage vector, V = [V1 V2 V3 . . . Vn]T ,

Q ∈ Cn - charge vector, Q = [q1 q2 q3 . . . qn]T

Based on (2.37), the voltages for n conductors can be summarized by the matrix

equation

V = PQ. (A.8)

Capacitance is defined as the ratio of charge to voltage, C = q/V . Given matrices

Q and V, let C be the matrix of capacitance coefficients (also known as Maxwell’s

coefficients [34]), where

C = QV−1 = P−1. (A.9)

For a transposed line with geometrical phase symmetry, the positive sequence

components P1 and C1 of P and C, respectively, have a direct inverse relationship:

C1 = 1/P1. (A.10)
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Now, P1 is given by

P1 = pii − pik =
1

2πε
ln

(
Dii

dii

)
− 1

2πε
ln

(
Dik

dik

)
(A.11)

=
1

2πε
ln

(
Dii

dii

dik
Dik

)
. (A.12)

By making the approximation Dik ≈ Dii, P1 becomes

P1 ≈
1

2πε
ln

(
dik
dii

)
. (A.13)

Thus, P1 is approximately independent of conductor height, which means that pos-

itive sequence shunt capacitance has low sensitivity to thermally induced changes

in sag.
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A.2 Preservation of positive sequence through

the delta-star conversion

Let Va, Vb, Vc ∈ C be phase voltage of a three-phase transmission line as shown

in Figure A.2, which may or may not be balanced, where balance is defined as

|Va| = |Vb| = |Vc| and ∠Va − ∠Vb = ∠Vb − ∠Vc = ∠Vc − ∠Va = 2π/3.

Figure A.2: Phasor diagram of star and delta voltages

Let a = exp(j2π/3). The positive sequence voltage V1 is defined as

V1 =
1

3

(
Va + aVb + a2Vc

)
. (A.14)

Define the line-to-line (delta) voltages as Vab = Va−Vb, Vbc = Vb−Vc, Vca = Vc−Va.
The positive sequence of the delta voltages is given by

V1∆ =
1

3

(
Vab + aVbc + a2Vca

)
. (A.15)

Now, convert V1∆ to a positive sequence star voltage V1∗; define b =
√

3 exp(jπ/6),

then

V1∗ = V1∆/b (A.16)

=
1

3b

(
Vab + aVbc + a2Vca

)
(A.17)

=
1

3

(
1− a2

b
Va +

a− 1

b
Vb +

a2 − a
b

Vc

)
. (A.18)
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But

1− a2

b
= 1,

a2 − a
b

= a2,
a− 1

b
= a. (A.19)

Hence,

V1∗ =
1

3

(
Va + a2Vb + aVc

)
= V1. (A.20)

Thus, the positive sequence of the phase voltages V1 can be retrieved from mea-

surements of delta voltages Vac, Vba, Vcb only, regardless of the level of unbalance.
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A.3 Calculation of average conductor tempera-

ture

The calculation of average conductor temperature from ambient weather conditions

is based on the IEEE Standard 738-2012 for Calculating the Current-Temperature

Relationship of Bare Overhead Conductors [43]. The non-steady state heat balance

equation is used to calculate the change in temperature at regular time intervals

to reflect changes in weather conditions and line current.

Define the following variables:

Tc ∈ R Average conductor temperature in ◦C

t ∈ R≥0 Time in s

m ∈ R≥0 Mass of conductor in kg

Cp ∈ R≥0 Heat capacity of conductor in J ◦C−1

R(Tc) ∈ R≥0 AC resistance at temperature Tc in Ω m−1

|I| ∈ R≥0 Magnitude of conductor current in A

qs ∈ R≥0 Solar heat gain rate in W m−1

qc ∈ R≥0 Convection heat loss rate in W m−1

qr ∈ R≥0 Radiation heat loss rate in W m−1

∆t ∈ R≥0 Time step in s

The non-steady state heat balance equation is [43]:

dTc
dt

=
1

mCp
(R(Tc)I

2 + qs − qc − qr). (A.21)

Tc is a continuous variable that is discretized for the purpose of iterative calculation

with respect to time t [43]. Let subscript i denote quantity values from time ti.

By a first order Taylor approximation, the temperature Tci+1
at ti+1 is given by:

Tci+1
= Tci +

dTc
dt

∣∣∣
t=ti

(ti+1 − ti) (A.22)

Let ∆t = ti+1 − ti, then

Tci+1
= Tci +

dTc
dt

∣∣∣
t=ti

∆t =
∆t

mCp
(R(Tci)I

2
i + qsi − qci − qri). (A.23)

The conductor type is Zebra ACSR (Aluminium Conductor Steel Reinforced),

hence, the material is non-homogeneous. Define

ma ∈ R≥0 Per unit length mass of the aluminium strands in kg m−1

Ca ∈ R≥0 Specific heat capacity of aluminium in J kg−1 ◦C−1
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ms ∈ R≥0 Per unit length mass of the steel core in kg m−1

Cs ∈ R≥0 Specific heat capacity of steel in J kg−1 ◦C−1.

The heat capacity Cp is thus a linear combination of the heat capacities of alu-

minium and steel [43]:

Cp = maCa +msCs. (A.24)

Define α ∈ [−1, 1] as the resistance-temperature coefficient with unit ◦C−1. The

resistance depends linearly on the conductor temperature:

R(Tci) = R(20)(1 + α(Tci − 20)). (A.25)

The conductor current is taken to be the mean of sending and receiving end current

magnitudes and divided by 2, the number of conductors per bundle:

Ii = (|Isi|+ |Iri |)/4. (A.26)

To calculate the rate of solar heat gain qs, define the following variables:

αs ∈ [0.23, 0.91] Solar absorptivity, no dimensions

Qse ∈ R≥0 Total solar and sky radiated heat intensity corrected for ele-

vation in W m−2

Qs ∈ R≥0 Total solar and sky radiated heat intensity in W m−2

Ksolar ∈ R≥0 Solar altitude correction factor, no dimensions

θ ∈ R Effective angle of incidence of the sun’s rays in °

A ∈ R Projected area of conductor in m2 linear m

Hc ∈ [0, 90] Altitude of sun in °

Zc ∈ R Azimuth of sun in °

Zl ∈ R Azimuth of line in °

L ∈ R Degrees of latitude in °

δ ∈ [−23.45, 23.45] Solar declination in °

ω ∈ R Hour angle relative to noon in °

X ∈ R Solar azimuth variable, no dimensions

N ∈ N Day of the year in, no dimensions.

At ti, qs is calculated as [43]:

qsi = αsQseisin(θ)A, (A.27)
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where

Qsei = KsolarQsi (A.28)

θ = arccos(cos(Hc) cos(Zc − Zl)) (A.29)

Hc = arcsin(cos(L) cos(δ) cos(ω) + sin(L) sin(δ)) (A.30)

Zc = C + arctan(X) (A.31)

X = sin(ω)/(sin(L) cos(ω)− cos(L) tan(δ)) (A.32)

δ = 23.46 sin

(
360

365
(284 +N)

)
. (A.33)

The solar azimuth C ∈ {0, 180, 360} is a function of the hour angle ω and solar

azimuth variable X [43]. Further, define

D ∈ R Conductor diameter in m

Ta ∈ R Ambient temperature in ◦C

ρ ∈ R Density of air in kg m−3

vw ∈ R Wind speed in m s−1

µf ∈ R Absolute viscosity of air in kg m−1 s−1

kf ∈ R Thermal conductivity of air at temperature Tfilm in W m−1 ◦C−1

Kangle ∈ R Wind direction factor, no dimensions

He ∈ R Elevation of conductor above sea level in m

φ ∈ R Angle between wind and axis of conductor in °.

Convection heat loss qci is taken as max{qcni , qc1i , qc2i}, the maximum value of

calculated natural convection qcni , convective heat loss at low wind speeds qc1i and

high wind speeds qc2i , which are calculated by [43]:

qcni = 3.645ρ0.5
f D0.75(Tci − Tai) (A.34)

qc1i = (1.01 + 0.0372(
Dρfvw
µf

)0.52)kfKangle(Tci − Tai) (A.35)

qc2i = 0.0119(
Dρfvw
µf

)0.6kfKangle(Tci − Tai), (A.36)

where

ρf =
1.293− 1.525× 10−4He + 6.379× 10−9H2

e

1 + 0.00367Tfilm
(A.37)

µf =
1.458× 10−6(Tfilm + 273)1.5

Tfilm + 383.4
(A.38)

kf = 2.424× 10−2 + 7.477× 10−5Tfilm − 4.407× 10−9T 2
film (A.39)

Kangle = 1.194− cos(φ) + 0.194 cos(2φ) + 0.368 sin(2φ) (A.40)

Tfilm = (Tci − Tai)/2. (A.41)
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The radiation heat loss rate is computed as [43]

qri = 0.138Dε

[(
Tci + 273

100

)4

−
(
Tai + 273

100

)4
]
. (A.42)

Measurements of ambient temperature, wind speed as as well as solar radiation

were used as input data for the calculations over the 24-hour period [149, 150].

Since the nearest weather stations are 200 km from the line ends, the wind speed

values may not be reflective of the conditions close to the line. Therefore the values

from both locations were averaged and a constant value was assumed throughout

the day; the wind direction was assumed to be φ = 90°, i.e. perpendicular to the

line. Table A.1 lists the remaining input quantity values.

Table A.1: List of fixed input quantity values

Variable Value Explanation

R(20) 6.74× 10−5 Ω m−1 Zebra conductor property
∆t 60 s Time steps at which impedance is calculated
ma 1.288 kg m−1 Zebra conductor property
Ca 476 J kg−1 ◦C−1 Material property
ms 0.4836 kg m−1 Zebra conductor property
Cs 955 J kg−1 ◦C−1 Material property
α 0.0039 ◦C−1 Material property
αs 0.5 Standard value for ACSR conductors
A 0.028 62 m Equal to conductor diameter
Zl 180° Line runs in a north-south direction
L −19.4° Location of line in Namibia
N 73 14 March
D 0.028 62 m Zebra conductor diameter
He 0 Line has no elevation
ε 0.5 Standard value for ACSR conductors

Figure A.3 shows the calculated rates of convection, solar heat gain, radiation

and Joule heating over the 24-hour period.
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Figure A.3: Heat transfer rates as calculated from the heat balance equation
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A.4 Field measurement results

Table A.2 lists the Median (M) and Interdecile Range (IDR) of the estimated

values for resistance R, reactance X, conductance G and susceptance B.

Table A.2: Results for field measurements, 22-hour period, as presented in Ta-
bles 3.6, 3.7, 3.8, 3.9 and 3.10

R (Ω) X (Ω) G (mS) B (mS)
M IDR M IDR M IDR M IDR

SM1 34.7 8.1 148 3 0.06 0.24 2.07 0.04
TLS1 35.1 5.8 148 3 0.00 0.00 2.07 0.03
NLOE1 25.5 7.7 140 20 −0.26 0.73 2.30 0.17
TPLL1 31.6 4.7 157 28 −0.10 0.45 1.85 0.37
LLS3 34.7 11.7 145 7 0.00 0.00 2.07 0.03
NLLC3 0.3 40.6 0 45 5.71 4276.89 9.57 4613.57
NLCO3 22.7 5.2 155 11 0.00 0.00 1.66 0.10
TPLL3 90.8 53.6 118 66 −1.06 7.84 0.24 6.92

A.5 Simulation measurement results

Tables A.3 to A.8 list the Median (M) and Interdecile Range (IDR) of the estimated

values for resistance R, reactance X, conductance G and susceptance B, for each

of the six simulated scenarios described in Section 3.5.2.

Table A.3: Results for the Ideal Scenario, as presented in Table 3.13

R (Ω) X (Ω) G (mS) B (mS)
M IDR M IDR M IDR M IDR

SM1 16.0 0.0 189 0 0.01 0.00 1.57 0.00
TLS1 16.1 0.0 189 0 0.00 0.00 1.57 0.00
NLOE1 16.0 0.0 189 0 0.01 0.00 1.57 0.00
TPLL1 16.0 0.0 189 0 0.01 0.00 1.57 0.00
LLS3 16.0 0.2 188 0 0.00 0.00 1.57 0.00
NLLC3 16.0 0.0 189 0 0.01 0.00 1.57 0.00
NLCO3 16.0 0.3 188 2 0.00 0.00 1.57 0.00
TPLL3 16.0 0.0 189 0 0.01 0.00 1.57 0.00
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Table A.4: Results for the Delta-star Scenario, as presented in Table 3.14

R (Ω) X (Ω) G (mS) B (mS)
M IDR M IDR M IDR M IDR

SM1 16.0 0.0 189 0 0.01 0.00 1.57 0.00
TLS1 16.1 0.0 189 0 0.00 0.00 1.57 0.00
NLOE1 16.0 0.0 189 0 0.01 0.00 1.57 0.00
TPLL1 16.0 0.0 189 0 0.01 0.00 1.57 0.00
LLS3 16.0 2.8 188 4 0.00 0.00 1.57 0.00
NLLC3 2.2 236.4 1 229 9.11 55 163.48 17.99 62 575.80
NLCO3 16.1 0.4 188 1 0.00 0.00 1.57 0.00
TPLL3 93.7 0.0 134 0 −0.68 0.00 1.18 0.00

Table A.5: Results for the Variation Scenario, as presented in Table 3.15

R (Ω) X (Ω) G (mS) B (mS)
M IDR M IDR M IDR M IDR

SM1 16.6 0.9 189 0 0.01 0.00 1.57 0.00
TLS1 16.8 0.9 189 0 0.00 0.00 1.57 0.00
NLOE1 16.6 2.8 189 1 0.01 0.03 1.57 0.06
TPLL1 16.6 2.0 189 1 0.01 0.02 1.57 0.04
LLS3 16.7 1.1 188 1 0.00 0.00 1.57 0.00
NLLC3 15.8 139.7 184 228 0.01 18.12 1.58 15.51
NLCO3 16.7 0.8 188 2 0.00 0.00 1.57 0.00
TPLL3 16.6 1.5 188 1 0.01 0.04 1.57 0.03

Table A.6: Results for the Uncertainty Scenario, as presented in Table 3.16

R (Ω) X (Ω) G (mS) B (mS)
M IDR M IDR M IDR M IDR

SM1 16.0 0.0 192 0 0.01 0.00 1.57 0.00
TLS1 16.0 0.0 192 0 0.00 0.00 1.57 0.00
NLOE1 16.0 0.5 192 1 0.01 0.01 1.57 0.01
TPLL1 16.0 0.1 192 0 0.01 0.00 1.57 0.00
LLS3 16.0 0.2 191 0 0.00 0.00 1.57 0.00
NLLC3 12.1 34.1 195 29 −0.07 2.46 1.95 2.27
NLCO3 69.0 2.6 285 23 0.00 0.00 1.47 0.03
TPLL3 15.7 15.1 184 21 −0.01 0.99 1.76 0.94
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Table A.7: Results for the Systematic Error Scenario, as presented in Table 3.17

R (Ω) X (Ω) G (mS) B (mS)
M IDR M IDR M IDR M IDR

SM1 25.1 122.6 164 201 0.02 0.01 1.56 0.08
TLS1 25.2 101.0 164 174 0.00 0.00 1.56 0.08
NLOE1 6.3 0.0 182 0 0.44 0.00 1.94 0.00
TPLL1 19.4 0.0 184 0 −0.37 0.00 1.28 0.00
LLS3 21.1 20.3 170 21 0.00 0.00 1.56 0.08
NLLC3 14.0 0.0 187 0 0.02 0.00 1.59 0.00
NLCO3 68.9 2.0 283 22 0.00 0.00 1.47 0.02
TPLL3 19.4 0.0 184 0 −0.37 0.00 1.28 0.00

Table A.8: Results for the Realistic Scenario, as presented in Table 3.18

R (Ω) X (Ω) G (mS) B (mS)
M IDR M IDR M IDR M IDR

SM1 25.6 115.4 164 202 0.02 0.01 1.56 0.08
TLS1 25.9 100.5 164 173 0.00 0.00 1.56 0.08
NLOE1 6.9 3.1 182 2 0.44 0.03 1.94 0.05
TPLL1 19.9 2.1 184 1 −0.37 0.02 1.28 0.04
LLS3 21.5 76.2 163 52 0.00 0.00 1.56 0.08
NLLC3 102.9 145.6 196 139 −1.72 10.21 2.43 9.38
NLCO3 23.7 8.8 163 46 0.00 0.00 1.58 0.15
TPLL3 90.0 19.5 127 13 −0.97 0.98 0.82 0.88
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Appendix B

Chapter 4

B.1 Estimating the uncertainty in the calculated

impedance of a copper coil

The uncertainty in the resistance and reactance values that were calculated from

the synchrophasor measurements was estimated in line with the Guide to the

Expression of Uncertainties in Measurement [139]. Recall that impedance Zi ∈ R
is calculated using

Zi = Ri + jXi =
Vsi − Vri

Ii
=
|Vsi | exp(jθsi)− |Vri | exp(jθri)

|Ii| exp(jθIi)
, (B.1)

where Vsi , Vri , I ∈ C, θsi , θri , θIi ∈ R are mean values of measurements from a

10 s interval. θri and θIi are measured relative to θsi , hence θsi = 0. Subscript i

refers to time instants ti = i∆t, where ∆t = 10 s. A summary of components that

contribute to uncertainty in Ri and Xi is given in Table B.1.
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Table B.1: Components of uncertainty calculation for resistance

Type Symbol Source of uncer-
tainty

Absolute
expanded
uncertainty

Probability
Distribu-
tion

Sensitivity
coefficient

A uRi Repeatability
from statistical
calculation

Normal

B u|Vs| Uncertainty in
amplitude
measurement of
digitizer channels

66 ppm Normal ∂Ri
∂|Vsi |

u|Vr| 66 ppm Normal ∂Ri
∂|Vri |

u|I| 32 ppm Normal ∂Ri
∂|Ii|

B uθr
Uncertainty in
phase angle
measurement of
digitizer channels
relative to
channel
measuring Vsi

2 µrad Normal ∂R
∂θri

uθI 62 µrad Normal ∂Ri
∂θIi

B u|Vi|
Correlation
between digitizer
channelsuθi

Type A uncertainty uRi is calculated as the standard deviation of the mean

of 100 values Rk obtained at times tk = k∆t,∆t = 0.1 s, k = 1, 2, 3, . . . , 100 from

phasor measurements over each 10 second interval:

µ(Rk) =
1

100

100∑
k=1

Rk (B.2)

s(Rk) =

√√√√ 1

100− 1

100∑
k=1

(Rk − µ(Rk))2 (B.3)

u(Ri) =
s(Rk)√

100
(B.4)

Uncertainties u|Vsi | = |Vsi |u|Vs|, u|Vri | = |Vri |u|Vr|, u|Ii| = |Ii|u|I|, uθr , uθI are of

Type B and obtained from calibration of the digitizer instrument, current trans-

former and resistive burden.
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The terms in u|Vi| and uθi reflect correlation between input quantities and are

computed as

u2
|Vi| = 2u|Vsi |

∂R

∂|Vsi |
u|Vri |

∂R

∂|Vri |
(B.5)

u2
θi

= 2uθr
∂R

∂θri
uθI

∂R

∂θIi
. (B.6)

All partial derivatives are evaluated at Vsi , Vri , Ii, which are mean values over 10 s

intervals:

Vsi =
1

100

100∑
j=1

Vsj , Vri =
1

100

100∑
j=1

Vrj , Ii =
1

100

100∑
j=1

Ij. (B.7)

For each calculated resistance value Ri, the combined standard uncertainty URi
has been calculated according to the law of propagation of uncertainty:

URi = (u2
Ri

+ u2
|Vsi |

∂Ri

∂|Vsi |

2

+ u2
|Vri |

∂Ri

∂|Vri|

2

+ u2
|Ii|
∂Ri

∂|Ii|

2

+ u2
θr

∂Ri

∂θri

2

+ u2
θI

∂Ri

∂θIi

2

+ u2
|Vi| + u2

θi
)
1
2 . (B.8)

The degrees of freedom for the Type B uncertainty components are assumed

to be infinite, while the degree of freedom for the Type A uncertainty is 99, giving

a number greater than 100 effective degrees of freedom and a coverage factor of

2. The combined standard uncertainty is assumed to be the standard deviation

of a normal probability distribution around the measured value; the expanded

uncertainty is obtained by multiplying with the coverage factor for a 95 % coverage

probability. The same procedure was used to obtain the uncertainty in reactance

values Xi.

B.2 Derivation of net error

In order to show that the net systematic errors between sending and receiving

ends are a good approximation, the partial derivatives of Z and Y with respect

to Vs, Vr, Is, Ir are required. These will be derived in Section B.2.1 and the error

approximation is considered in Section B.2.2.
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B.2.1 Partial derivatives of Z and Y

Let Vs, Is, Vr, Ir ∈ C,Ω = C4 \ {VsIr + VrIs = 0} ,Γ = C4 \ {Vs + Vr = 0}. Define

complex functions Z : Ω→ C, Y : Γ→ C, where

Z = (V 2
s − V 2

r )/(VsIr + VrIs) (B.9)

Y = 2(Is − Ir)(Vs + Vr). (B.10)

Rewrite Z as Z = h1/h2 and Y as Y = h3/h4, where h1 : C2 → C, h2 : Ω→ C, h3 :

C2 → C, h4 : C2 \ {Vs + Vr = 0} → C,

h1(Vs, Vr) = V 2
s − V 2

r , h2(Vs, Ir, Vr, Is) = VsIr + VrIs (B.11)

h3(Is, Ir) = 2(Is − Ir), h4(Vs, Vr) = Vs + Vr. (B.12)

Since h1, h2, h3, h4 are complex polynomials, Z and Y are rational functions. By

the differentiability of complex polynomials and the quotient rule, Z and Y are

differentiable at all points in Ω and Γ, respectively. The partial derivatives of Z

with respect to Vs and Vr are

∂Z

∂Vs
=

2Vs
VsIr + VrIs

− (V 2
s − V 2

r )Ir
(VsIr + VrIs)2

(B.13)

∂Z

∂Vr
=

−2Vr
VsIr + VrIs

− (V 2
s − V 2

r )Is
(VsIr + VrIs)2

. (B.14)

The partial derivatives of Y with respect to Is and Ir are

∂Y

∂Is
=

2

Vs + Vr
(B.15)

∂Y

∂Ir
= − 2

Vs + Vr
. (B.16)

B.2.2 Net error approximation

To a first order linear approximation, the change in Z caused by changes in Vs and

Vr is given by

δZ =
∂Z

∂Vs
δVs +

∂Z

∂Vr
δVr (B.17)

=
2(VsδVs − VrδVr)
VsIr + VrIs

− (V 2
s − V 2

r )(IrδVs + IsδVr)

(VsIr + VrIs)2
. (B.18)

Let the relative change in Z be

∆Z =
δZ

Z
=

2(VsδVs − VrδVr)
V 2
s − V 2

r

− IrδVs + IsδVr
VsIr + VrIs

. (B.19)

216



Suppose errors are modelled at both line ends by δVs = (as + jφs)Ṽs and δVr =

(ar + jφr)Ṽr. Then the relative change around Ṽs, Ṽr is

∆Zexact =
2((as + jφs)Ṽs

2 − (ar + jφr)Ṽr
2
)

Ṽs
2 − Ṽr

2 , (B.20)

where only the first, dominant term is considered. Now suppose all errors are

modelled to be in Ṽr, such that δVs = 0, δVr = (a + jφ)Ṽr where a = ar − as, φ =

φr − φs. Then the relative error becomes

∆Zapp =
−2(ar − as + jφr − jφs)Ṽr

2

Ṽs
2 − Ṽr

2 . (B.21)

The difference between the exact and approximate relative error is

∆Zexact −∆Zapp =
2(as + jφs)(Ṽs

2 − Ṽr
2
)

Ṽs
2 − Ṽr

2 = 2(as + jφs). (B.22)

Hence, by modelling all error to be in Ṽr, an approximation of 2(as + jφs) is made

in the relative error of the impedance, which is constant and of a lower order

than the overall error ∆Zexact. Using an equivalent expression for ∆Y , a similar

argument can be produced for modelling all errors in current in Ĩr.
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Appendix C

Chapter 5

C.1 Selection of measurement subsets

Suppose there are N ∈ N available sets of synchrophasor measurements Vsi , Isi ,

Vri , Iri , i = 1, 2, 3, . . . , N , then one can choose

Γ = 1 + (N − 1) + (N − 2) + ...+N =
∑N−1

m=0 N −m
distinct subsets of consecutive measurements of sizes n = 1 to n = N . Some

subsets are excluded because of their size and lack of variation of operational

states. In order to ensure enough variation within the subsets, only those with

a minimum range of current magnitudes are chosen. Given Γ possible subsets,

exclude those for which

n < p (C.1)

|max |Isi | −min |Isi || <
η

n

n∑
i=1

|Isi |, (C.2)

where p ∈ N is the minimum number of required measurement sets and η ∈ R≥0 is

a factor that is chosen at least one order of magnitude larger than the measurement

uncertainties. For instance, if the measurement uncertainty in Is is less than 1 %,

η =10 %. Let the number of subsets that satisfy criteria (C.1) and (C.2) be Ψ ∈ N,

hence, the number of remaining subsets is Λ = Γ − Ψ. Measurement correction

factors and resistance-temperature parameters are estimated for each of the Λ

subsets by the new methods NMLT and NMNL as described in Section 5.2. The

subset that gives the best estimated values is identified according to the optimality

criterion defined in Section 5.2.3.
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C.2 Case study 1 results

C.2.1 Individual case

Figures C.1, C.2 and C.3 show estimated values of positive sequence reactance,

conductance and susceptance for one individual case of the case study in Sec-

tion 5.3.2.1. Results for the two new methods NMLT and NMNL as well as for

the selection of existing single-phase methods are shown.
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Figure C.1: Nominal and estimated values of reactance X over time for the individual case
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Figure C.2: Nominal and estimated values of conductance G over time for the individual case
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Figure C.3: Nominal and estimated values of susceptance B over time for the individual case
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C.3 Case study 2 results

C.3.1 Day 8

Figures C.4 to C.6 show values of positive sequence reactance, conductance and

susceptance estimated by the new methods NMLT and NMNL as well as by the

existing single-phase methods using measurements from Day 8, as presented in

Section 5.4.1.1.
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Figure C.4: Estimated values of reactance X over time for Day 8, by the new methods and existing single-phase methods
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Figure C.5: Estimated values of conductance G over time for Day 8, by the new methods and existing single-phase methods
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Figure C.6: Estimated values of susceptance B over time for Day 8, by the new methods and existing single-phase methods
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Tables C.1 to C.4 give numerical values for the acceptability scores and errors in

temperature estimates for Day 8, as presented in Section 5.4.1.1.

Table C.1: Values of Median (M) and Interdecile Range (IDR) for impedance and
admittance parameters for Day 8, as presented in Table 5.8

R (Ω) X (Ω) G (mS) B (mS)
M IDR M IDR M IDR M IDR

NMLT 15.1 0.8 143 1 0.00 0.00 2.18 0.01
NMNL 16.9 0.9 168 1 0.01 0.00 1.86 0.01

SM1 34.7 7.9 148 3 0.06 0.24 2.07 0.04
TLS1 35.1 5.7 148 3 0.00 0.00 2.07 0.03
NLOE1 25.4 7.6 140 20 −0.26 0.85 2.30 0.17
TPLL1 31.6 6.3 157 30 −0.09 0.66 1.85 0.46

LLS3 34.7 11.5 145 7 0.00 0.00 2.07 0.03
NLLC3 −0.1 33.1 1 39 −10.56 28 151.71 77.63 20 818.92
NLCO3 22.7 3.5 154 10 0.00 0.00 1.64 0.10
TPLL3 89.6 77.2 121 87 −0.79 7.82 0.97 11.02

Table C.2: Estimation day 8 - number of days with acceptable estimated values of
Median (M) and Interdecile Range (IDR) of each parameter, and the total number
of acceptable values over ten days, as presented in Table 5.10

Resistance Reactance Conductance Susceptance Total
M IDR M IDR M IDR M IDR (max 80)

NMLT 10 7 10 10 10 10 10 10 77
NMNL 10 7 10 9 10 10 10 10 76

SM1 0 0 10 8 5 1 10 10 44
TLS1 0 1 10 8 10 10 10 10 59
NLOE1 0 0 10 0 0 0 10 1 21
TPLL1 0 0 10 0 3 0 9 1 23

LLS3 0 0 10 5 10 10 10 10 55
NLLC3 0 0 0 0 0 0 2 0 2
NLCO3 10 3 10 9 10 10 10 7 69
TPLL3 0 0 8 0 0 0 6 0 14
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Table C.3: Estimation day 8 - rms error E∆Tc of estimated temperature values
in ◦C, as presented in Table 5.11

Day 1 2 3 4 5 6 7 8 9 10

NMLT 19 45 48 33 38 5.4 3.5 2.4 4 3.9
NMNL 26 50 60 40 44 6.5 3.8 3.1 5 5.1

SM1 464 687 818 608 715 331 337 374 314 257
TLS1 457 657 675 543 662 328 332 331 299 266
NLOE1 408 411 263 294 379 239 270 195 944 834
TPLL1 398 324 271 256 266 360 297 239 443 615

LLS3 496 901 1700 704 981 360 357 344 295 243
NLLC3 2020 1082 675 690 726 416 548 518 470 446
NLCO3 54 53 50 56 44 76 78 85 95 99
TPLL3 4395 1285 979 1145 1345 851 860 1181 1112 1612

Table C.4: Estimation day 8 - standard deviation of error Σ∆Tc of estimated
temperature values in ◦C, as presented in Table 5.11

Day 1 2 3 4 5 6 7 8 9 10

NMLT 15 5 44 32 32 5.0 3.0 2.4 3 3.1
NMNL 19 5 56 39 38 5.9 3.0 2.9 4 4.2

SM1 66 273 594 545 466 34 57 293 103 6
TLS1 61 250 384 440 298 29 49 198 72 4
NLOE1 365 411 232 200 355 188 233 125 898 786
TPLL1 386 247 201 119 231 299 214 77 444 602

LLS3 94 456 1413 509 496 60 94 200 92 9
NLLC3 2016 1053 629 663 658 334 482 464 380 353
NLCO3 14 13 16 45 29 21 20 37 19 14
TPLL3 3997 388 455 331 335 433 320 512 542 1420
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C.3.2 Cross validation

Tables C.5 to C.10 give numerical values for the acceptability scores and errors in

temperature estimates for Days 1 to 10, as presented in Section 5.4.1.2.

Table C.5: Number of days with acceptable estimated values of Median (M) and
Interdecile Range (IDR), when correction factors and resistance-temperature pa-
rameters are estimated from Days 1 to 10 by NMLT as presented in Table 5.12

Estimation Resistance Reactance Conductance Susceptance Total
day M IDR M IDR M IDR M IDR (max 80)

1 10 6 10 6 10 10 9 10 71
2 10 7 10 10 10 10 7 10 74
3 10 8 10 10 10 10 10 10 78
4 10 7 10 10 10 10 10 10 77
5 10 8 10 10 10 10 10 10 78
6 10 7 10 10 10 10 2 10 69
7 10 8 10 9 10 10 10 10 77
8 10 7 10 10 10 10 10 10 77
9 10 6 10 9 10 10 10 10 75
10 10 5 10 9 10 10 10 10 74

Table C.6: Number of days with acceptable estimated values of Median (M) and
Interdecile Range (IDR), when correction factors and resistance-temperature pa-
rameters are estimated from Days 1 to 10 by NMNL, as presented in Table 5.13

Estimation Resistance Reactance Conductance Susceptance Total
day M IDR M IDR M IDR M IDR (max 80)

1 10 5 10 6 10 10 10 10 71
2 10 7 10 10 10 10 10 10 77
3 10 7 10 10 10 10 10 10 77
4 10 7 10 10 10 10 10 10 77
5 10 6 10 10 10 10 10 10 76
6 10 8 10 10 10 10 10 10 78
7 10 5 10 10 10 10 10 10 75
8 10 7 10 9 10 10 10 10 76
9 10 6 10 9 10 10 10 10 75
10 10 5 10 9 10 10 10 10 74
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Table C.7: Cross validation of NMLT - rms error E∆Tc of estimated temperature
values in ◦C, as presented in Table 5.14

Validation day
1 2 3 4 5 6 7 8 9 10

E
st

im
at

io
n

d
ay

1 4 50 25 35 17 9 19 19 13 10
2 29 2 23 26 15 25 25 45 30 38
3 68 31 2 9 7 17 13 48 21 27
4 39 33 4 2 5 11 12 33 13 15
5 32 28 11 12 2 13 8 38 13 34
6 7 35 8 10 8 4 4 5 4 8
7 7 35 7 9 7 3 1 4 2 8
8 14 37 13 18 13 5 17 2 9 6
9 11 39 13 17 10 3 3 4 2 8
10 7 39 10 12 8 3 2 4 2 2

Table C.8: NMLT - standard deviation of error Σ∆Tc of estimated temperature
values in ◦C, as presented in Table 5.14

Validation day
1 2 3 4 5 6 7 8 9 10

E
st

im
at

io
n

d
ay

1 4 14 15 20 9 7 14 15 11 10
2 15 2 5 9 5 3 11 5 4 6
3 67 20 2 9 7 14 12 44 18 24
4 38 16 4 2 5 10 9 32 10 9
5 32 19 9 10 2 10 8 32 10 21
6 4 5 5 6 4 4 4 5 4 4
7 5 2 2 2 3 3 1 3 2 5
8 12 6 11 16 11 5 17 2 9 6
9 10 3 5 7 4 2 3 3 2 7
10 3 3 2 4 2 2 2 3 2 2
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Table C.9: Cross validation of NMNL - rms error E∆Tc of estimated temperature
values in ◦C, as presented in Table 5.15

Validation day
1 2 3 4 5 6 7 8 9 10

E
st

im
at

io
n

d
ay

1 5 54 32 34 17 18 21 26 15 12
2 46 2 26 27 14 23 25 50 30 38
3 105 33 2 10 9 8 13 60 22 29
4 62 36 5 2 6 8 14 40 13 15
5 52 30 13 13 2 6 8 44 14 35
6 5 37 9 9 8 4 5 6 5 8
7 5 37 8 8 8 2 1 4 3 7
8 19 39 15 18 13 13 19 3 10 7
9 14 42 14 16 11 5 5 5 2 9
10 5 41 11 12 8 3 2 5 2 2

Table C.10: Cross validation of NMNL - standard deviation of error Σ∆Tc of esti-
mated temperature values in ◦C, as presented in Table 5.15

Validation day
1 2 3 4 5 6 7 8 9 10

E
st

im
at

io
n

d
ay

1 5 16 18 20 9 12 15 19 12 12
2 21 2 7 9 5 7 13 5 4 5
3 102 20 2 10 8 6 13 56 19 27
4 62 18 5 2 6 5 11 39 10 9
5 51 21 12 11 2 3 7 38 11 21
6 4 5 5 6 4 4 5 6 4 4
7 5 3 2 2 3 2 1 3 2 5
8 18 6 13 16 11 13 19 3 9 7
9 14 3 6 8 4 3 5 4 2 8
10 2 3 3 4 2 2 2 4 2 2

232


	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Background and motivation
	Problem statement
	Contributions
	Publications
	Thesis structure

	Literature review
	Introduction
	Background
	Transmission line theory
	Synchronized phasor measurements
	Estimation theory

	Review of overhead line impedance parameter identification
	Power system state and parameter estimation
	Estimation methods based on transient signal measurements
	Steady-state estimation methods for transposed lines
	Steady-state estimation methods for untransposed lines
	Summary

	Discussion and conclusion

	Comparison of existing synchrophasor-based impedance parameter estimation methods
	Introduction
	Overview of methods under consideration
	Single-phase methods
	Three-phase methods

	Assessment criteria for parameter estimation results
	Application of methods to field data
	Properties of the line and the data
	Analysis of parameter estimation results
	Summary and discussion of results

	Application of methods to data from a transmission line simulation
	Properties of the simulation
	Simulated scenarios
	Analysis of parameter estimation results
	Summary and discussion of results

	Conclusion

	A new method for reducing variability in impedance parameter values estimated from measurements with systematic errors
	Introduction
	A new method for accurate impedance parameter estimation from synchrophasor measurements with systematic errors
	A modified parameter estimation problem for short lines
	Propagation of systematic measurement errors
	Explanation of the new method for short lines

	Case study 1: short transmission lines
	Experimental set-up and operation
	Analysis of parameter estimation results
	Discussion of results

	Extension of the method to the pi-model for longer lines
	Modification of the pi-circuit model
	Explanation of the new method for the pi-circuit model

	Case study 2: medium-length and long lines
	Properties of the simulation
	Metrics for evaluation of method performance
	Analysis of parameter estimation results
	Discussion of results

	Conclusion

	An innovative approach to increasing the accuracy of real-time impedance parameter monitoring
	Introduction
	Methods
	A different parameter estimation problem
	Estimation of correction factors and resistance-temperature parameters
	Selection of optimal parameter estimates

	Case study 1: physical simulation of three-phase measurements
	Laboratory-based measurements
	Analysis of parameter estimation results
	Discussion of results

	Case study 2: field measurements
	Analysis of parameter estimation results
	Discussion of results

	Conclusion

	Conclusion
	Summary and discussion of contributions to knowledge
	Future work

	References
	Appendices
	Chapter 3
	Sensitivity of series inductance and shunt capacitance to conductor temperature
	Series inductance
	Shunt capacitance

	Preservation of positive sequence through the delta-star conversion
	Calculation of average conductor temperature
	Field measurement results
	Simulation measurement results

	Chapter 4
	Estimating the uncertainty in the calculated impedance of a copper coil
	Derivation of net error
	Partial derivatives of Z and Y
	Net error approximation


	Chapter 5
	Selection of measurement subsets
	Case study 1 results
	Individual case

	Case study 2 results
	Day 8
	Cross validation



