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Abstract: 

Concentrated solar power (CSP) plants conventionally make use of molten salt as the heat transfer medium, which 

transfers heat between the solar receiver and a steam turbine power circuit. A new approach uses particles of a heat-

resistant particulate medium in the form of many dense upward-moving fluidised beds contained within an array of 

vertical tubes within the solar receiver. In most dense gas-solid fluidisation systems, particle circulation is induced by 

bubble motion and is the primary cause of particle convective heat transfer, which is the major contributing 

mechanism to overall heat transfer. The current work describes experiments designed to investigate the relationship 

between this solids convection and the heat transfer coefficient between the bed and the tube wall, which is shown to 

depend on the local particle concentration and their rate of renewal at the wall. Experiments were performed using 65 

µm silicon carbide particles in a tube of diameter 30mm, replicating the conditions used in the real application. Solids 

motion and time-averaged solids concentration were measured using Positron Emission Particle Tracking (PEPT) and 

local heat transfer coefficients measured using small probes which employ electrical resistance heating and 

thermocouple temperature measurement. Results show that, as for other types of bubbling beds, the heat transfer 

coefficient first increases as the gas flow rate increases (because the rate of particle renewal at the wall increases), 

before passing through a maximum and decreasing again as the reducing local solids concentration at the wall 

becomes the dominant effect. Measured heat transfer coefficients are compared with theoretical approaches by 

Mickley and Fairbanks packet model and Thring correlation. The close correspondence between heat transfer 

coefficient and solids movement is here demonstrated by PEPT for the first time in a dense upward-moving fluidised 

bed. 
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Notation 

 

PEPT  Positron Emission Particle Tracking 

DPS  Dense particle suspension 

CSP  Concentrated solar power 

HTF  Heat transfer fluid 

DiFB  Dispenser Fluidised Bed 

 

  
 

  Effective radial thermal conductivity, W/m∙K 

Cp   Solid heat capacity, J/kg∙K 

Umf  Minimum fluidising velocity, m/s 

Umb  Minimum bubbling velocity, m/s 

εmf  Minimum fluidisation velocity associated void fraction, m/s 

ρp  Particle density, kg/m3 

Uae  Aeration velocity, m/s 

Uo  Optimum fluidising velocity, m/s 

h  Heat-transfer coefficient, W/m2∙K 

dp  Particle size, 10-6 m 

q  Power supplied to the heater, W 

Spr  Surface area of the probe, m2 

Rpr  Resistance of the probe, Ω 

I  Electrical current, A 

Tb  Dense phase suspension temperature, ˚C 

Ts  Surface temperature of the heater, ˚C 

RR  Uplift transport tube radius, 10-3 m 

Rr  Shell thickness, 10-3 m 

rxz(i)  Current tracer location 

rxz(i-1)  Previous tracer location 

rxz(i+1)  Next tracer location 

τ  Wall contact time, s  

ϕ  wall region, 10-3 m 

tr  Residence time of the emulsion packet at the heat transfer surface, s 
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1. INTRODUCTION 

Concentrated Solar Power (CSP) plants have received recent attention as an alternative to photovoltaics. In CSP, 

solar radiation is focused using diverse mirror or lens configurations onto a solar receiver where it raises the 

temperature of a heat transfer fluid (HTF), which is in turn used to generate steam that powers a turbine-

generator to produce electricity1 (Flamant et al.,2013). 

The classical heat transfer and thermal storage fluids are synthetic oils and molten salts. Oils have limitations 

since they are stable only up to 400 °C and present significant safety issues due to their flammability. Although 

the use of molten salts improves performance it is far from optimal since they are restricted to operating 

temperatures below 550 °C and they suffer from corrosion problems at high temperatures which significantly 

increases maintenance costs. In addition molten-salt systems are affected by freezing problems if the salt 

temperature drops too low, and therefore require high parasitic power consumption to prevent this. 

Liquid metals present potential alternative heat transfer media, since some are relatively stable at high 

temperatures and typically offer good thermal properties. Their use is limited by inherent safety risks, since they 

will combust in contact with air and their large hydration energy results in a vigorous exothermic reaction with 

water. Moreover, liquid metals interact with structural materials at high temperature2. (Pacio and Wetzel, 2013). 

The purpose of this research is to evaluate a further alternative: the use of small particles suspended in gas in the 

form of a dense upward-flowing fluidised bed.  The stirring effect induced by the gas bubbles within the bed 

results in relatively uniform axial and radial temperature distribution in the dense phase and good heat transfer 

from the walls. 

The term dense suspension here means an overall phase concentration of particles comparable to that 

encountered in conventional fluidised beds (≥ 25%). Dense particle suspensions offer the possibility of operation 

at elevated temperatures which is fundamental for achieving higher heat transfer rates which are essential in 

order to achieve economically attractive plant designs. Operation is favoured if the solid particles selected have a 

large thermal conductivity and high heat capacity, which would enable the additional benefit of thermal storage. 
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Similarly, operational aspects such as safety and corrosion risk are minimised and the power consumption for 

pumping is small compared with the alternatives.  

Fluidisation offers excellent heat transfer between the particles and the wall, because the particle motion within 

the bed ensures that there is frequent renewal at the wall surface. Heat transfer in fluidised beds occurs by 

conduction, convection (of both gas and solids) and radiation, with convection dominating except at elevated 

temperatures. Especially for small particles, gas convection hardly contributes in comparison with the solid 

convection, which is the subject of the study reported here.  

Heat transfer by convection of solids depends on the local solids concentration and the rate at which particles 

are replaced at the wall. An increase in gas velocity affects these two parameters in different ways: as gas 

velocity is increased, the particle renewal frequency at the wall is higher, so that the heat transfer coefficient 

increases. Beyond a certain point, however, further increase in the gas flow can cause the local solids density to 

decrease and the surface to become blanketed by excess gas, so causing a reduction in heat transfer coefficient.   

Many predictive models for heat transfer in fluidised beds are available3 (Botterill, 1975), notably the so-called 

packet model of Mickley and Fairbanks4 (Mickley and Fairbanks, 1955), which considers heat transfer to occur by 

the motion of clusters of particles called “packets”, with characteristic void fraction and thermal conductivity. 

Packet motion is driven by the gas and packets periodically make contact with the heat transfer surface and 

remain there for a characteristic residence time exchanging heat with the surface, before being swept away and 

replaced by a new packet.   

The motion of the packets is directly related to the flow of gas bubbles through the bed, and their surface 

scouring action will increase as bubble flow increases, up to a point where the surface becomes blanketed by 

bubbles, as indicated earlier. 

According to this approach, the instantaneous heat transfer coefficient can be obtained as follows: 

 

        
 

  
 
  
            

 
 {1} 
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where   
  represents the thermal conductivity of the medium,    is the particle density,     is the void fraction at 

minimum fluidisation, Cp the heat capacity of the solid particles and   the “packet replacement time”. As indicated 

above, increased gas velocity decreases  , so increasing the heat transfer coefficient. 

The Mickley and Fairbanks packet theory was modified by Baskakov5 (Baskakov, 1964) who proposed a time-

independent additional resistance near the wall caused by a differential void fraction between the emulsion and 

the surface region. He suggested that the thickness of this film is proportional to the particle size.  

Thring6 (Thring, 1977) also suggested that during the residence time the emulsion packet is separated from the 

heat-transfer surface by a gas gap. He pointed out some of the drawbacks of previous models such as the fact 

that the emulsion packets cannot reasonably be considered to have uniform thermal properties, since the entire 

temperature gradient turns out to occur in a distance from the heat-transfer surface equivalent to a few particle 

diameters.  

Ozkaynak and Chen7 (Ozkaynak and Chen, 1980) confirmed the validity of the packet model for small particles 

with different physical and thermal properties. In their study they used the difference of dielectric constants 

between gas and solids to obtain real-time measurements of fluctuating particle concentration at surfaces 

immersed in fluidised beds. According to their results the heat transfer coefficient decreases with increasing 

particle size. 

The first attempt to interpret fluidised bed heat-transfer results using single-particle trajectories obtained from 

Positron Emission Particle Tracking (PEPT) was made by Wong and Seville8 (Wong and Seville, 2006). PEPT is 

ideally suited to this task since it enables a single particle of the bed material to be tracked at speeds up to the 

maximum experienced in this application, to a precision of ± about 1mm, within a bed of opaque material and 

within a retaining tube with metal walls. A review of the capabilities of the technique is given by Seville et al9. 

(Seville et al, 2009). 
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Wong and Seville8 (Wong and Seville, 2006) studied particle motion around horizontal immersed tubes in a 

conventional bubbling fluidised bed typical of, for example, a combustor. They demonstrated the variation of 

residence time and local solids concentration with angular position around the tube and showed how this leads to 

the observed angular variation in heat transfer coefficient.   

The current work includes similar measurements but at the wall of the bed in a quite different flow regime: dense 

upward flow in a narrow tube of high height-to-diameter aspect ratio.   

2. MATERIALS AND METHODS 

The work described here concerns particle motion in a single uplift transport tube (1.1 m in length and 30 mm in 

diameter), which is selected to be representative of the array of tubes in a full-scale solar receiver10 (Perez-Lopez, 

2016), but operates at ambient temperature. The single transport tube is operated in a continuous loop, such that 

particles flow upward in the transport tube, are disengaged from the gas and then travel downward under gravity 

to be reintroduced to the base of the apparatus.  
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Figure 1. Schematic diagram of the experimental set-up. 

The full apparatus (Fig. 1) consists of a pressurised bubbling fluidised dispenser bed (DiFB) (1), with a sintered 

brass distributor, into which the transport tube is partially submerged. The dense suspension rises up the 

transport tube (2), which has additional aeration –all gas through one nozzle- (3) and terminates in a cyclone-like 

disengaging zone (4). From here the disengaged solids fall under gravity into a downcomer (5). The solids are 65 

μm SiC particles (ρ_p=3210 kg/m3) and the total charge is 1.7kg.     

It is necessary to feed particles from the downcomer into the pressurised dispenser bed in a controlled way. For 

this purpose a bespoke inclined eductor was designed (6). The apparatus is also equipped with a pressure control 
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system and a data logger connected to a Labview interface in order to obtain pressure readings using pressure 

transducers at different points in the uplift transport tube. Further details can be found elsewhere11 (Garcia-

Triñanes et al., 2016). 

 The minimum fluidization velocity was measured in a column of 200 mm by using the Davidson and Harrison 

method (Umf= 0.005 m/s; Umb=0.008 m/s).  [J.F. Davidson, D. Harrison, Fluidized Particles, Cambridge University 

Press, 1963]) The SiC particles were fluidised with compressed air in the 90 mm diameter DiFB at a constant 

fluidisation flow rate of 0.096 m/s. The pressure created in this dispenser bed pushes the particles up into the 

fluidised transport tube.  

In order to maintain good fluidisation in the transport tube, it was found necessary to provide additional aeration 

to the uplift transport tube12 (Boissière et al 2015). The aeration rate has therefore been found to be the single 

most important influence on behaviour in the transport tube. In order to investigate the influence of the aeration 

flow rate (Uae), heat transfer tests at four different aeration velocities were carried out: Uae/Umb= 2.5, 5, 7.5 and 

ultimately 10 m/s using a fluidisation velocity (Uf) of 0.096 m/s. 

PEPT data were used to determine the trajectories of a single particle tracer inserted in the bed when operating 

under different aeration velocities. For each aeration gas velocity, data were acquired with the system operated 

for a total of 2 hours. The location of the tracer covered a total height of 500 mm of the transport tube; this is less 

than the full height since accurate tracking is not possible near the edges of the field of view of the camera. These 

data were further analysed, yielding residence times close to the wall, occupancy (the proportion of the total run 

time which the tracer spends in each volume element), solids mass flux and lateral solids mixing and dispersion 

for each of the operating conditions. 

Heat transfer measurements were carried out using two copper platen heat transfer probes (10 mm in diameter), 

which were specially designed for this purpose and are shown schematically in Figure 2. The first heat transfer 

probe is located above the aeration port and the second one further up in the transport tube separated by 200 

mm. 
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Figure 2. Aspect and location of the heat transfer probes mounted to the uplift transport tube. 

The operating principle of the measurement is that of measuring the electrical energy required to keep the probe 

at a given temperature above that of the bed         . This gives the heat transferred from the probe. Taking 

into account the heat transfer area and the temperature difference between the probe and the bulk of the 

particles, the wall-to-bed heat transfer coefficient, h, can then be obtained: 

  

  
 

          
 

 

{2} 

where q is the power supplied to the heater, I2Rpr (W), Spr is the surface area of the heater (7.85∙10-5 m2), Ts is the 

surface temperature of the heater (˚C), measured by attaching a Type K thermocouple to its surface, Tb is the 

dense phase suspension temperature (˚C) obtained with a second thermocouple. Both Ts temperatures are 

compared with a set point temperature. Calibrations were carried out to both voltmeter and ammeter. 
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 As indicated above, probes were located at two positions and were operated independently. The heat transfer 

surface was of copper, due to its good thermal conductivity, and each probe was inserted at with the wall of the 

transport tube so as to attenuate interference with the upward flow of the suspension (lateral heat losses are 

considered negligible). Further details of this type of probe design are given by Ganzha and Saxena13. (Ganzha and 

Saxena, 1998)  

3. RESULTS AND DISCUSSION   

3. 1. Analysis of particle motion 

A typical solids streamline pattern in the transport tube is presented in Fig. 3 derived from particle trajectory data 
and the local instantaneous particle velocities as calculated from the 6-point method (Ansart, 2017). Note that 
the colorbar corresponds to average total velocity.  This figure shows the motion of the tracer and recirculation 
near the wall. 
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Figure 3. Instantaneous solids streamline pattern in the transport tube (Uae/Umb=5). 

Figure 4 shows a typical example of a particle trajectory in the transport tube. As in conventional fluidised beds, 

motion is generally upward in the centre as particles are caught in the wake of bubbles15 (Stein, 2000). Particles 

are periodically shed from their associated bubbles; they may then become reattached to a new bubble or remain 

in the generally down-flowing region near the wall16 (Garcia-Trinanes, 2016). The figure shows examples of both 

these behaviours.  

 
Figure 4. Schematic representation of the stream of particles mechanism for an upward dense particle suspension. 

3.2. Residence time at the wall and its relationship to heat transfer 

From the PEPT data it is possible to determine the position of the tracer particle at every stage of its movement.  

However, there is an inherent uncertainty in position, due to the PEPT location method9 (Seville, 2009), which is   

0.5 mm in this case. It is therefore not possible to determine unambiguously that the tracer has made contact 

with a given surface. An approach which can be followed, as in previous work by Wong and Seville8 (Wong and 

Seville, 2006), is to define virtual surfaces which are concentric with the surface of interest but at a certain 
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distance from it, and to measure the residence time of the tracer within each surface, i.e. within a “wall region” of 

a certain thickness. Wall regions of different thicknesses were investigated, with 2 mm chosen for the bulk of the 

measurements reported here.   

 

 

 

Figure 5. Example of trajectory in the plan view showing the tracer approaching and leaving the wall (time-duration 150 ms). 

 

 

Figure 6. Principle of determining the time in the wall region. 

(For interpretation of the references to color, the reader is referred to the web version of this article.) 



  

    Particle motion and heat transfer in an upward-flowing dense particle suspension:  
application in solar receivers 

Page 14 of 25 

  

Preprint submitted to CES:                                                                                                             20th July 2017 
Reviewed  31st October 2017  

Figure 5 shows the trajectory of a particle approaching the wall and Fig 6 shows the principle of the measurement 

of residence time in the wall region. Locations within the wall region be determined, from which a duration of the 

trajectory within the region of interest can be obtained. Under the conditions of these experiments, the residence 

time in the wall region can be determined to within 10 ms. During this PEPT experiment, the tracking precision of 

a 68 microns tracer reaches 0.85 mm in 3D with a location frequency of 10 Hz for a tracer moving at 0.2 m/s. 

(Ansart, 2017). 

It may be noted that the time frequency of location using PEPT is approximately, but not completely, constant. 

The reason for this is that the PEPT algorithm uses a fixed number of events (pairs) for each location.  The 

frequency of such events depends on position of the tracer in the camera.   

Count rates are higher with the tracer located in the centre rather than at the edges of the field of view. There 

will also be effects of the amount of material to be penetrated (attenuation) and time (tracer decaying).  Finally, 

the algorithm eliminates about 80% of the collected events, converging on the most likely location, and bases the 

time stamp on the average of the remaining events.  

Figure 7 shows locations in a 2 mm shell at a height between 100-250 mm above the aeration port during a 

typical PEPT experiment, and the corresponding histogram of locations per visit in the wall region is shown: 
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Figure 7. Locations in a 2 mm shell (top) and percentage of locations per visit (bottom); 2 hours of data acquisition. 
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Given the inherent positional uncertainty, one location within the wall region is insufficient to determine that the 

tracer has visited the region; 2 or more locations give higher probability that it has done so. Similarly, longer 

residence times are equivalent to more locations within the wall region, giving both a higher probability that they 

correspond to real visits and a more accurate measurement of the residence time itself. Residence times below 

20 ms are invalid as they correspond to a single location within the wall region. 

Following previous studies7, 17(Ziegler, 1964) and (Ozkanak and Chen, 1980) the distribution of residence times in 

the wall region was found to be approximately log-normal, as shown in Fig 8, again for the region of the transport 

tube between 100-250 mm above the aeration port.  

 
Figure 8. Distribution of residence times in the wall region, for three values of Uae/Umb (wall region φ=2 mm) 
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These results are consistent with observations that aeration velocity increases bubble frequency, so that particles 

residing on the wall surface are more frequently displaced.  

Fig. 9 shows the average contact time (τ) in the wall region (using PEPT data) for the section of the transport tube 

between 100-250 mm above the aeration port as a function of the radial distance to the wall. An increase of the 

aeration decreases the residence time of the particle close to the wall. 

Two different regions, can be clearly identified: If the tracer goes straight to the wall, assuming some average 

velocity, the residence time is proportional to the width of the annulus from the wall. If it takes a meandering 

path and goes everywhere then the residence time depends on the volume of the annulus, since height is 

constant. 

 

Figure 9. Variation in residence time with decreasing radial distance to the wall. 
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Table 1 shows relationship between experimental values of residence time (τ) and radial distance to the wall (ϕ). 

For each of the operating conditions tested, a second order polynomial is fitted directly to the raw data of the 

trial. 

Table 1. Variation in residence time with radial distance to the wall. 

Operating conditions Mathematical expression R2 (determination 

coefficient) 

Uae/Umb=7.5                           0.9981 

Uae/Umb=5                           0.9957 

Uae/Umb=2.5                           0.9965 

 

Fig.10 presents a comparison between the sample median of the residence time in the wall region        ) in 

the region of the tube between 100-250 mm above the aeration port and the prediction suggested by Thring6 (Eq. 

3) (Thring, 1977) for the residence time of the emulsion packet at the heat transfer surface, showing satisfactory 

agreement with the predictions of this correlation that depends on minimum (Umf) and optimum (Uo) fluidising 

velocity and particle size (dp). 

  

        

 
 
 
 
 

   

   
  

  
   

   
 

 
 
 
 
 
      

 
  

    
 

   

 

 

{3} 

 

The increasing departure from the Thring correlation at the highest aeration velocity may be connected with 

slugging rather than bubbling behaviour18 (Kong, 2017). 
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Figure 10. Estimation of the time in the wall region as a function of the aeration velocity using Thring (Eq.3). 

 

3.3 Heat transfer coefficient 

As shown earlier, wall probes enabled the heat transfer coefficient to be determined simultaneously with the 

PEPT measurements. Figure 11 illustrates the variation in heat transfer coefficient as a function of the aeration 

gas velocity (Uae/Umb). 
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Figure 11. Measurement of the bed-to-surface heat transfer coefficient as a function of the aeration gas injection flow rate. 

Figure 12 shows the effect of aeration flow rate on solids volume fraction and residence time in the wall region. 

These competing effects cause a maximum in the heat transfer coefficient, as shown in Fig. 11. 

 

Figure 12. Effect of the aeration on the solids volume fraction and on the residence time of the particles in the wall region. 
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Figure 13 shows a comparison of the measured heat transfer coefficients with the predictions of the packet 

model, using residence/contact times measured using PEPT, and the correlation for the maximum obtainable heat 

transfer coefficient from Zabrodsky19 (Zabrodsky, 1966), and showing fair agreement. The measured heat transfer 

coefficient at the highest gas velocity/shortest residence time is well below the packet model predictions, 

presumably because blanketing of the heat transfer surface reduces heat transfer under these conditions. This is 

not accounted for in the Mickley and Fairbanks model.  

 

Figure 13. Heat transfer coefficient of the stream as a function of the time in the wall region using the Mickley and Fairbanks 

packet model and experimental results calculated using the heat transfer probe. 
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4. Conclusions 

Particle trajectories have been measured and associated wall-to-bed heat transfer coefficients determined for 

dense fluidised suspensions of particles of silicon carbide (65 microns) moving upward in a small diameter tube 

(30 mm) at different aeration velocities from 0.02 to 0.06 m/s.  

As in other types of bubbling fluidised bed, the local concentration of particles and their movement at the wall 

play a decisive role in the heat transfer, and the operating parameters influence the heat transfer through their 

effect on particle concentration and movement.  

Heat transfer coefficients in the range 180-320 W/m2K were measured, rising to a maximum as the aeration 

velocity increases and then falling as the heat transfer surfaces become blanketed by gas.   

Particle residence times at the wall were measured and found to be approximately distributed according to a log-

normal distribution, as previously suggested by Ozkanak and Chen (1980). Median residence times varied from 

100 to 250ms in the parameter range studied. 

Experimentally-obtained heat transfer coefficients were found to be in fair agreement with predictions of the 

correlations by Thring (1977) and the packet-based model due to Mickley and Fairbanks (1955).  

In summary, the data presented in this paper, complementing the results published previously, provide useful 

experimental hydrodynamic data for upward flowing dense fluidised particle suspensions, with particular 

reference to the dimensions of the tubes proposed for use at the focus of a concentrated solar power plant. 
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Highlights 

- Particle trajectories are determined within a dense upward-moving fluidised bed. 

- Particle-to-wall heat transfer coefficients have been measured experimentally. 

-Heat transfer coefficients are in the range 180-320 W/m2K. 

-Particle residence times at the wall were found to be distributed according to a log-normal distribution. 

-Experimentally-obtained heat transfer coefficients were found to be in good agreement with prior predictions. 

 


