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a b s t r a c t

Within the neurocognitive literature there is much debate about the role of the motor

system in language, social communication and conceptual processing. We suggest, here,

that autism spectrum conditions (ASC) may afford an excellent test case for investigating

and evaluating contemporary neurocognitive models, most notably a neurobiological

theory of action perception integration where widely-distributed cell assemblies linking

neurons in action and perceptual brain regions act as the building blocks of many higher

cognitive functions. We review a literature of functional motor abnormalities in ASC,

following this with discussion of their neural correlates and aberrancies in language

development, explaining how these might arise with reference to the typical formation of

cell assemblies linking action and perceptual brain regions. This model gives rise to clear

hypotheses regarding language comprehension, and we highlight a recent set of studies

reporting differences in brain activation and behaviour in the processing of action-related

and abstract-emotional concepts in individuals with ASC. At the neuroanatomical level,

we discuss structural differences in long-distance frontotemporal and frontoparietal

connections in ASC, such as would compromise information transfer between sensory

and motor regions. This neurobiological model of action perception integration may shed

light on the cognitive and social-interactive symptoms of ASC, building on and extending

earlier proposals linking autistic symptomatology to motor disorder and dysfunction in

action perception integration. Further investigating the contribution of motor dysfunction
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.ac.uk (R.L. Moseley).
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1 These terms are often used interc
‘embodied cognition’ situates simulation in
may exclude the situation of concepts in th
environment which is also experienced
(Barsalou, 2010). Barsalou suggests that ‘
“captures the broad scope of grounding me
placing undue emphasis on the body” (2010,
the preferred terminology in this work, thou
‘embodied’ will be used in the same sense
authors in this way.
to higher cognitive and social impairment, we suggest, is timely and promising as it may

advance both neurocognitive theory and the development of new clinical interventions

for this population and others characterised by early and pervasive motor disruption.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Can autism shed light on the role of
sensorimotor systems in higher cognition?

In many purely cognitive accounts, the roles of perception,

emotion and especially movement are considered secondary to

mental activities. But … [mental activities] are founded in

emotion, perception, and action … even small difficulties with

these processes early in life can have lifelong consequences.”

(Thelen, 2005, p. 262).

A preponderance of behavioural, neuropsychological and

neuroscientific literature has challenged the traditional

boundaries between ‘higher-order’ language and thought and

‘lower-order’movement and sensory input; has countered the

notion of combinatorial, logical manipulation of amodal

symbols as the primary means of cognition (Anderson, 2003;

Fodor & Pylyshyn, 1988; Machery, 2007); has demonstrated,

instead, that neural substrates for thought, language and

movement are intrinsically interwoven and functionally

interdependent. In this framework, known as ‘embodied’ or

‘grounded’ cognition,1 conceptual thought and retrieval of

meaning involves the complete or partial reactivation, in a

simulative manner, of neural sensorimotor activation expe-

rienced during initial concept acquisition (Allport, 1985;

Barsalou, 1999, 2008, 2010; Gallese & Lakoff, 2005; Lakoff,

1987; Lakoff & Johnson, 1980; Langacker, 1987; Pulvermüller,

1999).

With a particular focus on action cognition, empirical

neuroscience has demonstrated that sounds, spoken and

written words with action-related meaning produce somato-

topic semantic activation of the human motor system (in

particular motor and premotor cortex) across multiple

experimental contexts (Aziz-Zadeh & Damasio, 2008; Grisoni,

Dreyer, & Pulvermüller, 2016; Grisoni, McCormick-Miller, &

Pulvermüller, 2017; Hauk, Johnsrude, & Pulvermüller, 2004;

Hauk, Shtyrov, & Pulvermüller, 2008; Kana, Blum, Ladden, &

Ver Hoef, 2012; Pulvermüller, Shtyrov, & Ilmoniemi, 2005;

Shtyrov, Butorina, Nikolaeva, & Stroganova, 2014; Shtyrov,

Hauk, & Pulvermüller, 2004; Tettamanti et al., 2005). Neural

control of movement includes a cascade of cortical areas
hangeably, but, as
bodily experience, it
e physical and social
through the senses
grounded cognition’
chanisms, while not
p. 721), and so this is
gh ‘embodiment’ or
when used by other
(primary motor, premotor and supplementary motor cortex,

located in precentral gyrus and adjacent sulci [BA 4 and BA 6])

and subcortical regions (such as the striatum and the puta-

men) along with the cerebellum, most of which have been

seen to be activated by words with action affordances (Carota,

Moseley, & Pulvermüller, 2012). The above studies highlight

the involvement of cortical motor regions (primary motor,

premotor and supplementary motor cortex) in action se-

mantics, and so our review henceforth focuses on these areas

as the ‘motor system’.

There is strong evidence to suggest that activity in these

regions indexes semantic processing rather than reflecting

post-comprehension thought processes. First, although task

conditions may suppress it, motor system activation whilst

processing action-related stimuli is manifest even if partici-

pants do not actively attend to language input (Grisoni et al.,

2016; Moseley, Pulvermüller, & Shtyrov, 2013; Pulvermüller,

Shtyrov, et al., 2005; Shtyrov et al., 2004, 2014; Trumpp,

Traub, & Kiefer, 2013; Trumpp, Traub, Pulvermüller, &

Kiefer, 2014). Second, motor activation during processing of

action language is flexible, following the pattern expected for

semantic mechanisms (for discussion, see Pulvermüller,

2013). In particular, a flexible pattern of semantic priming

has been revealed in the sensorimotor cortex (Grisoni et al.,

2016). Third, frontocentral activity emerges in the semantic

learning of novel action words (Fargier et al., 2012; James &

Swain, 2011; Kiefer, Sim, Liebich, Hauk, & Tanaka, 2007;

Liuzzi et al., 2010). Fourth, overt movement or stimulation of

these motor areas has a causal effect on simultaneous pro-

cessing of specific types of action words. Vice versa, action

word processing may impact on specific motor mechanisms,

with effects visible in behaviour and in electrophysiological

brain recordings2 (Amoruso et al., 2013; Fischer& Zwaan, 2008;

Glenberg & Kaschak, 2003; Ibanez et al., 2012; Pulvermüller,

Hauk, Nikulin, & Ilmoniemi, 2005; Rueschemeyer,

Lindemann, van Elk, & Bekkering, 2009; Schomers &

Pulvermüller, 2016; Schomers, Kirilina, Weigand, Bajbouj, &

Pulvermüller, 2015; Shebani & Pulvermüller, 2013). Fifth, and

finally, movement disorders and clinical impairments to

motor systems are associated with specific processing im-

pairments or abnormalities for action-related words which

call on action knowledge in the retrieval of their meaning (Bak

& Chandran, 2012; Boulenger et al., 2008; Cardona et al., 2014;

Cotelli et al., 2006; Garcı́a& Ib�a~nez, 2014; Grossman et al., 2008;
2 We note that more fundamental perception of word phonology,
alongside semantics, is also influenced by modulation of the
motor systems, and refer the interested reader to the recent re-
views by Skipper, Devlin, and Lametti (2017) and Schomers and
Pulvermüller (2016).
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Kemmerer, 2015; Neininger & Pulvermüller, 2001, 2003;

Pulvermüller et al., 2010).3

Whilst the effects of motor damage on action word pro-

cessing have been thoroughly documented in many pop-

ulations with acquired brain damage or disease states, we

here examine grounded cognition and action semantics

through the lens of a very different type of movement disor-

der. Autism spectrum conditions (ASC)4 are neuro-

developmental syndromes characterised by impairments in

social interaction, communication and language, and,

furthermore, by repetitive behaviours and intense, rigid in-

terests. These lifelong conditions are typically diagnosed in

toddlerhood or childhood in the Western world (Christensen

et al., 2016; Lord & Spence, 2006) and are strongly heritable

(Robinson et al., 2016; Vorstman et al., 2017; de la Torre-

Ubieta, Won, Stein & Geschwind, 2016). ASC are markedly

heterogenous in presentation, spanning the ‘classic’ cases

which may or may not be accompanied by intellectual

disability (Kanner, 1943) to highly verbal individuals with

Asperger Syndrome (AS) (Asperger, 1944). Since both are

subsumed under ‘autism spectrum disorder’ in DSM-5

(American Psychiatric Association, 2013), we likewise use

ASC, ‘autism’ or ‘autistic’ to refer to both autism and AS. In

standard text books, the autistic triad of deficits in social

interaction, communication, and social imagination (the third

criterion is alternatively named as repetitive and restricted

behaviour and interests; Wing, Gould, & Gillberg, 2011) are

typically highlighted. Motor deficits and any influence they

might have on higher cognition have been largely overlooked,

with the exception of a few authors whose work we explore in

this paper. We attempt to build on this previous work with a

neurobiological perspective on ASC which emphasises a

possible deviance in action perception integration.

The causal aetiology of ASC is debated, so this syndrome

complex presents a challenge unlike the well-defined and

more precisely localised diseases of prior action word studies,

such as focal stroke (Kemmerer, Rudrauf, Manzel, & Tranel,

2012), Parkinson's disease (Boulenger et al., 2008) and motor

neurone disease/amytrophic lateral sclerosis (Bak &

Chandran, 2012; Grossman et al., 2008). Nevertheless, we

suggest that the study of autism affords a broader perspective

on the grounding of cognitive processes in sensorimotor sys-

tems. It may open new perspectives on the role of the cortical

motor systems in action and language understanding, and
3 Although we speak here of the role of motor systems in un-
derstanding action semantics, of further note is a more general
role for motor areas for language understanding, which has been
shown by a number of recent studies and reviews (Murakami,
Kell, Restle, Ugawa, & Ziemann, 2015; M€ott€onen, Dutton, &
Watkins, 2013; Schomers & Pulvermüller, 2016; Skipper et al.,
2017; Smalle, Rogers, & M€ott€onen, 2015).

4 The term ‘autism spectrum disorder’ (ASD) is commonly used
in the literature and is synonymous with our use of ASC, but we
prefer the latter term which was devised to be less value-laden, to
reflect autism as a different cognitive style as opposed to an
illness (see Baron-Cohen, 2000, for extensive discussion). Termi-
nology used to speak of autism is a divisive and emotive issue
(see Kenny et al., 2016; Sinclair, 2013), as is the removal of
Asperger syndrome from DSM-5 (Giles, 2014; Kite, Gullifer, &
Tyson, 2013). Since opinion is divided, we use both person-first
and identity-first language in this paper.
even in other forms of quite abstract higher cognition and

social processing. The autistic phenotype is “an emergent

property of developmental interactions between many brain

regions and functions” (Belmonte et al., 2004, p. 646), and so

affords an opportunity for more critical consideration of the

experience-dependent nature of conceptual representations

(Casasanto, 2011; Hauk & Pulvermüller, 2011; Tschentscher,

Hauk, Fischer, & Pulvermüller, 2012; Willems, Peelen, &

Hagoort, 2010). Below we explore the perspective that it may

be a case of the typical developmental trajectory gone awry, a

case where early motor disruption, evinced in behavioural

studies reported below and in frontotemporal dysconnectivity

(Catani et al., 2016; Moseley et al., 2016; Roberts et al., 2014),

may ripple and derail multiple domains where autistic

symptomatology consequently emerges.

Here, we begin by reviewing the motor deficits of autism,

their pervasiveness across the spectrum (related to age, sex

and different ASC diagnoses), and their specificity to ASC. We

move from the reviewed behavioural evidence to discuss the

underlying neural abnormalities in cortical motor systems and

recent evidence about the neuroanatomy of ASC, especially

concerning atypical long-distance corticocortical links (Section

3). The general involvement of motor systems in language

development and their more specific contribution to semantic

learning will be used to (tentatively) explain, in part, the early

relationships between autistic movement and language im-

pairments (Section 4). In Section 5, we spell out a grounded

neurobiological theory viewing action perception integration

as a basic mechanism for language and cognition, explaining

how informationmixing and associative learningmay give rise

to a role for motor systems in representing action semantics.

This section raises the hypothesis thatmotor impairments will

be related to disordered semantic processing of types of words

which rely on the foundational integrity ofmotor systems; ASC

afford us a strong test case to examine the functional impor-

tance of motor systems for semantic processing, and so the

hypotheses raised in Section 5 are reinstated and examined in

Section 6. Section 7 describes experiments which further

support and expand these hypotheses. Moving away from a

specific focus on language and semantic processing, we then

consider the potential significance of motor impairments and

action perception integration deficits for the wider symptom-

atology of neurodevelopmental conditions (Section 8),

touching on the wider role of sensorimotor systems in aspects

of higher cognition, such as social and pragmatic communi-

cation, action prediction, and theory of mind (ToM). Finally,

highlighting parallels with and additions to previously sug-

gested models of ASC, we suggest pathways for further

investigation that might, eventually, open important avenues

for intervention (Section 9).
2. Movement disorder in autism: a review

“His movements never unfolded naturally and spontaneously e

and therefore pleasingly e from the proper coordination of the

motor system as a whole.” (Asperger, 1944, p. 57).

In his original case studies (1944), Asperger commented on

the unusual clumsiness of his patients. Kanner (1943) paid less

https://doi.org/10.1016/j.cortex.2017.11.019
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attention to their motoric condition, but his report does

mention the ‘goodmotor coordination’ (p. 232) of one child and

another that ‘had always appeared awkward in hermotility’ (p.

229). Whilst clinical cases studies such as these paint rich

portrayals of the autistic syndrome, empirical investigation of

motor disorder has, of course, been necessary to examine

whether motor impairment occurs more often in autism than

might be expected by chance alone. Fortunately, there is a rich

literature in this area: a PubMed search for ‘autismmovement’

yielded 112 results, whereas ‘autismmotor’ yielded 361 results.

In our review of behavioural findings in this area, our focus is

on studies comparing motor development, motor performance or

motor milestones between autistic individuals and control groups, or

between individuals within the autism spectrum. Whilst studies

without comparison controls groups have obvious limitations,

we include them for the sake of the descriptive data they

provide. Consequently, we exclude a) studies not written in

English; b) animal studies; c) single case studies; d) studies

which do not report behavioural findings (for example,

Dawson, Warrenburg, and Fuller (1983), which focuses on

lateralization of brain activity but not performance); e) studies

focussing on interventions; f) studies focussing on motor ste-

reotypies as consistentwith repetitive and restricted behaviours

and interests, and g) studies which, by ‘abnormal motor

behaviour’, actually investigate physical, so-called ‘problem’

behaviours (externalizing, ‘acting out’, rule breaking: e.g.,

Efstratopoulou, Janssen, & Simons, 2012). In terms of sample,

we exclude studies whose sample focuses on a) children or

adults described as having ‘mental retardation’ or being ‘sub-

normal’ or ‘psychotic’ (prior to 1975), who cannot therefore be

confidently identified as autistic; b) children or adults

described merely as having ‘learning disabilities’ or as being

‘savants’, for the same reason; c) siblings of autistic individuals

(a group we discuss further below); and d) children or adults

with another developmental disorder, such as attention-

deficit/hyperactivity disorder (ADHD) or Fragile X syndrome,

with comorbid autism or autistic traits. As previously

mentioned, movement control involves a complex coordina-

tion of brain regions and of course, involvement of prefrontal

cortex. Much has been written about prefrontal cortex and

executive function in autism, and so whilst the coordinated

control of behaviour obviously contributes to controlled

movement, we did not include studies whose primary focus

was on executive functioning, inhibition and sequencing of

movements rather than motor performance per se (e.g.,

Hughes (1996)). We did, however, include studies specifically

examining the earliest stages of motor preparation/planning

which attempt to tease apartmotor versus executive planning5

and motor deficits in execution (e.g., Rinehart, Bradshaw,
5 This distinction is explained by the latter authors as one
where executive planning involves sequencing choices or moves
in order to achieve a desired end goal state, thus requiring ab-
stract thoughts about the goal state (often playing through the
first few moves in one's imagination) and placing demands on
working memory. Motor planning (or preparation), in contrast, is
described as being based on learnt movement skills and not
relying on working memory (van Swieten et al., 2010), and in-
volves chaining the most basic kinematic aspects of movement to
complete a motor act (Fabbri-Destro, Cattaneo, Boria, & Rizzolatti,
2009).
Brereton, & Tonge, 2001; van Swieten et al., 2010). Likewise,

we included studies of perceptual-motor integration where

they emerged in our search and involved tasks assessingmotor

performance, as this is also an important aspect of motor

proficiency. We exclude studies investigating broader aspects

of action cognition, such as those investigating differences in

perception of movement and movement observation (for which

there is a wide literature). Whilst we did not search for them,

we include studies concerning imitation and gesture where

they emerged in our search and are associated with motor

tasks (e.g., Stone, Ousley, & Littleford, 1997) in so far as despite

their social component, impaired reproduction of gesturesmay

reflect motor disorder as well as social and/or symbolic-

conceptual deficits. Where studies do examine other domains

as well as motor function, these are summarized very briefly.

The results of our literature search in their entirety are

displayed in Supplementary Materials, and we summarise

here the major questions they purport to answer. The answer

as to whether motor dysfunction occurs in autism is self-

evident: we reviewed 92 studies. However, does motor

dysfunction in autism occur more often than might be ex-

pected to occur by chance in a typical population? Precisely 49

studies comparing ASC and typically-developing (TD) control

groups answer this question in the affirmative. The more

methodologically rigorous studies, those which a) either

matched for chronological and/or mental age and/or IQ or b)

controlled for these in their analyses, and c) hadmore sizeable

groups (>30 per group) demonstrate that motor impairments

occurmore often thanmight be expected in TD children (Abu-

Dahab, Skidmore, Holm, Rogers, & Minshew, 2013; Ament

et al., 2015; Dewey, Cantell, & Crawford, 2007; Dowell,

Mahone, & Mostofsky, 2009; Duffield et al., 2013; Dziuk et al.,

2007; Floris et al., 2016; Sumner, Leonard, & Hill, 2016;

Travers et al., 2015, 2016). A meta-analysis of 41 studies

confirmed that, despite substantial variation, effect sizes are

large with TD participants significantly outperforming in-

dividuals with autism in motor coordination, arm move-

ments, gait and postural stability (Fournier, Hass, Naik, Lodha,

& Cauraugh, 2010), and that these effects did not seem

affected by publication bias.

The question naturally follows as to what kind of motor

deficits are reported? Many studies addressed this question

with movement assessment batteries with normative per-

centiles for performance and objective scoring: for example,

the PANESS (Dowell et al., 2009; Dziuk et al., 2007; Floris et al.,

2016; Jansiewicz et al., 2006; Mostofsky, Burgess, & Gidley

Larson, 2007), the M-ABC or M-ABC2 (Ament et al., 2015;

Green, Baird et al., 2002; Green, Moore, & Reilly, 2002; Green

et al., 2009; Hanaie et al., 2013; Hanaie et al., 2014; Kopp,

Beckung, & Gillberg, 2010; McPhillips, Finlay, Bejerot, &

Hanley, 2014; Miyahara et al., 1997; Sumner et al., 2016;

Whyatt & Craig, 2012), or the Bruininks-Oseretsky test

(Dewey et al., 2007; Ghaziuddin & Butler, 1998; Hilton, Zhang,

Whilte, Klohr, & Constantino, 2012; Pan, 2014). These mea-

sures yield total scores which were sometimes analysed

alone, but they each assess a range of fine and gross motor

skills, including balance and gait, hopping or jumping, repet-

itive sequential movements of the hands and feet, manual

dexterity and ball skills (catching and throwing). Alongside

poorer total performance, the subscale differences

https://doi.org/10.1016/j.cortex.2017.11.019
https://doi.org/10.1016/j.cortex.2017.11.019
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particularly highlighted by these studies are in slower repet-

itive movements; overflow; gait; balance; dysrhythmia;

manual dexterity and coordination; and ball skills. Some of

these (overflow, gait, balance and speed of timedmovements)

are indeed predictive of ASC diagnosis (Jansiewicz et al., 2006).

Not all studies using motor batteries report deficits (Hauck &

Dewey, 2001; Miller, Chukoskie, Zinni, Townsend, & Trauner,

2014), but notably, both of these used less refined and fine-

grained measures.

Different methodologies have corroborated motor battery

deficits and reported others in addition. Ball skills, most

notably in catching a ball, are highlighted by numerous re-

ports (Ament et al., 2015; Green et al., 2009, Green, Baird et al.,

2002; Green, Moore, & Reilly, 2002; Hanaie et al., 2013;

Papadopoulos et al., 2012; Staples & Reid, 2010; Whyatt &

Craig, 2012). More fine-depth analysis of gait, for example

using electronic walkways (Rinehart, Tonge, Bradshaw et al.,

2006; Rinehart, Tonge, Iansek et al., 2006) or infrared cam-

eras and sensors placed on the body (Nobile et al., 2011),

corroborate the difficulty that movement batteries report in

heel-to-toe walking, and further report gait irregularities (for

example greater variance in stride length and velocity), ataxia,

reduced range ofmotion in the joints, and difficultywalking in

a straight line. Abnormalities in postural stability have been

documented using an electronic balance board (Nintendo

Wii), which showed that autistic participants had more diffi-

culty maintaining balance (Travers, Powell, Klinger,& Klinger,

2013). Discriminant analysis has shown that autistic children

can be sensitively and specifically classified according to the

speed, force and pressure of their finger movements on a

tablet screen (Anzulewicz, Sobota, & Delafield-Butt, 2016);

machine learning was also seen to correctly identify them by

the kinematics of reach-to-drop (Crippa et al., 2015) and reach-

to-throw tasks (Perego, Forti, Crippa, Valli,& Reni, 2009). Other

studies of kinematics in very basic arm movements and

reaching and grasping reveal differences between autistic and

TD participants (Campione, Piazza, Villa, & Molteni, 2016;

Cook, Blakemore, & Press, 2013). Use of more traditional

neuropsychological tests reflect poorer performance in the

grip strength (Abu-Dahab et al., 2013; Hardan et al., 2003;

Travers et al., 2015, 2016), finger tapping (Abu-Dahab et al.,

2013; Duffield et al., 2013; Hardan et al., 2003; Travers et al.,

2016) and pegboard tasks (Abu-Dahab et al., 2013; Ament

et al., 2015; Barbeau, Meilleur, Zeffiro, & Mottron, 2015;

Duffield et al., 2013; Hardan et al., 2003). These tests ascend

in difficulty, primarily testing muscle strength, simple motor

coordination and dexterity respectively.

Several studies have reported on motor milestones, either

through home-video analysis (Baranek, 1999; Gernsbacher,

Sauer, Geye, Schweigert, & Hill Goldsmith, 2008; Ozonoff

et al., 2008; Teitelbaum, Teitelbaum, Nye, Fryman, & Maurer,

1998) and/or interviewing parents (Gernsbacher et al., 2008;

Kopp et al., 2010; Lloyd, MacDonald, & Lord, 2013; Ozonoff

et al., 2008; Sumner et al., 2016). These studies are methodo-

logically problematic in the respect that video rating is open to

human error (though most studies blind raters to diagnosis),

videos cover a small and selective snapshot of early life, and

retrospective reports are open to inaccuracy. This may partly

explain some of the variance in these findings. Sumner et al.'s
(2016) parent sample did not report a delay in crawling,
standing andwalking betweenTD and autistic infants. Nor did

Lloyd et al.'s (2013) analysis of the few items concerningmotor

milestones in the ADI-R (Le Couteur, Lord, & Rutter, 2003).

Gernbacher et al.'s (2008) parental reports suggest a delay in

crawling and in numerous oral-motor milestones such as

blowing kisses; Ozonoff et al.'s (2008) parental reports reflect

significant delays in walking and trends towards delays in

crawling and sitting. This study differentiated between

autistic children with and without early regression. They

found that parental reports for infants without regression did

not differ significantly from TD infants, but the authors

applied a second analysis where growth curves between two

time points were modelled from video recordings, parental

reports, and movement battery assessments. Interestingly,

the autistic children without regression were significantly

older when they showed their most mature level of motor

control whilst lying prone or supine, whereas the autistic

group with regression only differed in their growth curve in

the later-developingmilestone of walking, leading the authors

to suggest “an active pathological process” disrupting motor

domains (p. 12). Other reports of the earliest emerging autistic

symptoms, although they do not specify whether they discuss

autism with or without regression, do indeed note motor

dysfunction within the first 12 months (Guinchat et al., 2012;

Young, Brewer, & Pattison, 2003).6 Aside from milestones,

abnormalities in lying (Esposito, Venuti, Maestro, & Muratori,

2009) have been reported in autistic infants, as have unusual

posturing (Baranek, 1999) and differences or reductions in

general spontaneous movement (Phagava et al., 2008;

Zappella et al., 2015). Abnormalities in the writhing, fidgety

movements that typically emerge in early life are symptom-

atic of minor or major neurological deficits (Einspieler et al.,

2014).

Although we did not include them in our own review, we

also perused extant reviews and short communications on the

topic of autistic motor dysfunction (Bhat, Landa, & Galloway,

2011; Casartelli, Molteni, & Ronconi, 2016; Cook, 2016;

Downey & Rapport, 2012; Esposito & Pas‚ca, 2013; Gowen &

Hamilton, 2013; Matson, Matson, & Beighley, 2011; McCleery,

Elliott, Sampanis, & Stefanidou, 2013; Miyahara, 2013; Parma

& de Marchena, 2015; Rinehart & McGinley, 2010) and note

several more studies which did not emerge in our own search

due to their describing very specific abnormalities. These

speak of deficits such as in handwriting (Kushki, Chau, &

Anagnostou, 2011) and (relatedly) fine-precision grip (David,

Baranek, Wiesen, Miao, & Thorpe, 2012); in postural stability

(Molloy, Dietrich,& Bhattacharya, 2003) and as documented in

the studies above, gait (Esposito & Venuti, 2008; Vernazza-

Martin et al., 2005; Vilensky, Damasio, & Maurer, 1981); of

akinesia, dyskinesia and bradykinesia (Damasio & Maurer,
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1978; Maurer & Damasio, 1982); and finally of hand dystonia

and facial grimacing (Wing, 1981).

Additionally, although we did not search for them specif-

ically we did include in our review studies comparing imita-

tion in TD and ASC participants, despite the probable

contribution of social impairments to this ability. Poorer

imitation, pantomiming and reproduction of meaningful and

meaningless gestures (with or without tools) in autism is

ubiquitous across studies (Biscaldi et al., 2014; Cossu et al.,

2012; Dewey et al., 2007; Dowell et al., 2009; Dziuk et al.,

2007; Green, Baird et al., 2002; Green, Moore et al., 2002,

although notably this study did not possess appropriate

norms for comparison; Miller et al., 2014; Stone et al., 1997;

Vanvuchelen, Roeyers, & De Weerdt, 2007), especially when

they involve simultaneous movements (McAuliffe, Pillai,

Tiedemann, Mostofsky, & Ewen, 2017). The ability to perform

skilled motor gestures (such as brushing your teeth, using a

tool) is known as praxis, with dyspraxia being the inability to

perform such learnt skilled movements. Deficits in gesture

and imitation, whether these are of transitive (with an imag-

inary or real object), intransitive (without an object, e.g.,

waving) or meaningless gestures, are predictive of autistic

symptoms and whilst related to motor skills, remains pre-

dictive of diagnosis once motor performance is factored out

(Dowell et al., 2009; Dziuk et al., 2007; Miller et al., 2014). It is

interesting, however, to consider the most common types of

errors that autistic people make: needingmore attempts, only

partially replicating actions, showing abnormal synkinesias

(unintentional movements of other parts of the body in par-

allel), using part of the body as an object, orientating the hand

incorrectly, or misjudging the amplitude, force or size of ges-

tures. Whilst imitation and gestural deficits do not appear to

be solely attributed to motor dysfunction, Vanvuchelen et al.

(2007) note that these are all spatial errors, which they and

others (Rothi & Heilman, 1997) link to deficits in the ‘action

production system’ rather than problems with recognition

and representing actions and gestures. The need for more

attempts is linked by these same authors to motor planning

and execution deficits.

Indeed, several researchers have queried whether the

motor deficit in ASC is related to the actual execution of the

movement or, instead, to the preparation/planning/pro-

gramming of movements. Experimental paradigms designed

to test this typically measure and discriminate between

planning time (for example, the time taken between seeing a

visual cue and initiating amovement) and execution time (the

time between initiating a movement and terminating it)

(Dowd, McGinley, Taffe, & Rinehart, 2012; Nazarali,

Glazebrook, & Elliott, 2009; Rinehart, Bellgrove, et al., 2006;

Rinehart et al., 2001; Stoit, Schie, Slaats-Willemse, & Buite-

laar, 2013). Other tasks have also added an element of

reprogramming, where participants must divert from an ex-

pected movement (Rinehart et al., 2001), or added levels of

complexity (such as inhibition) to try tease apart motor and

executive planning (Rinehart, Bellgrove, et al., 2006). Some

paradigms have required participants to grip an object

wherein selecting the easiest initial movement may lead to an

uncomfortable end-point (van Swieten et al., 2010). Some

studies reveal slower or impaired motor planning (Mari,

Castiello, Marks, Marraffa, & Prior, 2003; Rinehart, Bellgrove,
et al., 2006), but others do not (Stoit et al., 2013; van Swieten

et al., 2010); a later study showed that movement prepara-

tion time was not significantly longer in ASC but significantly

more variable (Dowd et al., 2012), which may explain (along

with the small sample sizes in several of these studies) why it

is sometimes observed and sometimes not. Other studies

show difficulties reprogramming planned movements

(Nazarali et al., 2009; Rinehart et al., 2001). Some reveal only

execution deficits (Stoit et al., 2013), which these authors

linked to impairments in the internal feedforward models

guiding movement; some reveal weaknesses in planning and

execution (Mari et al., 2003; Nazarali et al., 2009). The inter-

esting lack of effect caused by a visual distractor, in ASC, was

suggested by the authors to reflect that people with ASC do

not generate alternative or multiple motor plans for potential

actions (Dowd et al., 2012). This is interestingly related to

another task framed around the ability of people with ASC to

perceive affordances (the type of grip to use on an object, the

size of an aperture their hand could fit through) and adjust

their movements online, a task which arguably also requires

motor planning and revealed difficulties in the autistic group

in judging and executing the movements (Linkenauger,

Lerner, Ramenzoni, & Proffitt, 2012). A similar line of enquiry

related to motor planning concerns whether motor prepara-

tion, in people with ASC, reflects anticipation of expected

actions, with several studies suggesting that this is indeed an

area of impairment (Brisson, Warreyn, Serres, Foussier, &

Adrien-Louis, 2012; Rinehart et al., 2001; Schmitz, Martineau,

Barth�el�emy, & Assaiante, 2003; Stoit et al., 2013).

We shall return to the type of motor deficits seen and their

putative neural substrates in the next section, but the second

critical question to address concerns the ubiquity of motor

problems; are they prevalent throughout the spectrum, in

individuals of any age, sex or specific ASC diagnosis?

Many studies have compared participants with high-

functioning autism (HFA) and those with AS. A risk with

these studies is that the validity of their findings relies on

initial, accurate categorization of participants; the lack of

differentiation between AS and HFA, in the case of Manjiviona

and Prior (1995), is likely to reflect invalid categorization based

on the diagnostic manuals of the time. Some studies find

greater motor deficits in individuals with HFA than those with

AS (Behere, Shahani, Noggle, & Dean, 2012; Ghaziuddin &

Butler, 1998; Green et al., 2009; Papadopoulos et al., 2012;

Rinehart, Bellgrove, et al., 2006), others find the opposite pic-

ture (Iwanaga, Kawasaki,& Tsuchida, 2000), some find deficits

of different types in both groups (Rinehart et al., 2001), and

some find no statistical difference between groups (Jansiewicz

et al., 2006; Noterdaeme, Mildenberger, Minow, & Amorosa,

2002). Some of these studies have very small samples

(Behere et al., 2012; Ghaziuddin & Butler, 1998; Iwanaga et al.,

2000; Rinehart, Bellgrove, et al., 2006; Rinehart et al., 2001),

casting doubt on their findings. Furthermore, some studies

also add in a third comparisonwith individuals with Pervasive

Developmental Disorder Not Otherwise Specified (PDD-NOS: a

form of ‘atypical autism’ that was ever nebulous), adding

more uncertain, inconsistent results to the pool (Ghaziuddin&

Butler, 1998). The lack of clear, consistent distinction between

any of these groups may reflect the contention around sub-

typing among clinicians and researchers. Indeed, this

https://doi.org/10.1016/j.cortex.2017.11.019
https://doi.org/10.1016/j.cortex.2017.11.019


c o r t e x 1 0 0 ( 2 0 1 8 ) 1 4 9e1 9 0 155
controversy has led to the dissolution of AS (and indeed PDD-

NOS) in DSM-V (American Psychiatric Association, 2013), and

more recent studies involve groups of individuals with an

autism spectrum condition. This practice suggests it may be

more prudent to look instead for differences related to lan-

guage development, autistic regression, or IQ (/mental age). IQ

is strongly related to motor skills, with lower IQ associated

with poorer performance across a range of measures (Barbeau

et al., 2015; Dewey et al., 2007; Dowell et al., 2009; Dziuk et al.,

2007; Ghaziuddin & Butler, 1998; Green et al., 2009; Hilton

et al., 2012; Kopp et al., 2010); unsurprisingly, where studies

classify participants as having low functioning autism (or low

IQ), they unanimously perform worse than those with HFA or

AS (or autistic participants with high IQ) in many motor tasks

(Papadopoulos et al., 2012; Paquet, Olliac, Bouvard, Golse, &

Vaivre-Douret, 2016; Vanvuchelen et al., 2007). Failing to

match groups of HFA and AS individuals on IQ casts further

doubt on supposed differences between them (Ghaziuddin &

Butler, 1998), and on the findings of studies which do not

control for IQ between groups or consider it in their analysis

(problematically, this is not always reported). Language

problems are of course often related to IQ and so naturally,

autistic individuals with better current and/or historic lan-

guage skills tend to perform superiorly in most motor tasks

(Barbeau et al., 2015; Belmonte et al., 2013; Gernsbacher et al.,

2008; Hsu et al., 2004; McPhillips et al., 2014): as we shall go on

to discuss, language requires motor proficiency and so this is

hardly surprising. Finally, a single study previouslymentioned

investigated motor differences between autistic children with

and without developmental regression, finding different pat-

terns of motor impairment which may reflect different path-

ological processes (Ozonoff et al., 2008). This study only

concerned infants, and so the later differences between these

groups would be of interest.

Indeed, when considering the ubiquity of movement defi-

cits in autism, it is important to ascertain when these become

evident, and whether they persist throughout life. Since

autism is rarely diagnosed before a child is a toddler and often

later, investigating the first years of life in autistic children

often relies on parental memories or retrospective analysis of

videos, both problematic methods (Palomo, Belinch�on, &

Ozonoff, 2006; Saint-Georges et al., 2010). Whilst some

studies claim that signs of autistic movement dysfunction are

present in the first 4e6 months of age and provide rich

descriptive data (Teitelbaum et al., 1998), they lack strong

scientific grounding. A more rigorous alternative lies in the

study of infant siblings of an autistic individual (“baby sibs”),

who, at increased risk of being diagnosed with ASC them-

selves, can be closely monitored from birth (Newschaffer

et al., 2012). We conducted a second, smaller review of these

studies, the terms and results of which can be found in

Supplementary Materials. Many of these studies assess per-

formance at several time-points. Some suggest that motor

differences can be seen as early as 6 months in high-risk (HR)

infants, more so thanwould be expected by chance (Flanagan,

Landa, Bhat, & Bauman, 2012; Iverson & Wozniak, 2007;

Nickel, Thatcher, Keller, Wozniak, & Iverson, 2013), but

others find fine and gross movement to be developing nor-

mally at 6 months and to derail later at 12e14 (Landa &

Garrett-Mayer, 2006; Ozonoff et al., 2014) or 18e24 months
(Landa, Gross, Stuart, & Bauman, 2012); some studies only

scrutinise a later period and find motor deficits at that point

(e.g., 12 months: Mulligan & White, 2012). Notably, significant

differences may only appear at a certain point following a

slow deviance off the developmental trajectory. Landa, Gross,

Stuart, and Faherty (2013), for example, found that the

widening divergence in fine motor skills between HR-autistic

and non-autistic groups only reached significance at 36

months. Some studies do not detect movement deficits at all

(Zwaigenbaum et al., 2005: these authors use an insensitive

measure which does interestingly reveal motor deficits in

another baby sibs study [Brian et al., 2008]), whereas some

studies find differences in one motor battery but not another

(Toth, Dawson, Meltzoff, Greenson, & Fein, 2007). Studies

which investigate parental concerns corroborate the variation

in findings: where some report that parents of infants who are

later diagnosed as autistic express significantly more con-

cerns about movement problems from 6 to 24 months than do

parents of HR-TD infants (Sacrey et al., 2015), others classify

motor skills among more general concerns (e.g., eating and

sleeping problems) and in comparison with specific social

autistic symptoms, find them less discriminatory between

groups (Ozonoff et al., 2009). Lebarton and Iverson (2013)

found parents to report significant manual and oral motor

delays at 12 and 18 months in HR compared with LR infants,

but again reported substantial variation between infants.

Parental reports may introduce variability through their

inherent subjectivity, but there may be several other reasons

for the inconsistency seen across studies. For one, not all

studies consider IQ as a covariate. Secondly, there is a great

deal of variation in the eventual outcome and cognitive and

motor trajectories of HR infants (Landa& Garrett-Mayer, 2006;

Landa et al., 2012, 2013). Most obviously, some will be diag-

nosed autistic and others not, so collapsing them within one

group may result in differences being missed. Several studies

have found that when the HR infants are further stratified by

their eventual outcome, those later to be diagnosed as autistic

are significantly likely to show the pattern of poor motor tra-

jectories (Landa et al., 2012) or to differ on motor performance

at set time-points from HR-non-autistic infants (Brian et al.,

2008; Landa & Garrett-Mayer, 2006; Lebarton & Iverson, 2013;

Nickel et al., 2013; Sacrey et al., 2015). As most of these studies

involve infants, the range of motor deficits investigated is

much smaller and less information is available for the type of

motor impairments shown. These studies do, however, reveal

that in some HR infants later diagnosed with autism, motor

deficits are evident within the first 15 months of life, whereas

other autistic infants within the same group have a slower

derailing of motor abilities (Landa et al., 2012, 2013).

Despite this degree of inconsistency, these studies suggest

that motor dysfunction appears to be present from very early

life in autism. Does it, however, persist to adulthood? Where

adults are studied, they are often grouped with adolescents in

samples with substantial age range [Hardan, Kilpatrick,

Keshavan, & Minshew (2003), for example, include an

autistic group with an average age of 19 but who range from 8

to 43 years old] e a period in which neuroanatomy is likely to

undergo gross alterations. Such wide-ranging samples are

unlikely to capture particular characteristics of adolescents or

adults, but nevertheless suggest that motor deficits exist in
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older populations (Barbeau et al., 2015; Biscaldi et al., 2014;

Cook et al., 2013; Linkenauger et al., 2012; Sachse et al., 2013;

Thompson et al., 2017; Travers et al., 2016, 2013). Where

studies investigate age as a continuous variable affecting

motor performance, such as with longitudinal designs, they

suggest that the deviance in motor performance may widen

with age (Lloyd et al., 2013; Travers et al., 2016) e this certainly

requires further investigation. Anecdotal reports from autistic

adults describemotor impairments with significant impact on

wellbeing and functionality (Robledo, Donnellan, & Strandt-

Conroy, 2012). This, and the relationship between motor

function and functional daily living skills (Jasmin et al., 2009;

Macdonald, Lord, & Ulrich, 2013; Travers et al., 2016), suggest

that ameliorating motor dysfunction in ASC is worthy of

considerable attention. We shall go on to explore the full

ramifications ofmotor disorder in the remainder of this paper.

The last question regarding the ubiquity of motor deficits

within the autism spectrum concerns whether they occur

regardless of sex. The vast majority of studies include male

samples; a single study confirms the presence of motor

dysfunction in a small female group (Kopp et al., 2010). We

included the study in our review as some interesting results

emerged, such as the association between motor dysfunction

and autistic symptomatology but not between motor

dysfunction and ADHD. The methodology is otherwise prob-

lematic, however, involving an extraordinary number of

measures and thus comparisons. Moreover, 95% of the small

autistic sample had comorbid ADHD and 35% had learning

disabilities, so the nature of motor dysfunction in autistic fe-

males and how they might compare with males is yet to be

ascertained. A lack of consideration of sex differences may

also contribute to the variation seen in baby sibs studies, given

that several early social and attentional symptoms thought to

predict autistic symptomatology in HR infants are only pre-

dictive in males (Bedford et al., 2016).

The next important question is the specificity of motor

impairment: are motor problems specific to ASC, or extant to a

similar extent in other populations with developmental dis-

orders? Most common targets for comparison are develop-

mental coordination disorder (DCD), ADHD, and specific

language impairment (SLI). Problematically, these studies

often involve fairly small groups who may have overlapping

comorbidities, do not control for IQ, andmay involve multiple

comparisons that are uncontrolled for. If we first consider

ADHD, the multiple comparison problem is true for Dewey

et al. (2007), who report significantly better motor (and

imitation) skills in childrenwith ADHD, but fortunately not for

Mostofsky et al. (2007) or for Ament et al. (2015), who both

report significantly better motor performance in ADHD (most

notably for balance and catching a ball in the Ament study).

Another study reporting better motor skills in ADHD is sty-

mied by lack of IQ matching (Pan, Tsai, & Chu, 2009). Kopp

et al.'s (2010) findings are, as previously mentioned,

confounded by comorbid diagnoses and the multiple com-

parison problem. Van Waelvelde et al. (2010) find no differ-

ences between autistic children and those judged to be ‘at

risk’ of ADHD. Interestingly, Hilton et al. (2012) found better

performance in participants with ASC and ADHD than those

with ASC alone. Again, we are uncertain if multiple compar-

isonswere controlled for, but this would seem consistent with
an admittedly small sampled study which found that children

with ADHD but without comorbid autism do not differ in

movement skills from TD children (Papadopoulos et al., 2012).

One consideration pertinent to discussion, here, is whether

participants were taking medication, which is not always re-

ported or controlled for (e.g., Ament et al., 2015; Dewey et al.,

2007) and which is known to affect variables such as gait

(Jansiewicz et al., 2006).

Only one study investigated SLI: McPhillips et al. (2014)

found no significant difference in total motor skills, with the

only difference being in one of the manual dexterity tasks

where autistic children were significantly poorer at threading

laces. This study apparently failed to control for multiple

comparisons, but as this could result in false positives, the

lack of difference in total motor score and subtests seems to

reflect a genuine lack of difference in this group. In consid-

eration of DCD, there is again inconsistency: some report

poorermotor skills and latermilestones in DCD (Sumner et al.,

2016) and worse motor planning (though lacking IQ measures

[van Swieten et al., 2010]), whereas others report poorer per-

formance in autism (Dewey et al., 2007). Problematically, not

all studies test whether autistic children themselves meet

criteria for DCD (as apparently many of them do [Green, Baird

et al., 2002; Green, Moore et al., 2002; Kopp et al., 2010; Hilton

et al., 2012]).

Methodologicalweaknesses such as thosementioned above

may account for some of the variance in findings. Further

problematically, subtypes have been proposed to exist in DCD

(Lalanne, Falissard, Golse, & Vaivre-Douret, 2012; Vaivre-

Douret et al., 2011), SLI (Friedmann & Novogrodsky, 2008;

Naama Friedmann & Novogrodsky, 2011) and ADHD (Fair

et al., 2012). As such, the motor profiles of these different

conditions are yet to be fully ascertained (especially as all these

studies have involved child samples), but the answer as to the

specificity of motor disorder to autism would therefore at

present have to be negative. If motor systems do play a role in

higher cognitive function, the presence of motor deficits in

developmental conditions such as SLI (Hill, 2001; Marton, 2009;

McPhillips et al., 2014; Ullman & Pierpont, 2005; Zelaznik &

Goffman, 2010), and the presence of higher cognitive deficits

in conditions such as DCD (Asonitou, Koutsouki, Kourtessis, &

Charitou, 2012; Dewey, Kaplan, Crawford, & Wilson, 2002;

Wilson & McKenzie, 1998), is unsurprising. In the above para-

graphs, we begin to observe, for example in the studies of

movement planning, that movement disorder can result from

disruption at one or several stages in the cognitive and un-

derlying neural chain of movement production. Movement

difficulties, in ASC as in any clinical population, motivate

investigation of the neural substrates for gross and fine

movement, and we nowmove to discuss the well-documented

neural substrates ofmovement disorder in ASC and, below, the

very specific predictions that these studies allow us to make

about higher cognitive function.
3. The neuroanatomical correlates of
movement impairment

Motor deficits in ASC indicate several likely neural culprits,

the first being the cortical motor system (primary motor [M1],
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(in contrast to canonical motor cells without multimodal prop-
erties, i.e., not responsive to action perception); they have been
found in primary motor cortex (Fadiga, Craighero, & Olivier, 2005),
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premotor and supplementary motor cortex). Within primary

motor cortex, increased grey matter volume and surface area

in the right motor cortex (trending towards significance in the

left) set autistic children apart from TD children and those

with ADHD (Mahajan, Dirlikov, Crocetti, & Mostofsky, 2015).

An excess in white matter in M1 has also been reported in

autistic children and correlated with movement impairment

(Mostofsky et al., 2007), leading these authors to suggest that

stronger local connectivity in motor cortex indicated by

radiate white matter volume might come at the cost of

impaired long-distance connections of motor systems. The

relationship between anatomical connectivity and functional

connectivity, the correlated brain activity which is understood

to reflect communication within and between brain networks

(Fox & Raichle, 2007), is far from transparent, but functional

connectivity is constrained by the biological architecture of

the brain (Honey et al., 2009). Accordingly, it is unsurprising

that differences in functional connectivity occur: that during a

movement task (finger tapping), synchronized activity be-

tween left and right M1 and between M1 and other motor re-

gions (cerebellum, thalamus and supplementary motor

cortex) was seen to be reduced in children with ASC

(Mostofsky et al., 2009). Whilst participants were at rest,

another study documented abnormal lateralization charac-

terized by functional hyper-connectivity in right M1 and

hypoconnectivity in left M1, and a relationship between this

rightwards shift and poorer gait, total PANESS scores and

speed of timed movements (Floris et al., 2016). Abnormal

lateralization and especial hyperconnectivity of right M1 was

also reported by Carper, Solders, Treiber, Fishman, andMüller

(2015).

The motor cortex is functionally parcellated into regions

corresponding to the control of different body parts: a motor

homunculus, with representation of the feet and legs at the

most dorsal and lateral point of precentral gyrus, represen-

tation of the hands and arms inferior to this on the medial

aspect of precentral gyrus, andmost ventrally, representation

of the face, mouth and tongue. (Postcentral gyrus, adjacent to

this, contains a similar sensory homunculus processing in-

formation from each of these regions). Nebel, Joel et al., 2014

examined the functional parcellation of M1 in ASC and

found reductions in functional segregation between the upper

and lower limbs; abnormalities were also seen in the region

linked with dexterous, complex movements of hand, arm and

shoulder. The authors suggest that functional organization of

M1was immature in their child participants (a conclusion also

posited by Carper et al. (2015), who interpret functional

hyperconnectivity in the motor system to reflect reduced

functional segregation). Thompson et al. (2017) examined the

structural integrity of the short fibres connecting the local

homuncular regions of M1 and adjacent postcentral gyrus

(somatosensory cortex) in a wide-ranging age group of adults

with ASC (18e45 years old). They found abnormalities in the

connections between the motor and sensory hand regions

which was associated with poorer performance in the

pegboard test. Interestingly, the differences in correlations

between control and autistic groups suggested a lack of the

typical left dominance for motor performance in the autistic

group, and that this reduced asymmetry was related to poorer

performance, as also found by Floris et al. (2016).
The majority of the findings above purport to children, and

it is important to note that age may strongly modulate neural

connectivity. Functional connectivity, at least, seems to trend

from hyperactivity in childhood towards normalization or

hypoactivity in older age (Dajani& Uddin, 2016; Nomi& Uddin,

2015). Anatomically, the increased grey matter seen in primary

motor cortex by Mahajan et al. in autistic children is contra-

dicted by a relationship between reduced grey matter and

poorer finger-tapping in autistic adults (Duffield et al., 2013).

Sexmay also be an importantmodulator of brain structure and

function, but as in the previous section, autistic girls and

women are grossly understudied. Preliminary findings suggest

that white matter volume in left supplementary motor area

and left M1 can reliably discriminate between autistic girls and

boys (Supekar & Menon, 2015), so whether the androcentric

findings above hold true for females is yet to be ascertained.

We have seen, above, that autistic individuals also show

deficits in broader aspects of action-related cognition,

including imitation and gesturing. Imitation deficits in

particular have been described in terms of impairments in

‘self-other mapping’ (Williams, 2008; Williams, Whiten,

Suddendorf, & Perrett, 2001): the ability to connect an

observed actionwith themotor programnecessary to perform

a similar movement oneself, possibly with a similar goal. The

mechanism of this perception-to-action mapping has been

posited in mirror neurons, a type of sensorimotor neuron7

responsive both when a specific action is carried out and

when the same action type is perceived visually or acousti-

cally (Rizzolatti& Sinigaglia, 2010). Neural activity attributable

tomirror neurons in premotor andmotor cortex is abnormally

low in ASC (Bernier, Dawson, Webb, & Murias, 2007; Cattaneo

et al., 2007; Dapretto et al., 2006; Honaga et al., 2010; McCleery

et al., 2013; Nishitani, Avikainen, & Hari, 2004; Oberman et al.,

2005; Rizzolatti & Fabbri-Destro, 2010; Th�eoret et al., 2005;

Wadsworth et al., 2017),8 and therefore was interpreted as

support for proposals that the autistic phenotype results from

the dysfunction of mirror neuron systems (the ‘broken mir-

rors’ hypothesis: Ramachandran & Oberman, 2006).

The success of this hypothesis depends on the envisaged

(and theory-dependent) role of mirror neurons in socio-

communicative processes including action and intention un-

derstanding. Rizzolatti and colleagues purport that a range of

neurons in frontoparietal regions are responsive to different

levels of action understanding. These include coding basic

https://doi.org/10.1016/j.cortex.2017.11.019
https://doi.org/10.1016/j.cortex.2017.11.019
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appears to be modulated by autistic traits alone (Barttfeld et al.,
2013).
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transitive actions directed towards goal objects; coding

different types of grip that would support different intentions

(grasp to eat vs grasp to place [Cattaneo et al., 2007]); coding the

expressive manner in which actions are conducted (Di Cesare,

Di Dio, Marchi, & Rizzolatti, 2015); and coding chains of simple

actions that could represent more complex intentions (Giese&

Rizzolatti, 2015; Rizzolatti & Fabbri-Destro, 2010; Rizzolatti &

Sinigaglia, 2010). In contrast, Hamilton (2016) envisions the

mirror system as under top-down control by a higher-order

region and thus modulated in its response by features such

as familiarity and social context. In this view, the mirror sys-

tem is believed to respond to the rather rudimentary basic ki-

nematics or goal of an action, with the more complex

intentional understanding of action assigned to a higher-order

region, tentatively named as the medial prefrontal cortex,

which controls activation of themirror neuron system (see also

Wang & Hamilton, 2012). Likewise, Hickok (2014) stipulates

that, while mirror systems activate during typical observation

of actions, entirely different regions in posterior temporal

cortex provide the ‘gateway to understanding’. In this view,

motor mirror regions play a mostly epiphenomenal role,

possibly that of action selection, linking perceived actions with

appropriate responses in the individual's motor repertoire (for

a more extensive discussion, see Schomers & Pulvermüller,

2016). How these named regions interact and the precise role

of each in action understanding remains debated (see, for

example, Garagnani,Wennekers,& Pulvermüller, 2008; Giese&

Rizzolatti, 2015; Westermann & Miranda, 2004), as does their

involvement in the symptomatology of ASC, and the argu-

ments for each position demand a review all of their own.

Indubitably, because the human homologues of areas where

mirror neurons are typically found inmonkeys are not globally

unresponsive across all circumstances in ASC (see, for e.g.,

Becchio & Castiello, 2012; Enticott et al., 2013; Oberman,

Ramachandran, & Pineda, 2008), it has however been rightly

noted that claims about mirror neurons being simplistically

and universally ‘broken’ in ASC are problematic (Hamilton,

2013). However, the suggestion that these cells behave in an

atypical manner in ASC appears consistent with the literature.

In Sections 4 and 5, we shall go on to suggest more specific

mechanisms interlinking perception and motor information,

whichmay be necessary for integrating action with perception

knowledge and, likewise, for ‘building’mirror neurons and the

sensorimotor circuits they are likely embedded in

(Pulvermüller, Moseley, Egorova, Shebani, & Boulenger, 2014).

As relates to autism, we suggest it preferable to speak about

deficits in action-perception mapping, rather than solely

ascribing these mapping problems to one single type of

neuron. We will return to this discussion below.

Shifting our attention to widermotor circuits of the brain, a

large body of research reviewed by Bo, Lee, Colbert, and Shen

(2016) suggests that people with ASC may exhibit a deficit in

motor learning: the ability to fluidly adapt movement in

response to sensory/motor input (‘motor adaption’) and to

combine isolated movements into smooth, coherent se-

quences. Deficits in motor adaption implicate the cerebellum,

where cell abnormalities in the cerebellar vermis and hemi-

spheres are a robust feature of ASC (Fatemi et al., 2012; Rogers

et al., 2013). Several studies suggest that children with ASC

rely on proprioceptive feedback for motor adaptation and are
impaired when learning motor skills through visual input

alone (Izawa et al., 2012; Mostofsky & Ewen, 2011; Sharer,

Mostofsky, Pascual-Leone, & Oberman, 2015; Vanvuchelen

et al., 2007; Wild, Poliakoff, Jerrison, & Gowen, 2012). Hypo-

sensitivity and hypersensitivity to visual and proprioceptive

feedback respectively is indeed correlated with abnormalities

in the anterior, sensorimotor aspect of the cerebellum in

childrenwithASC (Marko et al., 2015). The cerebellumhas also

been linked to gait dysfunction in ASC (Nayate, Bradshaw, &

Rinehart, 2005; Rinehart, Tonge, Iansek, et al., 2006). In a

small sample, Hanaie et al. (2013) documented abnormalities

in the cerebellum, in autistic children, which predicted poorer

motor skills and poorer ball skills (these authors did not

measure gait). Travers et al. (2015) found cerebellar abnor-

malities to predict tapping speed in autistic children and ad-

olescents. As previously noted, functional communication

between the cerebellum and the rest of the motor systemwas

reported to be compromised (Mostofsky et al., 2009).

Autistic deficits in motor preparation (Rinehart, Bellgrove,

et al., 2006; Rinehart et al., 2001), call into question the integ-

rity of frontostriatal motor loops, which are indeed structur-

ally and functionally atypical in ASC (Chukoskie, Townsend,&

Westerfield, 2013; Di Martino et al., 2011; Langen et al., 2009;

Takarae, Minshew, Luna, & Sweeney, 2007). Specific exami-

nation of the structural integrity of basal ganglia and their

relationship to motor performance in grip strength, finger

tapping and pegboard performance failed to reveal a correla-

tion or abnormalities in a large group of autistic individuals

between 8 and 45 years of age (Hardan et al., 2003). The lack of

difference or relationship in this study might potentially

reflect the within-group brain development in such a wide-

ranging sample: structural differences of the basal ganglia

were associated with poorermotor skills and praxis in autistic

children (Qiu, Adler, Crocetti, Miller,&Mostofsky, 2010). Motor

planning deficits were also theoretically linked to deficits in

the ability of anterior cingulate to regulate attention for ac-

tions and to impaired communication between cingulate and

supplementary motor cortex to the difficulty initiating motor

programmes (Rinehart et al., 2001). Abnormal movement-

related potentials, which are associated with preparation of

internally-generated movements and linked to the chain of

basal ganglia, thalamic and supplementary motor communi-

cation, have indeed been reported in HFA (Enticott, Bradshaw,

Iansek, Tonge, & Rinehart, 2009). Interestingly the small AS

group (n ¼ 12) in this study did not differ from controls, to

whom they were IQ-matched, and it is unclear if IQ (non-

matched between HFA and TD groups) was controlled for in

the significant different in movement-related potentials.

Abnormalities in the organization of and communication

between cortical neural networks are implied by a range of

reports on atypical structural and functional connectivity in

ASC (Casanova & Trippe, 2009; Courchesne & Pierce, 2005; Di

Martino et al., 2014; Ecker et al., 2010; Geschwind & Levitt,

2007; Moseley, Shtyrov et al., 2015; Moseley, Ypma et al.,

2015; Nomi & Uddin, 2015; Vissers, Cohen, & Geurts, 2012;

Ypma et al., 2016).9 These are supplemented by theoretical

https://doi.org/10.1016/j.cortex.2017.11.019
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in males and females could offer vital aetiological clues (see for
example (Lai, Lombardo, Auyeung, Chakrabarti, & Baron-Cohen,
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debated; the imbalance may reflect that these conditions are less
commonly diagnosed rather than less prevalent (again, see Lai
et al., 2015).
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accounts of ASC in terms of brain-wide dysfunction charac-

terized by ‘noisy’ or dysfunctional neural communication

(Belmonte et al., 2004; Minshew & Goldstein, 1998; Rubenstein

& Merzenich, 2003). In autistic children and adolescents,

Travers et al. (2015) indeed found reduced structural integrity

of the long-ranging corticospinal tract of fibres which arise

from motor cortex and travel to the brainstem; this related to

poorer grip strength and finger tapping, and to autistic

symptomatology. Hanaie et al. (2016) also found correlations

with poorer motor performance and reduced integrity in parts

of the brainstem which connect to the somatosensory cortex

through the thalamus, which connect the cerebellum to the

brainstem, and the superior longitudinal fasciculus connect-

ing the supramarginal gyrus and inferior parietal sulcus with

frontal motor systems.

The cognitive effects of disruption in corticocortical

communication would be felt at many levels. It is notable at

this point to speak of visuomotor or action-perception inte-

gration, a component of skilled, coordinated movements

archetypally displayed in the hand-eye coordination required

to catch or hit a ball with a bat or even in the climbing of stairs

(Linkenauger et al., 2012). In the laboratory, it often contributes

to tasks such as those of executive function which require fast

pointing towards a target as it appears (Sachse et al., 2013).

Deficits in action-perception integration would explain partic-

ular difficulties in estimatingmovements with reference to the

size and orientation of objects and spaces (Linkenauger et al.,

2012), and why complex tasks involving sequential actions,

speed and accuracy are especially difficult for autistic partici-

pants (Miller et al., 2014; Whyatt & Craig, 2012). Action-

perception integration would also explain why visual stimuli

are suggested to not primemotor programmes as they do in TD

controls (Dowd et al., 2012). Catching a ball is highlighted as an

especial deficit in ASC (Ament et al., 2015; Green, Baird et al.,

2002; Green, Moore et al., 2002; Hanaie et al., 2013;

Papadopoulos et al., 2012; Staples & Reid, 2010; Whyatt &

Craig, 2012), and is linked by several of these authors to defi-

cits in what Whyatt and Craig (2012) describe as “perception-

action coupling”. Furthermore, although we did not extend our

review to broader aspects of motor cognition such as move-

ment perception, communication between motor and percep-

tual systems also appears to be integral for effective perception

of biological motion (Cook et al., 2013; van Kemenade,

Muggleton, Walsh, & Saygin, 2012) and abnormalities of bio-

logical motion perception are robustly documented in autism

(Cook et al., 2016; Freitag et al., 2008; Koldewyn, Whitney, &

Rivera, 2011). At brain level, action-perception integration is

especially dependent on the integrity of corticocortical

connectivity, and functional connectivity between posterior,

basic visual areas (BA 17/V1, BA 18/V2), higher-order visual

processing areas in extrastriate cortex and precentral and

postcentral gyri has indeed been observed to be reduced in

autistic children, most especially between upper limb regions

andhigher-order visual areas (Nebel et al., 2016). This reduction

was related to more severe social impairments.

As previouslymentioned and demonstrated in this section,

motor deficits can result from a break-down in one ormultiple

processes and their underlying neural substrates. It is highly

likely that the motor deficits seen in the different develop-

mental conditions, which may not always be distinguishable
behaviourally, have differing neural origins, hence the

different symptom complexes in these conditions. The neural

substrates of motor dysfunction in DCD, ADHD and SLI have

not received quite as much attention: there are many hy-

potheses regarding DCD but few with neurobiological support

from brain imaging (see reviews by Brown-Lum & Zwicker,

2015, and Gomez & Sirigu, 2015: of these, the corpus cal-

losum, cerebellum, parietal lobe and basal ganglia are high-

lighted, but studies contain extremely small samples); studies

of SLI have mainly focused on perisylvian language cortices

(see Mayes, Reilly, & Morgan, 2015 for review, but note that

these authors admit the confusion regarding classification of

this condition across studies). ADHD and autism are

commonly comorbid, both more commonly diagnosed in

males10 and seem to both be characterized by abnormal con-

nectivity (Kern et al., 2015; Konrad & Eickhoff, 2010); they may

be set apart by the concentration of dysconnectivity in

particular regions. We are not however aware of studies

focussing on the neural substrates of motor dysfunction and

connectivity related to movement in ADHD, presumably as

this is a less salient feature of this condition.

As there is a preponderance of documentation regarding the

motor deficits in autism and their putative neural substrates,

we therefore focus on ASC in this review, although motor dis-

order can and does appear in other developmental disorders.

We return to consider these in our final remarks, but focus in

the main on the documented neural substrates for motor dis-

order in autism,most particularly the strong case that has been

made for dysconnectivity within motor systems and between

motor systems and other cortical regions, which allow us to

make specific hypotheses concerning the effects this dyscon-

nectivity might have on higher cognition. Most notably, with

the deficits of action-perception integration discussed above,

we return in Section 6 to findings of dysconnectivity in ASC

pertinent to action-perception linkage in language, notably

those facilitating communication between motor systems and

other cortical regions. Before we can consider the full ramifi-

cations of action-perception disruption, wemust first however

discuss the typical linkage of language and motor systems,

which we proceed to do in Sections 4 and 5.
4. Language and motor development in
typical and autistic infanthood

“… motor development is not an independent process, but has

rich and complex relationships with the development of other

cognitive domains …” (Leonard & Hill, 2014, p. 167).

To understand the broad impact of early motor impair-

ment in autism and other childhood conditions marked by

https://doi.org/10.1016/j.cortex.2017.11.019
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11 Though we do recognise changes to nosology: DSM-IV (APA,
2000) had a three-factor model specifying impairments in the
domains of ‘social interaction’, ‘communication’ (involving lan-
guage criteria) and restricted and repetitive behaviours and in-
terests, but DSM-5 combines the first two factors into a single
factor called ‘social communication’. The two-factor model better
fits the symptom presentation of people with autism (Frazier
et al., 2012; Mandy, Charman, & Skuse, 2012). This downplaying
of language symptoms implies that these are no longer an
essential aspect of diagnosis, but in fact, gold-standard diagnostic
tools, the ADOS-G (Lord et al., 2000) and the ADI-R (Le Couteur
et al., 2003), have not been yet adapted to the new DSM criteria
and so language abnormalities (such as pronoun reversal and
many more) remain central to diagnosis.
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movement deficits, it is necessary to draw back and consider

the typical role of motor systems in language and cognitive

development. The body is the brain's vehicle for world

exploration; small wonder that cognitive development climbs

steeply with motor development in infancy (Lenneberg, 1967).

In early life, an infant's range of speech sounds is constrained

by their early oral motor skills, particularly their ability to

control and coordinatemovements of the jaw, lips and tongue

(Green, Baird et al., 2002; Green, Moore et al., 2002; Nip, Green,

& Marx, 2009). As the speed and breadth of orofacial move-

ments increases, spontaneous soundless movements become

replaced by cooing (from ~3 months of age), babbling (~6

months), and then by first words (~12 months), which form

the majority of orofacial movements by the end of the second

year (Nip et al., 2009). The later ability to sit inflates lung ca-

pacity and improves control over subglottal pressure, such

that sitting is followed by a cascade of phonological and

articulatory development (Yingling, 1981, cited in Iverson,

2010), including the production of consonant-vowel

articulations.

The basic motoric activity of babbling has long been seen

as a precursor of language development. However, in light of

neurobiological theory, babbling may serve an important

function of building cortical circuits (Locke, 1993) which are

later reused for repetition, recombination and innovative use

of language elements (Pulvermüller et al., 2014). Note that the

production of syllables, as it dominates the stage of repetitive

babbling, implies the activation not only of neurons in frontal

articulatory motor areas (where speech output is controlled)

but at the same time of auditory neurons in posterior tem-

poral areas responding to the self-produced sounds; similar

co-occurrence of activity is present in somatosensory fields in

anterior parietal cortex. Such babbling-related co-occurrence

of neuronal activity has been shown (by computer model

simulations [Garagnani et al., 2008; Garagnani, Wennekers, &

Pulvermüller, 2009]) to yield circuits that interlink motor and

sensory neurons. Because they interlink information about

actions and their related perceptions, we call these circuits

‘action perception circuits’. Likewise, manual babbling may give

rise to action perception circuits for hand movements, which

are later reused in gesturing and other cognitive activity. If

action perception circuits serve a central role in building

language and social-communication mechanisms, any ab-

normalities in the connectivity between frontal and temporal

lobes must impact on language and on action understanding

more generally. Elementary social interaction that normally

emerges in the later part of the first year after the phase of oral

and manual babbling, such as repeating others' hand gestures

and words, would in particular require functional sensori-

motor links.

Further to social interaction and development, the pro-

gression of gross motor skills such as shuffling, crawling,

standing and walking, radically alters an infant's relationship

with the objects and people around him or her and provides a

wealth of new learning experiences (Iverson, 2010). Previously

unseen or unreachable objects are now visible and can

potentially be manipulated, opening new interactions with

others (Karasik, Tamis-Lemonda, & Adolph, 2011). The

breadth of adult vocal feedback rockets as infants become

mobile; adults remark on their behaviour and furthermore
vary the affective content of their speech when infants

encounter risky scenarios (Clearfield, 2011; Karasik, Tamis-

Lemonda, & Adolph, 2014).

Increased control of the hands affords gestural communi-

cation, which many believe to be a key precursor to language

development (Iverson & Goldin-Meadow, 2005; Liszkowski,

2008). The development of rhythmic arm movements, i.e.,

shaking a rattle, slightly precedes or coincides with vocal

babbling (Bates & Dick, 2002; Iverson, Hall, Nickel, &Wozniak,

2007; Locke, Bekken, Mcminnlarson, & Wein, 1995), and is

suggested to afford infants the ability to practice the skills

underlying rhythmic, timed vocalisations and to receive

multimodal feedback on their actions (Iverson, 2010; Iverson&

Thelen, 1999; Thelen, 1995). Certain hand and head gestures

are predictive of language comprehension and vocabulary in

young children (Cochet & Byrne, 2016; Hsu & Iyer, 2016;
€Ozçalıs‚kan, Adamson, & Dimitrova, 2015), as are facets of

social development like joint attention (simplistically, the

ability to understand pointing gestures, manifest in looking to

where a finger points, rather than at the pointing finger; to

share the attentional focus of another person through being

directed via non-verbal [eye-gaze, pointing] or verbal means).

Joint attention, in turn, also relies on motor development

(Campos et al., 2000), and is strongly linked to learning word-

object relationships (Baldwin, 1995). It has been posited that

children with gross motor deficits may have fewer resources

for the development of joint attention (Mody et al., 2017). Ul-

timately, development of social and cognitive domains cannot

be separated from co-occurring development of motor (and

sensory) systems, which are dynamically interwoven (Thelen

& Smith, 1994).

With this in consideration and with regards to the early

motoric dysfunction reported above, it is unsurprising that

language delays and abnormalities are an essential aspect of

diagnostic criteria for autism11 (Eigsti, De Marchena, Schuh, &

Kelley, 2011; Lord, Risi,& Pickles, 2004; Luyster, Kadlec, Carter,

& Tager-Flusberg, 2008); after all, sound production is a motor

act which requires considerable control. First words are

almost universally delayed in autistic children (Howlin (2003)

puts the delay at on average 38months), and babbling and first

vocalisations are significantly reduced at ages 9e12, 15e18

and 16e36 months (Patten et al., 2014; Plumb & Wetherby,

2013; Schoen, Paul, & Chawarska, 2011; Warren et al., 2010).

Given the importance of early vocalisations for building

sensorimotor links, this may offer some explanation for the

early language and babbling deficits of ASC; although, notably,

https://doi.org/10.1016/j.cortex.2017.11.019
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a more primal sensory-motor integration deficit could also

result in less sensory activity transmitted to frontal motor

systems and consequently less babbling. Regardless of the

direction of the relationship, studies have indeed shown that

movement impairment in ASC is predictive of language

development. The ability to imitate motor acts, which in-

cludes the ability to repeat verbal utterances, at two years of

age, was seen to be strongly predictive of expressive language

abilities of autistic children at ages four (Stone & Yoder, 2001)

and five (Thurm, Lord, Lee, & Newschaffer, 2007). Speech

fluency at approximately eight years old was strongly related

to parental reports and video evidence ofmotor abilities in the

first two years of life (Gernsbacher et al., 2008); highly versus

minimally verbal children were differentiated in early and

later childhood by their ability to perform oral-motor tasks

(e.g., sticking out the tongue, blowing raspberries and so

forth), a deficit which appeared unrelated to problems com-

prehending instructions. Fine motor skills at 27 months pre-

dict expressive and receptive language at 45 months

(Hellendoorn et al., 2015); furthermore, a large-scale study

with over 1000 autistic individuals ranging from 2 to 15 found

that this strong predictive relationship between fine motor

skills and expressive and receptive language endures (Mody

et al., 2017).12 Another recent study corroborates the rela-

tionship between oromotor integrity and verbal development:

Dalton, Crais, and Velleman (2017) reported a relationship, in

autistic children, between their ability to sequence nonverbal

mouthmovements and their ability to sequence verbal mouth

movements. Although the findings should be replicated in a

larger sample, the authors also reported a relationship be-

tween joint attention and the ability to sequence nonverbal

oromotor movements, which is pertinent to the current dis-

cussion given the noted relationship between joint attention

and language development. Importantly, the relationship

mentioned above between motor abnormalities and expres-

sive and receptive language has also been demonstrated in HR

infants (Bhat, Galloway, & Landa, 2012; Lebarton & Iverson,

2013; Leonard, Bedford, Pickles, & Hill, 2015). An atypical tra-

jectory of vocal articulation and rhythmic arm movements in

these infants has been suggested to reflect instability and

atypical organisation within and between themotor and vocal

systems (Iverson & Wozniak, 2007).

Our focus on motor deficits should not lead one to ignore

the other non-motor deficits of ASC, most of which are well-

known and intensely studied. These affect a broad range of

skills ranging from social to mental-cognitive ones (Wing &

Gould, 1979), and to perceptual and sensory abnormalities

(Klintwall et al., 2011; Marco, Hinkley, Hill, &Nagarajan, 2011).

That lack of motor movement and correlated motor-and-
12 This study differentiates between gross and fine motor skills
and also finds predictive relationships between gross motor skills
and expressive language, and between gross motor skills and
receptive language in a subset of children with particular im-
pairments in gross motor skills. The authors suggest that the
relationship between language abilities and fine motor skills, as
are indicated in the studies here, are more robust than relation-
ships with gross motor ability; however, the study does illustrate
the importance of the measures used, as they include a
performance-based measure of fine movement skills and a
parent report of gross movement skills.
sensory neural activity can entail deficits in integrating per-

ceptions with actions is well known from experimental

studies dating back to the famous work by Heid and Hein

(1963), and some of the perceptual problems in ASC seem

open to this explanation (e.g., inadequate response to social

stimuli). We shall return to relationships between motor

dysfunction and other autistic symptoms in greater depth

below, but in so far as language is concerned, Wing (1981)

commented on the constraint that motor dysfunction places

on the developing autistic infant: “The limitation of his

exploration and hence the poverty of concept formation

wouldmean that his language would be repetitive rather than

creative and that he would find abstractions hard to grasp” (p.

41).

This comment contains a central truth: that cognition

shaped by environmental experience is person-centred and

individualized (Casasanto, 2011; Hauk, 2011; Tschentscher

et al., 2012; Willems et al., 2010). Commonalities in develop-

ment lead to commonalities in conceptual organisation, but

here, from very early life, the experiential field is vastly altered

for individuals with ASC. In autism, the relationship between

motor skills in toddlerhood and receptive and expressive

language in childhood is mediated by reduced exploration of

objects and environment and reduced social interest

(Hellendoorn et al., 2015). It stands to reason that the emer-

gent ‘shape’ of later cognition will diverge from the norm e

and indeed, this is evinced by autistic abnormalities seen in

semantic processing, organisation and categorisation (Dunn,

Gomes, & Sebastian, 1996; Frith & Snowling, 1983; Gaffrey

et al., 2007; Happ�e, 1997; Hermelin & O'Connor, 1970; Kamio

& Toichi, 2000; Klinger & Dawson, 2001; Snowling & Frith,

1986; Toichi & Kamio, 2001, 2003; Wahlberg & Magliano,

2004). We aimed to probe the organization of conceptual

knowledge with specific hypotheses based on the grounding

of cognition in sensorimotor systems, and so expand, below,

on the specific effect that motor impairment might place on

action-semantic knowledge.
5. Motor systems and the mechanisms of
action perception integration

“… if individuals move and respond in idiosyncratic ways from

infancy, they will experience all interactions within a unique

frame that most certainly differs from that which is called typical

…” (Donnellan, Hill, & Leary, 2013, p. 3).

It now seems apt to discuss the role of motor systems in

broader action cognition and action semantics, and to provide

an explanatory neurobiological framework within which

language and conceptual acquisition can be grounded in ac-

tion and perception. To do so, wemust consider the process by

which, through associative learning and linkage with other

neural populations, cells within action perception circuits

become infused with multimodal sensorimotor properties.

Thesemultimodal cells consequently become involved in new

cognitive processes, such as conceptual understanding, whilst

retaining their original functional roles. This process, called

‘information mixing’ (Braitenberg & Schüz, 1998), ‘neural

https://doi.org/10.1016/j.cortex.2017.11.019
https://doi.org/10.1016/j.cortex.2017.11.019


c o r t e x 1 0 0 ( 2 0 1 8 ) 1 4 9e1 9 0162
exploitation’ (Vittorio Gallese & Lakoff, 2005) or ‘neural reuse’

(Anderson, 2010), characterizes the well-established finding of

multimodal neurons which carry information across different

modalities, including motor, visual and auditory feature pro-

cessing. Action perception integration is simply illustrated in

the following example, where sensory and motor populations

of neurons increase the efficacy of their mutual connections

due to correlated activity (Hebb, 1949). In addition, the stron-

ger links will provide additional recurrent activation in action

production (because sensory neurons now receive activity

from the motor side and channel it back to motor neurons)

and in the perception process (because the once-sensory-only

neurons are now infused with recurrent motor activation).

Thus, the neurons on themotor (/sensory) side of the network

also take a role, and have a functional influence, in the

respective other process (sensory neuron in production and

motor neuron in perception). Ultimately, the stronger con-

nections in the entire population (which are likely to include

neurons in other areas, too) yields activity maintenance after

stimulation, due to reverberant activation supported by the

strong population-internal links. This explains the “emer-

gence” of higher cognitive processes, such as working mem-

ory (Shebani & Pulvermüller, 2013), from sensory and motor

mechanisms. Simulation studies bolster this kind of infor-

mation mixing, leading to integration of specific information

about actions and perceptions and, ultimately, “neural reuse”

of the same neurons for cognition.

From this perspective, the great significance of mirror

neurons comes from the fact that they demonstrate infor-

mation mixing in action processing. These neurons within

motor systems (motor and premotor cortex) are bound into

distributed circuits that also include sensory neurons and

thus can be activated through sensory stimulation (for

example, observing or hearing an action). Multimodal cells are

however also extant outside of the cortical motor system, in

particular in prefrontal and a range of parietal and temporal

areas (Fuster, 2003; Molenberghs, Cunnington, & Mattingley,

2012; Mukamel, Ekstrom, Kaplan, Iacoboni, & Fried, 2010).

These findings situate action perception integration across

the majority, if not all, cortical regions.

Whether some such information-mixing neurons are

innately specialised and present from birth is still a matter of

debate (Gallese, Gernsbacher, Heyes, Hickok, & Iacoboni,

2011). However, it seems uncontroversial that, in early life,

an infant's repetitive body movements, and the concurrent

activation of both motor neurons controlling the action along

with somatosensory and visual neurons processing its sen-

sory consequences, evoke correlated activity across sensory

and motor areas of cortex; and furthermore that, following

Hebbian mapping of correlated neuronal activity (Palm,

Knoblauch, Hauser, & Schüz, 2014), this will lead to strong

links between neurons distributed across sensory, motor and

multimodal areas, which sit adjacent to primary motor and

sensory regions. In Section 4 above, we have already sum-

marized the implications of early babbling for the initial cre-

ation of action perception circuits linking the articulatory

programmes for producing syllables and words with their

corresponding tactile and acoustic-phonological features.

These may be made possible via the neuroanatomical long-

distance connections between motor (frontal) and sensory
(temporoparietal) regions, which are particularly richly

developed in humans (Pulvermüller & Fadiga, 2010). These

may indeed contribute to an explanation why human lan-

guage and sociocommunicative interaction is much more

complex than that seen in primates (Schomers et al., 2017).

Beyond the action perception circuits formed through early

babbling, how might words be mapped to meaning?

Pulvermüller (1999, 2012) describes semantic learning in the

context of social interaction in the presence of relevant ob-

jects and conceptually related information in the environ-

ment, for example when an object is named by an adult whilst

the child explores its sensory features (for details about this

form of learning, see Smith, Suanda, & Yu, 2014). Similarly,

words for actions are frequently learnt in the ‘grounding’

context of performing these actions (Tomasello & Kruger,

1992). This correlated neural activity means that the peri-

sylvian cell assemblies storing a word's articulatory and

phonological properties are extended to incorporate extra-

sylvian perceptual and action systems (Pulvermüller& Fadiga,

2010). As these ‘semantic circuits’ carry conceptual informa-

tion related to a word's referents, they may differ topograph-

ically depending on the semanticmeaning of the word.Words

with action-related meaning incorporate neurons represent-

ing motor programs in frontal and motor areas, thus resulting

in the somatotopic effector-specific activation discussed in

Section 1. In contrast, occipitotemporal cortex is activated by

visually-related object words (Martin, 2007), and auditory, ol-

factory and gustatory regions by sound-, smell- and taste-

related words (see, for example, Barr�os-Loscertales et al.,

2012; Chao & Martin, 1999; Goldberg, Perfetti, & Schneider,

2006; Gonz�alez et al., 2006; Kiefer, Sim, Herrnberger, Grothe,

& Hoenig, 2008; Kiefer et al., 2012; Martin, Haxby, Lalonde,

Wiggs, & Ungerleider, 1995; Moscoso Del Prado Martı́n, Hauk,

& Pulvermüller, 2006; Simmons et al., 2007).

Typical and optimal semantic processing may require the

collaboration of modal systems with cross-modal ‘hubs’ or

‘convergence zones’, a putative substrate of which may exist

in anterior temporal lobe (Garagnani & Pulvermüller, 2016;

Humphreys, Hoffman, Visser, Binney, & Lambon Ralph,

2015; Kemmerer, 2015; Lambon Ralph, Ehsan, Baker, &

Rogers, 2012; Pobric, Jefferies, & Lambon Ralph, 2010;

Pulvermüller et al., 2010; Rice, Ralph, & Hoffman, 2015;

Tomasello, Garagnani, Wennekers, & Pulvermüller, 2016;

Simmons & Barsalou, 2003; Tomasello, Garagnani,

Wennekers, & Pulvermüller, 2017; Visser, Jefferies, &

Lambon Ralph, 2010; Visser, Jeffries, Embleton, & Lambon

Ralph, 2012). Within this ‘spoke and hub’ approach, a body

of neuroscientific evidence strongly supports the functional

importance of sensorimotor activation itself for understand-

ing the meaning of words (see literature cited in first section

and Schomers & Pulvermüller, 2016, for review). It is these

investigations of the necessity of such activation for conceptual

processing that highlight where ASC may demonstrate the

dependence of higher cognitive functions on frontotemporal

and sensorimotor links. The striking impairments of autistic

individuals in movement and action cognition, along with

their brain abnormalities in the motor systems and their dif-

ferential relationship with the environment during develop-

ment (Hellendoorn et al., 2015), motivated investigations of

language processing in this population. If motor systems and

https://doi.org/10.1016/j.cortex.2017.11.019
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their connections to other brain regions are abnormal in ASC

(see Section 2 and 3), this would affect the coupling between

action and perception systems (demonstrated in Sections 2

and 3) and the neural reuse of this coupling for language

and cognition. It should become difficult to build action

perception circuits for spoken and written word forms, thus

predicting a general linguistic processing deficit. Although all

words possess articulatory and phonological sensorimotor

properties (i.e., they can be spoken and heard), some words

possess additional links to motor systems according to their

semantic association with actions. As such, individuals with

ASC may exhibit a particularly pronounced processing prob-

lem with these items which especially draw on motor regions

for retrieval of meaning.

As mentioned, mirror neurons are suggested by some to

play a critical role in the representation of action goals and

thus action and intention understanding (Di Cesare et al.,

2015; Rizzolatti & Sinigaglia, 2010) and in accordance with

this viewmay, we suggest, receive their multimodal character

through information mixing consequent to being part of ac-

tion perception circuits. Incorporated into cell assemblies for

language, we suggest these cells contribute specific articula-

tory motor and/or action-related semantic information about

meaningful words (and also action sounds). We must return

briefly, here, to some of the controversies surrounding the

function of these cells: specifically relating to the claim

(originally by Mahon and Caramazza (2008) and later by

Hickok (2014, 2010) and Mahon and Hickok (2016)) that motor

(mirror) areas are activated by action words not because of

their role in representing and processing action meaning, but

instead because neural activation spreads there from some

other regions where meaning is actually being processed.

Although this represents a theoretical possibility that the low

temporal resolution of functional magnetic resonance imag-

ing (fMRI) cannot refute, much of the available evidence pre-

sented in Section 1 strongly refutes this suggestion. However,

another argument against motor system involvement in ac-

tion semantics is predicated by cases in neuropsychology

where action word processing is not completely disrupted by

disease or lesion to themotor systems (Hickok, 2010, 2014).We

cite evidence of action word processing abnormalities in pa-

tientswithmotor damage in Section 1, but this is an important

point which we explore in full below, where we link action

word deficits to motor system dysfunction in ASC.
6. Autistic ‘disembodiment’ of action
semantics; a test of motor involvement in action
word processing

Given their abnormalities of motor function and motor sys-

tems, the abnormalities of mirror neurons during action

perception, and abnormalities of cortical communication, in-

dividuals with autism were considered a strong test case to

examine the functional importance of motor systems in ac-

tion semantics, specifically the processing of words with ac-

tion meaning (e.g., ‘jump’). We proposed that the

aforementioned dysconnectivity within and between motor

systems and other cortical regions, which is linked to

impaired visuomotor or action perception integration in
motor tasks (see Sections 2 and 3), would give rise to a similar

lack of action perception integration in the language domain.

The model of action perception integration during language

learning, set out above, generated clearly testable hypotheses:

1. That compared with TD individuals, people with ASC

would show reduced activity in motor systems when pro-

cessing words with action meanings;

2. That at the behavioural level, compared with TD in-

dividuals, people with ASC would show a specific deficit or

less efficient processing of words with action meanings;

3. That if activity in motor areas is functionally relevant for

semantic processing of action words, there should be a

relationship between brain and behavior.

To test these predictions, Moseley, Mohr, et al. (2013)

compared brain activity to action and object words in eigh-

teen adults with ASC (mean age: 30) and eighteen age- and IQ-

matched controls using fMRI. Participants engaged in a pas-

sive reading task where they were asked to read words as they

flashed up on the screen; no behavioural responses were

required and any movements were discouraged. Whole brain

and regions of interest analyses revealed strong frontocentral

activation to words in TD individuals, but general frontocen-

tral hypoactivity in ASC (see Fig. 1 Part A). These findings are

consistent with full ignition of frontotemporal circuits for

words in control participants, but partial failure of ignition in

ASC, specifically in the frontal andmotor components of these

circuits. Note again that much neuroimaging and neuropsy-

chological work suggests that in TD participants, the fronto-

temporal (including motor) areas activate even if participants

perceive meaningful language passively (e.g., D'Ausilio et al.,

2009; Shtyrov et al., 2004, 2014; Wilson, Saygin, Sereno, &

Iacoboni, 2004).

As noted in the neurobiological model of word processing

outlined above, words with action-related meaning (e.g.

‘jump’) are expected to involve motor systems much more

than words typically used to speak about objects, as in addi-

tion to articulatory phonological knowledge, they ignite

action-related semantic knowledge that is bound to the word

form. Subsequently, in addition to generally reduced motor

system activity during word processing, we observed a spe-

cifically strong hypoactivity for words semantically related to

action (Fig. 1 Part B) e as predicted in hypothesis 1, above. A

region-of-interest analysis (ROI) comparing autistic and non-

autistic participants found no difference in activity evoked

by object words in precentral gyrus, but a significant differ-

ence in the activity evoked by action words in precentral

gyrus, which was lower in ASC.

To examine the functional role of this motor activity in

action word processing, we invited the same autistic partici-

pants who had taken part in the neuroimaging experiment to

come back to the lab a fewweeks later. Here, they completed a

semantic decision task where they made speeded semantic

decisions about the meaning of the words previously pre-

sented in the fMRI experiment. When comparing semantic

decision performance for action and objectwords (whichwere

matched for a range of psycholinguistic features), we found

that individuals with ASC processed action-related words

significantly more slowly than object words. TD individuals

https://doi.org/10.1016/j.cortex.2017.11.019
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Fig. 1 e Data from Moseley, Mohr et al. (2013), Moseley, Pulvermüller, et al. (2013). Participants engaged in a silent reading

task where they passively read a large corpus of words including abstract words (such as ‘peace’), object words (‘cheese’)

and action words (‘kick’). In Panel A, overlays of brain activation for the contrast of all words versus a low-level visual

baseline (hash-marks) are depicted for the control (blue) and ASC participants (red), at an uncorrected threshold of p < .005.

In Panel B, overlays of brain activity for action words versus a low-level visual baseline (hash-marks) for controls (blue) and

ASC participants (red), p < .005 uncorrected. Panel C depicts the correlation in ASC participants between hypoactivity in a

precentral region-of-interest and poorer processing of action words (quantified by subtracting response times for matched

object words, which autistic participants were quicker to process, from reaction times to action words). Lower scores in this

axis therefore depict a greater deficit in action word processing as compared to object words.
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were equally efficient in processing both types of words.

Consequently, hypothesis 2, above, was supported.

From a theoretical perspective, hypothesis 3 is perhaps the

most important for evaluating a functional role for motor

systems in action word processing: if hypoactivity in this re-

gion is related to problems in understanding, this would be

strong evidence for a semantic function of this region. In

autistic participants, the level of activity elicited in frontal

motor systems by actionwords indeed correlated significantly

with the specific processing deficit for these words (Fig. 1 Part

C), which provides strong evidence for hypothesis 3.

On reporting a behavioural deficit in action word process-

ing in autism, it is important at this point to revisit the neural

architecture facilitating this kind of action perception inte-

gration in humans. The failure of perceived words to ignite
activation in frontal and motor systems, in autism, is consis-

tent with the general disruption of long-distance cortico-

cortical communication in ASC and furthermore with the

dysconnectivity within and betweenmotor systems and other

brain regions. The impaired integration of motor and

perceptual information shown here in the language domain

most particularly implies deficits in the long-distance fibre

bundles that are especially important in the sensorimotor

‘information mixing’ process for language. The arcuate

fasciculus (AF) has been purported to play a particular role in

channelling sensory activity in temporal and parietal regions

to the frontal lobe and motor cortex (Pulvermüller & Fadiga,

2010; Schomers et al., 2017). We thus conducted probabilistic

tractography (diffusion-weighted imaging) of the long fron-

totemporal segment of the arcuate in 18 adults with AS and 14

https://doi.org/10.1016/j.cortex.2017.11.019
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age- and IQ-matched TD controls. This analysis revealed a

substantial bilateral reduction in the volume of this neuro-

anatomical connection bundle (Moseley et al., 2016: see Fig. 2).

Abnormalities in the arcuate were also found in two other

studies, one with a larger population of autistic adults (Catani

et al., 2016), another in a population of autistic children

(Roberts et al., 2014), though in both studies abnormalities

were left-lateralised.

That a relationship exists between behavioural processing

deficits and hypoactivity in brain regions argued to support

action semantic meaning is strong evidence for a functional

role of motor systems activity in action word processing.

Another argument against an epiphenomenal interpretation

of Moseley, Mohr et al.'s (2013) findings comes from a follow-

up study where participants completed the same silent

reading task during combined EEG-MEG recording. In

typically-developed individuals neurophysiological distinc-

tions between action and object words are evident within

150 msec of word presentation (Moseley, Pulvermüller, et al.,

2013). Distinctions between different types of action words

are likewise evident between 150 and 200 msec (Pulvermüller,

Shtyrov, et al., 2005), sometimes even earlier (Shtyrov,

Butorina, Nikolaeya, & Stroganova, 2014). These studies,

along with many others, refute the possibility that sensori-

motor semantic activity reflects a process secondary to lan-

guage understanding, because other work has shown that the

earliest semantic activations in well-established, multimodal

semantic areas appear at the same time, at around

100e200 msec (e.g., Boulenger, Shtyrov, & Pulvermüller, 2012).

The same paradigm in autistic participants showed a marked

lack of sensorimotor activity for action words in frontal

cortices (in fact, greater activity for object words here), and

indeed a general lack of distinction between action and object

words at this early stage of processing (Moseley et al., 2014).

This behavioural and neuroscientific evidence, along with

previous studies of patient groups (see Section 1), strongly

suggest a functional role formotor systems in action semantic

processing. It is however notable that our highly capable

autistic adults were slower but not less accurate than control

participants in the processing of action words. That they were

correct in their semantic decisions on action-related words

suggests a deficit in efficient access to action-semantic infor-

mation. Indeed, we return here to the argument offered by

Hickok (2014) above, and would suggest that the evidence

supports the necessity for motor system involvement in

optimal action word processing, but does not deny the pos-

sibility of othermeans of retrieving semantic information (see

Pulvermüller, 2013). We would suggest that the linkage be-

tween motor and perceptual regions in ASC is certainly not

entirely ‘broken’ (as has been well argued by others as far as

mirror neurons are concerned [Hamilton, 2013]), but it rather

appears that the integrity of action perception circuits is

reduced, as would certainly be suggested by reduced integrity

of corticocortical connectivity. A reliance on more perceptual

or combinatorial modes of semantic processing could be

supported by temporal or parietal areas such as, for example,

the anterior temporal lobe's so called semantic ‘hub’; this

might allow retrieval of meaning but not with the same speed

and proficiency. Alternate routes of processing, in ASC, are
consistent with less automatic semantic processing compared

with TD individuals (Frith & Snowling, 1983; Happ�e, 1997;

Jolliffe & Baron-Cohen, 1999; L�opez & Leekam, 2003; Wahl-

berg & Magliano, 2004; Jarvinen-Pasley et al., 2008). This may

explain why a silent reading task might not elicit efficient

access to action semantic information in people with ASC

whilst they prove capable of processing these words by

alternative meanse such as reliance on additionally recruited

visual cortices (Gaffrey et al., 2007). Alternative routes by

which people with ASC might retrieve action meaning in vivo

are yet to be identified: an important goal for research clari-

fying the retrieval of conceptual meaning.

In concluding this section, we refer to the causal inter-

pretation paradigm normally applied in neuropsychology,

where neuronal abnormality is presumed to be the cause of

behavioural deficits or deviance from the norm. An important

result of the research above (Moseley, Mohr et al., 2013) was

that access to action semantic knowledge was gradually

related to the degree of precentral activation of the motor

system, reflecting a correlational relationship between motor

activity and comprehension performance. Although correla-

tions in themselves prohibit conclusions on causality, we

posit that the specific neurobiological features of ASC, mani-

fest in hypoactivation of themotor system during action word

comprehension, are a plausible cause of the correlated effi-

ciency reduction in action semantic processing. This position

is grounded in the previous literature suggesting a) functional

importance of this area for action semantic processing (see

Section 1) and b) structural abnormalities, in ASC, in frontal

motor systems, their internal connections and those con-

necting them to other brain regions, particularly the long-

distance pathways between temporal and parietal circuits

involved in perception and frontal and motor circuits impor-

tant for action processing (Catani et al., 2016; Moseley et al.,

2016; Roberts et al., 2014). We suggest that consequently, the

developing circuits binding action- with perception-related

information are fragile in ASC and do not efficiently channel

perceptual information to motor circuits. At the behavioural-

cognitive level, this lack of frontotemporal action perception

binding and reduced comprehension-relatedmotor activation

was here manifest in a specific sluggishness during action

semantic processing. As relates to the cognitive neuroscience

of semantic processing, we finally postulate that these corre-

lation results from ASC are strong evidence for the functional

relevance of motor systems for processing words with action-

related meaning. This conclusion does, however, lead to

further testable hypotheses which were examined in the

study discussed in the next section: how would individuals

with ASC perform with other words which draw on motor

systems for meaning?
7. Abstract emotional meaning and autism;
the case of emotion words

“Ein innerer Zustand bedarf €außerer Kriterien” [An inner state

requires external criteria] (Wittgenstein, 1953, Philosophical

Investigations, 580)
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Fig. 2 e Panels A to C show selected findings of volumetric reduction in the arcuate fasciculus in people with ASC (Moseley

et al., 2016); Panel D shows figures reproduced with permission of Catani et al. (2016). Part A shows a thresholded (p < .001)

mask of the arcuate fasciculus in a single participant. Part B reflects average volume (voxel number) of the arcuate fasciculus

for autistic and control participants in the left and the right hemisphere, with asterisks reflecting significant group

differences. Part C reflects correlations between autistic traits, as measured by the AQ: Baron-Cohen et al., 2001, and volume

of the arcuate fasciculus in the left and right hemispheres. A significant correlation between autistic traits and right arcuate

volume (r ¼ ¡.413, p ¼ .019) reflected that reduced arcuate volume was associated with a higher number of autistic traits.

The same pattern was marginal in the left hemisphere (p ¼ .056). Interestingly, we note that whereas our results showed

bilateral reduction in the arcuate which was most apparent in the right hemisphere, other analyses found abnormalities in

the left hemisphere only (Catani et al., 2016; Roberts et al., 2014). Catani et al., who studied a large adult sample, found

reduced fractional anisotropy in the arcuate fasciculus (and some other frontal tracts): this measure reflects reduced

microstructural integrity (via less restricted diffusion along the tract), and is thought to reflect differences in fibre density,

axonal diameter and myelination of white matter. Panel D shows figures reproduced from Catani et al. As well as finding

abnormalities in the long segment of the arcuate, which is here shown in red and appears approximate to our delineation of

the whole arcuate tract, these authors found a relationship between the frontoparietal “anterior” segment of the left arcuate

(shown in green, which we suggest may be equivalent to what others have described as the third branch of the superior

longitudinal fasciculus [see Moseley et al., 2016, for discussion]) and stereotyped, repetitive and idiosyncratic speech in

childhood as measured by item B3 of the Autism Diagnostic Interview-Revised (Le Couteur et al., 2003).
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Fig. 3 e Activity evoked by emotion words in typically-

developing individuals, and areas of autistic hypoactivity

in a direct contrast of emotion-word activation in controls

and individuals with ASC. The uncorrected (p < .005) image

on the left depicts brain areas activated in a comparison of

abstract emotion words (such as ‘fear’) versus a low-level

visual baseline (hashmarks) in typically-developing

controls. The image on the right, which is corrected at the

FWE rate (p < .05), depicts areas significantly more active in

controls than people with ASC when viewing the same

emotion words.
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The disruption of action perception circuits supporting

word meaning predicts particular impairment, in autism, for

language and especially for any words whose meaning draws

on motor systems. The most typical case of action words, in

this sense, are signs used to speak about actions that

language-using humans normally perform by themselves

(e.g., ‘write’, ‘lick’). The learning of these words is possible in

the context of performing the action overtly, watching others

do so, or when the context leads to a ‘simulation’ of the ac-

tions in the mind and brain. The situation is much more

complicated in the case of abstract emotion words, and

possibly in the case of all abstract words, which, according to

Vigliocco et al. (2014), are often emotion-related. Abstract

emotion words need to be related to an ‘inner state’, but

problematically such an inner state would not be directly

accessible to the teacher who could teach the language-

learner the correct use of emotion words. This issue is a

crucial one in the philosophy of language and mind, where

one simple solution has been offered: that the language-

learning child normally expresses its ‘inner’ emotional

states (e.g., joy, fear) in its actions, which provide the key for

the language-teacher to link the word to its correct meaning

(Wittgenstein, 1953). Abstract emotion words would thus

behave like ‘hidden’ action words, and would be linked with

meaning through embedding (expression) in action.

Indeed, an fMRI study investigating the processing of

emotion words (such as ‘joy’ and ‘fear’) showed activity not

only in limbic emotion-processing areas (such as anterior

cingulate and anterior insula), reflecting the affective mean-

ing of these terms, but in motor areas overlapping with re-

gions activated by overt action-related words (such as “write”

and “lick”; Moseley, Carota, Hauk, Mohr, & Pulvermüller,

2012).

Throughout life, individuals with ASC show fundamental

differences in their expressions of emotion. Emotional

expression in the face and voice is typically described as

reduced or absent (Kanner, 1943; Moody, McIntosh, Mann, &

Weisser, 2007; Scambler, Hepburn, Rutherford, Wehner, &

Rogers, 2007; Yirmiya, Kasari, Sigman, & Mundy, 1989) or as

markedly atypical and less recognisable (Asperger, 1944;

Kanner, 1943; Langdell, 1981; Loveland, Tunali-Kotoski, Pear-

son, Brelsford, & et al., 1994; Mcdonald et al., 1989; McIntosh,

Reichmann-Decker, Winkielman, & Wilbarger, 2006; Moody

et al., 2007). This would make it particularly difficult for

language-teachers to teach autistic children abstract

emotional meaning in the means described above, and pre-

dicts a specific deficit in the processing of abstract emotion

words comparable to that documented for (other) action

words above.

It was on this basis that we examined emotion word pro-

cessing in autistic participants (Moseley, Shtyrov et al., 2015;

Moseley, Ypma et al., 2015). We observed a similar ‘disem-

bodiment’ of emotion concepts, which failed to activate either

motor systems or limbic systems as they did in controls (see

Fig. 3). Importantly, hypoactivity was specific in these regions

and specific to abstract emotion verbs such as ‘fear’; no group

differences were seen in analysed regions for abstract verbs

such as ‘dwell’ or ‘waive’. As these words were matched in

concreteness, imageability, frequency and familiarity, this

category-specific brain difference could not be associatedwith
the highly abstract nature of emotion words. Nor could it be

said that people with ASC showed a general deficit for all

verbs, since a dissociation appeared within the grammatical

category, specifically for words with mental-state content.

Interestingly, the degree of motor hypoactivation for

emotion words seen in individual autistic participants pre-

dicted their degree of autistic traits as assessed by the Autism-

SpectrumQuotient (AQ) (Baron-Cohen,Wheelwright, Skinner,

Martin, & Clubley, 2001). This is in fact consistent with the

idea that abstract emotion words can be seen as semantically

similar to action words insofar as being learnt via similar

mechanism e because for overtly action related verbs like

‘lick’ and ‘write’, an associationwas foundwhere hypoactivity

in motor systems correlated with higher numbers of autistic

traits (Moseley, Mohr et al., 2013). This is an important finding

which we return to below.

The neurobiological indication for reduced semantic-

related motor activation for emotional language in ASC ties

in nicely with behavioural work on language understanding.

Difficulties in understanding and using words denoting in-

ternal states have been well documented in autism (Baron-

Cohen et al., 1994; Happ�e, 1994; Jolliffe & Baron-Cohen, 1999;

Tager-Flusberg & Sullivan, 1994; Tager-Flusberg & Sullivan,

1995; Tager-Flusberg, 1992). Such indication that emotional

language processing is reduced also sits nicely with evidence

for more general autistic difficulties in emotion recognition in

both verbal and nonverbal stimuli (Harms, Martin, & Wallace,

2010; see Uljarevic & Hamilton, 2013, for a more nuanced

view). To what degree motor and limbic cortices are causally

involved in emotion and emotion word processing is an

exciting focus of current investigation. Several studies indi-

cate a causal link between implicit simulation of emotions in

the individual and recognition of those same emotions in

https://doi.org/10.1016/j.cortex.2017.11.019
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others (Bastiaansen, Thioux, & Keysers, 2009; Baumeister,

Papa, & Foroni, 2016; Goldman & Sripada, 2005; Neal &

Chartrand, 2011; Oberman, Winkielman, & Ramachandran,

2007; Stel & van Knippenberg, 2008; Wood, Rychlowska,

Korb, & Niedenthal, 2016). Studies have also shown that

basic movement kinetics, processed atypically in ASC, offer

clues to the emotional and mental states of others (Hubert

et al., 2007; Patel, Fleming, & Kilner, 2012). In the language

domain, processing of emotion-related language is affected by

manipulation of facial musculators (Glenberg, Havas, Becker,

& Rinck, 2005; Havas, Glenberg, Gutowski, Lucarelli, &

Davidson, 2010) or damage to white matter just adjacent to

motor cortex (Dreyer et al., 2015). This evidence implies a

potentially causal link between the motor hypoactivity we

observed in ASC during processing of emotion words, and the

emotion word processing deficits noted above in behavioural

studies. This requires further investigation, though we return,

below, to a wider role for motor systems in emotion under-

standing and recognition generally.
8. Widening the lens: autism as a disorder of
movement and action perception integration

“In an infant or a toddler, the possible effects of slow responding

or delayed initiating would surely have an effect on the entire

trajectory of development … [and on] the ‘dance of relationships’

(Stern, 2000)” (Donnellan et al., 2013, p. 6).

The recent research summarized in the previous sections

has focused on the role of sensorimotor systems and action

perception integration in language and semantics and the

differences observed between autistic and TD participants.

We would however like to return here to a finding which may

initially appear as an accidental observation but which may

reflect core aspects of ASC with great theoretical significance:

the observed hypoactivity of motor cortex during language

understanding generally, and particularly in action and

emotion word processing, and the significant correlation be-

tween this hypoactivity and the number of autistic traits an

autistic person exhibits. Autistic individuals with greater

impairment in social interaction, more repetitive and

restricted interests and lack of imagination (as measured by

the AQ: Baron-Cohen et al., 2001) showed the greatest degree

of hypoactivity, ergo, abnormality in motor systems and ac-

tion perception integration (Moseley, Mohr et al., 2013;

Moseley, Shtyrov et al., 2015; Moseley, Ypma et al., 2015).

This is a finding which resonates with those of other research

groups: Nebel, Eloyan et al., 2014 found the extent of atypical

functional connectivity in precentral gyrus to predict diag-

nostic status, ASC severity (as measured by the Autism Diag-

nostic Observation Schedule [Lord et al., 2000]) and

sociocommunicative skills (measured by the Social Respon-

siveness Scale [Constantino et al., 2003]). Catani et al. (2016)

reported a relationship (see Fig. 2, Part D), in their autistic

participants, between the degree of abnormality in the arcuate

and uncinate fasciculi and childhood language symptoms as

measured by the Autism Diagnostic Interview-Revised (Le

Couteur et al., 2003). At the behavioural level, relationships
betweenmovement deficits and autistic symptom severity are

well documented in our review (MacDonald, Lord, & Ulrich,

2014; MacDonald, Lord, & Ulrich, 2013; Papadopoulos et al.,

2012; Stevenson, Lindley, & Murlo, 2017; Travers et al., 2015,

2013; Uljarevic, Hedley, Alvares, Varcin, & Whitehouse, 2017;

Colombo-Dougovito & Reeve, 2017 are an exception, but a

questionable one due to their methods).

A link between motor disorder and the broader symptoms

of autism was to our knowledge first proposed by Leary and

Hill (1996), who pointed out the seemingly obvious detri-

mental effects of movement abnormalities on speech,

emotional expression, social interaction and communication

with others. These authors produced a radical but little

noticed reimaging of the ‘autistic triad’. Their thesis received

little support in the 1990s butwas followed by consideration of

an ‘enactive mind’ approach by Klin, Jones, Schultz, and

Volkmar (2003), according to which “… social cognitive pro-

cesses emerge only from recurrent sensorimotor patterns that

allow action to be perceptually guided” (p. 350).With reference

to a vast array of eye-tracking data, these authors suggested

that, in ASC, ‘disembodied’ routes are taken for generating

social responses instead of the normal ‘embodied’ pathways,

hence their unnatural and often inappropriate quality, and

that this might result from a lack of salience to social stimuli

from very early life. “The tools of thought are acquired outside

the realm of active social engagement and the embodied ex-

periences predicated by them” (p. 357). Klin et al.'s account

spoke of the grounding of social processes in experience, but

did not strongly highlight the necessary integrity ofmotor and

sensory systems alongwith their structural connection for the

typical development of thought and social behaviour. At the

time, much less was known about fundamental dysfunction

in sensorimotor and neuronal systems in ASC, such as the

motor abnormalities that have been outlined in Sections 2 and

3 above or the sensory abnormalities that are the focus of

other papers (Klintwall et al., 2011; Marco et al., 2011).

The connection between fundamental sensorimotor

disruption and higher cognitive and social impairments has

since beenmademore explicit by other theorists such as Eigsti

(2013), who drew a putative link betweenmovement deficits in

ASC and impairments in motion perception, mimicry

(including the very automatic, implicit form that is contagious

yawning) and gesture. Mostofsky and Ewen (2011) extend this

link to imitation, praxis and ToM (see further discussion

below). In addition to the empirical evidence presented in

these accounts, a number of studies have demonstrated that

movement disorder may indeed have predictive value for

autistic symptoms more broadly than the aforementioned

prediction of language development (Bhat et al., 2012;

Donnellan et al., 2013; Gernsbacher et al., 2008; Hellendoorn

et al., 2015; Lebarton & Iverson, 2013; Stone & Yoder, 2001;

Thurm et al., 2007). At a broader level, motor skills at age

two are the strongest predictor as to whether these children

would still meet diagnostic criteria for ASC at age four, where

language, communication, socialisation skills and symptom

severity were still non-significant (Sutera et al., 2007). Another

study found that at six months of age, head-lag (inability to

keep the head in line with the spine when infants are pulled

upright from a supine position, indicating weak head and

neck control) is predictive of an ASC diagnosis and of delays in
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social development and communication at 30 or 36 months

(Flanagan et al., 2012). Similarly, MacDonald, Lord, and Ulrich

(2014) found both fine and gross movement impairments be-

tween the ages of 14e33 months to predict the severity of

autistic symptoms (in the sociocommunicative domain).

These results all strongly suggest that motor impairments are

one of the earliest predictors of autism and thus may be a

crucial (though not necessarily syndrome-specific, given their

appearance in other developmental conditions [Gillberg, 2010;

Levit-Binnun, Davidovitch, & Golland, 2013]) early signifier of

aberrant brain development.

Furthermore, Leonard et al. (2014) found movement delay

or impairment at nine months predictive not only of move-

ment disorder at 5e7 years old but also predictive of diffi-

culties interpreting facial expression and gaze direction at the

same age. Interestingly, movement impairment was no longer

predictive of these social-cognitive skills at fortymonths, with

the authors hypothesising a potential ‘critical period’ in which

development of face processing ability is most strongly

influenced by lagging or intact motor development. Several

studies in older autistic children (Dyck, Piek, Hay, &

Hallmayer, 2007; Hilton et al., 2012; Hilton et al., 2007; Sipes,

Matson, & Horovitz, 2011), and indeed non-autistic children

(Bar-Haim & Bart, 2006; Cummins, Piek, & Dyck, 2005; Piek,

Bradbury, Elsley, & Tate, 2008; Whittingham, Fahey, Rawicki,

& Boyd, 2010), also report correlations between motor

dysfunction, social impairments and even emotion

recognition.

In a broader perspective, such evidence is indicative of a

crucial role for motor systems and action perception integra-

tion in typical cognitive and social development. A child with

motor impairments cannot effectively link perceptual pre-

cedents and consequences to its own motor activities, and

therefore will have difficulty interacting with the external

world and other agents with the same ease and flexibility.

Among other problems, motor impairments would cause dif-

ficulties exploring the environment, manipulating objects,

looking at others, and producing communicative attempts.

With limited motor ability, it already becomes more difficult to

perform the aforementioned elementary rhythmic extremity

movements and babbling articulations, in the second half year

of life, which may be so crucial for setting up connections be-

tween action and perceptual brain circuits and serve later as a

vehicle for repetitions. Incidentally, as we have seen in Sec-

tions 2 and 4, the ability to repeatedly articulate verbally (in

babbling) and tomove are amongst those early deficits present

in autistic infants, and the resultant reduced production of

vocal and motor acts has implications for the development of

further social and cognitive domains, including empathy

(Braadbaart, de Grauw, Perrett, Waiter, & Williams, 2014;

Decety & Meltzoff, 2011; Meltzoff & Decety, 2003). Needham

and Libertus (2011) link the development of reaching behav-

iours to the ability to interpret others' reaches as goal directed;
the ability to crawl to that of representing space in a non-

egocentric or allocentric manner; the ability to sit and reach

and thus take part in hiding games to object permanence.

Crawling and standing opens up many new possibilities for

social interaction (Campos et al., 2000; Clearfield, 2011; Karasik

et al., 2014). If reconceptualising the symptoms of ASC in light

of the relationship between motor dysfunction and autistic
symptomatology, a startling and unexpected finding is that

ability to reach for objects or faces, at three months old, actu-

ally itself increases spontaneous interest and orientation to-

wards faces (Libertus & Needham, 2011). This finding is

particularly notable in light of a popularmodel of autismwhich

attributes causal primary of symptomatology to abnormalities

in social motivation (Chevallier, Kohls, Troiani, Brodkin, &

Schultz, 2012). Differences in social orienting and attention

have been reported along with motor abnormalities within the

first year of life (Clifford, Hudry, Elsabbagh, Charman, &

Johnson, 2013; Maestro et al., 2002; Ozonoff et al., 2010; Saint-

Georges et al., 2010; Zwaigenbaum et al., 2005). A putative

connection between motor dysfunction and decreased social

inclination is self-evident to a degree but it remains to be

shown whether key social deficits can be explained in terms of

action perception integration.

Eigsti (2013), in a thorough review of a potential role for

‘disembodiment’ in autistic symptomatology, called for

“direct tests of embodied processes” (p. 7); she subsequently

provided one, demonstrating that encoding Japanese charac-

ters in an avoidance or approach position affected how posi-

tively TD individuals rated that same stimulus later, but did

not affect individuals with ASC (Eigsti, Rosset, Col Cozzari, da

Fonseca, & Deruelle, 2015). Likewise, the experimental series

on semantic understanding summarized in Sections 6 and 7

above are consistent with the view that, to use Eigsti's
words, “the stimuli that an individual with [ASC] encounters

may be less bound to the sensory and motor conditions that

held when that stimuluswas first encountered” (p. 7). The role

of sensorimotor systems in linguistic and socio-

communicative processing, and indeed this reframing of

autistic symptomatology, encourages scientists to search for

further roles for sensorimotor cortical systems in other kinds

of cognitive processes. We consider briefly, here, some ave-

nues worthy of research attention.

One sociocognitive process with particular resonance for

ASC is theory of mind, or ToM (Baron-Cohen, 2009; Senju,

2013): an impairment in the process by which we think

about (predict, estimate and infer) the mental and emotional

states of others appears to set people with ASC apart from

individuals with developmental conditions such as ADHD

(Gonzalez-Gadea et al., 2013). Typical tests of ToM emphasise

the understanding of action in social context. Considering

that ToM is strongly interlinked with language development

(Astington & Baird, 2005) and involves action representations,

a potential link between compromised frontotemporal (ac-

tion-perception) circuits and ToM abnormalities is of high

interest. To spell out this connection more specifically, it

might be advantageous to consider the picture story in Fig. 4.

In this case, the observed action that person A put a bug in the

bag contrasts with the assumption that the person handing

over a present is delivering something nice. One reason for

failure in the ToM taskmay be because these actions were not

appropriately processed, memorized or evaluated in the

context of the scene. Such a deficit in representing and pro-

cessing actions, as it is implicated by an action perception

integration problem, would certainly complicate performance

on this type of task, although a ToM deficit independent of

action content and other factors could also contribute to

failure.

https://doi.org/10.1016/j.cortex.2017.11.019
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Fig. 4 e One of several stories in a Theory of Mind task developed and made freely available by Brüne (2003). In this story,

the critical questions are a) what person B, in the blue shirt, believes is in the bag (false belief); b) what person B believes that

person A, in the red shirt, intends to do (second order false belief); and c) what person A believes that person B believes that

they, person A, intend to do (third order false belief). Several potential actions have to be processed and represented in a

scenario like this. In this case, the observed action (putting a bug in the bag) contrasts with person B's assumption that

person A will be giving them a present.
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Functional (Yang, Rosenblau, Keifer, & Pelphrey, 2015) and

anatomical (Herbet et al., 2014) data suggest there aremultiple

routes to understanding other minds and multiple systems

which typically interact in doing so e an interaction which is

conspicuously atypical in autism (Fishman, Keown, Lincoln,

Pineda, & Müller, 2014). These interacting systems include

‘higher-order’ mentalizing areas (ventromedial prefrontal

cortex, cingulate cortex and temporoparietal junction) and

‘lower-order’ simulatory areas (premotor and somatosensory

cortex, the frontoparietal mirror network) (Centelles,

Assaiante, Nazarian, Anton, & Schmitz, 2011; Herbet et al.,

2014; Keysers & Gazzola, 2007; Lombardo, Chakrabarti,

Bullmore, Wheelwright, et al., 2010; Schippers, Roebroeck,

Renken, Nanetti, & Keysers, 2010; Sperduti, Guionnet,

Fossati, & Nadel, 2014; Spunt & Lieberman, 2012; Zaki,

Weber, Bolger, & Ochsner, 2009). As mirror neuron theorists

have differentiated between shallow recognition of actions

and “understanding from the inside” through action simula-

tion (Rizzolatti & Sinigaglia, 2010), so too have scientists

studying mentalizing and social cognition differentiated be-

tween the onerous, flexible and potentially conscious “Type 2”

processes associated with mentalizing regions and the auto-

matic, stimulus-driven and effortless “Type 1” embodied

processing (Bohl & van den Bos, 2012). The embodied route

might take the form of “using oneself as a proxy for
understanding others” (Lombardo & Baron-Cohen, 2011, p.

134), where simulation of “embodied” information gives us

privileged, fast, phenomenological access to the experience of

others. These Type 1 processes might also be analogous to the

typical usage of what Mostofsky and Ewen (2011) describe as

‘internal action models’ stored in the same simulatory areas

as mentioned above (the premotor-parietal mirror circuit):

conglomerations of motor plans and associated sensory

feedback which might be employed via feed-forward mecha-

nisms to aid intention understanding.

From previous research, we know that sensorimotor sys-

tems have causal influences on emotion recognition (see

Section 7), that observing the movement of others affords

information on their emotional states (Hubert et al., 2007;

Patel et al., 2012), beliefs (Gr�ezes, Frith, & Passingham, 2004)

and social intent (Becchio, Sartori, Bulgheroni, & Castiello,

2008a, 2008b; Georgiou, Becchio, Glover, & Castiello, 2007;

Sartori, Becchio, Bara, & Castiello, 2009), and that the same

frontoparietal ‘mirror’ systems which respond to action

execution and observation, alongwith the insula, also activate

while perceiving faces indicating psychological states of

others (Di Cesare et al., 2015). Dysfunction and connectivity

within and between motor systems and other cortical regions

would affect the interaction between the higher-order and

lower-order systems involved in mentalizing. Movement-
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impaired people with ASC (and indeed other movement-

impaired children with ToM deficits [Caillies, Hody, &

Calmus, 2012]) may therefore be forced to be “disembodied

‘theorists’” (Lombardo & Baron-Cohen, 2011, p. 134), lacking

clues from motor systems and that simulative insight from

the inside (Rizzolatti & Fabbri-Destro, 2010; Rizzolatti, Fabbri-

Destro, & Cattaneo, 2009). Similarly, Mostofsky and Ewen

(2011) posit that autistic symptomatology goes back to de-

ficiencies in the aforementioned internal action models, and

offer an explanatory pathway from action perception inte-

gration to ‘embodied’ mentalizing.

How the precise interplay between these systems gives rise

to complex mentalizing is the focus of ongoing research

attention. One interesting avenue for investigation concerns

the finding that higher-order mentalizing regions are involved

in understanding sentences where an expected outcome is

negated (Grisoni et al., 2017). In many ToM tasks, different

‘possible worlds’ (outcomes involving action sequences) must

be evaluated against each other with at least one possibility

being finally discarded; could the co-occurring and interactive

activations of sensorimotor and mentalizing areas in men-

talizing tasks relate to the processing and discarding of action

sequences?

In so far as ASC are concerned, differences in motor sys-

tems and frontoparietal mirror systems have been described

above, but problematically these individuals also show dif-

ferences in the function of Type 2 mentalizing areas

(Lombardo, Chakrabarti, Bullmore, & Baron-Cohen, 2011;

Lombardo, Chakrabarti, Bullmore, Sadek et al., 2010). There-

fore, the compensatory mechanisms that autistic people use

during mentalizing, not to mention their anecdotal cost in

terms of stress and energy (Baldwin & Costley, 2016; Bargiela,

Steward, & Mandy, 2016; Hendrickx, 2015), are of high

research interest. Investigations into ToMmay, in addition, be

further linked with visual perspective-taking, which has been

proposed to rely on some of the same neural substrates as

mental perspective-taking (Buckner& Carroll, 2007; Hamilton,

Brindley, & Frith, 2009; Spreng & Grady, 2010; Spreng, Mar, &

Kim, 2009). A preliminary study with a very small sample

links improving physical ‘motor’ perspective taking (facili-

tating an actor performing a physical action) with increased

language of mental states and mental perspective-taking

(Studenka, Gillam, Hartzheim, & Gillam, 2017). The ability to

mentally ‘put yourself in another's place’, to simulate their

visual perspective, is known to be challenging for individuals

with ASC (Conson et al., 2015; Pearson, Ropar, & Hamilton,

2013) and is suggested, like mentalizing, to rely on alterna-

tive processing strategies. Investigation of the neural mecha-

nisms of these strategies is of high research importance.

Another area where motor systems may play a critical role

in socio-communicative function is in pragmatics, an area of

immense difficulty for people with ASC (Eigsti et al., 2011).

Neurometabolic and neurophysiological studies have

demonstrated that the motor system may be crucially

involved in embedding words and sentences, the structural

‘bones’ of language, in the functional ‘flesh’ of communicative

speech acts (Egorova, Pulvermüller, & Shtyrov, 2014; Egorova,

Shtyrov, & Pulvermüller, 2013, 2016): For example, if the

same utterances are used for naming objects, premotor cortex

will not be recruited, butwhen the samewords are used for the
speech act of requesting (or asking for) an object, motor sys-

tem recruitment is prominent. At present we largely lack evi-

dence addressing the brain mechanisms of pragmatic

language understanding in social-communicative interaction.

However, as interactive communication is a notorious prob-

lem for individuals with autism, we might hypothesise that

neuropragmatic activity, and hence the neural differentiation

between different types of speech acts, may be less clear than

in TD individuals. Early research in this area has indeed

demonstrated differences in brain activity linked to pragmatic

understanding (Tesink et al., 2009). Better understanding the

neural basis of pragmatics, and the profound difficulties that

autistic people experience in communication, beyond the

understanding of linguistic structures and the mechanics of

using speech,will be an important research goal for the future.
9. Summary, conclusions and future
directions

In light of the above, focus on autistic motor disorder and the

role of motor systems in higher cognitionmay have important

clinical and therapeutic implications which are now begin-

ning to be explored (Donnellan et al., 2013; Lee, Lambert,

Wittich, & Park, 2016; McCleery et al., 2013). We suggest, in

closing, that the aforementioned ‘broken mirrors’ hypothesis

of autism may have been a straw man which, however, has

pointed the way to fruitful research in autism. There are re-

ports of abnormalities in mirror neuron function (see Section

3) but if one argues that ASC is the result of absent or uni-

versally and globally ‘broken’ mirror neurons this may be

considered falsified by instances where ‘motor resonance’ or

activity in mirror neuron regions is indeed present (Becchio &

Castiello, 2012; Enticott et al., 2013; Oberman et al., 2008). It

cannot, however, be denied that motor systems, which

contain mirror neurons, are categorically dysfunctional or

functionally atypical in ASC, as we observe in studying higher

cognitive skills, for example in action semantic processing;

and that, in accordance with the grounding of ‘higher’ pro-

cesses in sensorimotor systems, such differences will have

marked effects on development. We suggest a wealth of

motoric, perceptual and cognitive features of ASC may be

understood in terms of a deficit in action perception integra-

tion which may relate to aberrant development of long-

distance fibre tracts, especially those corticocortical tracts

linking anterior to posterior regions.

Our goal in this article was certainly not to explain the

whole autistic phenotype via motor dysfunction alone; a local

motor cortex (or mirror neuron) abnormality does not provide

sufficient explanatory power for these complex conditions. As

noted in Section 2, movement impairments are shared by

several neurodevelopmental conditions (Gillberg, 2010),

where they would be equally expected to impair development

in other domains (see Leonard&Hill, 2014). Findings related to

the behavioural differences between autism and develop-

mental conditions are patchy and inconsistent (Section 2),

relating only to children. We focused in this review on ASC,

given the preponderance of data concerning the neural sub-

strates of motor disorder and dysconnectivity within and be-

tween cortical motor systems, but it is likely that the neural
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substrates of motor dysfunction in conditions such as DCD,

SLI and ADHD differ from those seen in autism. It thus re-

mains to ascertain the precise nature of early motor disorder

in these developmental conditions, how it differs from that of

ASC at the behavioural and the neural level, such that wemay

understand emergent differences in the phenotypes. As such,

an important research goal would be to longitudinally track

and compare motor impairments and related cognitive and

social development in not only ASC but other developmental

conditions marked by early motor deficits and to attempt to

further differentiate the neural (and genetic) configurations

(including extent of motor [and non-motor] disruption) which

set these conditions apart. Given the existence of subtypes

within these conditions, a worthy goal might be to analyse

brain differences between participants grouped by their defi-

cits, rather than their diagnoses.

Our goal in this article was to illuminate the relationship

between motor dysfunction and features that are cardinal to

the autistic phenotype but which may appear to some extent

(an extent likely related to the precise neural substrates un-

derlying motor dysfunction) in other conditions. These fea-

tures are language delay or disruption; deficits in action

semantics and highly abstract emotion concepts, which could

extend beyond word and action-related language processing

to problems with imitation, gesture, action recognition and

understanding; social cognition, motivation and crucially to

social-communicative interaction and pragmatic language

understanding; mentalizing and impairment in understand-

ing intentions and emotions, alongside emotion words. The

aberrant connectivity reflected in poor integration of motor

and perceptual information inmovement tasks (see Sections 2

and 3) had a parallel in the information mixing deficit seen in

our studies in the language and semantic domains: the atyp-

ical ‘embodiment’ of sensorimotor and emotional associa-

tions of words. We have suggested, above, a number of areas

worthy of investigation where motor disruption and impaired

connectivity between motor and non-motor regions could

impact on higher cognitive processing.

The proposition that autistic symptomsmight have roots in

motor dysfunction has been made before in slightly different

guises, by authors who have linked motor deficits to a range of

cognitive and social impairments (Bo et al., 2016; Donnellan

et al., 2013; Klin et al., 2003; Leary & Hill, 1996; McCleery et al.,

2013; Mostofsky & Ewen, 2011; Rizzolatti & Fabbri-Destro,

2010) e and so in part we attempt here to build upon and

extend this action perception deficit perspective and its neu-

rocognitive consequences. Klin et al. (2003) emphasised the

grounding of social and cognitive processes in sensorimotor

experience and suggested that this differed in autism, but did

not strongly highlight the neurobiological architecture neces-

sary for this ‘grounding’ or ‘embodiment’, nor base their ac-

count on neurobiological evidence from ASC. A putative

neurobiological substrate for embodied cognition and autistic

symptoms was introduced in the original ‘broken mirrors’ hy-

pothesis (Ramachandran & Oberman, 2006), which was later

expanded by Rizzolatti and Fabbri-Destro (2010); these authors

speak of impairments to mirror neuron systems, implying

dysfunction of the link between perception and action.

Mostofsky and Ewen (2011) characterize the core abnormality of

ASC as an impairment in ‘internal action models’, reliant on
sensorimotor circuits across posterior parietal and premotor

regions for storage and sequencing, which they suggest play

functional roles in intention-understanding, praxis, imitation

and social communication e thus resulting in deficits in these

domains in autism. Eigsti (2013) queries whether the decreased

signal-to-noise ratio in ASC results in looser coupling between

stimuli and motor actions, thus also pointing toward the

explanation of cognitive impairments, especially in facial

mimicry. McCleery et al. (2013), in discussing ‘motor resonance’

(mirror systems) and linking such activity to imitation, language

development and aspects of social cognition such as empathy

and intention understanding, review interventions which

attempt to alleviate developmental difficulties in the afore-

mentioned domains through movement-based interventions

(such as, for example, auditory motor mapping training).

Although these authors less directly link cognitive and social

impairments to disruption of motor systems, their focus on

movement interventions in early life as ameans of preventing or

improving these impairments is highly suggestive of a causal

role of motor disorder in giving rise to social and cognitive im-

pairments. Finally, whilst stopping short of attributing motor

symptoms causal primary to cognitive and social deficits and

avoiding identifying neural substrates for any of this symp-

tomatology, Donnellan et al. (2013) revisit some of Leary and

Hill's (1996) original ideas in emphasising how destructive

motor and sensory symptoms of autism are to the ability of

autistic people to communicate and relate to others.

Our current proposal relates to and partially overlaps with

these earlier ones. We expand the action perception

perspective on autism in particular towards the dimension of

comprehension, language processing and meaningful symbol

understanding. Most importantly, we tried to take steps to-

ward a neuromechanistic model of ASC, also highlighting key

long-range corticocortical connections such as the AF that

show a degree of abnormality in this family of syndromes and

which may be crucial for action perception integration. More

generally, our model proposes a) that action mechanisms

normally become linked with perception mechanisms

through associative learning and that this link requires a

neural basis in the AF and perhaps other fronto-posterior fibre

tracts; b) that the neuronal circuits linking action and

perceptual information serve as carriers of cognitive func-

tions, including language and communication, and are

consequently functionally relevant for understanding and

many important aspects of higher cognition, such as abstract

emotion processing. These action perception circuits, which

are analogous to Mostofsky and Ewen's (2011) ‘internal action

models’, provide a mechanism for ‘mirroring’ (i.e., the map-

ping of perceptions to actions) along with a wider range of

social and cognitive skills, among which we here particularly

highlighted linguistic processing and abstract semantic un-

derstanding. We concur with the aforementioned authors

(Mostofsky& Ewen, 2011; Rizzolatti& Fabbri-Destro, 2010) that

a dysfunction of motor systems and of connectivity, including

the links between motor (and adjacent prefrontal areas) and

perceptual and multimodal posterior areas (especially tem-

poral cortex), would give rise to the looser coupling between

perceptual and action-related representations (Eigsti, 2013)

andmay explain some key features of themotor and cognitive

symptoms that characterise ASC.
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Whilst some of these previous accounts link deficits

described loosely as ‘embodied’ to mirror neurons (Eigsti,

2013; McCleery et al., 2013; Mostofsky & Ewen, 2011), we

expand this perspective through our consideration of how

these multimodal cells acquire their properties through in-

formation mixing. The existence of mirror neurons itself re-

quires a neurobiological explanation which might be cast in

terms of action perception links. We do not postulate a com-

plete absence or complete dysfunction of mirror neurons in

ASC (as in the original broken mirrors account) but rather a

reduced probability of linkage between frontotemporal action

and perception regions (consistent with the deficits we

observed in the AF in adults with autism) which would reduce

the multimodal properties of these cells. This would conse-

quently disrupt the formation of action perception circuits

supporting action, spoken language in general and action se-

mantics in particular e which is consistent with broader ab-

normality in the whole motor system (and its connections

with other cortical regions), rather than focussing on one type

of cell, mirror neurons, within this system. This, we suggest,

may help explain some (but not all) crucial features of ASC,

including motor (from clumsiness to imitation deficits), lin-

guistic (production and understanding), as well as action se-

mantic and cognitive deficits, which can be as specific as those

demonstrated for action and abstract emotion words. This

approach provides a functional mechanistic link between the

elementary motor deficits known to characterise ASC and

their most abstract-cognitive dysfunctions in the semantic

domain, which was not provided by these previous accounts.

We have highlighted, above, several areas where clarifi-

cation is needed by future research. Fundamentally, as we

have suggested that action perception circuits fail to develop

and cells fail to develop their multimodal properties in ASC, it

remains to ascertain why this is so. Decreased signal-to-noise

ratios have been proposed (Eigsti, 2013), but this explanation

itself requires explaining at the genetic and brain level, and

requires linkage to these behavioural symptoms. Our own

studies evince a difference in the adult state of these circuits,

but the failure of action perception circuits to develop, and the

linkage of this failure with subsequent social and cognitive

impairments, requires study from a longitudinal perspective

and might best be operationalised through following HR sib-

lings (a subset of whomwill inevitably be diagnosed with ASC

themselves) and non-HR infants. Hazlett et al. (2017) recently

reported that babies at high risk of ASC show especially

speeded brain growth already within the first years of life, and

that this hypertrophy is associated with the emergence of

autistic symptomatology. Although it is not fully clear which

deep brain structures are particularly important for this hy-

pertrophy, abnormalities in grey matter are believed to affect

the development of cortico-cortical connections: increased

gyrification, found in adults with autism, was suggested by

one study to precede and give rise to abnormalities in white

matter tracts (Ecker et al., 2016). This tentative suggestion

could be directly addressed in subsequent work relating brain

growth to connectivity changes in infancy.

The exact role and contribution of sensorimotor systems in

social andcognitiveprocesseswhichhavebeendiscussed in this

article e such as their necessity in understanding action- and

emotion-related language (Moseley, Mohr et al., 2013; Moseley,
Pulvermüller, et al., 2013; Moseley, Shtyrov et al., 2015;

Moseley, Ypma et al., 2015), and social processes of particular

interest in autism, such as pragmatics, perspective-taking, ToM

(mentalizing) and social orientation e remain to be elucidated.

Likewise, the alternate routes that people with autism may

employ for these processes are an important avenue for future

research. Many of these processes can be studied in adulthood,

but the conclusions we may make are extrapolations, which

may not be equivalent with the atypically developing autistic

brain. Likewise, neuroimaging in vivo can demonstrate alterna-

tive, ‘disembodied’ routes of processing, just as our studies

showed a snapshot of the different brain activity seen in autistic

adults during semantic processing (Moseley, Mohr et al., 2013;

Moseley, Pulvermüller, et al., 2013; Moseley et al., 2014;

Moseley, Shtyrov et al., 2015; Moseley, Ypma et al., 2015), but

do not inform the developmental trajectory that led to these

adult states, or how these states relate to other autistic symp-

tomatology. Longitudinal study of these developmental trajec-

tories might also serve to highlight, as mentioned above,

differences in early motor symptoms or the combination of

motor and other symptoms which mark out autistic children

from those with other neurodevelopmental conditions.

If we conclude thatmotor systems and their connections to

other parts of the brain are essential for higher cognition, then

early disruption will ‘derail’ (Klin et al., 2003) ongoing devel-

opment of co-dependent cognitive processes. In continuing to

explore and ascertain to what degree early motor dysfunction

could be causal to or exacerbate impairments in cognition and

social processes, it is hoped that the most important future

question will become clearer: whether attending therapeuti-

cally to early signs of central nervous system abnormality as

they emerge in motor dysfunction (prior to diagnosis) can

alleviate downstream sociocognitive deficits.
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assemblies in the cerebral cortex. Biological Cybernetics. https://
doi.org/10.1007/s00422-014-0596-4.

Palomo, R., Belinch�on, M., & Ozonoff, S. (2006). Autism and family
home movies: a comprehensive review. Journal of
Developmental & Behavioral Pediatrics, 27(Suppl. 2), S59eS68.
https://doi.org/10.1097/00004703-200604002-00003.

Pan, C.-Y. (2014). Motor proficiency and physical fitness in
adolescent males with and without autism spectrum
disorders. Autism, 18(2), 156e165. https://doi.org/10.1177/
1362361312458597.

Pan, C. Y., Tsai, C. L., & Chu, C. H. (2009). Fundamental movement
skills in children diagnosed with autism spectrum disorders
and attention deficit hyperactivity disorder. Journal of Autism
and Developmental Disorders, 39(12), 1694e1705. https://doi.org/
10.1007/s10803-009-0813-5.

Papadopoulos, N., McGinley, J., Tonge, B., Bradshaw, J.,
Saunders, K., Murphy, A., et al. (2012). Motor proficiency and
emotional/behavioural disturbance in autism and Asperger's
disorder: another piece of the neurological puzzle? Autism: The
International Journal of Research and Practice, 16(6), 627e640.
https://doi.org/10.1177/1362361311418692.
Paquet, A., Olliac, B., Bouvard, M. P., Golse, B., & Vaivre-Douret, L.
(2016). The semiology of motor disorders in autism spectrum
disorders as highlighted from a standardized neuro-
psychomotor assessment. Frontiers in Psychology, 7. https://
doi.org/10.3389/fpsyg.2016.01292.

Parma, V., & de Marchena, A. B. (2015). Motor signatures in
Autism Spectrum Disorder: The importance of variability.
Journal of Neurophysiology, 1522e1598. https://doi.org/10.1152/
jn.00647.2015 (Electronic).

Patel, D., Fleming, S. M., & Kilner, J. M. (2012). Inferring subjective
states through the observation of actions. Proceedings of the
Royal Society B: Biological Sciences, 279(1748), 4853e4860. https://
doi.org/10.1098/rspb.2012.1847.

Patten, E., Belardi, K., Baranek, G. T., Watson, L. R., Labban, J. D., &
Oller, D. K. (2014). Vocal patterns in infants with autism
spectrum disorder: Canonical babbling status and vocalization
frequency. Journal of Autism and Developmental Disorders, 44(10),
2413e2428. https://doi.org/10.1007/s10803-014-2047-4.

Pearson, A., Ropar, D., & Hamilton, A. F. (2013). A review of visual
perspective taking in autism spectrum disorder. Frontiers in
Human Neuroscience, 7, 652. https://doi.org/10.3389/
fnhum.2013.00652.

Perego, P., Forti, S., Crippa, A., Valli, A., & Reni, G. (2009). Reach
and throw movement analysis with support vector machines
in early diagnosis of autism. In Conference proceedings … Annual
international conference of the IEEE Engineering in Medicine and
Biology Society (pp. 2555e2558). IEEE Engineering in Medicine
and Biology Society. https://doi.org/10.1109/
IEMBS.2009.5335096.

Phagava, H., Muratori, F., Einspieler, C., Maestro, S., Apicella, F.,
Guzzetta, A., et al. (2008). General movements in infants with
autism spectrum disorders. Georgian Medical News, 156,
100e105.

Piek, J. P., Bradbury, G. S., Elsley, S. C., & Tate, L. (2008). Motor
Coordination and socialeemotional behaviour in preschool-
aged children. International Journal of Disability, Development and
Education, 55(2), 143e151. https://doi.org/10.1080/
10349120802033592.

Plumb, A. M., & Wetherby, A. M. (2013). Vocalization development
in toddlers with autism spectrum disorder. Journal of Speech,
Language, and Hearing Research, 56(2), 721e734. https://doi.org/
10.1044/1092-4388(2012/11-0104).

Pobric, G., Jefferies, E., & Lambon Ralph, M. A. (2010). Amodal
semantic representations depend on both anterior temporal
lobes: Evidence from repetitive transcranial magnetic
stimulation. Neuropsychologia, 48(5), 1336e1342. https://
doi.org/10.1016/j.neuropsychologia.2009.12.036.

Pulvermüller, F. (1999). Words in the brain's language. The
Behavioral and Brain Sciences, 22. https://doi.org/10.1017/
S0140525X9900182X, 253e279e336.

Pulvermüller, F. (2012). Meaning and the brain: The
neurosemantics of referential, interactive, and combinatorial
knowledge. Journal of Neurolinguistics, 25, 423e459. https://
doi.org/10.1016/j.jneuroling.2011.03.004.

Pulvermüller, F. (2013). How neurons make meaning: Brain
mechanisms for embodied and abstract-symbolic semantics.
Trends in Cognitive Sciences. https://doi.org/10.1016/
j.tics.2013.06.004.

Pulvermüller, F., Cooper-Pye, E., Dine, C., Hauk, O., Nestor, P. J., &
Patterson, K. (2010). The word processing deficit in semantic
dementia: all categories are equal, but some categories are
more equal than others. Journal of Cognitive Neuroscience, 22,
2027e2041. https://doi.org/10.1162/jocn.2009.21339.

Pulvermüller, F., & Fadiga, L. (2010). Active perception:
sensorimotor circuits as a cortical basis for language. Nature
Reviews. Neuroscience, 11, 351e360. https://doi.org/10.1038/
nrn2811.

https://doi.org/10.1016/j.cogbrainres.2005.01.014
https://doi.org/10.1016/j.cogbrainres.2005.01.014
https://doi.org/10.1016/j.neuropsychologia.2008.01.010
https://doi.org/10.1016/j.neuropsychologia.2008.01.010
https://doi.org/10.1080/17470910701391943
https://doi.org/10.1017/S0954579402002031
https://doi.org/10.1017/S0954579402002031
https://doi.org/10.1016/j.jaac.2009.11.009
https://doi.org/10.1016/j.jaac.2013.12.020
https://doi.org/10.1016/j.jaac.2013.12.020
https://doi.org/10.1007/s10803-007-0430-0
https://doi.org/10.1097/DBP.0b013e3181ba0fcf
https://doi.org/10.1097/DBP.0b013e3181ba0fcf
https://doi.org/10.1177/1362361315605921
https://doi.org/10.1177/1362361315605921
https://doi.org/10.1007/s00422-014-0596-4
https://doi.org/10.1007/s00422-014-0596-4
https://doi.org/10.1097/00004703-200604002-00003
https://doi.org/10.1177/1362361312458597
https://doi.org/10.1177/1362361312458597
https://doi.org/10.1007/s10803-009-0813-5
https://doi.org/10.1007/s10803-009-0813-5
https://doi.org/10.1177/1362361311418692
https://doi.org/10.3389/fpsyg.2016.01292
https://doi.org/10.3389/fpsyg.2016.01292
https://doi.org/10.1152/jn.00647.2015
https://doi.org/10.1152/jn.00647.2015
https://doi.org/10.1098/rspb.2012.1847
https://doi.org/10.1098/rspb.2012.1847
https://doi.org/10.1007/s10803-014-2047-4
https://doi.org/10.3389/fnhum.2013.00652
https://doi.org/10.3389/fnhum.2013.00652
https://doi.org/10.1109/IEMBS.2009.5335096
https://doi.org/10.1109/IEMBS.2009.5335096
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref368
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref368
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref368
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref368
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref368
https://doi.org/10.1080/10349120802033592
https://doi.org/10.1080/10349120802033592
https://doi.org/10.1044/1092-4388(2012/11-0104)
https://doi.org/10.1044/1092-4388(2012/11-0104)
https://doi.org/10.1016/j.neuropsychologia.2009.12.036
https://doi.org/10.1016/j.neuropsychologia.2009.12.036
https://doi.org/10.1017/S0140525X9900182X
https://doi.org/10.1017/S0140525X9900182X
https://doi.org/10.1016/j.jneuroling.2011.03.004
https://doi.org/10.1016/j.jneuroling.2011.03.004
https://doi.org/10.1016/j.tics.2013.06.004
https://doi.org/10.1016/j.tics.2013.06.004
https://doi.org/10.1162/jocn.2009.21339
https://doi.org/10.1038/nrn2811
https://doi.org/10.1038/nrn2811
https://doi.org/10.1016/j.cortex.2017.11.019
https://doi.org/10.1016/j.cortex.2017.11.019


c o r t e x 1 0 0 ( 2 0 1 8 ) 1 4 9e1 9 0186
Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J. (2005).
Functional links between motor and language systems.
European Journal of Neuroscience, 21, 793e797. https://doi.org/
10.1111/j.1460-9568.2005.03900.x.

Pulvermüller, F., Moseley, R. L., Egorova, N., Shebani, Z., &
Boulenger, V. (2014). Motor cognition-motor semantics: Action
perception theory of cognition and communication.
Neuropsychologia, 55(1), 71e84. https://doi.org/10.1016/
j.neuropsychologia.2013.12.002.

Pulvermüller, F., Shtyrov, Y., & Ilmoniemi, R. (2005). Brain
signatures of meaning access in action word recognition.
Journal of Cognitive Neuroscience, 17.

Puzzo, I., Cooper, N. R., Vetter, P., Russo, R., & Fitzgerald, P. B.
(2009). Reduced cortico-motor facilitation in a normal sample
with high traits of autism. Neuroscience Letters, 467(2), 173e177.
https://doi.org/10.1016/j.neulet.2009.10.033.

Qiu, A., Adler, M., Crocetti, D., Miller, M. I., & Mostofsky, S. H.
(2010). Basal ganglia shapes predict social, communication,
and motor dysfunctions in boys with autism spectrum
disorder. Journal of the American Academy of Child and Adolescent
Psychiatry, 49(6). https://doi.org/10.1016/j.jaac.2010.02.012,
539e51, 551e554.

Ramachandran, V. S., & Oberman, L. M. (2006). Broken mirrors: A
theory of autism. Scientific American, 295(5), 62e69.

Rice, G. E., Ralph, M. A. L., & Hoffman, P. (2015). The roles of left
versus right anterior temporal lobes in conceptual knowledge:
An ALE meta-analysis of 97 functional neuroimaging studies.
Cerebral Cortex, 25(11), 4374e4391. https://doi.org/10.1093/
cercor/bhv024.

Rinehart, N. J., Bellgrove, M. A., Tonge, B. J., Brereton, A. V.,
Howells-Rankin, D., & Bradshaw, J. L. (2006). An examination of
movement kinematics in young people with high-functioning
autism and Asperger's disorder: Further evidence for a motor
planning deficit. Journal of Autism and Developmental Disorders,
36(6), 757e767. https://doi.org/10.1007/s10803-006-0118-x.

Rinehart, N. J., Bradshaw, J. L., Brereton, A. V., & Tonge, B. J. (2001).
Movement preparation in high-functioning autism and
asperger disorder: A serial choice reaction time task involving
motor reprogramming. Journal of Autism and Developmental
Disorders, 31(1), 79e88. https://doi.org/10.1023/A:1005617831035.

Rinehart, N., & McGinley, J. (2010). Is motor dysfunction core to
autism spectrum disorder? Developmental Medicine & Child
Neurology, 52(8), 697e697.

Rinehart, N. J., Tonge, B. J., Bradshaw, J. L., Iansek, R., Enticott, P. G.,
& McGinley, J. (2006). Gait function in high-functioning autism
and Asperger's disorder: Evidence for basal-ganglia and
cerebellar involvement? European Child and Adolescent Psychiatry,
15(5), 256e264. https://doi.org/10.1007/s00787-006-0530-y.

Rinehart, N. J., Tonge, B. J., Iansek, R., McGinley, J., Brereton, A. V.,
Enticott, P. G., et al. (2006). Gait function in newly diagnosed
children with autism: Cerebellar and basal ganglia related
motor disorder. Developmental Medicine and Child Neurology,
48(10), 819e824. https://doi.org/10.1017/S0012162206001769.

Rizzolatti, G., & Fabbri-Destro, M. (2010). Mirror neurons: From
discovery to autism. Experimental Brain Research. https://
doi.org/10.1007/s00221-009-2002-3.

Rizzolatti, G., Fabbri-Destro, M., & Cattaneo, L. (2009). Mirror
neurons and their clinical relevance. Neurology, 5(1), 24e34.
https://doi.org/10.1038/ncpneuro.

Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor
cortex and the recognition of motor actions. Cognitive Brain
Research, 3(2), 131e141. https://doi.org/10.1016/0926-6410(95)
00038-0.

Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the
parieto-frontal mirror circuit: interpretations and
misinterpretations. Nature Reviews Neuroscience, 11(4),
264e274. https://doi.org/10.1038/nrn2805.
Roberts, T. P. L., Heiken, K., Zarnow, D., Dell, J., Nagae, L.,
Blaskey, L., et al. (2014). Left hemisphere diffusivity of the
arcuate fasciculus: Influences of autism spectrum disorder
and language impairment. American Journal of Neuroradiology,
35(3), 587e592. https://doi.org/10.3174/ajnr.A3754.

Robinson, E., St Pourcain, B., Anttila, V., Kosmicki, J., Bulik-
Sullivan, B., Grove, J., et al. (2016). Genetic risk for autism
spectrum disorders and neuropsychiatric variation in the
general population. Nature Genetics. https://doi.org/10.1038/
ng.3529.

Robledo, J., Donnellan, A. M., & Strandt-Conroy, K. (2012). An
exploration of sensory and movement differences from the
perspective of individuals with autism. Frontiers in Integrative
Neuroscience, 6.

Rogers, T. D., McKimm, E., Dickson, P. E., Goldowitz, D.,
Blaha, C. D., & Mittleman, G. (2013). Is autism a disease of the
cerebellum? An integration of clinical and pre-clinical
research. Frontiers in Systems Neuroscience, 7, 15. https://doi.org/
10.3389/fnsys.2013.00015.

Rothi, L. J. G., & Heilman, K. M. (Eds.). (1997). Apraxia: the
Neuropsychology of Action. Hove: UK Psychology Press.

Rubenstein, J. L. R., & Merzenich, M. M.. (2003). Model of autism:
increased ratio of excitation/inhibition in key neural systems,
255e267. http://doi.org/10.1046/j.1601-183X.2003.00037.x.

Rueschemeyer, S. A., Lindemann, O., van Elk, M., & Bekkering, H.
(2009). Embodied cognition: The interplay between automatic
resonance and selection-for-action mechanisms. European
Journal of Social Psychology, 39, 1180e1187. https://doi.org/
10.1002/ejsp.662.

Sachse, M., Schlitt, S., Hainz, D., Ciaramidaro, A., Schirman, S.,
Walter, H., et al. (2013). Executive and visuo-motor function in
adolescents and adults with autism spectrum disorder. Journal
of Autism and Developmental Disorders, 43(5), 1222e1235. https://
doi.org/10.1007/s10803-012-1668-8.

Sacrey, L. A. R., Zwaigenbaum, L., Bryson, S., Brian, J., Smith, I. M.,
Roberts, W., et al. (2015). Can parents' concerns predict autism
spectrum disorder? A prospective study of high-risk siblings
from 6 to 36 months of age. Journal of the American Academy of
Child and Adolescent Psychiatry, 54(6), 470e478. https://doi.org/
10.1016/j.jaac.2015.03.014.

Saint-Georges, C., Cassel, R. S., Cohen, D., Chetouani, M.,
Laznik, M. C., Maestro, S., et al. (2010). What studies of family
home movies can teach us about autistic infants: A literature
review. Research in Autism Spectrum Disorders. https://doi.org/
10.1016/j.rasd.2009.10.017.

Sartori, L., Becchio, C., Bara, B. G., & Castiello, U. (2009). Does the
intention to communicate affect action kinematics?
Consciousness and Cognition, 18(3), 766e772. https://doi.org/
10.1016/j.concog.2009.06.004.

Scambler, D. J., Hepburn, S., Rutherford, M. D., Wehner, E. A., &
Rogers, S. J. (2007). Emotional responsivity in children with
autism, children with other developmental disabilities, and
children with typical development. Journal of Autism and
Developmental Disorders, 37(3), 553e563. https://doi.org/10.1007/
s10803-006-0186-y.

Schippers, M. B., Roebroeck, A., Renken, R., Nanetti, L., &
Keysers, C. (2010). Mapping the information flow from one
brain to another during gestural communication. Proceedings of
the National Academy of Sciences of the United States of America,
107, 9388e9393. https://doi.org/10.1073/pnas.1001791107.

Schmitz, C., Martineau, J., Barth�el�emy, C., & Assaiante, C. (2003).
Motor control and children with autism: Deficit of anticipatory
function? Neuroscience Letters, 348(1), 17e20. https://doi.org/
10.1016/S0304-3940(03)00644-X.

Schoen, E., Paul, R., & Chawarska, K. (2011). Phonology and vocal
behavior in toddlers with autism spectrum disorders. Autism
Research, 4(3), 177e188. https://doi.org/10.1002/aur.183.

https://doi.org/10.1111/j.1460-9568.2005.03900.x
https://doi.org/10.1111/j.1460-9568.2005.03900.x
https://doi.org/10.1016/j.neuropsychologia.2013.12.002
https://doi.org/10.1016/j.neuropsychologia.2013.12.002
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref380
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref380
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref380
https://doi.org/10.1016/j.neulet.2009.10.033
https://doi.org/10.1016/j.jaac.2010.02.012
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref383
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref383
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref383
https://doi.org/10.1093/cercor/bhv024
https://doi.org/10.1093/cercor/bhv024
https://doi.org/10.1007/s10803-006-0118-x
https://doi.org/10.1023/A:1005617831035
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref387
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref387
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref387
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref387
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref387
https://doi.org/10.1007/s00787-006-0530-y
https://doi.org/10.1017/S0012162206001769
https://doi.org/10.1007/s00221-009-2002-3
https://doi.org/10.1007/s00221-009-2002-3
https://doi.org/10.1038/ncpneuro
https://doi.org/10.1016/0926-6410(95)00038-0
https://doi.org/10.1016/0926-6410(95)00038-0
https://doi.org/10.1038/nrn2805
https://doi.org/10.3174/ajnr.A3754
https://doi.org/10.1038/ng.3529
https://doi.org/10.1038/ng.3529
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref396
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref396
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref396
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref396
https://doi.org/10.3389/fnsys.2013.00015
https://doi.org/10.3389/fnsys.2013.00015
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref507
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref507
http://doi.org/10.1046/j.1601-183X.2003.00037.x
https://doi.org/10.1002/ejsp.662
https://doi.org/10.1002/ejsp.662
https://doi.org/10.1007/s10803-012-1668-8
https://doi.org/10.1007/s10803-012-1668-8
https://doi.org/10.1016/j.jaac.2015.03.014
https://doi.org/10.1016/j.jaac.2015.03.014
https://doi.org/10.1016/j.rasd.2009.10.017
https://doi.org/10.1016/j.rasd.2009.10.017
https://doi.org/10.1016/j.concog.2009.06.004
https://doi.org/10.1016/j.concog.2009.06.004
https://doi.org/10.1007/s10803-006-0186-y
https://doi.org/10.1007/s10803-006-0186-y
https://doi.org/10.1073/pnas.1001791107
https://doi.org/10.1016/S0304-3940(03)00644-X
https://doi.org/10.1016/S0304-3940(03)00644-X
https://doi.org/10.1002/aur.183
https://doi.org/10.1016/j.cortex.2017.11.019
https://doi.org/10.1016/j.cortex.2017.11.019


c o r t e x 1 0 0 ( 2 0 1 8 ) 1 4 9e1 9 0 187
Schomers, M. R., Garagnani, M., & Pulvermüller, F. (2017).
Neurocomputational consequences of evolutionary
connectivity changes in perisylvian language cortex. Journal of
Neuroscience, 37(11), 3045e3055.

Schomers, M. R., Kirilina, E., Weigand, A., Bajbouj, M., &
Pulvermüller, F. (2015). Causal influence of articulatory motor
cortex on comprehending single spoken words: TMS evidence.
Cerebral Cortex, 25(10), 3894e3902. https://doi.org/10.1093/
cercor/bhu274.

Schomers, M. R., & Pulvermüller, F. (2016). Is the sensorimotor
cortex relevant for speech perception and understanding? An
integrative review. Frontiers in Human Neuroscience, 10, 435.
https://doi.org/10.3389/fnhum.2016.00435.

Senju, A. (2013). Atypical development of spontaneous social
cognition in autism spectrum disorders. Brain & Development,
35(2), 96e101. https://doi.org/10.1016/j.braindev.2012.08.002.

Sharer, E. A., Mostofsky, S. H., Pascual-Leone, A., &
Oberman, L. M. (2015). Isolating visual and proprioceptive
components of motor sequence learning in ASD. Autism
Research. https://doi.org/10.1002/aur.1537.

Shebani, Z., & Pulvermüller, F. (2013). Moving the hands and feet
specifically impairs working memory for arm- and leg-related
action words. Cortex, 49, 222e231. https://doi.org/10.1016/
j.cortex.2011.10.005.

Shtyrov, Y., Butorina, A., Nikolaeva, A., & Stroganova, T. (2014).
Automatic ultrarapid activation and inhibition of cortical
motor systems in spoken word comprehension. Proceedings of
the National Academy of Sciences of the United States of America,
111(18), E1918eE1923. https://doi.org/10.1073/
pnas.1323158111.

Shtyrov, Y., Hauk, O., & Pulvermüller, F. (2004). Distributed
neuronal networks for encoding category-specific semantic
information: The mismatch negativity to action words.
European Journal of Neuroscience, 19, 1083e1092. https://doi.org/
10.1111/j.0953-816X.2004.03126.x.

Simmons, W. K., & Barsalou, L. W. (2003). The similarity-in-
topography principle: reconciling theories of conceptual
deficits. Cognitive Neuropsychology, 20, 451e486. https://doi.org/
10.1080/02643290342000032.

Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K.,
Martin, A., & Barsalou, L. W. (2007). A common neural
substrate for perceiving and knowing about color.
Neuropsychologia, 45, 2802e2810. https://doi.org/10.1016/
j.neuropsychologia.2007.05.002.

Sinclair, J. (2013). Why I dislike “person first” language. Autonomy,
the Critical Journal of Interdisciplinary Autism Studies, 1(2).
original version 1999.

Sipes, M., Matson, J. L., & Horovitz, M. (2011). Autism spectrum
disorders and motor skills: The effect on socialization as
measured by the Baby and Infant Screen for Children with
aUtIsm Traits (BISCUIT). Developmental Neurorehabilitation,
14(5), 290e296. https://doi.org/10.3109/17518423.2011.587838.

Skipper, J., Devlin, J., & Lametti, D. (2017). Is the hearing ear is
always found close to the speaking tongue?: Review of the role
of the motor system in speech perception. Brain and Language,
164, 77e105.

Smalle, E. H. M., Rogers, J., & M€ott€onen, R. (2015). Dissociating
contributions of the motor cortex to speech perception and
response bias by using transcranial magnetic stimulation.
Cerebral Cortex, 25(10), 3690e3698. https://doi.org/10.1093/
cercor/bhu218.

Smith, L. B., Suanda, S. H., & Yu, C. (2014). The unrealized promise
of infant statistical word-referent learning. Trends in Cognitive
Sciences. https://doi.org/10.1016/j.tics.2014.02.007.

Snowling, M., & Frith, U. (1986). Comprehension in “hyperlexic”
readers. Journal of Experimental Child Psychology, 42(3), 392e415.
https://doi.org/10.1016/0022-0965(86)90033-0.
Sperduti, M., Guionnet, S., Fossati, P., & Nadel, J. (2014). Mirror
neuron system and mentalizing system connect during online
social interaction. Cognitive Processing, 15(3), 307e316. https://
doi.org/10.1007/s10339-014-0600-x.

Spreng, R. N., & Grady, C. L. (2010). Patterns of brain activity
supporting autobiographical memory, prospection, and theory
of mind, and their relationship to the default mode network.
Journal of Cognitive Neuroscience, 22, 1112e1123. https://doi.org/
10.1162/jocn.2009.21282.

Spreng, R. N., Mar, R. A., & Kim, A. S. N. (2009). The common
neural basis of autobiographical memory, prospection,
navigation, theory of mind, and the default mode: a
quantitative meta-analysis. Journal of Cognitive Neuroscience,
21(3), 489e510. https://doi.org/10.1162/jocn.2008.21029.

Spunt, R., & Lieberman, M. (2012). An integrative model of the
neural systems supporting the comprehension of observed
emotional behavior. NeuroImage, 59(3), 3050e3059. https://
doi.org/10.1016/j.neuroimage.2011.10.005.

Staples, K. L., & Reid, G. (2010). Fundamental movement skills and
autism spectrum disorders. Journal of Autism and Developmental
Disorders, 40(2), 209e217. https://doi.org/10.1007/s10803-009-
0854-9.

Stel, M., & van Knippenberg, A. (2008). The role of facial mimicry
in the recognition of affect. Psychological Science, 19(10),
984e985.

Stern, D. N. (2000). The interpersonal world of the infant. New York,
NY: Basic Books.

Stevenson, J. L., Lindley, C. E., & Murlo, N. (2017). Retrospectively
assessed early motor and current pragmatic language skills in
autistic and neurotypical children. Perceptual and Motor Skills.
https://doi.org/10.1177/0031512517710379, 3151251771037.

Stoit, A. M. B., Van Schie, H. T., Slaats-Willemse, D. I. E., &
Buitelaar, J. K. (2013). Grasping motor impairments in autism:
Not action planning but movement execution is deficient.
Journal of Autism and Developmental Disorders, 43(12), 2793e2806.
https://doi.org/10.1007/s10803-013-1825-8.

Stone, W. L., Ousley, O. Y., & Littleford, C. D. (1997). Motor
imitation in young children with autism: What's the object?
Journal of Abnormal Child Psychology, 25(6), 475e485. https://
doi.org/10.1023/A:1022685731726.

Stone, W. L., & Yoder, P. J. (2001). Predicting spoken language level
in children with autism spectrum disorders. Autism, 5(4),
341e361. https://doi.org/10.1177/1362361301005004002.

Studenka, B. E., Gillam, S. L., Hartzheim, D., & Gillam, R. B. (2017).
Motor and verbal perspective taking in children with autism
spectrum disorder: Changes in social interaction with people
and tools. Research in Developmental Disabilities, 66, 64e79.
https://doi.org/10.1016/j.ridd.2017.02.017.

Sumner, E., Leonard, H. C., & Hill, E. L. (2016). Overlapping
Phenotypes in Autism spectrum disorder and developmental
coordination disorder: A cross-syndrome comparison of
motor and social skills. Journal of Autism and Developmental
Disorders, 46(8), 2609e2620. https://doi.org/10.1007/s10803-016-
2794-5.

Supekar, K., & Menon, V. (2015). Sex differences in structural
organization of motor systems and their dissociable links with
repetitive/restricted behaviors in children with autism.
Molecular Autism, 6, 50. https://doi.org/10.1186/s13229-015-
0042-z.

Sutera, S., Pandey, J., Esser, E. L., Rosenthal, M. A., Wilson, L. B.,
Barton, M., et al. (2007). Predictors of optimal outcome in
toddlers diagnosed with autism spectrum disorders. Journal of
Autism and Developmental Disorders, 37(1), 98e107. https://
doi.org/10.1007/s10803-006-0340-6.

van Swieten, L. M., van Bergen, E., Williams, J. H., Wilson, A. D.,
Plumb, M. S., Kent, S. W., et al. (2010). A test of motor (not
executive) planning in developmental coordination disorder

http://refhub.elsevier.com/S0010-9452(17)30403-3/sref508
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref508
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref508
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref508
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref508
https://doi.org/10.1093/cercor/bhu274
https://doi.org/10.1093/cercor/bhu274
https://doi.org/10.3389/fnhum.2016.00435
https://doi.org/10.1016/j.braindev.2012.08.002
https://doi.org/10.1002/aur.1537
https://doi.org/10.1016/j.cortex.2011.10.005
https://doi.org/10.1016/j.cortex.2011.10.005
https://doi.org/10.1073/pnas.1323158111
https://doi.org/10.1073/pnas.1323158111
https://doi.org/10.1111/j.0953-816X.2004.03126.x
https://doi.org/10.1111/j.0953-816X.2004.03126.x
https://doi.org/10.1080/02643290342000032
https://doi.org/10.1080/02643290342000032
https://doi.org/10.1016/j.neuropsychologia.2007.05.002
https://doi.org/10.1016/j.neuropsychologia.2007.05.002
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref417
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref417
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref417
https://doi.org/10.3109/17518423.2011.587838
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref419
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref419
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref419
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref419
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref419
https://doi.org/10.1093/cercor/bhu218
https://doi.org/10.1093/cercor/bhu218
https://doi.org/10.1016/j.tics.2014.02.007
https://doi.org/10.1016/0022-0965(86)90033-0
https://doi.org/10.1007/s10339-014-0600-x
https://doi.org/10.1007/s10339-014-0600-x
https://doi.org/10.1162/jocn.2009.21282
https://doi.org/10.1162/jocn.2009.21282
https://doi.org/10.1162/jocn.2008.21029
https://doi.org/10.1016/j.neuroimage.2011.10.005
https://doi.org/10.1016/j.neuroimage.2011.10.005
https://doi.org/10.1007/s10803-009-0854-9
https://doi.org/10.1007/s10803-009-0854-9
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref428
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref428
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref428
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref428
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref509
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref509
https://doi.org/10.1177/0031512517710379
https://doi.org/10.1007/s10803-013-1825-8
https://doi.org/10.1023/A:1022685731726
https://doi.org/10.1023/A:1022685731726
https://doi.org/10.1177/1362361301005004002
https://doi.org/10.1016/j.ridd.2017.02.017
https://doi.org/10.1007/s10803-016-2794-5
https://doi.org/10.1007/s10803-016-2794-5
https://doi.org/10.1186/s13229-015-0042-z
https://doi.org/10.1186/s13229-015-0042-z
https://doi.org/10.1007/s10803-006-0340-6
https://doi.org/10.1007/s10803-006-0340-6
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref437
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref437
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref437
https://doi.org/10.1016/j.cortex.2017.11.019
https://doi.org/10.1016/j.cortex.2017.11.019


c o r t e x 1 0 0 ( 2 0 1 8 ) 1 4 9e1 9 0188
and autism. Journal of Experimental Psychology Human Perception
and Performance, 36(2), 493.

Tager-Flusberg, H. (1992). Autistic children's talk about
psychological states: deficits in the early acquisition of a
theory of mind. Child Development, 63(1), 161e172. https://
doi.org/10.2307/1130910.

Tager-Flusberg, H., & Sullivan, K. (1994). A second look at second-
order belief attribution in autism. Journal of Autism and
Developmental Disorders, 24, 577e586. https://doi.org/10.1007/
BF02172139.

Tager-Flusberg, H., & Sullivan, K. (1995). Attributing mental states
to story characters: A comparison of narratives produced by
autistic and mentally retarded individuals. Applied
Psycholinguistics. https://doi.org/10.1017/S0142716400007281.

Takarae,Y.,Minshew,N. J., Luna,B.,&Sweeney, J.A. (2007).Atypical
involvement of frontostriatal systems during sensorimotor
control in autism. Psychiatry Research e Neuroimaging, 156(2),
117e127. https://doi.org/10.1016/j.pscychresns.2007.03.008.

Teitelbaum, P., Teitelbaum, O., Nye, J., Fryman, J., & Maurer, R. G.
(1998). Movement analysis in infancy may be useful for early
diagnosis of autism. Proceedings of the National Academy of
Sciences, 95(23), 13982e13987. https://doi.org/10.1073/
pnas.95.23.13982.

Tesink, C. M. J. Y., Buitelaar, J. K., Petersson, K. M., van der
Gaag, R. J., Kan, C. C., Tendolkar, I., et al. (2009). Neural
correlates of pragmatic language comprehension in autism
spectrum disorders. Brain: A Journal of Neurology, 132(Pt 7),
1941e1952. https://doi.org/10.1093/brain/awp103.

Tettamanti, M., Buccino, G., Saccuman, M. C., Gallese, V.,
Danna, M., Scifo, P., et al. (2005). Listening to action-related
sentences activates fronto-parietal motor circuits. Journal of
Cognitive Neuroscience, 17, 273e281. https://doi.org/10.1162/
0898929053124965.

Thelen, E. (1995). Motor development: A new synthesis. American
Psychologist, 50(2), 79e95. https://doi.org/10.1037/0003-
066X.50.2.79.

Thelen, E. (2005). Dynamic systems theory and the complexity of
change. Psychoanalytic Dialogues: The International Journal of
Relational Perspectives, 15(2), 255e283. https://doi.org/10.1080/
10481881509348831.

Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to
the development of cognition and action. Journal of Cognitive
Neuroscience, 512. https://doi.org/10.1162/jocn.1995.7.4.512.

Th�eoret, H., Halligan, E., Kobayashi, M., Fregni, F., Tager-
Flusberg, H., & Pascual-Leone, A. (2005). Impaired motor
facilitation during action observation in individuals with
autism spectrum disorder. Current Biology. https://doi.org/
10.1016/j.cub.2005.01.022.

Thompson, A., Murphy, D., Dell'Acqua, F., Ecker, C., McAlonan, G.,
Howells, H., et al. (2017). Impaired communication between
the motor and somatosensory homunculus is associated with
poor manual dexterity in autism spectrum disorder. Biological
Psychiatry, 81(3), 211e219. https://doi.org/10.1016/
j.biopsych.2016.06.020.

Thurm, A., Lord, C., Lee, L.-C., & Newschaffer, C. (2007). Predictors
of language acquisition in preschool children with autism
spectrum disorders. Journal of Autism and Developmental
Disorders, 37(9), 1721e1734. https://doi.org/10.1007/s10803-006-
0300-1.

Toichi, M., & Kamio, Y. (2001). Verbal association for simple
common words in high-functioning autism. Journal of Autism
and Developmental Disorders, 31, 483e490. https://doi.org/
10.1023/A:1012216925216.

Toichi, M., & Kamio, Y. (2003). Long-term memory in high-
functioning autism: Controversy on episodic memory in
autism reconsidered. Journal of Autism and Developmental
Disorders, 33, 151e161. https://doi.org/10.1023/
A:1022935325843.
Tomasello, R., Garagnani, M., Wennekers, T., & Pulvermüller, F.
(2016). Brain connections of words, perceptions and actions: A
neurobiological model of spatio-temporal semantic activation
in the human cortex. Neuropsychologia. https://doi.org/10.1016/
j.neuropsychologia.2016.07.004.

Tomasello, R., Garagnani, M., Wennekers, T., & Pulvermüller, F.
(2017). Brain connections of words, perceptions and actions: A
neurobiological model of spatio-temporal semantic activation
in the human cortex. Neuropsychologia, 98, 111e129.

Tomasello, M., & Kruger, A. C. (1992). Joint attention on actions:
acquiring verbs in ostensive and non-ostensive contexts.
Journal of Child Language, 19(2), 311e333. https://doi.org/
10.1017/S0305000900011430.

de la Torre-Ubieta, L., Won, H., Stein, J. L., & Geschwind, D. H.
(2016). Advancing the understanding of autism disease
mechanisms through genetics. Nature Medicine, 22(4), 345e361.
https://doi.org/10.1038/nm.4071.

Toth, K., Dawson, G., Meltzoff, A. N., Greenson, J., & Fein, D.
(2007). Early social, imitation, play, and language abilities of
young non-autistic siblings of children with autism. Journal of
Autism and Developmental Disorders, 37(1), 145e157. https://
doi.org/10.1007/s10803-006-0336-2.

Travers, B. G., Bigler, E. D., Duffield, T. C., Prigge, M. D. B.,
Froehlich, A. L., Lange, N., et al. (2016). Longitudinal
development of manual motor ability in autism spectrum
disorder from childhood to mid-adulthood relates to adaptive
daily living skills. Developmental Science. https://doi.org/
10.1111/desc.12401.

Travers, B. G., Bigler, E. D., Tromp, D. P. M., Adluru, N.,
Destiche, D., Samsin, D., et al. (2015). Brainstem white matter
predicts individual differences in manual motor difficulties
and symptom severity in autism. Journal of Autism and
Developmental Disorders, 45(9), 3030e3040. https://doi.org/
10.1007/s10803-015-2467-9.

Travers, B. G., Powell, P. S., Klinger, L. G., & Klinger, M. R. (2013).
Motor difficulties in autism spectrum disorder: Linking
symptom severity and postural stability. Journal of Autism and
Developmental Disorders, 43(7), 1568e1583. https://doi.org/
10.1007/s10803-012-1702-x.

Trumpp, N. M., Traub, F., & Kiefer, M. (2013). Masked priming of
conceptual features reveals differential brain activation
during unconscious access to conceptual action and sound
information. PLoS One, 8. https://doi.org/10.1371/
journal.pone.0065910.

Trumpp, N. M., Traub, F., Pulvermüller, F., & Kiefer, M. (2014).
Unconscious automatic brain activation of acoustic and
action-related conceptual features during masked repetition
priming. Journal of Cognitive Neuroscience, 26, 352e364. https://
doi.org/10.1162/jocn_a_00473.

Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F.
(2012). You can count on the motor cortex: Finger counting
habits modulate motor cortex activation evoked by numbers.
NeuroImage, 59, 3139e3148. https://doi.org/10.1016/
j.neuroimage.2011.11.037.

Uljarevic, M., & Hamilton, A. (2013). Recognition of emotions in
autism: A formal meta-analysis. Journal of Autism and
Developmental Disorders, 43(7), 1517e1526. https://doi.org/
10.1007/s10803-012-1695-5.

Uljarevic, M., Hedley, D., Alvares, G. A., Varcin, K. J., &
Whitehouse, A. J. (2017). Relationship between early motor
milestones and severity of restricted and repetitive behaviors
in children and adolescents with autism spectrum disorder.
Autism Research, 10(6), 1163e1168.

Ullman, M. T., & Pierpont, E. I. (2005). Specific language
impairment is not specific to language: the procedural deficit
hypothesis. Cortex; A Journal Devoted to the Study of the Nervous
System and Behavior, 41(3), 399e433. https://doi.org/10.1016/
S0010-9452(08)70276-4.

http://refhub.elsevier.com/S0010-9452(17)30403-3/sref437
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref437
https://doi.org/10.2307/1130910
https://doi.org/10.2307/1130910
https://doi.org/10.1007/BF02172139
https://doi.org/10.1007/BF02172139
https://doi.org/10.1017/S0142716400007281
https://doi.org/10.1016/j.pscychresns.2007.03.008
https://doi.org/10.1073/pnas.95.23.13982
https://doi.org/10.1073/pnas.95.23.13982
https://doi.org/10.1093/brain/awp103
https://doi.org/10.1162/0898929053124965
https://doi.org/10.1162/0898929053124965
https://doi.org/10.1037/0003-066X.50.2.79
https://doi.org/10.1037/0003-066X.50.2.79
https://doi.org/10.1080/10481881509348831
https://doi.org/10.1080/10481881509348831
https://doi.org/10.1162/jocn.1995.7.4.512
https://doi.org/10.1016/j.cub.2005.01.022
https://doi.org/10.1016/j.cub.2005.01.022
https://doi.org/10.1016/j.biopsych.2016.06.020
https://doi.org/10.1016/j.biopsych.2016.06.020
https://doi.org/10.1007/s10803-006-0300-1
https://doi.org/10.1007/s10803-006-0300-1
https://doi.org/10.1023/A:1012216925216
https://doi.org/10.1023/A:1012216925216
https://doi.org/10.1023/A:1022935325843
https://doi.org/10.1023/A:1022935325843
https://doi.org/10.1016/j.neuropsychologia.2016.07.004
https://doi.org/10.1016/j.neuropsychologia.2016.07.004
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref454
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref454
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref454
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref454
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref454
https://doi.org/10.1017/S0305000900011430
https://doi.org/10.1017/S0305000900011430
https://doi.org/10.1038/nm.4071
https://doi.org/10.1007/s10803-006-0336-2
https://doi.org/10.1007/s10803-006-0336-2
https://doi.org/10.1111/desc.12401
https://doi.org/10.1111/desc.12401
https://doi.org/10.1007/s10803-015-2467-9
https://doi.org/10.1007/s10803-015-2467-9
https://doi.org/10.1007/s10803-012-1702-x
https://doi.org/10.1007/s10803-012-1702-x
https://doi.org/10.1371/journal.pone.0065910
https://doi.org/10.1371/journal.pone.0065910
https://doi.org/10.1162/jocn_a_00473
https://doi.org/10.1162/jocn_a_00473
https://doi.org/10.1016/j.neuroimage.2011.11.037
https://doi.org/10.1016/j.neuroimage.2011.11.037
https://doi.org/10.1007/s10803-012-1695-5
https://doi.org/10.1007/s10803-012-1695-5
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref465
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref465
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref465
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref465
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref465
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref465
https://doi.org/10.1016/S0010-9452(08)70276-4
https://doi.org/10.1016/S0010-9452(08)70276-4
https://doi.org/10.1016/j.cortex.2017.11.019
https://doi.org/10.1016/j.cortex.2017.11.019


c o r t e x 1 0 0 ( 2 0 1 8 ) 1 4 9e1 9 0 189
Vaivre-Douret, L., Lalanne, C., Ingster-Moati, I., Boddaert, N.,
Cabrol, D., Dufier, J.-L., et al. (2011). Subtypes of developmental
coordination disorder: research on their nature and etiology.
Developmental Neuropsychology, 36(5), 614e643. https://doi.org/
10.1080/87565641.2011.560696.

Vanvuchelen, M., Roeyers, H., & De Weerdt, W. (2007). Nature of
motor imitation problems in school-aged boys with autism: a
motor or a cognitive problem? Autism: The International Journal
of Research and Practice, 11(3), 225e240. https://doi.org/10.1177/
1362361307076846.

Van Waelvelde, H., Oostra, A., Dewitte, G., Van Den Broeck, C., &
Jongmans, M. J. (2010). Stability of motor problems in young
children with or at risk of autism spectrum disorders, ADHD,
and or developmental coordination disorder. Developmental
Medicine & Child Neurology, 52(8), e174ee178.

Vernazza-Martin, S., Martin, N., Vernazza, A., Lepellec-Muller, A.,
Rufo, M., Massion, J., et al. (2005). Goal directed locomotion
and balance control in autistic children. Journal of Autism and
Developmental Disorders, 35(1), 91e102. https://doi.org/10.1007/
s10803-004-1037-3.

Vigliocco, G., Kousta, S., Della Rosa, P., Vinson, D., Tettamanti, M.,
Devlin, J., et al. (2014). The neural representation of abstract
words: the role of emotion. Cerebral Cortex, 24(7), 1767e1777.

Vilensky, J. A., Damasio, A. R., & Maurer, R. G. (1981). Gait
disturbances in patients with autistic behavior: a preliminary
study. Archives of Neurology, 38, 646e649. https://doi.org/
10.1001/archneur.1981.00510100074013.

Visser, M., Jefferies, E., & Lambon Ralph, M. A. (2010). Semantic
processing in the anterior temporal lobes: a meta-analysis of
the functional neuroimaging literature. Journal of Cognitive
Neuroscience, 22(6), 1083e1094. https://doi.org/10.1162/
jocn.2009.21309.

Visser, M., Jeffries, E., Embleton, K. V., & Lambon Ralph, M. A.
(2012). Both the middle temporal gyrus and the ventral
anterior temporal area are crucial for multimodal
semantic processing: distortion-corrected fMRI evidence
for a double gradient of information convergence in the
temporal lobes. Journal of Cognitive Neuroscience, 24(8),
1766e1778.

Vissers, M. E., Cohen, M. X., & Geurts, H. M. (2012). Brain
connectivity and high functioning autism: A promising path of
research that needs refined models, methodological
convergence, and stronger behavioral links. Neuroscience and
Biobehavioral Reviews. https://doi.org/10.1016/
j.neubiorev.2011.09.003.

Vorstman, J. A. S., Parr, J. R., Moreno-De-Luca, D., Anney, R. J. L.,
Nurnberger, J. I., Jr., & Hallmayer, J. F. (2017). Autism genetics:
opportunities and challenges for clinical translation. Nature
Reviews Genetics, 18(6), 362e376. https://doi.org/10.1038/
nrg.2017.4.

Wadsworth, H. M., Maximo, J. O., Lemelman, A. R., Clayton, K.,
Sivaraman, S., Deshpande, H. D., et al. (2017). The action
imitation network and motor imitation in children and
adolescents with autism. Neuroscience, 343, 147e156. https://
doi.org/10.1016/j.neuroscience.2016.12.001.

Wahlberg, T., & Magliano, J. P. (2004). The ability of high function
individuals with autism to comprehend written discourse.
Discourse Processes. https://doi.org/10.1207/
s15326950dp3801_5.

Wang, Y., & Hamilton, A. F. (2012). Social Top-down Response
Modulation (STORM): A model of the control of mimicry in
social interaction. Frontiers in Human Neuroscience, 6.

Warren, S. F., Gilkerson, J., Richards, J. A., Oller, D. K., Xu, D.,
Yapanel, U., et al. (2010). What automated vocal analysis
reveals about the vocal production and language learning
environment of young children with autism. Journal of Autism
and Developmental Disorders, 40(5), 555e569. https://doi.org/
10.1007/s10803-009-0902-5.
Westermann, G., & Miranda, E. R. (2004). A new model of
sesorimotor coupling in the development of speech. Brain and
Language, 89(2), 393e400.

Whittingham, K., Fahey, M., Rawicki, B., & Boyd, R. (2010). The
relationship between motor abilities and early social
development in a preschool cohort of children with cerebral
palsy. Research in Developmental Disabilities, 31(6), 1346e1351.
https://doi.org/10.1016/j.ridd.2010.07.006.

Whyatt, C. P., & Craig, C. M. (2012). Motor skills in children aged 7-
10 years, diagnosed with autism spectrum disorder. Journal of
Autism and Developmental Disorders, 42(9), 1799e1809. https://
doi.org/10.1007/s10803-011-1421-8.

Wild, K. S., Poliakoff, E., Jerrison, A., & Gowen, E. (2012). Goal-
directed and goal-less imitation in autism spectrum disorder.
Journal of Autism and Developmental Disorders, 42(8), 1739e1749.
https://doi.org/10.1007/s10803-011-1417-4.

Willems, R. M., Peelen, M. V., & Hagoort, P. (2010). Cerebral
lateralization of face-selective and body-selective visual areas
depends on handedness. Cerebral Cortex, 20, 1719e1725.
https://doi.org/10.1093/cercor/bhp234.

Williams, J. H. G. (2008). Self-other relations in social development
and autism: Multiple roles for mirror neurons and other brain
bases. Autism Research. https://doi.org/10.1002/aur.15.

Williams, J. H. G., Whiten, A., Suddendorf, T., & Perrett, D. I.
(2001). Imitation, mirror neurons and autism. Neuroscience and
Biobehavioral Reviews. https://doi.org/10.1016/S0149-7634(01)
00014-00018.

Wilson, P. H., & McKenzie, B. E. (1998). Information processing
deficits associated with developmental coordination disorder:
A meta-analysis of research findings. Journal of Child Psychology
and Psychiatry, 39(6), 829e840. https://doi.org/10.1111/1469-
7610.00384.

Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004).
Listening to speech activates motor areas involved in speech
production. Nature Neuroscience, 7, 701e702. https://doi.org/
10.1038/nn1263.

Wing, L. (1981). Language, social, and cognitive impairments in
autism and severe mental retardation. Journal of Autism and
Developmental Disorders, 11, 31e44. https://doi.org/10.1007/
BF01531339.

Wing, L., & Gould, J. (1979). Severe impairments of social interaction
and associated abnormalities in children: Epidemiology and
classification. Journal of Autism and Developmental Disorders, 9(1),
11e29. https://doi.org/10.1007/BF01531288.

Wing, L., Gould, J., & Gillberg, C. (2011). Autism spectrum
disorders in the DSM-V: Better or worse than the DSM-IV?
Research in Developmental Disabilities, 32(2), 768e773. https://
doi.org/10.1016/j.ridd.2010.11.003.

Wittgenstein, L. (1953). Philosophical investigations (Vol. 1999/1967).
Oxford Blackwell. Retrieved from: http://books.google.com.au/
books?hl¼en&lr¼&id¼JoPYriJM1cwC&oi¼fnd&pg¼PA20&dq¼
Wittgenstein&ots¼5uDSJTF6j5&sig¼fHuLfYMHNU4iZlPMn
EasWEQjgGo.

Wood, A., Rychlowska, M., Korb, S., & Niedenthal, P. (2016).
Fashioning the face: sensorimotor simulation contributes to
facial expression recognition. Trends in Cognitive Sciences, 20(3),
227e240.

Yang, D. Y.-J., Rosenblau, G., Keifer, C., & Pelphrey, K. A. (2015). An
integrative neural model of social perception, action
observation, and theory of mind. Neuroscience and Biobehavioral
Reviews, 51, 263e275. https://doi.org/10.1016/
j.neubiorev.2015.01.020.

Yingling, J. (1981). Temporal features of infant speech: A
description of babbling patterns circumscribed by postural
achievement. Unpublished doctoral dissertation. University
of Denver.

Yirmiya, N., Kasari, C., Sigman, M., & Mundy, P. (1989). Facial
expressions of affect in autistic, mentally retarded and normal

https://doi.org/10.1080/87565641.2011.560696
https://doi.org/10.1080/87565641.2011.560696
https://doi.org/10.1177/1362361307076846
https://doi.org/10.1177/1362361307076846
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref510
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref510
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref510
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref510
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref510
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref510
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref510
https://doi.org/10.1007/s10803-004-1037-3
https://doi.org/10.1007/s10803-004-1037-3
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref470
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref470
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref470
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref470
https://doi.org/10.1001/archneur.1981.00510100074013
https://doi.org/10.1001/archneur.1981.00510100074013
https://doi.org/10.1162/jocn.2009.21309
https://doi.org/10.1162/jocn.2009.21309
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref473
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref473
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref473
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref473
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref473
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref473
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref473
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref473
https://doi.org/10.1016/j.neubiorev.2011.09.003
https://doi.org/10.1016/j.neubiorev.2011.09.003
https://doi.org/10.1038/nrg.2017.4
https://doi.org/10.1038/nrg.2017.4
https://doi.org/10.1016/j.neuroscience.2016.12.001
https://doi.org/10.1016/j.neuroscience.2016.12.001
https://doi.org/10.1207/s15326950dp3801_5
https://doi.org/10.1207/s15326950dp3801_5
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref478
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref478
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref478
https://doi.org/10.1007/s10803-009-0902-5
https://doi.org/10.1007/s10803-009-0902-5
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref481
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref481
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref481
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref481
https://doi.org/10.1016/j.ridd.2010.07.006
https://doi.org/10.1007/s10803-011-1421-8
https://doi.org/10.1007/s10803-011-1421-8
https://doi.org/10.1007/s10803-011-1417-4
https://doi.org/10.1093/cercor/bhp234
https://doi.org/10.1002/aur.15
https://doi.org/10.1016/S0149-7634(01) 00014-00018
https://doi.org/10.1016/S0149-7634(01) 00014-00018
https://doi.org/10.1111/1469-7610.00384
https://doi.org/10.1111/1469-7610.00384
https://doi.org/10.1038/nn1263
https://doi.org/10.1038/nn1263
https://doi.org/10.1007/BF01531339
https://doi.org/10.1007/BF01531339
https://doi.org/10.1007/BF01531288
https://doi.org/10.1016/j.ridd.2010.11.003
https://doi.org/10.1016/j.ridd.2010.11.003
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://books.google.com.au/books?hl=en&amp;lr=&amp;id=JoPYriJM1cwC&amp;oi=fnd&amp;pg=PA20&amp;dq=Wittgenstein&amp;ots=5uDSJTF6j5&amp;sig=fHuLfYMHNU4iZlPMnEasWEQjgGo
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref494
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref494
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref494
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref494
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref494
https://doi.org/10.1016/j.neubiorev.2015.01.020
https://doi.org/10.1016/j.neubiorev.2015.01.020
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref511
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref511
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref511
http://refhub.elsevier.com/S0010-9452(17)30403-3/sref511
https://doi.org/10.1016/j.cortex.2017.11.019
https://doi.org/10.1016/j.cortex.2017.11.019


c o r t e x 1 0 0 ( 2 0 1 8 ) 1 4 9e1 9 0190
children. Journal of Child Psychology and Psychiatry, and Allied
Disciplines, 30(5), 725e735. https://doi.org/10.1111/j.1469-
7610.1989.tb00785.x.

Young, R. L., Brewer, N., & Pattison, C. (2003). Parental
identification of early behavioural abnormalities in children
with autistic disorder. Autism, 7(2), 125e143. https://doi.org/
10.1177/1362361303007002002.

Ypma, R. J. F., Moseley, R. L., Holt, R. J., Rughooputh, N.,
Floris, D. L., Chura, L. R., et al. (2016). Default mode
hypoconnectivity underlies a sex-related autism spectrum.
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging,
1(4), 364e371. https://doi.org/10.1016/j.bpsc.2016.04.006.

Zaki, J., Weber, J., Bolger, N., & Ochsner, K. (2009). The neural
bases of empathic accuracy. Proceedings of the National Academy
of Sciences of the United States of America, 106, 11382e11387.
https://doi.org/10.1073/pnas.0902666106.
Zappella, M., Einspieler, C., Bartl-Pokorny, K. D., Krieber, M.,
Coleman, M., B€olte, S., et al. (2015). What do home videos tell
us about early motor and socio-communicative behaviours in
children with autistic features during the second year of life -
An exploratory study. Early Human Development, 91(10),
569e575. https://doi.org/10.1016/j.earlhumdev.2015.07.006.

Zelaznik, H. N., & Goffman, L. (2010). Generalized motor abilities
and timing behavior in children with specific language
impairment. Journal of Speech, Language, and Hearing Research,
53(2), 383e393. https://doi.org/10.1044/1092-4388(2009/08-
0204) (Generalized).

Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., &
Szatmari, P. (2005). Behavioral manifestations of autism in the
first year of life. International Journal of Developmental
Neuroscience, 23(2e3 SPEC. ISS.), 143e152. https://doi.org/
10.1016/j.ijdevneu.2004.05.001.

https://doi.org/10.1111/j.1469-7610.1989.tb00785.x
https://doi.org/10.1111/j.1469-7610.1989.tb00785.x
https://doi.org/10.1177/1362361303007002002
https://doi.org/10.1177/1362361303007002002
https://doi.org/10.1016/j.bpsc.2016.04.006
https://doi.org/10.1073/pnas.0902666106
https://doi.org/10.1016/j.earlhumdev.2015.07.006
https://doi.org/10.1044/1092-4388(2009/08-0204)
https://doi.org/10.1044/1092-4388(2009/08-0204)
https://doi.org/10.1016/j.ijdevneu.2004.05.001
https://doi.org/10.1016/j.ijdevneu.2004.05.001
https://doi.org/10.1016/j.cortex.2017.11.019
https://doi.org/10.1016/j.cortex.2017.11.019

	What can autism teach us about the role of sensorimotor systems in higher cognition? New clues from studies on language, ac ...
	1. Can autism shed light on the role of sensorimotor systems in higher cognition?
	2. Movement disorder in autism: a review
	3. The neuroanatomical correlates of movement impairment
	4. Language and motor development in typical and autistic infanthood
	5. Motor systems and the mechanisms of action perception integration
	6. Autistic ‘disembodiment’ of action semantics; a test of motor involvement in action word processing
	7. Abstract emotional meaning and autism; the case of emotion words
	8. Widening the lens: autism as a disorder of movement and action perception integration
	9. Summary, conclusions and future directions
	Declaration of interests
	Funding
	Acknowledgements
	Appendix A. Supplementary data
	References


