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Abstract3

Signal extraction and analysis is of great importance not only in4

fields such as economics and meteorology but also in genetics and even5

biomedicine. There exists a range of parametric and nonparametric tech-6

niques which can perform signal extractions. However, the aim of this7

paper is to define a new criterion for optimising signal extraction from8

bicoid gene expression profile. Having studied both parametric and non-9

parametric signal extraction techniques, we identified the lack of specific10

criterion to enable users to select the optimal signal extraction param-11

eters. Exploiting the expression profile of bicoid gene, which is a ma-12

ternal segmentation coordinate gene found in Drosophila melanogaster,13

we introduce a new criterion for optimising the signal extraction with a14

nonparametric technique. This criterion is based on the distribution of15

the residual, more specifically its skewness.16

Keywords: signal extraction; Optimisation; Residual distribution; Bi-17

coid.18

1 Introduction19

Signal extraction is an important and challenging task in the field of time series20

analysis and forecasting. Signals can take various forms with the most common21

being trends and seasonal fluctuations. Trend extraction in particular enables22

analysts to smooth out a time series and remove the seasonal and cyclical23

variations so as to determine the long-run behaviour of the underlying data. A24

trend can be formally defined as a smooth additive component which contains25

information relating to the global change in a time series [4], and the term26

‘smooth’ is a vital characteristic of any given signal. In the field of genetics27

and gene expression studies, signal extraction and noise reduction are crucial28

as genetic data is often characterised by the existence of considerable noise [5].29

Our interest in this topic is motivated by the findings in [5] where the au-30

thors evaluated a variety of parametric and nonparametric signal processing31

techniques for extracting the signal in bicoid (bcd)1, which is a morphogen lo-32

calised at the anterior end of the egg. After fertilisation, the distribution of33

Bcd along the embryo –the signal under study in this paper– determines the34

cell’s destiny in a concentration-dependent mode. Here, the authors found that35

a nonparametric approach produced the most efficient extraction of the Bcd36

signal [5].As Ghodsi et al. [5] point out, the Bcd signal extraction process is37

1In what follows, the italic lower-case bcd presents either the gene or the mRNA and Bcd
refers to the protein.
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complex as the data associates with both observational and biological noise,38

and the extracted residual is not normally distributed as required by paramet-39

ric techniques. Figure 1 below shows an example of a typical noisy Bcd. As40

noted in [5], the distribution of Bcd follows an exponential trend, and the high41

volatility seen in the profile ensures that the extraction of this signal remains42

an arduous task.43

Figure 1: A typical example of noisy Bcd [9].

The aim of this paper is to introduce and define a new criterion for optimis-44

ing Bcd signal extraction. At present, there exist no definitive criterion to aid45

researchers and scientists interested in extracting the Bcd signal for analysis.46

Since the Bcd signal defines what positional information is available for mor-47

phogen readout, studying the characteristics of this signal expects to improve48

our knowledge on several critical developmental processes such as embryoge-49

nesis, regional specification and canalisation. It should be noted that the set50

criterion is tailored for the sole purpose of extracting an accurate Bcd signal51

based on the knowledge disseminated through the work in [5] with regard to52

the distribution of the residual following Bcd signal extraction. Therefore, the53

criterion presented herewith may not be directly suitable for other applications.54

In addition to covering the main aim of this paper, we also present readers55

with two other interesting concepts related to Bcd expression profile. These are56

sequential and hybrid signal extraction processes which are explained in Sec-57

tion 2. Accordingly, this paper is able to present readers with three different58

approaches for Bcd signal extraction based on their requirements and interests.59

The first approach is suitable for those who wish to rely on a single model for60

Bcd signal extraction. We have tailored the criterion presented in this paper61

to enable a swift and accurate Bcd signal extraction using the nonparametric62

approach identified as best in [5]. Should the extracted signal appear to have63

captured some unnecessary fluctuations, then the sequential process described64

can be applied on the original signal to generate a refined and smoother signal65

line. Even though the findings in [5] suggests that the Bcd residual is skewed,66

we appreciate that statisticians who subscribe to classical methods would find67
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it difficult to agree with such outcomes. Therefore, as a second approach, we68

propose a hybrid parametric signal extraction process which can ensure that69

the residual is in fact white noise. Finally, for those who wish to exploit hybrid70

modelling from a purely nonparametric perspective with the possibility of cap-71

turing the maximum variation via a smooth signal line, we present the hybrid72

nonparametric approach and show that it can produce far better results when73

combined with the optimized signal extraction criteria presented herewith. The74

above three approaches also represent the core contributions of this research.75

The remainder of this paper is organised such that Section 2 focuses on76

optimising Bcd signal extraction with Section 3 presenting the empirical re-77

sults. This is followed by an interesting discussion in Section 4, and the paper78

concludes in Section 5.79

2 Optimising Bcd Signal Extraction80

2.1 Singular Spectrum Analysis81

The Singular Spectrum Analysis (SSA) technique is a nonparametric filtering82

technique that is dependent upon its choice of Window Length L and the num-83

ber of eigenvalues r. SSA was successfully introduced for Bcd signal extraction84

in [16] and exploited in more detail in [5]. This particular study found that85

the residual following signal extraction in Bcd is not normally distributed or86

stationary, and also showed that the residual itself has a complex pattern which87

adds further to the difficulty in smoothing and signal extraction. However, SSA88

is unique as it can extract several signals for any given time series depending on89

the chosen value of L. In fact, the choice could be any L such that 2 ≤ L ≤ N/290

where N is the length of the series. As such, the findings in [5] which shows91

SSA as the best option for Bcd signal extraction (in relation to Synthesis Diffu-92

sion Degradation, Exponential Smoothing, Autoregressive Integrated Moving93

Average (ARIMA), Fractionalized ARIMA, and Neural Networks) falls short94

of defining the optimal SSA model choices for Bcd signal extraction.95

Through our work we intend to fill this gap by introducing a new criterion96

which enables optimisation of the Bcd signal extraction process with SSA. The97

importance of defining such a criterion is further evidenced by the fact that SSA98

has been applied for extracting the Bcd and other segmentation gene’s signal99

since 2006, see for example [5, 12–17]. Therefore, it is clear that researchers100

and scientists alike can benefit from some formal criterion for the selection of101

SSA choices when using same for Bcd signal extraction. Whilst the remainder102

of this paper focuses entirely on SSA, we find it pertinent to acknowledge and103

comment on the comparative preferability of SSA over other filtering techniques104

such as Hilbert-Huang (HH) [18] and Hodrick-Prescott (HP) [19]. Firstly, the105

SSA technique (as detailed below) is a Singular Value Decomposition based106

method and as such is very effective for noise reduction [20]. Secondly, the HH107

approach is closely associated with Empirical Mode Decomposition which is108

related to the setting of intrinsic mode functions. Thirdly, the signal process109

in the HP filtering approach has two instead of one unit root and is therefore110

most suitable for time series with two unit roots [20]. A direct comparison of111
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both SSA and HP under equal conditions showed that SSA performs on par112

with the HP filter [20].113

The basic SSA technique consists of two complementary stages referred to114

as decomposition and reconstruction, and each of these stages includes two115

separate steps [21]. In brief, at the first stage the Bcd is decomposed into the116

sum of a small number of independent and interpretable components such as a117

slowly varying trend and a structureless noise [5,21], and at the second stage the118

noise free Bcd is reconstructed [5, 22]. It should be noted that the use of SSA119

in this paper is solely intended towards obtaining the optimal decomposition120

of Bcd using SSA and then extracting the signal component alone. Figure 2121

summarises the basic SSA process as a flowchart.122

Figure 2: A flowchart of the basic SSA process. Figure adapted from [21].

A more detailed explanation of the steps underlying SSA for bicoid signal123

extraction is provided below, and in doing so we mainly follow [5,21].124

The first step maps a one dimensional time series YN = (y1, . . . , yN ) into125

a multi-dimensional series X1, . . . , XK with vectors Xi = (yi, . . . , yi+L−1)T ∈126

RL, where K = N−L +1. Whilst the process itself is referred to as embedding,127

the vectors Xi are called L-lagged vectors. The single choice of the embedding128

stage is the Window Length L, which is an integer such that 2 ≤ L ≤ N/2.129

This step results in the trajectory matrix X, which is also a Hankel matrix and130

takes the form: X = [X1, . . . , XK ] = (xij)
L,K
i,j=1.131

Thereafter, we obtain the singular value decomposition (SVD) of the trajec-132

tory matrix and represent it as a sum of rank-one bi-orthogonal elementary133

matrices. The eigenvalues of XXT are denoted by λ1, . . . , λL in decreasing or-134

der of magnitude (λ1 ≥ . . . λL ≥ 0) and by U1, . . . , UL the orthonormal system.135

Then, we set136

d = max(i, such thatλi > 0) = rankX.
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If we denote Vi = XTUi/
√
λi, then the SVD of the trajectory matrix can be137

written as:138

X = X1 + · · ·+ Xd, (1)

where Xi =
√
λiUiVi

T (i = 1, . . . , d). The matrices Xi are elementary139

matrices as they have rank 1, Ui and Vi denotes the left and right eigenvectors of140

the trajectory matrix. The collection (
√
λi, Ui, Vi) is called the i-th eigentriple141

of the matrix X,
√
λi (i = 1, . . . , d) are the singular values of the matrix X142

and the set {
√
λi} is called the spectrum of the matrix X. The expansion143

(1) is said to be uniquely defined if all the eigenvalues have a multiplicity of144

one. The process of splitting the elementary matrices Xi into several groups145

and summing the matrices within each group is called grouping and transfusing146

each resultant matrix from grouping step to a less noisy series is called diagonal147

averaging.148

As specifically noted in [5], in general the first eigenvalue corresponds to149

the trend of a given time series when using SSA. In order to illustrate this150

more clearly to the reader, we show a couple of examples in Figures 3 and 4.151

Moreover, in [10, 11] the authors extract and illustrate the trend for tourist152

arrivals using SSA based decomposition and the first eigenvalue. Thus, we153

extract the first eigenvalue alone and consider the remainder as noise, and154

then perform diagonal averaging to transform the matrix containing the first155

eigenvalue into a series which will now provide the extracted signal from Bcd.156

2.1.1 New Approach for Optimising Bcd Signal with SSA157

In this section we present the new approach for optimising Bcd signal extrac-158

tion with SSA and provide justification for the process. The proposed criteria159

are developed as follows.160

161

1) The extracted Bcd trend must be smooth. This is in accordance with the162

widely accepted definition of a trend which states that it must be a ‘smooth’163

additive component [4].164

165

2) Setting L sufficiently large enables the first eigenvalue, i.e. r = 1 (in some166

cases, r = 1, 2) to extract a smooth signal for a given series, however the167

value of L must not be too small or too large. By theory, L must lie between168

2 ≤ L ≤ N/2 [21]. Yet, when it comes to Bcd signal extraction, setting L at169

N/2 can have negative implications, as with setting L too small.170

For example, let us first consider the scenario in Figure 3 whereby in a series171

with length 301 we consider SSA choices of L = 2 and r = 1 for Bcd signal172

extraction. Notice how the extracted signal fails to meet the ‘smooth’ criteria173

as per the definition of a signal in [4]. Accordingly, it is evident that setting L174

too small fails to achieve an optimal signal extraction with SSA for Bcd.175

Secondly, let us consider what happens when we set L too large for the176

same data set. Here, the maximum possible value of L is 150. As such, we set177

L = 150 and seek to extract the signal in our data. Figure 4 shows the resulting178

outcome. In this case, notice how the signal line is smooth (confirming that179
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Figure 3: signal extraction from noisy Bcd with SSA choices of L = 2 and
r = 1.

setting L large can provide a smoother line) but the extracted signal fails to fit180

well to the actual data especially towards the tail of the series.181

Figure 4: signal extraction from noisy Bcd with SSA choices of L = 150 and
r = 1.

3) Based on points 1) and 2), we suggest the following threshold for the selec-182

tion of L for Bcd signal extraction purposes. The window length L should be183

some value between 10 ≤ L ≤ N/4. Whilst this assumption helps restrict the184
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selection of L, on its own it fails to provide the researcher with an exact value185

for L. Therefore, we call upon the nonparametric nature of SSA to provide the186

final closing argument for the criteria.187

188

4) As a nonparametric technique, the SSA residual can be skewed. Based on the189

findings in [5] which was an extensive study into signal extraction in Bcd, the190

residual from the process was in fact found to be skewed. As such, we propose191

using the skewness statistic as an indicator, and finding L which corresponds192

to the minimum skewness for a given Bcd series within the threshold 10 ≤ L ≤193

N/4 and coupling this with r = 1 or r = 1, 2 as appropriate optimal Bcd signal194

extraction with SSA.195

2.2 Sequential and Hybrid Signal Extraction196

Section 4 in this paper is dedicated to a discussion which focuses on the ex-197

ploitation of Sequential SSA and a hybrid signal extraction process for Bcd198

signal extraction. In what follows we present the ideas that are evaluated later199

on with empirical data.200

2.2.1 Nonparametric Approach201

Signal extraction in Bcd data can be an arduous task owing to the complex202

structure portrayed by the data [5]. Sequential SSA is a relatively new concept203

which is of great benefit when faced with weak separability between signal and204

noise as a result of such complexities. For example, when faced with problems205

in separating a signal of complex form and seasonality, Sequential SSA can206

be exploited to obtain a more accurate decomposition from the residual after207

signal extraction [23]. Whilst historically, Sequential SSA was performed on208

a residual, in this paper we suggest the use of Sequential SSA for refining the209

Bcd signal further.210

The basic idea underlying Sequential SSA is to perform a second round of211

SSA based decomposition and reconstruction on data that has already un-212

dergone an initial round of SSA, with the aim to refine the signal of interest213

further. Suppose that we exploit the optimised Bcd signal extraction algorithm214

explained above and extract some signal line. However, if the Bcd data in ques-215

tion has a highly complex structure, it is possible to end up with a signal line216

that is not as smooth as one would like. In such instances, we suggest exploit-217

ing Sequential SSA, not on the residual, but on the extracted signal to smooth218

it further and obtain a new and refined signal curve. This approach is greatly219

beneficial to those who wish to rely on a single model for Bcd signal extraction220

and enjoy the benefits of a nonparametric technique.221

2.2.2 Hybrid Signal Extraction with SSA222

It is possible that some statisticians may not be convinced or used to subspace-223

based methods such as SSA. Therefore, we find it pertinent to present the224

possibility of obtaining a hybrid signal extraction process which will combine225

the optimised SSA signal extraction algorithm for Bcd with other automated226
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signal processing techniques from both parametric and nonparametric back-227

grounds.228

The basic idea underlying the hybrid signal extraction process is as follows:229

1. Extract the Bcd signal via the optimised SSA signal extraction algorithm.230

231

2. Fit a different time series model to the residuals following SSA signal232

extraction and obtain the fitted values.233

234

3. Add the fitted values to the original SSA signal to create the Hybrid SSA235

signal.236

237

2.2.2.1 Hybrid SSA Signal: Parametric Approach The idea underly-238

ing the hybrid SSA signal with a parametric approach is to combine the non-239

parametric SSA signal with the fitted values on residuals from a parametric240

signal processing model. As most classical statisticians welcome and subscribe241

to the ARIMA model, here we choose an automated ARIMA model as provided242

via the forecast package in R [24]. It is important to note that in this paper243

we do not rely on ARIMA for its forecasting capabilities. Instead, we consider244

ARIMA as a tool for extracting any hidden signals within the residual following245

the initial filtering by SSA. This in turn enables one to ensure that the residual246

is indeed white noise, as required by parametric models. This approach is use-247

ful as it ensures that the residual following hybrid signal extraction will indeed248

be white noise.249

The modelling equations for ARIMA relevant to this study can be described250

by following [25]. A non-seasonal ARIMA model may be written as:251

(1− φ1B − . . .− φpBp)(1−B)dyt = c+ (1 + θ1B + . . .+ θqB
q)et, (2)

where B is the backshift operator, c is a constant, p is the order of the au-252

toregressive part, q is the degree of first differencing, d is the order of the253

moving average part of the model, and et is white noise [25]. In the R software,254

the inclusion of a constant in a non-stationary ARIMA model is equivalent to255

inducing a polynomial signal of order d in the forecast function.256

2.2.2.2 Hybrid SSA Signal: Nonparametric Approach Whilst the257

underlying idea remains the same, in this instance, as opposed to relying on a258

parametric time series analysis model, we can combine the nonparametric and259

optimised SSA signal with fitted values on residuals from a nonparametric time260

series analysis model in order to obtain the hybrid SSA signal. The benefits261

of this approach would be that it enables to overcome the parametric restric-262

tions of normality and stationarity of residuals of which the former condition263

was found to be irrelevant in the case of Bcd data where the residual following264

signal extraction is skewed according to [5]. In this case we rely on the auto-265

mated Exponential Smoothing (ETS) model found in the forecast package in R.266
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Those interested in the several ETS formula’s that are evaluated through the267

forecast package when selecting the best model to fit the residuals are referred268

to Chapter 7, Table 7.8 in [25].269

3 Empirical Results270

3.1 Data271

The evaluation in this study is performed on 17 Drosophila melanogaster em-272

bryos introduced by Alexandrov et al. [1] which was originally obtained from273

FlyEx database [6, 7]. This dataset has been widely used as a valuable source274

of information for studying the dynamics of segment determination of early275

Drosophila development [8].276

In FlyEx, the quantitative Bcd data was obtained using the confocal scanning277

microscopy of fixed embryos immunostained for segmentation proteins [2]. To278

that aim, A 1024 1024 pixel confocal image with 8 bits of fluorescence data was279

achieved for each embryo which then transformed into an ASCII table. The280

ASCII table contains the fluorescence intensity levels attributed to each nucleus281

of A-P axis. To present the data using a graph, the x-axis shows the anterior to282

a posterior position along the length of the egg expressed as the percentage, and283

y-axis shows the intensity levels which correspond to the amount of expressed284

bcd gene.285

It is of note that in the study conducted by Alexandrov et al. the out of286

focus regions were removed by excluding the utmost anterior and posterior287

areas. After removing the upper and lower values, to get a complete profile288

along the A-P axis of the embryo, a curve was fitted to the interval of the289

A-P coordinate between 20 and 80% of egg length (a complete explanation of290

the method and biological characteristics of this data can be found in [1, 3]).291

However, to introduce a signal processing method capable of both noise filtering292

and signal extraction, this paper considers the whole data which is unprocessed293

for any noise reduction methods.294

3.2 Signal Extraction295

Here, we consider real Bcd data and seek to extract the signal with SSA using296

the newly proposed criteria as outlined in Section 2.1. Figure 5 below portrays297

a selection of the actual data and extracted signal with the optimized SSA298

algorithm, and also outlines the SSA choices which have been used in each299

case. For the examples in Figure 5, note how the extracted signal is not only300

smooth, but also well centred around the data, thereby providing the reader301

with a very accurate outlook for the long term prospects of the Bcd gradient.302

However, it is evident that on its own, SSA appears to have difficulties in303

accurately capturing the signal curve initially when it is faced with very high304

levels of fluctuations as clearly visible within the first few observations of the305

Bcd profile. We consider this aspect further in the discussion which follows in306

Section 4.307
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Even though signal extraction is the primary focus of this study, it is no308

secret that the residual can often enlighten us to crucial information pertaining309

to any given data set. As such, we follow up the signal extractions with a sound310

residual analysis.311

Figure 5: Optimised signal extraction with SSA for a selection of Bcd data.

3.3 Residual Analysis312

In order to save space, via Figure 6 we only show the residuals corresponding313

to the signal extractions shown in Figure 5. A first look at the structure314
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and distribution of the residual over time helps us understand the difficulty in315

extracting the signal from Bcd profiles. This is largely to do with the the highly316

volatile nature of the data which results in fluctuating amplitudes over time in a317

particular pattern. In fact, the general patterns appears such that all residuals318

portray amplitudes which are initially high and then gradually decrease. This319

in turn means that the techniques adopted for Bcd signal extraction should320

be able to cope well with such variation and fluctuations in data if it is to321

accurately perform its task. Moreover, it appears to the naked eye that there322

is indeed some signal contained within these residuals. Whilst it is expected323

that a residual following signal extraction would result in capturing the other324

signals, in some instances there also appears to be a small signal pattern hidden325

within this data.326

However, as visual inspections fall short of providing sound evidence, we also327

consider some statistics for analysing the residuals further. These are reported328

via Table 1 for all the Bcd data considered in this study. The residuals are ini-329

tially tested for normality via the Kolmogorov-Smirnov (KS) test for normality.330

The choice of KS test was as opposed to using the popular Shapiro-Wilk (SW)331

test for normality was because when faced with large samples the KS test is332

likely to be comparatively more accurate than the SW test [26]. As expected,333

all residuals failed to pass the normality test reporting probability values of334

less than 0.001, and thereby leading to a rejection of the null hypothesis of335

normality. This lets us conclude with 99% confidence that the Bcd residuals336

following signal extraction are in fact skewed and these results are consistent337

with the findings in [5].338

Finally, we go a step further and fit optimal ARIMA models [25] to the339

residuals. This was done in order to ascertain the randomness of the residu-340

als following Bcd signal extraction with optimised SSA. Statisticians who rely341

on classical signal extraction techniques would be overly concerned with the342

parametric assumptions of normality and stationarity of the residuals. Whilst343

we have assessed the normality of residuals via the KS test and justified based344

on [5] that the residuals from this signal extraction exercise should be skewed,345

fitting of optimal ARIMA models enables us to easily show whether the resid-346

uals meet the stationary criteria. We fit automated and optimised ARIMA347

models (as provided via the forecast package in R) on the residuals and report348

the outcomes in Table 1. A non-seasonal ARIMA model is represented in the349

form ARIMA(p, d, q) where p indicates the order of the autoregressive parts, d350

the degree of first differencing and q the order of the moving average part of351

the model [25]. If the data is non-stationary, then within the ARIMA(p, d, q)352

process the value of d ≥ 1. If the data is stationary, then no differencing is353

required, and so d = 0. In this case, we notice that d = 0 in all instances, and354

thereby proves that the residuals are indeed stationary.355

However, the fitting of ARIMA models on the residuals also highlight another356

interesting point. Notice how for 27 Bcd residuals there have been a variety of357

14 different ARIMA models which have been fitted. This in turn indicates the358

complexity and difficulty associated with the selection of a single technique for359

extracting Bcd signal, and most certainly highlights the difficulties which any360

technique would when seeking to extract a signal from data with such complex361

fluctuations. In addition, except for where the model reads ARIMA(0, 0, 0), in362
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all other instances we notice that the residuals are not white noise. We discuss363

this, and provide a possible solution within the discussion.364

Table 1: Residual analysis for Bcd signal extractions.

Embryo n SW ARIMA
ab2 138 <0.001 ARIMA(0,0,1) with zero mean
hz15 85 <0.001 ARIMA(0,0,0) with zero mean
hz28 79 <0.001 ARIMA(2,0,2) with zero mean
ad14 301 <0.001 ARIMA(2,0,5) with zero mean
ad22 294 <0.001 ARIMA(4,0,3) with zero mean
ad23 308 <0.001 ARIMA(1,0,3) with non-zero mean
ab17 485 <0.001 ARIMA(1,0,3) with non-zero mean
ad4 556 <0.001 ARIMA(4,0,4) with zero mean
ad6 566 <0.001 ARIMA(2,0,2) with non-zero mean
ab12 2284 <0.001 ARIMA(4,0,2) with zero mean
ab10 2263 <0.001 ARIMA(1,0,2) with zero mean
ac5 2404 <0.001 ARIMA(4,0,4) with non-zero mean
ab1 2570 <0.001 ARIMA(4,0,4) with zero mean
ac7 2268 <0.001 ARIMA(1,0,2) with zero mean
ad13 2235 <0.001 ARIMA(4,0,2) with non-zero mean
ad29 2193 <0.001 ARIMA(1,0,2) with zero mean
ad32 2183 <0.001 ARIMA(2,0,1) with zero mean
ab7 2346 <0.001 ARIMA(1,0,2) with zero mean
ac3 2356 <0.001 ARIMA(0,0,1) with zero mean
ac9 2215 <0.001 ARIMA(4,0,1) with zero mean
ms14 2305 <0.001 ARIMA(4,0,2) with zero mean
ab11 2355 <0.001 ARIMA(4,0,2) with zero mean
ac4 2383 <0.001 ARIMA(3,0,1) with zero mean
ab14 2218 <0.001 ARIMA(1,0,2) with zero mean
ab9 2369 <0.001 ARIMA(2,0,1) with zero mean
dq2 2423 <0.001 ARIMA(2,0,4) with zero mean
ms36 2239 <0.001 ARIMA(5,0,1) with zero mean

4 Discussion365

4.1 Sequential SSA on Bcd signal366

Note how the signal extraction in ac3, Figure 7, appears to have captured367

some other fluctuations apart from the signal alone. As such, this extraction,368

in particular, fails to meet our criteria for a smooth signal. When faced with369

such situations, we are able to find a solution via sequential SSA. Sequential370

SSA enables users to take the extracted signal (the signal in our example) and371

filter same with SSA once more to obtain a more refined output. In what372

follows we have applied Sequential SSA on the initially extracted Bcd signal.373

As visible via Figure 8, following sequential SSA we have been able to extract374

a smoother signal. In this instance, we used the signal extracted via the opti-375
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Figure 6: Residuals following optimised signal extraction with SSA for a selec-
tion of Bcd data.
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Figure 7: SSA based optimal trend extraction for ac3.

mised SSA signal extraction algorithm for Bcd and refined this signal further376

via Sequential SSA. Here we have used L = N/2 and r = 1 for signal extrac-377

tion with Sequential SSA. In line with good practice, the residual was once378

again tested for normality via the KS test which indicated that the residual is379

skewed at a 1% significance level, and fitting of an ARIMA model showed that380

the residual is stationary as well.381

Figure 8: Refined signal extraction with sequential SSA on ac3 signal.
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4.2 Hybrid SSA signal Extraction for Bicoid382

4.2.1 Hybrid SSA signal: Parametric Approach383

The residual analysis in Table 1 indicates that ARIMA models could be fitted384

to all but one of the residuals following signal extraction with the optimised385

SSA signal algorithm. This means that only one of the residuals are pure white386

noise as it stands. Whilst some might argue that this is acceptable given that387

the objective is to extract the signal component alone, there may be others who388

subscribe to an alternate view along the lines of obtaining a random residual389

following signal extraction. The first hybrid SSA signal approach we present is390

one which enables users who wish to obtain white noise achieve this following391

Bcd signal extraction with SSA. We begin by fitting the ARIMA models as392

identified via Table 1 to the data and extract the fitted values which are then393

combined with our original SSA Bcd signal to create a hybrid SSA-ARIMA394

signal for Bcd. We consider the examples discussed in text so far and generate395

the following results. Figure 9 shows the hybrid SSA-ARIMA signals for Bcd396

data. In comparison to the optimised SSA signals in Figure 5, the hybrid397

SSA signal with ARIMA fit fails to meet the smooth criteria. As such, it is398

evident that on its own, the hybrid SSA-ARIMA approach is only beneficial399

for those who wish to capture all the signal in the data whilst ensuring that400

the residual following Bcd signal extraction is white noise. It clearly comes at401

a high cost of lost smoothness in signal curves. However, it is of note that as402

previously mentioned, noise in gene expression data enters not only from the403

data acquisition and processing procedures [27] but also the fluctuations seen404

in an expression pattern can be a consequence of biological noise which may405

also introduce error into the data [28]. Therefore, the source of the natural406

biological variability is different from the experimental noise [28]. Biological407

noise arises from the active molecular transport, compartmentalization, and the408

mechanics of cell division [29]. Therefore, the hybrid SSA with the ARIMA409

model can be applied in studies such as segmentation network analysis where410

the combination of Bcd signal with its biological noise needs to be considered411

as an input to the system.412

4.2.2 Hybrid SSA signal: Nonparametric Approach413

Here, we apply the same process as above, but instead of ARIMA, we rely on414

the nonparametric time series analysis model of ETS. This enables the entire415

hybrid SSA signal approach to remain nonparametric in nature. The resulting416

hybrid SSA signals with ETS fit are shown via Figure 10.417

There is an interesting point to note here. In comparison to the parametric418

hybrid signal extraction approach, it is clear that the nonparametric hybrid419

approach has resulted in much smoother signal curves as one would expect and420

like to see following a signal extraction exercise. As such, out of the two hybrid421

approaches, for the purposes of Bcd signal extraction, it is likely that users will422

prefer the nonparametric approach over the parametric approach.423
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Figure 9: Hybrid SSA signal with ARIMA fit for Bcd data.
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Figure 10: Hybrid SSA signal with ETS fit for bicoid data.
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5 Conclusion424

This paper begins with the core aim of introducing new criteria for optimising425

Bcd signal extraction. Motivated by the findings in [5], we opt to tailor the426

new Bcd signal extraction criteria for use with the Singular Spectrum Analysis427

technique which Ghodsi et al. [5] found to be the best option for Bcd signal428

extraction in relation to SDD, ARIMA, ETS, ARFIMA and NN models. In429

line with our aim, we initially produce an algorithm for optimising the Bcd430

signal extraction process with SSA. In brief, the algorithm is optimised based431

on minimising the skewness statistic for the SSA residual. We suggest that432

setting L equal to the minimum skewness within the threshold 10 ≥ L ≥ N/4433

and combine this SSA choice with r = 1 or r = 1, 2 as appropriate will enable434

users to obtain the optimal Bcd signal extraction with SSA.435

Through this research, we have succeeded in presenting several contributions436

to the field of Bcd signal extraction. The first and most important of which437

deals with the application of the newly proposed algorithm to 27 real Bcd data438

to show that it can enable researchers to select the appropriate SSA choices to439

extract a smooth and accurate Bcd signal quickly and easily without the need440

to spend an increased amount of time for the selection of L for decomposing441

the data. However, we notice that given the highly complex nature of the442

Bcd data, on one occasion the SSA algorithm fails to extract an absolutely443

smoothed signal. As a solution to this problem, we introduce for the first time,444

the concept of Sequential SSA on signals which is also the second contribution445

of this research. Via this approach, we are able to refine and smoothen further446

the initial signal which had captured some of the observational and biological447

noise in Bcd data.448

In line with good practice, in addition to evaluating the signal extractions449

alone, this study also pays attention to the residuals. The analysis of the450

residuals motivated us to introduce hybrid SSA based signal extraction pro-451

cesses for Bcd. In brief, when extracting the signal from any given data set,452

one would reasonably expect other signals to end up within the noise compo-453

nent. However, this would mean that the residual is no longer random and454

some statisticians could find it difficult to accept such techniques. Accordingly,455

the first hybrid SSA signal process (and the third contribution) is focussed on456

providing a Bcd signal extraction procedure which will ensure the residual is457

white noise. This was achieved by combining the optimised SSA signal with458

optimised ARIMA models being fitted to the residuals. Whilst the results did459

provide the necessary outcomes in terms of residuals with white noise, it comes460

at a cost - i.e., a loss in the smoothness of the extracted signal.461

The SSA-ARIMA hybrid approach is a combination of parametric and non-462

parametric techniques. For those who wish to rely on nonparametric techniques463

alone so that one is not restricted by the parametric assumptions, we present the464

SSA-ETS hybrid Bcd signal extraction approach. This process also produces465

the fourth and second most important contribution of this research as we find466

a solution to the problem of modelling accurately the initial curve in Bcd data467

which was not only experienced in this paper when we employed the optimised468

SSA signal extraction process, but was also experienced in [5]. Accordingly, we469
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are able to present the hybrid SSA-ETS process which is a combination of the470

optimised SSA signal extraction algorithm with an optimised ETS algorithm471

as the most efficient approach for Bcd signal extraction.472

We believe that the findings of this research and the information contained473

within this paper opens up several avenues for future research. For example,474

future research should evaluate the possibility of optimizing the SSA signal ex-475

traction process based on different criteria in order to determine whether a more476

improved signal extraction can be produced. For example, as we are seeking477

to introduce a novel approach for optimizing Bicoid signal extraction, in this478

paper we have relied on a binary decomposition. However, future studies could479

consider the Colonial Theory based approach to decomposition as presented480

in [30]. In addition, more extensive research into hybrid signal extraction pro-481

cesses are likely to result in positive, vital and interesting outcomes as clearly482

shown via this paper. Researchers should evaluate a variety of different signal483

extraction techniques within the hybrid framework proposed in this paper to484

ascertain whether outcomes could be further improved.485
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