

University of Went

Dance Movement Patterns Recc

Metadata, citation and similar papers at core

University of Twente The Netherlands

PRE

- Goals
- HMM
- Recognizing Simple Steps
- Recognizing Complex Patterns
- Auto Generation of Complex Patterns Graphs
- Test Bench
- Conclusions

- Goals
- HMM
- Recognizing Simple Steps
- Recognizing Complex Patterns
- Auto Generation of Complex Patterns Graphs
- Test Bench
- Conclusions

- Recognizing simple user's movements
- Recognizing complex patterns
- Auto generation of reference patterns
- Pattern searching during the dance without any reference

- Goals
- HMM
- Recognizing Simple Steps
- Recognizing Complex Patterns
- Auto Generation of Complex Patterns Graphs
- Test Bench
- Conclusions

Hidden Markov Model (HMM)

- Highly used in Speech Recognition
- We adapted it for our problem
- Data sequences to analyze

- HMM graphs for each recognition
- Viterbi's algorithm

- Goals
- HMM
- Recognizing Simple Steps
- Recognizing Complex Patterns
- Auto Generation of Complex Patterns Graphs
- Test Bench
- Conclusions

Recognizing Simple Steps

- What we understand as being a simple step?
 - Right, left, down, up, jump and twister
- How we divided these recognitions

 Horizontal
 - Vertical
 - Twister

Recognizing simple steps (Horizontal)

- Recognized steps
 - Left step
 - Right step

- Used data
 - Horizonal variation of the centre of mass between frames
 - User radius

Recognizing simple steps (Horizontal)

Building a sequence and launching a thread
 Left step
 Right step

Sequence: Stop Left Left stop right right stop

Markov graph

60%

Recognizing simple steps (Vertical)

- Recognized steps
 - Up
 - Down
 - Jump

Used data

culateCenterOfMass[4]:Out0_center-of-mulateCenterOfMass[4]:Out0_center-of-mulateCenterOfMass[4]:Out0_center-of-m

- Vertical position of the centre of mass
- Vertical average position of the centre of mass
- User radius

Recognizing simple steps (Vertical)

- Building a sequence and launching a thread
- Sequence: Stop stop down down stop up down 25% Markov graph 70% 50% 50% State State 33% 1 30% 70% 25% State 34% State State 5 0 2 30% 33% 30% 70% State 25%

3

Recognizing simple steps (Twister)

- Recognized steps
 - Twister
- Used data
 - User radius
 - Average radius
 - Horizontal and vertical position of the centre of mass

Recognizing simple steps (Twister)

Building a sequence and launching a thread

Sequence:

Stop Small Normal Small Normal

• Markov graph

- Goals
- HMM
- Recognizing Simple Steps
- Recognizing Complex Patterns
- Auto Generation of Complex Patterns Graphs
- Test Bench
- Conclusions

Recognizing Complex Patterns

- What we understand as being complex pattern?
 - Combinations of simple steps Left Step + Right Step + Left Step + Jump + Twister +...
- What we receive from the simple step recognition
 - Step code
 - Duration
 - Step time

Left Step

Code: 11

Duration: 3 frames

Time: second 54

Recognizing Complex Patterns

• Building a sequence and launching a thread

Sequence:

Pattern

Markov Graph

- Goals
- HMM
- To Recognize Simple Steps
- To Recognize Complex Patterns
- Auto Generation of Complex Patterns Graphs
- Test Bench
- Conclusions

Auto Generation of Complex Patterns Graphs

 Easy way of building graphs for complex patterns recognition

Included in the pattern recognition

Saved as a text file

Auto Generation of Complex Patterns Graphs

We receive the sequence of simple steps
 Pattern

Sequence:	Stop	Left	Right	Left	Jump	Twister

• We build the graph for the recognition

- Goals
- HMM
- Recognizing Simple Steps
- Recognizing Complex Patterns
- Auto Generation of Complex Patterns Graphs
- Test Bench
- Conclusions

Test Bench

- Test setup
 - Good external conditions
 - Real time tests 210 steps
 - Possible results for each test
 - Well detected
 - Wrong detected
 - Not detected

Test Bench

- Test organization
 - Horizontal recognition
 - Vertical recognition
 - Twister recognition
 - Complex pattern recognition

Test Bench (Horizontal recognition)

- High success rate
- No wrong detections
- In case of fast dance some steps get lost

Test Bench (Vertical recognition)

- Very good individual step recognition
- Slow dance tests: some recognition problems
- Fast dance tests: recognition performance decreases

Test Bench (Twister recognition)

- High recognition performance for steps
 separately taken
- Slow dance tests: start having major detection problems
- Fast dance tests: many steps are mixed

Test Bench (Complex pattern)

- Perfect recognition performance for steps separately taken
- No concrete pattern to analyze
- Inherit problems
 - Wrong simple step recognition
 - Too slow simple step recognition
 - Wrong received order

- Goals
- HMM
- Recognizing Simple Steps
- Recognizing Complex Patterns
- Auto Generation of Complex Patterns Graphs
- Test Bench
- Conclusions

Conclusions (Difficulties encountered)

- Clothe variations
- Unknown frame rate

- Similarities in the vertical movements
- User radius variation due to arms movements
- Failed complex pattern recognition due to wrong order in simple movements recognition

Conclusions (Possible improvements)

- Visual detection
- Use of the data from the "dance dance revolution pad"
- Relating the beat detector with the user recognized steps
- Detection of other simple movements
- Development of a learning algorithm to improve the HMM graphs

Conclusions (Reached goals)

- We have found a good technique to recognize body movements
- In some cases the results have not been as good as we hoped but we think that can be improved
- This technique is also valid to detect more complex patterns
- We easily generate complex pattern graphs
- It has not been possible to search patterns without reference

Thank you very much !

