
 

 

THE DLR ROVER SIMULATION TOOLKIT 

Matthias Hellerer
 (1)

, Stefan Barthelmes
 (1)

, Fabian Buse
 (1)

 
 

(1) 
German Aerospace Center (DLR), Institute of System dynamics and Control, Münchener Straße 20  

DE-82234 Weßling, Email:[Matthias.Hellerer|Stefan.Barthelmes|Fabian.Buse]@DLR.de 

 

 

ABSTRACT 

Autonomous exploration rovers are currently the 

primary means of research on extra-terrestrial bodies. 

Due to the circumstances of their deployment it is vital 

to ensure their unassisted performance in a harsh 

environment. Preliminary simulations are therefore 

indispensable. To facilitate these simulations we 

introduce the DLR Rover Simulation Toolkit (RST). 

The RST constitutes a framework of libraries, allowing 

engineers to quickly assemble digital rover twins, 

particularly for early design phases. Enabled by the 

modelling language Modelica it covers a wide range of 

aspects from different domains in one unifying 

framework. 

This paper establishes in detail the RST’s structure and 

design decisions before showing its practical application 

in a Software-in-the loop (SiL) simulator, elaborating on 

future enhancements and its use during collaborative 

engineering studies in the DLR Systems and Control 

Innovation Lab. 

 

1. INTRODUCTION 

Space missions are characterized by extremely high 

costs and very limited opportunities. For most projects 

this means that actual missions are few and far between. 

Therefore it is of utmost importance to assure that every 

part of the project is working correctly and that all 

eventualities are covered as most space hardware will 

only get a single chance to be deployed. 

Testing hardware in advance under real or realistic 

circumstances is usually either very expensive or even 

impossible on earth. Furthermore, even if prototypes are 

available, only very few are built which results in 

strictly controlled access to those. To circumvent both 

of these problems, simulations form an integral part of 

the development process of every complex system and 

especially for space missions. 

However, creating good simulations is a complicated 

and time consuming task by itself. To facilitate this in 

the case of planetary rovers, the Rover Simulation 

Toolkit (RST), which was first publicly introduced at 

ASTRA 2015 [1], is developed at the DLR Institute of 

System Dynamics and Control. 

 

Being the most complicated part of simulating a mobile 

robot on rough terrain, the wheel-soil interaction is the 

focus of the majority of work being done in that area 

(cf. [2, 3]). Existing full rover simulations mostly focus 

on certain aspects. For the ESA ExoMars mission, a tool 

for combining quasi-static equations with wheel-soil test 

data was developed to evaluate different kinematic 

concepts and dimensions [4]. In [5], the authors used a 

dynamic multi-body system purely for evaluations of 

their controller. The most comprising tool to date seems 

to be ARTEMIS [6] which is an Adams-based mobility 

evaluation tool that was used for assessment of mobility 

issues and candidate drive paths for the Mars 

Exploration Rovers (MER) and the Mars Science 

Laboratory (MSL) at NASA’s Jet Propulsion 

Laboratory (JPL). 

All mentioned tools have very special applications and 

even the rather detailed multi-body model within 

ARTEMIS is tailored to simulating the mobility 

performance of the MER and MSL rovers. 

  

The goals of the RST however are more manifold: 

- Support and enrich early development stages and 

concurrent engineering studies. 

- Make tests repeatable thereby making test results and 

designs comparable. 

- Tests in environments which cannot easily be 

recreated in reality. 

- Improve rover design by multi-critiria optimization of 

parameters or even the rover structure. 

- Generate interactive mission demonstrators to 

visualize key objectives to management or the public. 

- Assess the mobility performance over rough terrain – 

including sands and rocks – and thereby support path 

planning and/or landing site selection. 

- Software-in-the-Loop (SIL) simulations to develop 

and evaluate chassis controllers as well as path 

planning and full autonomy and simultaneous 

localization and mapping (SLAM) algorithms. 

- Bundle our knowledge about rovers in an easily 

accessible library. 

 

To be able to fulfil all these requirements with a high 

result quality, a modular design with submodules of 

very different levels of detail is key. The object oriented 

modelling language Modelica allows this modular 

design in all relevant physical domains which 

seamlessly interact with each other. Base objects are 

defined by equations and interfaces, which are then 

assembled into larger, more complex objects, which 

again might be part of an even larger component. Using 

Modelica also allows us to utilize a large number of 

custom and commercially available libraries [7]. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/132840916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

2. THE DLR ROVER SIMULATION TOOLKIT 

2.1. Overview 

The RST is designed to make the adaptation or creation 

of rover simulations as fast and easy as possible. To do 

so it emphasises clear structures and reusability of 

components. It prefers composition over inheritance and 

avoids complex structures such as replaceable packages. 

Nonetheless it defines a structure for developers to 

follow, defines clear interfaces and demonstrates how 

individual components are designed to be reusable [8]. 

 

The structure of a rover in the RST reflects both the 

practical view of its most important components and its 

physical structure, thereby making it intuitively 

understandable and usable. Additionally this structure 

allows the straight-forward replacement of certain parts 

with hardware testbeds for Hardware-in-the-loop (HIL) 

simulators. At the highest level a complete Rover is 

placed in an environment. On this layer only the most 

relevant configuration parameters, a user might 

typically adjust when simulating a specific rover. 

Examples for such parameters include the starting 

position and the loaded control program. 

 

 

Figure 1. The LRU Rover in the RST at the fist level of 

detail. 

 

One level down the rover is structured as reflected and 

elaborated on in the following subsections and shown in 

Fig 1. Depicted is the Lightweight Rover Unit (LRU), a 

small and agile rover prototype for planetary 

exploration, developed at DLR. The central component 

is a multi-body model of the rover’s physical structure. 

The locomotion is such a critical point and because this 

is a central aspect of our research, the wheels and with 

them the configuration of the wheel ground contact, the 

wheels are separated from the rest of the model at this 

level. These wheel components allow adjustment of 

wheel parameters, contact detection as well as the 

contact force model itself. Also at this level is the 

rover’s controller. The controller represents all the 

control algorithms required to perform a given task, not 

the physical components the algorithms are run on. The 

last component(s) at this level is(are) the rover’s 

payload(s). In Figure 1 this is a pan-tilt camera unit. 

 

2.2. Multi-Body System 

The multi-body system is the core of the rover. It 

encompasses all its physical components and their 

connections. Typically a rover has a central body 

around which a kinematic structure connects it to the 

wheels. The most commonly used components for this 

connection, such as rockers, bogies, steering servos and 

drive motors, are part of the RST. 

Drives are also part of the multi-body system. For they 

are modelled as general as possible and to allow 

maximum reusability, they have been split from the 

RST into an independent library called “Servos”. While 

it is a separate library, it still developed as part of the 

RST. Servos are built modularly and are composed of 

individually replaceable motors, gears, sensors, drivers 

and some auxiliary components.  

 

 

Figure 2. The structure of a servo 

 

The structure of a servo is depicted in Fig 2. The servo 

receives commands for target positions from a bus 

connection. The command is relayed to the servo driver 

which contains the low level control algorithms and 

controls the motor based on read sensor data. The motor 

drives a gearbox which then turns the multi-body frames 

connecting the servo to its surroundings. Standard 

components and a number of complete servo models are 

part of the Servos library. 

 



 

 

2.3. Wheel-Ground interaction 

The interaction between rover wheels and the ground is 

the most important aspect for the rover locomotion. In 

our research this also takes a central role. Just as the 

Servos library, this part has also been converted into a 

separate, reusable library, named “ContactDynamics”. 

 

The ContactDynamics library encompasses three major 

aspects: Contact detection, ground description and 

contact reaction. All of them are designed to be 

replaceable and extensible, they can be combined freely 

and the library contains a selection of implemented 

instances. 

 

Different contact detection methods are implemented 

for both, wheel-soil contact and wheel-object contact. 

The former is based on contact search in certain 

directions. For a contact search on relatively smooth 

terrain, only one search direction from the wheel hub in 

vertical direction leads to decent results. For non-

smooth terrain however, this yields problems as 

depicted in Figure 3: A step in the soil is detected too 

late causing unrealistic behaviour. With various contact 

search directions distributed equally over the wheel rim 

and a suitable averaging between them, non-smooth 

terrain can be handled. For wheel-object contact, a full 

contact search algorithm for convex bodies is available 

as well. 

 

B

A

 Figure 3. Simple contact detection for one search 

direction. A shows a detected penetration of the ground, 

B shows an undetected penetration. 

 

 

Based on a contact detected by the previous step, a 

reaction force can be calculated. Here the 

ContactDynamics library is again designed modularly 

and allows the user to select from a range of algorithms 

for calculating the forces and torques that are associated 

with the detected contact. The primary differentiation is 

a trade-off between accuracy and run-time. An overview 

of the available models and their properties is given in 

Figure 4. 

 

 
Figure 4. Contact reaction algorithms differentiation by 

efficiency and accuracy 

 

The simplest and fastest algorithm is based on a 

rheological contact model (RCM). The force in normal 

direction is calculated with a spring-damper model 

based on the penetration of the wheel in the ground and 

the tangential force, representing friction, is based on 

the speed of the wheel rim relative to the ground. More 

complex models are based upon empirical 

Terramechanics models, e.g. Bekker Wong and Janosi 

Hanamoto (BCM) [9]. To cover sand deformation and 

its effects on the forces, SCM features a 2.5-

dimensional spatial discretization. For three-

dimensional physical modelling, a discrete elements 

model (DEM) has been developed. A more detailed 

discussion of the available algorithms can be found in 

[2]. 

 

 
Figure 5. Wheel ground contact model with soil 

compression and deplacement 

 

2.4. Control algorithms 

As discussed earlier, low level controllers are 

implemented like their real counterparts as part of the 

drive units. Higher level algorithms, controlling 

multiple drives simultaneously and thereby defining the 

robot’s behaviour are implemented in a specialized 

controller module. The controller module is then 

connected to the drives and sensors via a system bus. 

Higher level control structures are implemented using a 

hierarchical state machine. The user can first define 

very general operation states and refine those in sub 

states. This is implemented using Modelica’s state 

machines with some minor improvements. 

 



 

 

 

Figure 6. A simple state machine example 

 

A simple example for a state machine in the RST is 

depicted in Fig 6. Shown on the left side is a very 

simple sequence. When the simulation starts, the rover 

stands still for a given time, then it drives a few meters 

in a straight line, before stopping again and then 

terminating the simulation. To the right of the sequence, 

executed in parallel is a sequence composed of only one 

step, keeping an arm attached to the robot fixed in its 

position. In the upper right corner a block for advanced 

configurations, such as the sampling time is shown. 

Similar to a real rover, the controller and system bus 

work at a certain frequency by using Modelica’s 

synchronous control feature. 

For each rover the RST implements a number of basic 

commands which allow the user to easily assemble 

complex tasks. Typically this includes commands such 

as driving in crab drive (all wheels parallel) for a given 

time, driving a certain distance using Ackermann 

steering or moving an attached robotic arm to a specific 

location. 

 

 

Figure 7. The base command for a rover in the RST 

 

Each command is structured as shown in Fig 7, with a 

number of read-out blocks on the left, providing details 

about the rover’s current state and a number of output 

blocks on the right to set servo target values. Commands 

can either be programmed using Modelica language or 

contain co-simulation interfaces to controllers e.g. in 

Simulink. 

 

3. STRUCTURE 

Section 2 and Fig 1 already introduce the model 

structure of a rover in the RST, strongly modelled after 

the rover’s physical structure. Besides that the rover 

elements are also organized logically in the Modelica 

library as depicted in Fig 8. 

 

 

Figure 8. The logical structure of the RST 



 

 

 User’s Guide 

The RST includes an extensive documentation 

 Rover 

The rover models 

o Base Rover 

The basis for all rovers. Models the structure and 

includes a number of basic components. 

o Payload 

Generic payload components. All components which 

are not an integral part of the main rover, are 

considered payload. For example an attached robotic 

arm. 

o LRU 

The LRU rover as an example rover model in the 

RST. The rover follows the base rover structure and 

uses it to implement the components as shown here 

for the mechanical components. 

Some rovers also feature specific payloads, only 

applicable to this rover. In the case of the LRU this 

is the pan-tilt unit depicted in Fig 1. Those elements 

are also considered part of the rover. 

o Further rovers 

The RST contains a number of further rover models 

 Environments 

A collection of basic terrains and props such as a lunar 

landscape and a lander module. 

 Examples 

A collection of fully modeled examples so users can 

see the library in action and start modifications from a 

fully functional simulation. 

 Utilities 

A collection of utilities, mainly for internal use. 

This structure is very strongly recommended for all 

rover models because a common structure makes 

orientation within a model very easy to learn, yet, to 

allow for maximum flexibility, it is not enforced. 

As alluded to in section 2, we tried to carve out all 

generic components into their own libraries. These 

libraries are designed to be as generic as possible and 

may be used by other projects but they originate in the 

RST and are maintained under the RST umbrella. 

 Servos 

See section 2.2 

A library for servo motors including a bus interface, 

controllers, drivers, gears and motors. 

 ContacDynamics 

See section 2.3 

One of the most important aspects of locomotion 

simulation is the contact between the wheel and the 

ground. For loose and sandy surfaces this is especially 

relevant and complicated to simulate. 

 Commands 

See section 2.4 

The Commands Library is small convenience Library, 

adding some features for command sequences (e.g. a 

simple to configure sample time) to the 

Modelica_Synchronous state machines. 

 

Of course not all libraries the RST depends on are 

actually part of the RST. Besides the ones listed above it 

also uses a number of Modelica standard libraries and 

the DLR Visualization Library [10]. 

 

4. APPLICATIONS 

The RST is already used for various projects within 

DLR. 

4.1. MOREX 

In the five-year DLR project Modular Robotic 

Exploration (MOREX) the goal is to raise the 

competence of the DLR in robotic exploration. The four 

DLR institutes Robotics and Mechatronics, System 

Dynamics and Control, Communications and 

Navigation and Optical Sensor Systems are involved 

and the findings are to be combined into one pilot 

project rover towards the end of the project runtime. 

Currently, the RST is being used to support the early 

development phase with parameter studies and 

optimizations for dimensioning and analysis of the rover 

kinematics and dynamics. The simulation model is 

subject to ongoing development to deliver continued 

support throughout all stages of the rover design. In 

return, experience in conducting an actual rover design 

process and accompanying it with the simulation will 

bring extensive insights and lead to continuous 

improvement of the RST. 

 

4.2. Software-in-the-loop Simulator 

As described earlier, access to robot hardware is often 

limited and not all environments can be provided in 

reality. These problems can be mitigated by employing 

Software-in-the-loop (SiL) simulators. A SiL simulation 

replicates all the interfaces between a rover's hardware 

and its software in such way that the software may run 

on both the real and the simulated system without 

modifications [2]. Currently, such a SiL simulation is 

used for all levels of rover controllers from autonomy 

development at the DLR Institute of Robotics and 

Mechatronics to chassis controllers at the Institute of 

System Dynamics and Control. 

 

Rover Hardware & Environment Rover Software

Real World

Actuator
Commands

Sensor
Data

Navigation 

Manipulation 

Perception

M
issio

n
 C

o
n

tro
l

 Search & Exploration

Real Physics
Real Sensors

 (Cameras & IMU)

Simulation

Multi-Body Simulation
Simulated Sensors

 (Virtual Cameras & IMU)

Inter-
changeable

Figure 9. A Software-in-the-loop simulation 



 

 

4.3. Simulated Stereo-Cameras for optical navigation 

Utilizing the RST a SiL simulation of the LRU which 

transparently replaces the real rover as depicted in Fig 9 

was built. Most of the functionality for such a simulator 

was already present but for this application the RST had 

to be augmented with simulated cameras. This was 

necessary because the LRU software is primarily based 

on optical navigation which is also one of the 

components which is developed using the simulation. 

Here our 3D visualization was utilized [10] and an off-

screen rendering of images added, which was then 

connected to our middleware similar to a real camera. 

 

 

  
Figure 10. Virtual cameras simulating real cameras; 

first: Simulation view, second: virtual camera, third: 

virtual depth camera. 

 

Fig 10 shows the generation of virtual camera images. 

The first image shows a 3D visualization of the 

simulation in our viewer application. The second image 

shows a virtual camera image of the same scene. In the 

first image the boulder is in front of the rover, in the 

second image it is seen from the rover’s perspective. 

Finally the third image shows a virtual depth image. The 

colour denotes the distance from the camera, its gradient 

indicating the receding ground with the boulder sticking 

out. 3D reconstruction from stereo images is a very 

important aspect of image perception but this is also 

computationally extremely expensive. On the real rover 

this is done using a specialized FPGA. For the 

developers those FPGAs are very limited and therefore 

we decided to include a 3D depth image generated from 

the OpenGL depth buffer of the virtual camera. This is 

again connected to our middleware the same way the 

FPGA processed image is. Thereby other parts of the 

rover can be worked on even when no FPGA is 

available. 

 

 

 
Figure 11. Top: The rover in a virtual environment; 

Bottom: the reconstruction of the environment created 

by the navigation software 

 

This SiL simulator was originally developed in 

preparation for the 2015 DLR SpaceBotCamp, a 

German national robotics tournament. The rover had to 

autonomously navigate and explore a large area with 

rough terrain, localize and pick up two objects and 

return those to a base station [11]. Amongst ten 

competitors the LRU was the only rover to complete all 

mandatory tasks and did so in half the given time. This 

great success was in part made possible by a simulator 

which allowed the rover software developers to test 

their systems extensively  beforehand. Fig 11 shows the 

SiL simulator as used in preparation for the 

SpaceBotCamp [1, 12].  

The Helmholtz Alliance “Robotic Exploration of 

Extreme Environments” (ROBEX) is a cooperation of 

sixteen institutes in the field of space and underwater 

research in extreme environments [13]. The idea is to 

find common technology between those fields and to 

share and benefit from an exchange of knowledge. For 

the final presentation of this project in the summer of 

2017, the LRU will present a lunar analogue mission. 

The presentation will demonstrate the rover’s ability to 

autonomously set up an active seismic network (ASN) 

in a moon like environment [14]. Mt. Etna on Sicily, 

Italy was selected as the site for the analogue mission, 

as it features a moon-like surface and has constant 

seismic activity. The simulator was again used 

extensivly in preparation of this event. 



 

 

5. FUTURE DEVELOPMENTS 

While the development of the RST has come a long 

way, we still have many new plans to extend it. The 

next step, after the ROBEX Demo mission on Mt. Etna 

is finished, will be to use the data gathered during the 

mission to verify the simulations and to refine them 

where necessary. 

Furthermore we are currently working on a system to 

automatically analyse the kinematic structure of a 

model. This should allow us in the future to write 

generic controllers which can adapt to any rover 

kinematic. For example an Ackerman steering could be 

given a centre point of a curve and the controller would 

analyse the relative position of each wheel and calculate 

the appropriate steering angle. A generic controller 

could do so without being configured for a specific 

rover kinematic. 

Generic controllers are of crucial importance for our 

next improvement: Optimization of whole rovers, 

including their kinematic structure and the controllers. 

We want the optimization to not only optimize single 

aspects of a rover, like different bogie lengths. We want 

the optimization to change the kinematic structure, e.g. 

to change the number of wheels or the way those are 

attached to the main body. Of course comparisons 

between the performances of different rovers in certain 

environments can only be meaningful if both the 

compared rovers have optimized controllers. So at the 

same time as changing the rover kinematic, a new 

controller has to be generated automatically and then 

optimized before a new design can be evaluated. 

Besides this, the RST has been designed for early design 

studies. While it has already been successfully used in 

the evaluation of early designs, we will also apply it in 

the context of future missions. Such studies can take 

place in the Systems and Control Innovation Lab, a 

newly founded Helmholtz Innovation Lab with the aim 

to integrate commercial and public research and foster 

technology transfer in the fields of simulation, 

optimization and control methods. In the new Lab, 

infrastructure such as a VR Laboratory (depicted in Fig 

13), gives engineers a collaborative work environment 

which enables them to combine single system 

simulations with the Rover Simulation Toolkit using the 

Functional Mockup Interface Technology or interfaces 

to our terramechanics and mechatronic testbeds. 

 

 
Figure 12. Schematic of knowledge flow in the Systems 

and Control Innovation Lab 

 

 
Figure 13. A cooperative design session for an aircraft 

controller at the SCIL 

 

6. CONCLUSION 

The DLR Rover Simulation Toolkit was presented as a 

framework for the design and simulation of planetary 

rovers. It is built from the ground up to be modular and 

to encourage code reuse which enables users to quickly 

create or modify rovers. Many parts were separated 

from the library but are still maintained under its 

framework and may be used for other purposes, further 

improving its reusability. The structure of the 

framework was introduced in detail and explained how 

this supports the development. Users may easily create 

and evaluate new rover designs or modifications 

especially in early design phases such as CEF or phase 

A-B studies, yet the frameworks ability to switch 

between different levels of detail also allows for in 

depth analyses. Furthermore the framework’s 

performance in applications was shown with examples 

such as a Software-in-the-loop simulator and finally 

future plans for new features were discussed. 

  



 

 

7. REFERENCES 

1. Wedler, Armin and Hellerer, Mathias and Rebele, 

Bernhard and Gmeiner, Heiner and Vodermayer, 

Bernhard and Bellmann, Tobias and Barthelmes, 

Stefan and Rosta, Roland and Lange, Caroline and 

Witte, Lars and Schmitz, Nicole and Knapmeyer, 

Martin and Czeluschke, Alexandra and Thomsen, 

Laurenz and Waldmann, Christoph and Flögel, 

Sascha and Wilde, Martina and Takei, Yuto (2015) 

ROBEX – COMPONENTS AND METHODS 

FOR THE PLANETARY EXPLORATION 

DEMONSTRATION MISSION. In: 13th 

Symposium on Advanced Space Technologies in 

Robotics and Automation (ASTRA). ESAWebsite. 

13th Symposium on Advanced Space 

Technologies in Robotics and Automation 

(ASTRA), 10-13 May 2015, Noordwijk, The 

Netherlands. 

2. Lichtenheldt, Roy and Barthelmes, Stefan and Buse, 

Fabian and Hellerer, Matthias (2016) Wheel-

Ground Modeling in Planetary Exploration: From 

Unified Simulation Frameworks Towards 

Heterogeneous, Multi-tier Wheel Ground Contact 

Simulation. Multibody Dynamics - Computational 

Methods and Application Computational Methods 

in Applied Sciences, 42. Springer. pp. 165-192. 

ISBN 978-3-319-30612-4 

3. Ding, L.; Deng, Z.; Gao, H.; Nagatani, K. & Yoshida, 

K. (2011), Planetary rovers' wheel—soil 

interaction mechanics: new challenges and 

applications for wheeled mobile robots, Intelligent 

Service Robotics 4(1), pp. 17-38. 

4. Michaud, S.; Krpoun, R.; Wismer, S. & Gloster, D. 

(2011), Exomars locomotion subsystem analytical 

tool development and correlation, Published at 

ESA/ESTEC, the Netherlands. 

5. Ishigami, G.; Miwa, A.; Nagatani, K. & Yoshida, K. 

(2007), Terramechanics-based model for steering 

maneuver of planetary exploration rovers on loose 

soil, Journal of Field robotics 24(3), pp. 233-250. 

6. Zhou, F.; Arvidson, R. E.; Bennett, K.; Trease, B.; 

Lindemann, R.; Bellutta, P.; Iagnemma, K. & 

Senatore, C. (2014), Simulations of Mars rover 

traverses, Journal of Field Robotics 31(1), pp. 141-

160. 

7. Elmqvist, H. and Mattsson, S. E. and Otter, M. (1999) 

Modelica - A Language for Physical System 

Modeling, Visualization and Interaction. In: 

Proceedings of CACSD'99, pp. 630-639. IEEE 

International Symposium on Computer-Aided 

Control System Design, Hawaii, Aug. 22-27, USA, 

Hawaii. ISBN 0-7803-5449-4 

8. Gamma, Erich and Helm, Richard and Johnson, 

Ralph and Vlissides, John (1995) Design patterns: 

elements of reusable object-oriented software. 

ISBN 0-201-63361-2 

9. Wong, Jo Yung (2008) Theory of Ground Vehicles. 

John Wiley & Sons, Inc., Hoboken, New Jersey, 

USA, 4 edition 

10. Hellerer, Matthias and Bellmann, Tobias and 

Schlegel, Florian (2014) The DLR Visualization 

Library - Recent development and applications. In: 

Proceedings of the 10th International Modelica 

Conference - Lund, Sweden - Mar 10-12, 2014, 

pp. 899-911. LiU Electronic Press. The 10th 

International Modelica Conference 2014, 10-12 

March 2014, Lund, Sweden. DOI: 

10.3384/ecp14096899 ISBN 978-91-7519-380-9 

11. DLR SpaceBot Camp. 

https://web.archive.org/web/20160320051557/http

://www.dlr.de/rd/en/desktopdefault.aspx/tabid-

8101/13875_read-35268/ (2015). Accessed 2017-

05-30 

12. Schuster, Martin J. and Brand, Christoph and 

Brunner, Sebastian and Lehner, Peter and Reill, 

Josef and Riedel, Sebastian and Bodenmüller, Tim 

and Bussmann, Kristin and Büttner, Stefan and 

Dömel, Andreas and Friedl, Werner and Grixa, Iris 

and Hellerer, Matthias and Hirschmüller, Heiko 

and Kassecker, Michael and Marton, Zoltan Csaba 

and Nissler, Christian and Ruess, Felix and Suppa, 

Michael and Wedler, Armin (2016) The LRU 

Rover for Autonomous Planetary Exploration and 

its Success in the SpaceBotCamp Challenge. In: 

2016 IEEE International Conference on 

Autonomous Robot Systems and Competitions 

(ICARSC). IEEE International Conference on 

Autonomous Robot Systems and Competitions, 

04-06 May 2016, Braganca, Portugal. 

13. ROBEX - Robotic Exploration of Extreme 

Environments. http://www.robex-allianz.de/en/ . 

Accessed 2017-05-30 

14. Czeluschke, A. and Knapmeyer, M. and Sohl, F. and 

Bamberg, M. and Lange, C. and Luther, R. and 

Margonis, A. and Rosta, R. and Schmitz, N. 

(2014) The ROBEX-ASN - A concept study for an 

active seismic network on the Moon. European 

Lunar Symposium 2014, 15.-16. Mai 2014, 

London, United Kingdom. 

15. SCIL | Systems Control Innovation Lab. 

http://www.systemcontrolinnovationlab.de/ . 

Accessed 2017-05-30 

 


