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Abstract—The availability of diverse data captured over the
same region makes it possible to develop multisensor data
fusion techniques to further improve the discrimination ability of
classifiers. In this paper, a new sparse and low-rank technique is
proposed for the fusion of hyperspectral and LiDAR-derived fea-
tures. The proposed fusion technique consists of two main steps.
First, extinction profiles are used to extract spatial and elevation
information from hyperspectral and LiDAR data, respectively.
Then, the sparse and low-rank technique is utilized to estimate
the low-rank fused features from the extracted ones which
are eventually used to produce a final classification map. The
proposed approach is evaluated over an urban data set captured
over Houston, USA, and a rural one captured over Trento, Italy.
Experimental results confirm that the proposed fusion technique
outperforms the other techniques used in the experiments based
on the classification accuracies obtained by random forest (RF)
and support vector machine (SVM) classifiers. Moreover, the
proposed approach can effectively classify joint LiDAR and
hyperspectral data in an ill-posed situation when only a limited
number of training samples are available.

Index Terms—Feature fusion; hyperspectral; LiDAR; sparse
and low-rank component analysis; extinction profiles.

I. INTRODUCTION

Nowadays, diverse remote sensors are available, thus al-
lowing to obtain complementary information from different
sources for materials on the surface of the Earth. Such infor-
mation can vary from spectral information obtained by passive
sensors [e.g., multispectral and hyperspectral images (HSIs)],
to height and shape information acquired by Light Detection
And Ranging (LiDAR) sensors, as well as texture information
to amplitude and phase by Synthetic Aperture Radar (SAR).
The availability of data coming from these multiple sources
now allows researchers worldwide to integrate such diverse in-
formation to improve object detection ability and classification
performance. Regardless of the great amount of knowledge
available in such data sets, automatic interpretation of remote
sensed data still remains a challenge [1].
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HSIs are capable of defining the phenomenology and the
spectral characteristics of different objects over a detailed
spectral signature. LiDAR data, instead, can be used to char-
acterize the elevation and object height information of the
scene. These two datasets have been intensively investigated
for different tasks [2].

Urban scenes are usually highly complex and challenging.
It is generally optimistic to assume that a single sensor
can provide enough information for classification and feature
extraction [3]. To this end, HSIs may not be able to precisely
differentiate objects composed of the same material (i.e.,
objects with the same spectral characteristics). For instance,
roofs and roads, which are made by the same material, exhibit
the same spectral characteristics [4]. Therefore, it is difficult
to differentiate such categories in the feature space. On the
other hand, the use of LiDAR elevation data alone cannot
discriminate objects with the same elevation but made of
different materials (e.g., roofs with the same elevation built
by concrete or asphalt). Furthermore, the individual use of
LiDAR data for complex areas, e.g., where many classes are
located close to each other, is very limited compared to optical
data, due to the lack of spectral information provided by this
type of sensors [5], [6].

To take advantage of information provided by different
sensors, multisensor data fusion can be taken into account.
The joint use of HSI and LiDAR has been investigated in
several applications, such as shadow, height, and gap related
masking techniques [7]–[9], above-ground biomass estimates
[10], micro-climate modelling [11], quantifying riparian habi-
tat structure [12], and fuel type mapping [13]. Moreover, the
joint use of LiDAR and HSI has led to higher discrimination
power in the feature space compared to the individual use
of each source [1], [14]–[18]. For instance, in [17], the joint
investigation of HSI and LiDAR was taken into account for
the classification of complex forested areas using only pure
spectral information classified by either support vector ma-
chines (SVMs) or Gaussian maximum likelihood. In [19], deep
convolutional neural network was developed to fuse features
extracted from HSI and LiDAR to precisely classify land-cover
classes. In [18], graph-based feature fusion and morphological
profiles were used to fuse LiDAR-derived features and HSI in
a fewer dimensional space. In [20], HSI and LiDAR have been
considered to deal with individual tree classification, which
could also be extended to areas of shadow caused by the
illumination of tree crowns with sunlight. That approach was
applied to a complex forested area to classify the scene into 16
classes of tree species. In [21], spectral, spatial, and elevation
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features extracted from HSI and LiDAR were fused via
orthogonal total variation component analysis, which is able
to estimate the fused features in a lower dimensional space
and also promote piece-wise smoothness while maintaining
the spatial structures. The aforementioned works indicate
that LiDAR and HSI can complement each other effectively
and that integrating these two sources of information in an
appropriate manner, one can make the most of the advantages
of the two, while addressing the shortcomings of each of them.
However, the automatic integration of multiple types of data is
not a trivial task [16]. In addition, spatial information, which
plays a key role for the classification of HSI, in particular the
ones which are of high spatial resolution, has been neglected
in most of the conventional approaches.

In 2016, the concept of extinction profiles (EPs) was pro-
posed [22] and later in [23], the concept of EPs has been
generalized to extract spatial and contextual information from
HSI. In contrast with attribute profiles (APs) [24]–[26], EPs
preserve the height of the extrema kept [22], which leads to a
higher simplification for recognition capability. This advantage
leads to higher classification accuracy for EPs compared
to the results obtained by APs. More importantly, EPs are
automatic in nature, and also independent from the kind of
the attribute being used (e.g. area, volume, etc). However, the
initialization of threshold values used in APs is difficult and
time consuming.

Although the joint use of HSI and LiDAR information can
potentially improve classification accuracies, the automatic
fusion of such data is not straightforward [16]. Moreover,
the simple concatenation of extracted features obtained by
different sensors might increase the so-called curse of dimen-
sionality, while the number of training samples is limited [25],
[27]–[31]. To address this issue, different feature reduction
approaches can be taken into account [25]. This encourages to
develop an effective and efficient fusion approach to perform
both dimensionality reduction and feature fusion simultane-
ously [18].

Due to the spectral redundancy in HSI, it has been shown
that low-rank HSI modeling provides great advantages in
HSI analyses, such as denoising [32], unmixing [33], and
feature extraction [34]. In [34], HSI low-rank modeling was
incorporated with sparse regression called sparse and low-
rank component analysis. A sparse and low-rank component
analysis using wavelet bases given in [35] where shown that
HSI can be restored based on a few sparse components.

Hyperspectral and LiDAR data provide valuable information
of a scene such as height, spatial, and spectral characteristics.
On the one hand, extracting different kinds of information and
features is crucial for the classification task. On the other hand,
it could decrease the classification accuracy due to the Hughes
phenomenon. As a result, in this contribution we seek for a
remedy to the aforementioned dilemma. Therefore, instead of
stacking the extracted features, here, we estimate the fused
features assumed to live in a lower dimension space. More
specifically, in this paper, a new fusion technique for HSI and
LiDAR data is proposed based on the use of sparse and low-
rank component analysis applied on the EPs. First, EPs are
used to extract spatial and elevation information from HSI

and LiDAR, respectively. At the next stage, the HSI as well
as the extracted EPs from HSI and LiDAR are fused based on a
sparse and low-rank technique, where the spectral redundancy
of the features are captured by the low-rank property, while
the sparsity property helps to capture spatial redundancy
of the features. The sparsity property promotes the spatial
smoothness on the fused features which leads to a region-wise
homogeneous classification map and the low-rank property
of the fusion technique avoid the Hughes phenomenon [27]
and therefore, both improve the classification accuracy. The
proposed fusion technique, is evaluated based on classification
accuracies obtained by applying both RF and SVM classifiers
on the fused features. The performance of the proposed fusion
approach is also evaluated in a situation when there is only a
limited number of training samples are available.

The rest of the paper is organized as follows: After giving
a short description for the notations used in the paper, Section
II describes the proposed fusion technique. The experiments
are described in Section III. Finally, Section IV concludes the
paper with some remarks.

A. Notation

In this paper, the number of bands and pixels in each band
of the HSI are denoted by p and n, respectively. Matrices
are denoted by bold and capital letters, column vectors by
bold letters, the element placed in the ith row and jth column
of matrix X by xij and the ith column by x(i). The identity
matrix of size p×p is denoted by Ip. X̂ stands for the estimate
of the variable X, and Xm denotes the estimate of the variable
X at mth iteration. The Frobenius norm and the Kronecker
product are denoted by ‖.‖F and ⊗, respectively. The matrix
vectorization operator is shown by vec.

II. METHODOLOGY

As can be seen from Algorithm 1, the proposed feature
fusion approach is composed of two main phases. In the first
phase, EPs are used to extract spatial and elevation features
from HSI and LiDAR, respectively. The second phase fuses
spectral, spatial, and elevation features using sparse and low-
rank component analysis. Below, we elaborate on these two
phases.

A. Phase I: Extinction Profiles (EPs)

Ghamisi et al. [22] proposed EPs using a set of extinction
filters, which are connected and able to maintain relevant
image extrema. Relevance here is defined with respect to
the concept of extinction value, proposed by Vachier [36].
The extinction value of a regional extremum (minimum or
maximum) of any increasing attribute is the maximal size of
the attribute filter [37], such that this extremum still exists
after filtering [36].

The definition of the extinction value for a regional max-
imum given by Vachier [36] is as follows: Let M be a
regional maximum of a gray scale image X, and Ψ = (ψλ)λ
represents a family of decreasing connected anti-extensive
transformations. The extinction value corresponding to M with
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Algorithm 1: SLRCA Fusion
Input:
HSI = Hyperspectral data,
L = LiDAR data,
r: Number of fused features,
λ: Regularization tuning parameter,
ε: Tolerance values.
Output:
F̂fused: Fused features estimated.

Phase I :
H = normalized(HSI),
FHSI = normalized(EP(HSI)),
FLiDAR = normalized(EP(L)),
F = [FHSI,H,FLiDAR],

Phase II :
Initialization;V0,
while

∣∣J (k+1) − J (k)
∣∣ ≤ ε do

W-step :
S = DTFVm,
Wm+1 = Soft(S, λ),
V-step :
Wm+1TDTF = QΣGT ,
Vm+1 = QGT ,

end
F̂fused = DŴ.

respect to Ψ denoted by εΨ(M) is the maximal λ value, such
that M is still a regional maxima of ψλ(X). This definition
can be shown as follows:

εΨ(M) = sup{λ ≥ 0|∀µ ≤ λ,M ⊂Max(ψµ(X))}, (1)

where Max(ψµ(X)) is a set containing all the regional
maxima of ψµ(X). In the same manner, extinction values
of regional minima can be defined. Extinction values can be
efficiently computed on a max-tree structure [38].

Extinction filters (EFs) are connected filters, which pre-
serve the relevant extrema of the gray scale image X. This
filtering approach are defined as follows: Let Max(X) =
{M1,M2, ...,MN} be the regional maxima of the gray scale
image X. For the input gray scale image X, the EF preserves
the n maxima with the highest extinction values, EFn(X) =
RδX(G), where RδX(G) denotes the reconstruction by dilation
[39] of the mask image X from marker image G. The marker
image can be obtained through G =

n
max
i=1
{M ′

i}, where max is
the pixel-wise maximum operation. M ′

1 is the maximum with
the highest extinction value, followed by M ′

2 with the second
highest extinction value, and so on. For detailed description,
please see [22].

EFs for increasing attributes (e.g., area, height, volume,
and diagonal of the bounding box) can be efficiently imple-
mented using the max-tree structure [40]. The use of EFs for
non-increasing attributes (e.g., standard deviation), however,
demands the construction of the second tree which takes
the image to the space of shapes [41] allowing the creation
of a novel class of connected operators from the leveling

family and more complex morphological analysis, such as the
computation of extinction values for non-increasing attributes.
For more information please see [22].

EPs are constructed by applying several extinction filters,
i.e., a sequence of thinning and thickening transformations,
with progressively higher threshold values to extract spatial
and contextual information of the input data. The EP for the
input gray scale image, X, is obtained by (2):

EP(X) ={φPλs (X), φPλs−1 (X), . . . , φPλ1 (X)︸ ︷︷ ︸
thickening profile

,X,

γPλ1 (X), . . . , γPλs−1 (X), γPλs (X)︸ ︷︷ ︸
thinning profile

},
(2)

where Pλ : {Pλi} (i = 1, . . . , s) is a set of s ordered predicates
(i.e., Pλi ⊆ Pλk , i ≤ k). It should be noted that the number of
extrema is considered as the predicates. φ and γ are thickening
and thinning transformations, respectively.

EPs can be of any type. In this context, multi-EPs (MEPs)
concatenates several types of EPs (e.g., area, height, volume,
diagonal of bounding box, and standard deviation) as a single
stacked vector, which is defined as follows:

MEP(X) = {MEPa1(X),MEPa2(X), ...,MEPaw(X)}, (3)

where ak, k = {1, ..., w} represents different types of ex-
tinction attributes. Since different extinction attributes provide
complementary spatial and contextual information, the MEP
has a greater ability in extracting spatial information than a
single EP.

The EP (and its extension MEP) described above was
introduced to extract spatial and contextual information from
gray scale images. In order to make the EP applicable for
HSI, one can extract a few informative features from the
whole dimensionality using an approach such as independent
component analysis (ICA). Then the extracted features are
considered as base images to produce EPs [23]. In this way, an
extended extinction profile (EEP) can be obtained, which is a
generalization of the EPs. More precisely, EEP, first, reduces
the dimensionality of the data from E ⊆ Zn to E′ ⊆ Zm

(m ≤ n) with a generic transformation Ψ : E → E′ (i.e.,
ICA). Second, the EP is performed on the most informative
features Qi (i = 1, . . . ,m), which can defined as:

EEP(Q) = {EP(Q1),EP(Q2), . . . ,EP(Qm)}. (4)

In order to effectively exploit spatial and contextual in-
formation from HSIs, different extinction attribute filters ak,
k = {1, ..., w} can be applied to the first informative features
of ICA [i.e., Qi (i = 1, . . . ,m)]. In this manner, EMEP can
be constructed.

EMEP(Q) = {MEP(Q1),MEP(Q2), . . . ,MEP(Qm)}. (5)

Fig. 1 illustrates a general work flow of the EMEP. For
detailed information, please see [22], [23]. It is important to
note that the EMEP and EP approximately require the same
computational time since the most time consuming part is
on the construction of the max-tree and min-tree, which are
computed only once for each gray scale image [22], [23].
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Fig. 1: A simple work flow of the EMEP. First, we only
preserve the first three independent components extracted from
the whole hyperspectral data cube. Then, each independent
component is treated as one base image to produce multi-
EPs including five extinction attributes (i.e., area, volume,
standard deviation, diagonal of the bounding box, and height).
Finally, all Muli-EPs extracted from three different ICs are
concatenated to construct the EMEP.

Since the LiDAR-derived DSM contains only one compo-
nent, its corresponding elevation information can be extracted
using equation (3) where X denotes the LiDAR-derived DSM
feature.

EPs extract spatial and contextual information considering
the number of extrema, which leads not only to better results
in terms of classification accuracies compared to APs but also
decreases the burden of setting threshold values, which was a
burden for conventional APs [22].

For the sake of simplicity, in the rest of the paper, HSI de-
notes the input hyperspectral data (i.e., spectral information),
EPHSI represents EMEP(Q) (i.e., spatial information), and
EPLiDAR demonstrates MEP(X) (i.e., elevation information).

B. Phase II: Feature Fusion Using Sparse and Low-Rank
Component Analysis

To fuse spectral (HSI), spatial (EPHSI), and elevation
(EPLiDAR) features, one needs to normalize the number of
dimensionalities to put the same weight on each type of
the features and reduce the computational cost and noise
throughout the feature space [42]. To do so, Kernel principal
component analysis (KPCA) [43] was used as an effective
tool to reduce the dimensionality of each type of features
independently, since it can represent a higher-order complex
and nonlinear distribution in a fewer number of dimensions
to address Hughes phenomenon [27] and high computational
cost. The normalized dimension of HSI, EPHSI, and EPLiDAR
is automatically set to the smallest dimension of the above-
mentioned features. For example, for the Houston data, this
value is set to 71 [1].

Let H be the normalized matrix contained the input spectral
information (band i is located in column i). FHSI represents
the normalized spatial features produced by EPs on the first
three independent components (ith feature in its ith column).
FLiDAR is the normalized elevation features obtained by EPs on
the LiDAR derived digital surface model (DSM) (ith feature
in its ith column).

Extracted features from HSI and LiDAR are highly redun-
dant. In order to reduce the features redundancy, we propose
a low-rank model for the fused features. In other words, the
extracted features from LiDAR and HSI can be represented
in a space of lower dimension. Note that, this redundancy of
features can affect the classification results due to the Hughes
phenomenon [27] and also fused features are expected to have
a lower dimension. Hence, we suggest to use the following
low-rank model

F = DWVT + N, (6)

where F = [FHSI,H,FLiDAR] =
[
f(i)
]

is an n × p matrix
containing the ith vectorized feature in its ith column, V is
an unknown subspace (low-rank) basis (p× r), D is an n×n
orthogonal 2D wavelet transform matrix, W =

[
w(i)

]
is an

n× r matrix containing the unknown 2D wavelet coefficients
for the i-th component in its i-th columns, and N =

[
n(i)

]
is an n × p matrix containing the vectorized noise and error
at band i in its ith column. The purpose of the 2D wavelet
transformation D is to capture the spatial correlations in
the model and the purpose of V is to capture the low-rank
structure of the features. Note that r is the number of fused
features (1 ≤ r ≤ p), and p is the total number of extracted
features including spectral features. It is worth mentioning that
model (6) preserves spatial information of the features (see
Appendix A).

In order to estimate the wavelet coefficients W and the
basis matrix V in (6), we use a sparse and low-rank component
analysis given in [35], which is based on solving the following
non-convex `1 penalized least squares problem

(Ŵ, V̂) = arg min
W,V

J (W,V) = arg min
W,V

1

2

∥∥F−DWVT
∥∥2

F
+ λ

r∑
i=1

∥∥w(i)

∥∥
1

s.t. VTV = Ir,

(7)

The estimated fused features are given by F̂fused = DŴ.

C. Estimation

A cyclic descent (CD)-type algorithm given in [35], [44]
is used to solve (7) called sparse and low-rank component
analysis (SLRCA), which solves the non-convex problem (7)
w.r.t. one variable at a time while the other variable is assumed
to be fixed. Therefore, SLRCA consists of the following two
steps:

1) W-step: Given a fixed V the optimization problem (7)
can be rewritten as

arg min
W

1

2

∥∥F−DWVT
∥∥2

F
+ λ

∑
i

∥∥w(i)

∥∥
1
. (8)

Since D and V are orthogonal matrices, it can be shown [35]
that the minimization problem (8) is equivalent to

arg min
W

1

2
‖S−W‖2F + λ

∑
i

∥∥w(i)

∥∥
1
, (9)
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where S = DTFV. It can be shown ([35]) that the solution
to this minimization problem is given by

ŵji = max (0, |sji| − λ)
sji
|sji|

. (10)

Function (10) is called soft-thresholding and often is written
as

Ŵ = soft (S, λ) . (11)

Note that soft funstion in (11) is applied element-wise on the
matrix S.

2) V-step: Given a fixed W, the optimization problem (7)
turns to a Reduced-Rank Procrustes problem [45] as

arg min
V

∥∥∥F−DWVT
∥∥∥2

F
s.t. VTV = Ir,

which has a solution given by V̂ = QGT where Q and G
are computed using Singular Value Decomposition (SVD) of
M = WTDTF = QΣGT . A description of the method is
given in Algorithm 1.

III. EXPERIMENTAL RESULTS

A. Data Description

1) Houston Data: The data are composed of a hyperspec-
tral image and a LiDAR-derived digital surface model (DSM).
This dataset was distributed for the 2013 GRSS data fusion
contest. The hyperspectral data were acquired by the Compact
Airborne Spectrographic Imager (CASI) over the University of
Houston campus and the neighboring urban area on June 23,
2012. The LiDAR data were acquired on June 22, 2012. The
datasets were collected by the NSF-funded Center for Airborne
Laser Mapping (NCALM). The size of the data is 349 × 1905
with the spatial resolution of 2.5m. The hyperspectral dataset
consists of 144 spectral bands ranging 0.38-1.05µm. The 15
classes of interests are: Grass Healthy, Grass Stressed, Grass
Synthetic, Tree, Soil, Water, Residential, Commercial, Road,
Highway, Railway, Parking Lot 1, Parking Lot 2, Tennis Court
and Running Track. The “Parking Lot 1” includes parking
garages at the ground level and also in elevated areas, while
“Parking Lot 2” corresponded to parked vehicles. Fig. 2 shows
a false color composite representation of the hyperspectral data
and the corresponding training and test samples. Table I gives
information about the number of training and test samples for
different classes of interests.

It should be noted that we have used the standard sets of
training and test samples for the above-mentioned datasets to
make the results fully comparable with the available literature.

Cloud shadows in the hyperspectral data were detected
using thresholding of illumination distributions calculated by
the spectra. Relatively small structures in the thresholded
illumination map were removed based on the assumption that
cloud shadows are larger than structures on the ground.1

1The enhanced dataset was provided by Prof. Naoto Yokoya from Technical
University of Munich (TUM).

9

SVM RF RBFNN

(a) (b) (c)

(d) (e) (f)

Thematic classes:
Healty grass Stressed grass Synthetic grass Tree Soil
Water Residential Commercial Road Highway
Railway Parking lot 1 Parking lot 2 Tennis court Running track

Fig. 4: Classification maps corresponding to the worst (first row) and best (second row) classification overall accuracy
achieved by the different classifiers for a single training and test set: (a) SVM with KPCA (OA=94.75%), (b) RF with Hyper
(OA=94.57%), (c) RBFNN with KPCA (OA=90.08%), (d) SVM with SDAP(KPCA) (OA=98.39%), (e) RF with SDAP(kpca90
+ I) + Ndsm (OA=97.51%), (f) RBFNN with SDAP(kpca90 + I) (OA=94.95% ).

Fig. 2: Houston - From top to bottom: LiDAR-derived raster-
ized data set, a color composite representation of the HSI using
bands 64, 43, and 22 as R, G, and B, respectively; Training
samples; Test samples; and legend of different classes.

TABLE I: Houston - Number of Training and Test Samples.

Class Number of Samples
No Name Training Test
1 Grass Healthy 198 1053
2 Grass Stressed 190 1064
3 Grass Synthetic 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059

10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot 1 192 1041
13 Parking Lot 2 184 285
14 Tennis Court 181 247
15 Running Track 187 473

Total 2,832 12,197

2) Trento Data: The second dataset was captured over a
rural area in the south of the city of Trento, Italy. The size
of the dataset is of 600 by 166 pixels. The LiDAR DSM data
were acquired by the Optech ALTM 3100EA sensor and the
hyperspectral data captured by the AISA Eagle sensor, all with
the spatial resolution of 1m. The hyperspectral data consist of
63 bands ranging from 402.89 to 989.09nm, where the spectral
resolution is 9.2nm. The spatial resolution of this dataset is
1m. For this dataset, six classes of interests were extracted,
including Building, Woods, Apple trees, Roads, Vineyard, and
Ground. Fig. 3 shows a false color composite representation
of the hyperspectral data and the corresponding training and
test samples. Table II gives information about the number of
training and test samples for different classes of interests.
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SVM RF RBFNN

(a) (b) (c)
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Thematic classes:
Apple trees Buildings Ground
Wood Vineyard Roads

Fig. 4: Classification maps corresponding to the worst (first row) and best (second row) classification overall accuracy
achieved by the different classifiers for a single training and test set: (a) SVM with KPCA (OA=94.75%), (b) RF with Hyper
(OA=94.57%), (c) RBFNN with KPCA (OA=90.08%), (d) SVM with SDAP(KPCA) (OA=98.39%), (e) RF with SDAP(kpca90
+ I) + Ndsm (OA=97.51%), (f) RBFNN with SDAP(kpca90 + I) (OA=94.95% ).

Fig. 3: Trento - From top to bottom: LiDAR-derived rasterized
data set, a color composite representation of the HSI using
bands 40, 20, and 10, as R, G, and B, respectively; Training
samples; Test samples; and legend of different classes.

TABLE II: Trento - Number of Training and Test Samples.

Class Number of Samples
No Name Training Test
1 Apple trees 129 3905
2 Buildings 125 2778
3 Ground 105 374
4 Wood 154 8969
5 Vineyard 184 10317
6 Roads 122 3252

Total 819 29595

B. Algorithm Setup

For the EPs, one only needs to define the number of desired
levels (s) as the whole process is automatic. In this context, in
order to generate the EP for area, volume, and diagonal of the
bounding box, the threshold values used to generate the profile
are automatically given by b3jc, where j = 0, 1, ..., s−1. The
size of the EPs is 2s+ 1, since the original image should also
be included in the profile. The profiles have been computed
using the 4-connected connectivity rule. Here, s is set to seven,
as suggested in [23].

SLRCA is initialized as suggested in [35]. The tuning
parameter λ indicates the level of smoothness. In the ex-
periments, λ is set to one percent of the intensity range of
the extracted features. A fast wavelet toolbox provided in
[46] was used for the implementation of Wavelet transforms.
Daubechies wavelet with 2 coefficients and five decomposition
levels is used in all the experiments.

In terms of the SVM, a radial basis function (RBF) kernel

is used. The optimal hyperplane parameters C (parameter that
controls the amount of penalty during the SVM optimization)
and γ (spread of the RBF kernel) have been traced in the range
of C = 10−2, 10−1, ..., 104 and γ = 10−3, 10−2, ..., 104 using
five-fold cross validation.

For the RF, the number of trees is set to 300. The number
of the prediction variable is set approximately to the square
root of the number of input bands.

For the sake of simplicity, the following names are used in
the experimental part: LiDAR and HSI show the classification
accuracies of the LiDAR-derived DSM and HSI, respectively.
EPLiDAR, and EPHSI show the classification accuracies of
EPs applied to LiDAR, and HSI. EPLiDAR+HSI refers to the
classification accuracies of EPs applied to the stack of LiDAR
and HSI.

C. Classification Experiments

1) Classification accuracies w.r.t. the number of features:
Parameter r gives the number of fused features estimated by
the proposed algorithm. Therefore, it is of interest to see
the performance of the fusion algorithm w.r.t. the number
of features selected. To do so, the standard training and test
samples given in Tables I and II are used in this section. Fig.
4 (a) and (b) demonstrate the OA in percentage w.r.t. r for
Houston and Trento datasets. The simulations are given for
5 ≤ r ≤ 80 for every 5 features increment and for both RF and
SVM classifiers. As it can be seen in Fig. 4 (a), for Houston,
RF gives OA over 90 percent for r ≥ 35 and OA for SVM
gradually increases by r and goes over 90 percent when using
more than 70 features.

In the case of the Trento dataset, Fig. 4 (b), for r ≥ 15
the OA is around 99 percent (the minimum OA is 98.95% for
r = 15 and the maximum OA is 99.37 for r = 20) and for
SVM is around 98% (the minimum OA is 97.78% for r = 40
and the maximum OA is 98.35% for r = 15).

Note that RF classifier considerably outperforms SVM
based on OA when using higher features (r > 10) while for
fewer features (r = 5 and r = 10) SVM performs better
especially in the case of Trento dataset.

The simulations in this section show that, the SLRCA fusion
technique by fusing the EP-derived features applied to LiDAR
and HSI is able to provide high classification accuracies by
using fewer fused features. However, for the proposed method,
we suggest the number of fused features to be automatically
set to the minimum number of the features in HSI, EPHSI, and
EPLiDAR. In this context, for the Houston data, this value is set
to 71 (i.e., the minimum value among 144 features of HSI,
213 features of EPHSI, and 71 features of EPLiDAR), while
for the Trento data, this value is set to 63 (i.e., the minimum
value among 63 features of HSI, 213 features of EPHSI, and
71 features of EPLiDAR).

2) Classification Accuracies w.r.t. the Number of Training
Samples: In this subsection, the performance of the proposed
fusion technique is investigated in terms of the number of
training samples selected for the classification task based on
the OA. Here, the number of features selected for the Houston
dataset is 71 and for the Trento dataset is 63 as explained
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Fig. 4: Performance of OA w.r.t. feature number r obtained
by applying RF and SVM classifiers on the fused features
estimated by SLRCA from (a) the University of Houston
dataset (b) Trento dataset.

in Subsection III-C1. Fig. 5 (a) and (b) depicts the OA’s
obtained by RF and SVM using 5, 10, 25, and 50 samples
per class for the classification of Houston and Trento dataset,
respectively. Here, the results shown are the mean values of 20
times selecting the training samples randomly and the standard
deviations were shown by the error bars. As can be seen
from the figures, the trends of the graphs are similar for both
Houston and Trento datasets. The outcome of this experiment
can be summarized as follows:

• SLRCA fusion gives accurate classification results also
in the case of having low training samples. For example,
in the case of Houston and using RF, as can be seen from
Fig. 5 (a), the OA is 89.43% by using only 10 samples
per class and it goes over 95% by using 25 samples.
Note that, by using 50 training samples per class, SLRCA
fusion provides a very high accurate classification results
where OA = 97.86%. Also, SVM gives OA = 90.30%
and 94.92% using 25 and 50 samples, respectively.

• For both datasets and in all the cases, RF outperforms
SVM. This confirms that RF is a better option as a
classifier for the proposed technique.

• Comparing the error bars for RF and SVM, confirms
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Fig. 5: Performance of OA w.r.t. the number of training
samples obtained by applying RF and SVM classifiers on the
fused features estimated by SLRCA from (a) the University
of Houston dataset (b) Trento dataset.

the robustness of RF for the classification tasks. This
fact is clearer in the case of selecting 5 samples for the
classification task. Specifically, in the case of Trento and
using 5 training samples per class, the SVM standard
deviation is more than double of the RF one.

• Classification accuracies obtained are higher in all cases
for Trento dataset compared to Houston, which is ex-
pected since dataset was captured over a rural area and
therefore, there exists less structure and detail in the scene
(and consequently fewer class of interests). For Trento,
by using RF, OA starts from 97.58% at 5 samples and
goes up to 99.18% at 50 samples and by using SVM, OA
starts from 96.10% at 5 samples and goes up to 99.13%
at 50 samples.

3) Estimated Fused Features: The fused features estimated
by applying the SLRCA fusion are shown in Fig. 6 for the
Houston dataset. From top to bottom, the number of features
are 1, 3, 6, 13, 20, 30, and 60. As can be seen from Fig.
6, features with lower numbers are more informative visually
compared to the ones with higher numbers which is due to
the tendency of SLRCA to find a low-rank representation for
the high dimensional features. This also can be seen in Fig
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Fig. 6: Fused features estimated by applying SLRCA on EPs
obtained from HSI and LiDAR of Houston dataset. From top
to bottom number of features are; 1, 3, 6, 13, 20, 30, and 60.

4, where OAs reach to quiet high values using only a few
features.

4) SLRCA Fusion Compared With Other Techniques: Here,
the proposed fusion technique is compared with other tech-
niques based on the classification accuracies. The classification
results are given in Table III for the Houston dataset and Table
IV for the Trento dataset. The results are compared based
on class accuracies, OA, AA, and kappa coefficient (κ). The
number of features used for the classification task in each case
were given in the brackets.

As can be seen from Table III, the consideration of the
spatial information extracted by the EP can considerably
improve classification accuracies compared to the situations
where the SVM and RF have directly been applied to the
input datasets. For example, EPs on the LiDAR data (with 71
features) substantially improve the OA of LiDAR by almost
42% for the RF classifier. In the case of the HSI, due to the
rich spectral information, the consideration of the EPs slightly
improves the OA by almost 1% and 3%, using SVM and
RF, respectively. LiDAR+HSI outperform the individual use
of each data, which confirms that HSI and LiDAR provide
complement information to distinguish different classes of
interest. In contrast, the integration of EPs for HSI and
LiDAR decreases the OA by almost 1.5% which confirms the
drawbacks of high dimensionality on the classification task
which can be more severe for the higher number of classes.
It can also be seen that, by integrating HSI with EPs for HSI
and LiDAR, the accuracies obtained by SVM have not been

changed while the ones obtained by RF have been slightly
improved. The SLRCA fusion method clearly captures the
redundant information existing in the HSI and LiDAR profiles
and leads to the accuracy of over 91% which is the best
classification accuracy among all the approaches considered
in this paper for SVM. Note that the number of features used
in the case of SLRCA fusion is 25% of the integration of the
profiles.

A similar trend can be seen in the case of using RF, with
a difference that the high dimensionality of the EPs does not
affect the performance of the RF classifier and as can be seen
the integration of HSI and LiDAR profiles improves OA by
over 6%. However, SLRCA fusion improves the OA by more
than 4% using 75% less features.

As can be seen from Table IV, in the case of the Trento
dataset, the use of the EP can considerably improve classifi-
cation accuracies due to the fact that the EP can effectively
extract spatial and contextual information. In addition, for
the RF classifier, the 63 fused features obtained by applying
OTVCA improve the classification accuracies compared with
the integrated profiles (284 features) and for SVM the classifi-
cation accuracies obtained are slightly less than the integrated
profiles.

Overall, Table III and IV show that the SLRCA fusion
improves the classification accuracies using fewer number of
features for both rural and urban datasets. Moreover, from the
tables, it can be seen that the RF provides higher OA, AA,
and Kappa coefficients than the SVM.

The classification maps obtained by applying RF and SVM
on HSI, LiDAR+HSI, and the fused features using SLRCA
are shown in Fig. 7 and Fig. 8 for Houston and Trento
datasets, respectively. It can be seen that the proposed fusion
technique provides classification maps having homogeneous
regions while preserving the structures, which is greatly of
the interest specifically in the case of urban datasets. This
is because of using spatial filtering obtained by the sparsity
penalty on the sparse wavelet coefficients.

D. Comparison with other Techniques in the Literature

In this subsection, the proposed approach is compared with
the state-of-the-art based on the classification accuracies. In
the case of Trento dataset, the proposed technique outperforms
the ones published in [16], [47] in terms of classification
accuracies for both SVM and RF. This improvement might be
due to the use of EPs instead of APs in the proposed approach.

In the case of Houston dataset, compared to the 2013 Fu-
sion Contest2, SLRCA fusion gives competitive classification
accuracies. Note that, the classification techniques participated
in the contest had been specifically developed for the Houston
data and they include several overheads, preprocessing and
postprocessing approaches for further classification improve-
ments. In this paper, we have tried to propose a scheme,
which is also applicable to other data sets composing of co-
registered HSI and LiDAR by preserving the generalization
capability of the proposed approach, while achieving the

2http://www.grss-ieee.org/community/technical-committees/data-
fusion/2013-ieee-grss-data-fusion-classification-contest-results/
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TABLE III: Houston - Classification accuracies obtained by different approaches using RF and SVM. The metrics AA an OA
are reported in percentage. Kappa coefficient is of no units. The best result is shown in bold. The number of features are
written in parentheses.

LiDAR (1) HSI (144) EPLiDAR(71) EPHSI(213) LiDAR+HSI (145) EPLiDAR+HSI(284) EPLiDAR+HSI + HSI(414) SLRCA fusion (71)

SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

OA 28.82 31.83 84.69 77.47 67.2 73.42 85.82 80.36 88.43 80.50 86.87 86.98 86.43 88.14 91.21 91.30
AA 36.31 37.43 86.34 80.34 70.00 75.97 83.08 83.47 89.64 82.84 88.78 88.54 88.46 89.52 90.09 91.95
K 0.2422 0.2677 0.8340 0.7563 0.6440 0.7120 0.8168 0.7876 0.8745 0.7887 0.8577 0.8592 0.8531 0.8717 0.8924 0.9056

1 11.68 13.49 83.48 83.38 57.36 74.26 79.39 77.49 83.00 83.57 79.39 78.06 79.58 81.96 80.06 81.58
2 0.00 16.26 96.43 98.40 40.79 61.75 78.85 78.48 97.84 98.12 80.36 84.96 81.39 97.93 94.74 99.44
3 87.13 56.63 99.80 98.02 98.61 97.23 100.00 100.00 99.80 98.42 100.00 100.00 100.00 100.00 100.00 98.61
4 51.80 44.03 98.77 97.54 92.33 58.14 87.78 82.77 98.96 97.82 95.83 95.45 96.12 98.86 96.88 96.12
5 12.12 58.05 98.11 96.40 83.43 82.10 99.81 97.73 98.48 96.40 99.81 98.77 98.11 94.41 99.05 99.72
6 78.32 58.04 95.10 97.20 78.32 83.22 95.80 95.80 99.30 95.80 95.80 95.80 95.80 95.80 95.80 98.60
7 56.90 39.09 89.09 82.09 55.22 77.33 85.17 73.23 87.41 84.61 80.41 73.41 74.63 74.25 85.73 90.39
8 13.11 29.53 45.87 40.65 29.06 68.28 65.15 59.92 70.94 57.74 90.41 85.28 88.89 88.60 86.42 95.73
9 14.92 13.60 82.53 69.78 67.33 59.40 89.90 83.00 86.69 70.35 89.80 93.96 80.17 86.12 86.02 98.21

10 8.30 11.29 83.20 57.63 61.39 66.89 51.54 64.09 82.53 56.95 56.66 67.08 72.68 67.08 66.99 63.42
11 72.68 40.42 83.87 76.09 99.72 99.91 87.76 84.72 89.94 79.98 90.70 90.89 88.61 91.46 98.29 90.70
12 0.00 9.99 70.99 49.38 63.11 64.75 84.34 78.10 78.19 59.65 89.91 88.57 88.57 88.38 96.35 91.07
13 12.28 15.09 70.53 61.40 49.12 58.60 84.56 77.89 72.98 65.26 84.56 76.14 84.21 77.89 81.75 76.49
14 97.57 80.16 100.00 99.60 100.00 100.00 100.00 99.60 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
15 27.91 75.90 97.46 97.67 74.21 87.74 97.25 99.37 98.52 97.89 98.10 99.79 98.10 100.00 100.00 99.15

TABLE IV: Trento - Classification accuracies obtained by different approaches using RF and SVM. The metrics AA an OA
are reported in percentage. Kappa coefficient is of no units. The best result is shown in bold. The number of features are
written in parentheses.

LiDAR (1) HSI (63) EPLiDAR(71) EPHSI(213) LiDAR+HSI (64) EPLiDAR+HSI(284) EPLiDAR+HSI + HSI(347) SLRCA fusion (63)

SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

OA 63.30 46.70 84.55 84.92 81.27 85.17 96.28 95.90 85.06 90.61 98.68 98.39 98.77 9898 98.13 99.27
AA 46.14 43.31 85.14 85.01 82.50 84.43 93.89 93.53 88.70 89.17 97.79 97.06 97.08 9765 97.45 98.55
K 0.5039 0.3350 0.7965 0.8004 0.7637 0.8099 0.9505 0.9453 0.8068 0.8566 0.9824 0.9785 0.9835 0.9863 0.9751 0.9902

1 37.10 42.50 88.40 86.20 98.56 96.06 99.93 97.82 91.27 86.09 99.95 97.62 99.62 100.00 100.00 99.87
2 41.40 51.30 82.60 85.90 96.21 98.42 97.97 94.25 95.83 93.87 97.24 96.80 96.51 97.48 97.37 98.74
3 0.00 34.20 97.60 96.80 70.15 72.03 97.08 94.99 91.65 97.91 96.45 94.36 92.25 94.92 94.92 97.33
4 67.40 52.60 96.90 95.70 98.64 99.45 99.81 99.22 98.48 97.05 99.57 99.97 99.79 99.99 99.99 100.00
5 87.60 46.50 77.10 80.10 58.39 69.89 99.57 98.76 66.82 82.76 99.26 99.10 99.61 99.84 96.90 99.67
6 79.90 32.40 67.90 65.00 73.06 70.79 69.03 76.15 88.19 86.01 94.27 94.55 94.72 93.64 95.54 95.68

(a) (b)

(c) (d)

(e) (f)

Fig. 7: Classification maps for Houston data: (a) the outputs of RF on HSI, (b) the output of SVM on HSI, (c) the output of
RF on LiDAR+HSI, (d) the outputs of SVM on LiDAR+HSI, (e) the output of the proposed method using RF, and (f) the
output of the proposed method using SVM.
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Classification using RF,meanacc=85.1062,OA=85.1426,kappa=80.3395

(a) (b)

Classification using RF,meanacc=90.6371,OA=89.2699,kappa=85.7897

(c) (d)

(e) (f)

Fig. 8: Classification maps for Houston data: (a) the outputs of
RF on HSI, (b) the output of SVM on HSI, (c) the output of
RF on LiDAR+HSI, (d) the outputs of SVM on LiDAR+HSI,
(e) the output of the proposed method using RF, and (f) the
output of the proposed method using SVM.

highest classification accuracy on one specific data set is not
expected.

Also, SLRCA fusion outperforms the fusion technique given
in [2] for the Houston dataset, when no postprocessing is
applied. Even when Markov random field (MRF) is used for
postprocessing in [2] the classification results obtained by
SRLCA fusion are still competitive. However, the considerable
improvements obtained in [2] by using the postprocessing step
has encouraged us to examine the effect of the hidden MRF
proposed in [48] to further improve the classification accuracy
of the proposed approach in future.

IV. CONCLUSIONS

In this paper, a new technique for the fusion of hyperspectral
and LiDAR data was proposed called SLRCA fusion. The
fusion methodology consists of two main phases. At phase
I, spatial and elevation information from hyperspectral and
LiDAR datasets are extracted using extinction profiles. At
phase II, the SLRCA fusion utilizes a sparse and low-rank
component analysis to fuse extracted features. The resulting
fused features are of lower dimension than the profiles.

For the experiments, Houston (urban) and Trento (rural)
datasets have been used. Both RF and SVM classifiers were
used to perform the classification task. It has been shown
that applying extinction profiles considerably improves the
classification accuracies due to effectively extract spatial and
contextual information. The integration of LiDAR and HSI
profiles increases the dimensionality, and as shown in the
experiments, might not successfully improve the classification
accuracies due to the Hughes phenomenon. Therefore, SLRCA
fusion was used to decrease the dimensionality by fusing the
LiDAR and HSI profiles while preserving extracted informa-
tion.

The experimental results revealed that applying SLRCA
fusion improves the classification accuracies compared to the
integrated profiles by using low dimensional fused features. In
other words, SLRCA fusion is able to capture the redundancy
of the features while improves the classification accuracies.

This has been shown based on the classification accuracies
obtained by using both RF and SVM classifiers for both rural
and urban datasets. Furthermore, RF has demonstrated to be
well-suited for the classification of the features obtained by
the proposed approach.

In addition, it has been shown that the low-dimensional
fused features obtained by applying SLRCA fusion provides
accurate classification results in the case of selecting few
training samples. Last, the experiments confirm that SLRCA
fusion is well- competitive with other fusion techniques in the
literature which also exploit pre and post processing technique.
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APPENDIX A
TWO DIMENSIONAL WAVELET TRANSFORM

The 2D wavelet transform (shown by matrix D) we use is
separable in the sense that first 1D wavelet transform is applied
on the rows of the image and then on the columns (separable
bases). Assuming 2D image X, applying 2D wavelet transform
(WT2D) can be written as

WT 2D(X) = D1DXDT
1D. (12)

where D1D is a matrix contains the 1D wavelet bases in its
columns. If we vectorize this expression we get

vec(D1DXDT
1D) = Dx, (13)

where D = D1D ⊗D1D and x = vec(X) [49]. We can go
from (12) to (13) and vice versa and therefore no spatial
information is lost.
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