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ABSTRACT  

The Venus Emissivity Mapper (VEM) is the first flight instrument specially designed with a sole focus 
on mapping the surface of Venus using the narrow atmospheric windows around 1µm. VEM will
provide a global map of surface composition as well as redox state of the surface, providing a
comprehensive picture of surface-atmosphere interaction on Venus. In addition, continuous observation
of the thermal emission of the Venus will provide tight constraints on current day volcanic activity.
These capabilities are complemented by measurements of atmospheric water vapor abundance as well as 
cloud microphysics and dynamic. Atmospheric data will allow for the accurate correction of atmospheric
interference on the surface measurements and represent highly valuable science on their own. A mission
combining VEM with a high-resolution radar mapper such as the NASA VOX or the ESA EnVision 
mission proposals in a low circular orbit will provide key insights in the divergent evolution of Venus.

Keywords: Venus, near infrared, spectroscopy 

1. INTRODUCTION  
The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging
techniques over much of the EM spectral range. Therefore it was once thought that information about
the composition surface of Venus could only be derived from lander missions. Given the harsh
environmental conditions on the surface, any type of landed mission will have high complexity and
therefore a higher associated risk than orbiting missions. In addition, mission concepts for Venus
landers typically focus on one landing site instead of a global reconnaissance, forcing difficult choices to
be made between different types of surface units.
The mapping of the southern hemisphere of Venus with VIRTIS instrument on Venus Express using 
the 1.02µm thermal emission band can be viewed as a proof-of-concept for an orbital remote sensing 
approach to surface composition and weathering studies for Venus [1-6]. Recent advances in high-
temperature laboratory spectroscopy at the Planetary Spectroscopy Laboratory at DLR show that the
five atmospheric windows in the CO2 clouds of the Venus atmosphere, ranging from 0.86µm to 1.18µm,
are highly diagnostic for surface mineralogy.
The Venus Emissivity Mapper [7] proposed for the NASA’s Venus Origins Explorer (VOX) and the 
ESA EnVision proposal builds on these recent advances. It is the first flight instrument specially 
designed with a sole focus on mapping the surface of Venus using the narrow atmospheric windows 
around 1µm. By observing with six bands, VEM will provide a global map of surface composition as
well as redox state of the surface. Continuous observation of Venus’ thermal emission will also provide
tight constraints on current day volcanic activity [3, 8]. Measurements of atmospheric water vapor
abundance as well as cloud microphysics and dynamics will permit accurate correction of atmospheric
interference on the surface measurements. A mission combining VEM with a high-resolution radar 
mapper such as VOX or EnVision in a low circular orbit will provide key insights in the divergent 
evolution of Venus. 
*joern.helbert@dlr.de; phone +49 30 67055-319; http://www.dlr.de/pf/desktopdefault.aspx/tabid-
10866/19013_read-44266/  
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Figure 2. Optics for the Laboratory prototype of VEM. 

During the study phase for the NASA Discovery proposal VERITAS, a full VEMO prototype (Figure 
2) was built. Lenses in the laboratory prototype optics were fabricated with the radiation-resistant Schott 
K5G20 radiation resistant glass planned for the flight optics. For the laboratory prototype filter array, 
the substrate is fused silica and the deposition materials are Ta2O5 and SiO2. The DMC (dark mirror 
coating / mask) was Cr + SiO2. The same materials are planned to be used for the FM units with the 
possible addition of Si for a few of the bands. All are materials that Materion routinely uses for space 
based optics. Instead of the full 14 filter strips, the laboratory prototype (Figure 3) has only 2 filter strips 
and a clear area, each of them with the same dimension as for the final flight array. 

 
Figure 3. Filter array in the VEM laboratory prototype with 2 out of the 14 filter strips used in the 
flight model. 

The core element of the focal plane array VEMFPA is the 640×512 pixel Xenics XSW-640 InGaAs 
detector. The FOV is 30°×45º; each 20-μm-pitch pixel sees a 0.07°×0.07º FOV. An integrated thermo-
electric cooler is used to stabilize the working point of the detector. The FPA requires no cryogenic 
cooling, avoiding a single point failure. The same detector is currently successfully operating in the ACS 
instrument on the ESA ExoMars Trace Gas Orbiter [9]. The frontend electronics use the highly 
integrated AFE device LM98640QML-SP, a full qualified (radiation tolerant), 14 bit, 5 MSPS to 40 
MSPS, dual channel, complete Analog Front End. It was specially designed for digital imaging 
applications by Texas Instruments. 
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Figure 4. Commercial version of the Xenics XSW-640 InGaAs detector mounted in the VEM 
laboratory prototype. 

The ICU (VEMIC) provides the electrical interface to the spacecraft and internal units, processes the 
detector data, performs binning, digital TDI and compression, and controls the sub-systems including 
digital and analog housekeeping electronics for acquiring VEM scientific and operational HKs. The ICU 
consists of one ACTEL FPGA including LEON-FT processor core, 128 Mbyte SDRAM and 2 MByte 
EEPROM. Baseline for VEMIC is the MERTIS instrument control unit (ICU) [10]. The design of the 
Power Supply Unit (VEMPS) is determined by the power requirements of VEMFPA and VEMIC. 
Baseline for VEMPS is to use the heritage of electrical and mechanical design of the proven MERTIS 
power supply unit (PSU). This PSU uses mainly a DC/DC converter from Interpoint’s SMRT family, 
expanded by external LC-filters and a special circuit for supporting the TEC on the VEMFPA. Figure 5 
shows the stacked MERTIS ICU and PSU and the resemblance to the VEM configuration (Figure 1). 
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Figure 5. MERTIS instrument controller and power supply. 

VEM minimizes the influence of stray light through two approaches. The first step is to physically 
reduce the amount of stray light entering the instrument aperture. VEMBA is a two-stage baffle with a 
light-weight front part that is mostly screening the S/C but might get sun (aluminum, white ceramic 
coating, high temperature range) and a back part suppressing stray-light (3D selective laser melting of 
TiAl6V4 – multiple black vanes, outside gold). The inner baffle is a multi-vane structure. Its baffle design 
exploits the arrangement as well as the number of the vanes, resulting in multiple internal reflection of 
out-of-field light [11]. The absorptive coating supports the function of the baffle. For the first iteration 
of the VEM baffle, 12 vanes were used to enhance the effectiveness of the baffle independent of the 
applied coating. That effect could be seen on the uncoated baffle shown at the site visit for VERITAS 
(as well as in the picture in Figure 6). The electrolytic oxide Kepla-coat surface processing results in a 
degree of absorption greater than 95%. The combination of the multi-vane structure and absorptive 
coating provides a significant margin to the required absorption of 80%.  
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The second step to minimize stray light is to remove residual stray during data processing using 
dedicated filter channels. A full stray light analysis and a stray light test with a fully assembled and coated 
baffle are planned for a Phase B of VOX as part of the functional performance test on the engineering 
prototype. 

 
Figure 6. View into the VEM-Baffle, pre-manufactured without any absorbing or reflective 
coatings, shows the efficiency of the multi-vane design. 

An optional transparent aperture cover (VEMTAC) using fused silica protects the optics in cruise. 
Observations can be performed through the window. In the case of contamination on the window, it 
may be opened useing a spring-loaded one-shot mechanism. 

 
2.2 VEM development status 
Following creation of the first breadboard model during the Phase A for the NASA Discovery proposal 
VERITAS, a laboratory prototype (LP) of the VEM instrument has been integrated (Figure 8). This 
prototype includes the development version of the VEM optics (Figure 2) with a filter array with two 
active filter strips. The optics underwent a set of calibration measurements on sub-unit level at 
LATMOS prior to delivery to DLR ( 
Figure 7). 
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Figure 7. Verification of the VEM optics in the calibration facility at LATMOS. 

The detector used is the commercial version of the flight detector (Figure 3) and off-the-shelf front-
end electronics are used with a laptop as electrical ground support equipment (EGSE). Form and 
function are already representative of the top part of the VEM flight instrument. The LP has been 
integrated and passed functional verification in July of 2016.  
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Figure 8. VEM laboratory prototype (LP) after integration with top cover removed. 

The laboratory prototype has been used since then for limited design and performance verifications. 
Calibration measurements have been performed on the optics, along with functional verifications on 
the integrated system.  

After the assembly and first test phase, the LP now resides in the DLR Planetary Spectroscopy 
Laboratory (PSL). The PSL can heat minerals to Venus surface temperatures and measure the 
emissivity in the spectral range from 0.7-1.5μm. Details of the set-up in PSL as well as the 
configuration for the VEM LP calibration measurements are discussed in detail in [7]. A newly 
developed ceramic sample cup was used to measure granular samples. A first performance 
evaluation of the VEM LP was performed using two Venus analog samples heated to Venus surface 
temperatures. A simple ratio algorithm was used to derive emissivity. 
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Venus’ surface composition using six spectral bands in five atmospheric windows, and incorporates 
lessons learned from VIRTIS. Band-center and width-scatter are ~5× more stable, a two-stage baffle 
decreases scattered light and improves sensitivity, a filter array (rather than a grating) provides 
wavelength stability and maximizes signal to the focal-plane array (FPA), and the use of an InGaAs 
detector with an integrated thermal electric cooler (TEC) eliminates the need for cryogenic cooling. 
VEM’s design draws strongly on DLR’s BepiColombo MERTIS instrument (scheduled for launch in 
2018). This design maturity, combined with a standard camera optical design, leads to low development 
risk. 
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