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A B S T R A C T

Topographical information is of fundamental interest for a wide range of disciplines including glaciology,
agriculture, communication network planning, or hazard management. In volcanology, elevation data are of
particular importance when assessing material flows throughout a volcanic system. To obtain accurate estimates
of time-varying topography in volcanic active regions, high-resolution digital elevation models (DEMs) are re-
quired. To monitor and evaluate topographical changes and especially volumetric gains and losses during the
2014–2015 Bárðarbunga eruption, Iceland, multi-temporal TanDEM-X DEM sequences were evaluated.

The 2014–2015 volcanic eruption was associated with the rare event of a caldera collapse, visible on the
surface of the Vatnajökull glacier, as well as major lava effusion in the Holuhraun plain. Before investigating
topographical change at the two study areas, the TanDEM-X DEMs were analysed for absolute and relative height
errors resulting from the radar system parameters, the SAR processing or the local environment. The uncertainty
investigation determined that acquisitions over the snow-covered Bárðarbunga caldera were primarily affected
by microwave penetration into snow and DEMs over the Holuhraun lava field exhibited increased height errors
due to active lava flows and dynamic outwash plain.

The topographical analysis of the 2014–2015 Bárðarbunga eruption revealed a maximum vertical displace-
ment of approximately −65 m and +43 m at the study area of the Bárðarbunga caldera and Holuhraun lava
field respectively. With a total subsidence volume of−1.40 ± 0.13 km3 and a dense-rock equivalent (DRE) lava
volume of +1.36 ± 0.07 km3, known uncertainties in volume were decreased by approximately 35% and 77%
accordingly. Taking into account the calculation of rates, the temporal development of caldera collapse and lava
effusion was found to exhibit a near-exponential decrease. The ratio between subsidence and DRE lava volume
moreover indicated the coupling between piston collapse and magma drainage.

1. Introduction

Iceland's neovolcanic zone is one of the most active volcanic areas in
the world. Eruptions tend to occur every three to four years with a wide
range of direct and indirect consequences affecting human populations
and their natural environment at all spatial scales (Gudmundsson et al.,
2008). The most hazardous consequences in Iceland are lava flows,
lahars, pyroclastic flows, glacier outburst floods and the ejection of
tephra and volcanic gas (Gudmundsson et al., 2008). Apart from the
emission of volcanic gas, the hazard during the 2014–2015 volcanic
eruption in the subglacial Bárðarbunga volcanic system was the large-
scale effusion of lava (Gíslason et al., 2015) as well as the likelihood of a
devastating glacier flood, also referred to as “Jökulhlaup” (Björnsson,
2003). Lava flows during effusive eruptions can travel over large

distances and repetitively led to the destruction of settlement area, e.g.,
during the 1973 eruption of Heimaey, where over 300 buildings were
buried (Williams and Moore, 1983). Glacier outburst floods result from
the melting of overlying glacier ice due to subglacial volcanic or geo-
thermal activity and frequently inundate the sandur plains in the south
of Iceland (Björnsson, 2003; Gudmundsson et al., 2008). Jökulhlaups
and lava flows are a direct threat to the inhabitants as well as livestock
and vegetation in the surrounding area and illustrate the need of an
adequate and near real-time monitoring of subglacial volcanic activity.

Synthetic Aperture Radar (SAR) is an active remote sensing tech-
nology operating in the microwave frequency domain. The in-
dependence of meteorological and illumination conditions facilitates
the monitoring of remote volcanic areas (Bamler and Hartl, 1998). In-
terferometric SAR exploits the information content of two complex SAR
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images and can be applied to deduce topography, thus digital elevation
models (DEMs) (Bamler and Hartl, 1998). For the purpose of generating
a global DEM of unprecedented vertical accuracy, the German TanDEM-
X mission has been established as an extension of the TerraSAR-X
mission. The two satellites of the TanDEM-X mission fly in close for-
mation (“HELIX”) and enable data collections in monostatic, bistatic, or
alternating bistatic interferometric modes. Due to the simultaneous
data collection in the bistatic interferometric mode, temporal decorr-
elation and atmospheric propagation effects are mostly overcome and
DEMs of high accuracy can be generated (Krieger et al., 2007). With a
repeat-pass interval of 11 days, the satellite mission permits the gen-
eration of DEM time series, being especially useful to recover the
temporal development of topographical variations e.g. at the location of
active volcanoes (Stevens et al., 1999). A number of past studies suc-
cessfully used TanDEM-X data to investigate temporal elevation
changes, e.g., at glaciers (Rott et al., 2014), at agricultural fields (Rossi
and Erten, 2015; Erten et al., 2016) or at active volcanoes (Albino et al.,
2015; Kubanek et al., 2015; Poland, 2014). In this study, TanDEM-X
DEM time series are investigated to reveal relative changes in topo-
graphy during the 2014–2015 eruption of the Bárðarbunga volcano.

The Bárðarbunga volcanic system consists of an ice-covered volcano
in the northwestern corner of the Vatnajökull ice cap and a fissure
swarm stretching over 55 km to the northeast and 115 km to the
southwest (Sigmundsson et al., 2015). The 2014–2015 volcanic unrest
started on 16 August 2014 and was preceded by an intense seismic
swarm and lateral dyke growth in direction of the Holuhraun plain. On
29 August 2014, an initial fissure opened up approximately 10 km
north of Vatnajökull and erupted basaltic lava for a period of 4 h
(Sigmundsson et al., 2015). Two days later, the activity turned into a
major effusive eruption that lasted until 27 February 2015. Due to the
deflation of the underlying magma chamber, the eruption was asso-
ciated with the slow collapse of the snow-covered Bárðarbunga caldera,
located at the surface of the Vatnajökull glacier (Sigmundsson et al.,
2015). Gudmundsson et al. (2016) moreover report the formation of a
number of ice cauldrons south and west of the caldera. Within Iceland,
the Bárðarbunga eruption is known to be the largest effusive eruption
since Laki in 1783–1784. The lava volume in the Holuhraun plain was

estimated at 1.6 ± 0.3 km3 (Gíslason et al., 2015) and is yet con-
siderably smaller than the Laki lava flow volume (14.7 km3 ± 1 km3)
(Thordarson and Self, 1993). The volume loss at the Bárðarbunga cal-
dera was estimated at 1.8 ± 0.2 km3 (Gudmundsson et al., 2016).

In order to evaluate the temporal development of topographical
change during the 2014–2015 Bárðarbunga eruption, the study area is
subdivided into two regions of interest (ROIs). The first ROI covers the
whole extent of the Bárðarbunga caldera as well as the cauldrons south
and west of it while the second ROI covers the Holuhraun lava field,
located in the Dyngjusandur outwash plain north of Vatnajökull
(Baratoux et al., 2011). Fig. 1 illustrates the location of the ROIs as well
as the footprints of available DEM tiles within the frame of a Global
Multi-resolution Terrain Elevation Data 2010 (GMTED2010) topo-
graphy map of Iceland.

Due to the local surface properties, the radar system parameters or
the SAR processing, DEMs can be prone to severe errors (Hanssen,
2001). To guarantee the reliability of volume computations at the
Bárðarbunga caldera and Holuhraun lava field, the quality of the DEMs
is analysed and significant errors are accounted for. At the location of
the snow-covered Bárðarbunga caldera, DEM quality can be influenced
by the penetration of radar waves into snow and lead to severe mis-
interpretations of the measured height (Mätzler, 1987). For the ROI of
the lava field, the relative movement of active lava flows between two
SAR acquisitions can lead to the decorrelation of the radar signal
(Bamler and Hartl, 1998). Finally, the radar system parameters and the
SAR processing can result in increased height errors and bias the ele-
vation measurement at both study locations.

The overall aim of this study is to provide a thorough temporal
analysis of topographical changes during the 2014–2015 Bárðarbunga
volcanic eruption using time series of TanDEM-X digital elevation
models. The findings of this study shall complete the analysis in Rossi
et al. (2016), who used five TanDEM-X acquisitions between 01 August
2014 and 08 November 2014 to reveal surface changes over the Bárð-
arbunga caldera within the initial stage of the eruption. The study
presented here focuses on the data processing and the uncertainty in-
vestigation for acquisitions spanning the entire duration of
the 2014–2015 Bárðarbunga eruption. Moreover, the temporal

Fig. 1. Footprints of available DEM tiles over a GMTED2010
topography map of Iceland. The ROIs of the Bárðarbunga caldera
and Holuhraun lava field are highlighted in white.
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geomorphological changes at the Holuhraun plain are analysed. The
available dataset and applied methodology of the uncertainty in-
vestigation and temporal analysis are described in Section 2. Sections 3
and 4 present and discuss the obtained results of the temporal analysis
and Section 5 summarises the major findings of the analysis.

2. Methods

2.1. Dataset

Data stacks were produced for both, the Bárðarbunga caldera and
the Holuhraun lava field (Fig. 1). Each data stack included multi-tem-
poral DEM sequences spanning the entire duration of the eruption as
well as reference DEMs representing the surface state before and after
the volcanic event. For the study area of the Bárðarbunga caldera, a
total amount of 13 pre-, co- and post-eruptive TanDEM-X raw DEMs
were processed. The dataset of the Holuhraun lava field contained 9 co-
and post-eruptive TanDEM-X raw DEMs as well as a pre-eruptive mo-
saicked TanDEM-X DEM. The DEMs were processed with the integrated
TanDEM-X processor (ITP) at the German Aerospace Center (DLR).
With more detail, the TanDEM-X raw DEMs were generated from
monostatic and bistatic SAR data and have a typical extent of 30 km by
50 km. The mosaicked TanDEM-X DEM was produced at a dimension of
1 square degree and by mosaicking several TanDEM-X raw DEMs, ac-
quired at different height of ambiguities and viewing geometries to
maximise the overall quality of the DEM. The horizontal sampling of
the processed TanDEM-X raw DEMs is approximately 10 m in northing
and 7 m in easting and pixel spacing of the mosaicked TanDEM-X DEM
is 12 m in both directions. More specific information about the DEM
processing is given in Rossi et al. (2016). Additional height error maps
(HEMs) (Section 2.2.1) served as reference for the uncertainty in-
vestigation. Table 1 lists the acquisition dates as well as radar system
and processing parameters, provided within the integrated TanDEM-X
processor (ITP) product file. The mean height error of the full TanDEM-
X scene (herr) and the mean height error of the ROI (herr

roi) (sixth and
seventh column in Table 1) were computed as average values in the
height error maps.

To investigate topographical change due to lava flow emplacement

and caldera subsidence only, the TanDEM-X raw DEMs and height error
maps were clipped to vector layers created specifically for the chosen
ROIs. The outer rim of the lava field was manually defined computing a
vertically calibrated difference map between pre-eruptive mosaicked
TanDEM-X and post-eruptive TanDEM-X raw DEM. To refine the result,
an above-surface threshold, limited to an interval of ]0, 100] metres,
was applied to identify area of topographical change, therefore lava
effusion only. The caldera outline was vectorised in agreement with the
analysis in Sigmundsson et al. (2015) and of the Institute of Earth
Sciences of the University of Iceland (Institute of Earth Sciences, 2014).
The vector layer includes the Bárðarbunga caldera as well as eight
minor ice cauldrons, six in the southeast of the caldera and two located
at its western rim. Finally, the area of the ROI covering the Bárdarbunga
caldera was approximately 69.2 km2 and the ROI of the lava field
84.2 km2. The exclusion of area outside the ROIs allowed us to elim-
inate topographical change due to other geomorphological processes
from the quantitative computation of subsidence and eruption volumes
and rates.

2.2. DEM uncertainty investigation

To reliably quantify topographical change during the 2014–2015
Bárðarbunga eruption, the quality of the available DEMs was analysed
with respect to important factors affecting DEM quality. Significant
errors were considered before calculating height changes. The inter-
mediate results of this Section are presented and discussed in the fol-
lowing.

2.2.1. Analysis of system parameters
The radar system parameters and especially the perpendicular

baseline, the height of ambiguity and the radar incidence angle can
have a considerable impact on DEM quality. The TanDEM-X DEMs used
within this study were analysed for the impact of radar system para-
meters using the height error maps as well as the information provided
within the ITP product annotations (Table 1).

The height error herr (r,a) (Table 1) measures the amount of spatial
decorrelation and is derived from the local coherence:

Table 1
System and quality parameters of the TanDEM-X dataset under study. From left to right, the columns represent the acquisition date, the perpendicular baseline B⊥, the height of ambiguity
hamb, the centre radar incidence angle θ, the mean coherence γ of the full TanDEM-X scene, the mean height error herr of the full TanDEM-X scene, the mean height error of the ROI herr

roi,
the quality ratio qratio (Rossi et al., 2012) and the acquisition mode.

Acquisition date B⊥ [m] hamb [m] θ [deg] γ herr [m] herr
roi [m] qratio Acquisition mode

Caldera
01.08.2014 29.7 163.3 31.4 0.86 2.3 1.8 99.9 Bistatic
12.08.2014 31.1 156.2 31.4 0.80 2.8 1.8 99.9 Bistatic
14.09.2014 95.8 67.4 39.4 0.77 1.5 1.2 99.9 Bistatic
17.10.2014 50.2 96.6 31.4 0.92 0.9 0.7 99.9 Monostatic
28.10.2014 38.2 126.8 31.4 0.92 1.2 0.9 99.9 Monostatic
08.11.2014 57.8 84.2 31.4 0.91 0.9 0.7 100.0 Monostatic
06.12.2014 55.3 158.5 31.0 0.92 1.6 1.4 99.9 Monostatic
22.12.2014 314.0 15.4 31.3 0.64 0.5 0.5 99.9 Monostatic
02.01.2015 327.9 14.9 31.3 0.62 0.5 0.5 99.9 Monostatic
24.01.2015 187.9 28.1 31.3 0.75 0.6 0.6 99.9 Monostatic
04.02.2015 430.0 11.3 31.3 0.51 0.5 0.5 62.3 Monostatic
26.02.2015 360.2 13.7 31.3 0.56 0.5 0.5 88.6 Monostatic
25.05.2015 619.3 7.9 31.3 0.42 0.5 0.5 22.0 Bistatic

Lava field
06.12.2014 148.1 42.2 37.3 0.86 0.5 0.4 99.9 Monostatic
22.12.2014 338.9 21.6 42.8 0.84 0.4 0.2 99.9 Monostatic
02.01.2015 550.0 13.2 42.8 0.82 0.2 0.1 98.5 Monostatic
13.01.2015 549.0 13.2 42.8 0.82 0.2 0.1 98.0 Monostatic
24.01.2015 235.2 32.7 42.8 0.87 0.4 0.3 99.9 Monostatic
04.02.2015 204.3 39.0 42.8 0.88 0.5 0.4 99.9 Monostatic
10.02.2015 568.4 10.6 37.3 0.75 0.2 0.1 91.5 Monostatic
26.02.2015 611.1 11.8 42.8 0.76 0.3 0.2 98.8 Monostatic
22.06.2015 576.5 10.5 37.1 0.66 0.3 0.1 87.1 Bistatic
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where σϕ(r,a) is the standard deviation of the interferometric phase for
each sample in azimuth and range and hamb is the height of ambiguity
(third column in Table 1), equivalent to one phase cycle of 2π:

=
⊥

h λR θ
nB
sin

amb (2)

(λ: radar wavelength; R: range distance; θ: radar incidence angle; B⊥:
perpendicular baseline; n=1: bistatic acquisitions; n=2: monostatic
acquisitions). The DEM standard error thus depends on the local co-
herence and increases with the height of ambiguity and small baselines
(Ferretti et al., 2007; Krieger et al., 2007; Rizzoli et al., 2012; Rossi
et al., 2016).

Since small heights of ambiguity can complicate the phase un-
wrapping procedure during the SAR processing and introduce errors in
the order of the hamb (Ferretti et al., 2007), the quality of the phase
unwrapping processing step was analysed using the quality ratio. The
quality ratio is a single value indicating the overall percentage of reli-
able pixel values in a DEM and is provided within the ITP annotations
(Rossi et al., 2012). More comprehensive information about the in-
dividual system and quality parameters can be found in Bamler and
Hartl (1998), Ferretti et al. (2007) or Hanssen (2001). Rossi et al.
(2016) provide a detailed description of the impact of system para-
meters on DEM uncertainty for the specific case under study.

Table 1 shows the correlation between system and quality para-
meters for the TanDEM-X datasets used within the present study and
reveals the overall smaller mean height errors for low heights of am-
biguity (< 50 m) and large perpendicular baselines (> 100 m). At the
same time, extremely large perpendicular baselines (> 200 m) lead to
coherence loss. Inspecting the quality ratio in Table 1, only the 04
February 2015 and 25 May 2015 acquisitions over the Bárðarbunga
caldera exhibit phase unwrapping errors. The corresponding volume
estimates of the topographical analysis consequently have to be re-
garded critically and might not represent the actual surface change
without proper corrections.

2.2.2. Influence of the local environment
In addition to radar system parameters, the local environment and

more precisely snow, topography and the relative movement of objects
are considerable influence factors on DEM quality (Hanssen, 2001).
Since the theoretical considerations of topographical effects over the
Bárðarbunga caldera are covered in Rossi et al. (2016), the following
refers to the impact of snow over the Bárðarbunga caldera and to
temporal decorrelation and topographical effects over the ROI of the
Holuhraun lava field only.

From a microwaves perspective, the snow-covered Bárðarbunga
caldera is a rather peculiar study area. Microwave acquisitions over
snow and ice can indeed bias the surface elevation measurement in
terms of a shift of the scattering phase centre. According to Rossi et al.
(2016), the expected mean X-band height discrepancy with respect to
the superficial height for the specific case under study is approximately
1.3 m in autumn months and consistently lower in summer months. In
this analysis, this value was approximated by computing the mean shift
between pairs of elevation models and accounted for by normalising the
images (Section 2.3). A more detailed description of microwave pene-
tration into snow is covered in Mätzler (1987), Richards (2009) and
Rossi et al. (2016).

Due to the side-looking geometry of radar imaging systems, large
variations in topography may introduce foreshortening, layover, or
shadow effects that will increase the height error (Bamler and Hartl,
1998; Deo et al., 2015). The maps in Fig. 2 depict the correlation be-
tween height error and terrain slope for the 26 February 2015 TanDEM-
X acquisition over the lava field. With relatively flat slopes (Fig. 2 (a))
and a ROI mean height error of 0.2 m (Table 1), topographical effects

were not an issue and a more detailed analysis of the individual topo-
graphical effects was not performed. The corresponding analysis over
the Bárðarbunga caldera in Rossi et al. (2016) similarly revealed the
absence of topographical effects over the area of interest.

Temporal terrain decorrelation arises due to the relative movement
between two SAR acquisitions and can lead to the complete decorr-
elation of the radar signal. As shown in Table 1, the DEMs were gen-
erated from TanDEM-X data acquired in bistatic and pursuit monostatic
mode. While bistatic DEMs were generated with acquisitions taken at
about the same time, monostatic DEMs were produced with acquisitions
with a temporal baseline of approximately 10 s. Considering the rela-
tively slow collapse of the Bárðarbunga caldera (Sigmundsson et al.,
2015), the area of the ROI was found to remain stable for both acqui-
sition modes. Therefore, the investigation was restricted to the Ho-
luhraun lava field, where lava erupted at the time of acquisitions

(a) terrain slope map

(b) height error map

Fig. 2. Correlation between terrain slope and height errors. (a) Terrain slope computed
with the 26 February 2015 acquisition. (b) Height error map of the 26 February 2015
acquisition. The extent of the lava field is outlined in white (a) and red (b). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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(Institute of Earth Sciences, 2014). The identification of temporally
decorrelated pixels was achieved comparing height error maps to re-
ference maps from the Institute of Earth Sciences of the University of
Iceland (Institute of Earth Sciences, 2014).

Fig. 3 (a) shows the clipped height error map of the 06 December
2014 acquisition. Comparing the height errors to Landsat 8 thermal
images and Sentinel-1 lava flow extent maps of the Institute of Earth
Sciences of the University of Iceland (Institute of Earth Sciences, 2014),
it became apparent that extremely high errors (> 10 m) mostly result
from active lava flows and dynamic outwash plain within the ROI. The
reference maps from the University of Iceland were acquired shortly
before the acquisition date of the TanDEM-X data and confirm the ap-
plicability of height error maps to distinguish between temporally
decorrelated and correlated pixels. In order to obtain a reliable volume
estimate, significant errors due to temporal decorrelation had to be
detected and masked from all investigated data.

2.2.3. Treatment of DEM uncertainties
The identification of unreliable height information due to temporal dec-

orrelation can be achieved by thresholding coherence images to create binary
masks (Dietterich et al., 2012; Poland, 2014). Because height errors vary
according to the acquisition geometry and surface properties, the thresholds
had to be adapted for each investigated acquisition.

For the 06 December 2014 acquisition shown in Fig. 3 (a), a coherence
boundary value was manually chosen at 0.8. This value allowed the masking
of all decorrelated areasmarked in the figure. Tomake this process automatic,
height errors larger than the sum of themean and one standard deviation, also
referred to as μ-σ-method (Laux, 2003), were flagged and manually tested.

Binary masks were generated based on the identified height error
boundary values. Since the ROIs within the first two acquisitions in the data
stack contained relatively large sections of lava-uncovered outwash plain, the
corresponding error masks were constructed for each of the two acquisitions
individually. To exclude the same proportion of pixels from data after 22
December 2014, a μ-σ-mask was generated accumulating all identified height
errors for the corresponding acquisitions. The generated binary masks were

(a) 06 December 2014 HEM 

(b) accumulated binary mask

Fig. 3. (a) Height error map of the 06 December 2014 ac-
quisition. Active lava flows and dynamic outwash plain were
identified using reference maps from the Institute of Earth
Sciences of the University of Iceland. (b) Accumulated binary
mask applied to all DEMs and height error maps after 22
December 2014 in the lava stack. White colour represents
pixels to exclude (value 0) and black colour indicates pixels
to maintain (value 1). The red boarder highlights the outline
of the ROI of the lava field. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to
the web version of this article.)
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then applied to all DEMs and height error maps relevant for the volume
computation in Section 2.3.1. Fig. 3 (b) shows the accumulated mask applied
to all data after 22 December 2014. The binary mask excludes an area of
approximately 2.54% from the ROI and consequently led to a slight under-
estimation of the final lava flow volumes. Due to the low percentage of
eliminated pixels, the computation of minimum lava flow volumes with
binary mask was not expected to raise significantly different numbers than
the estimation without mask. At the same time, volume uncertainties were
expected to be considerably smaller applying a mask.

2.3. DEM temporal analysis

Variations in topography can be estimated calculating height differences
between pairs of elevation models. In order to reliably quantify topographical
variations between two acquisitions, detailed knowledge about the DEM er-
rors is required (Rossi et al., 2016). Since the evaluation of absolute errors
requires the availability of external references, relative changes in topography
can be more easily exploited choosing a pre-eruptive acquisition as common
reference (Rossi et al., 2016). The analyses in Poland (2014), Albino et al.
(2015), Kubanek et al. (2015) and Rossi et al. (2016) followed this approach
and revealed topographical variations in active volcanic regions. To be able to
draw valid conclusions from analysing multi-temporal DEM sequences at the
location of the Bárðarbunga volcano, the vertical and horizontal calibration is
introduced in the following.

The calibration strategy of this analysis followed the approach proposed
in Rossi et al. (2016) and absolute phase offsets were estimated with respect
to a common reference DEM. In particular, the DEMs over the Bárðarbunga
caldera were calibrated to the first pre-eruptive acquisition in the corre-
sponding data stack (01 August 2014) and the DEMs covering the Holuhraun
lava field were calibrated with respect to the mosaicked TanDEM-X DEM.
Only small terrain portions were used for the phase calibration. Indeed, phase
offsets were estimated by means of average height values over predefined,
non-dynamic terrain. Comparing the mean height offsets to the average value
in the corresponding reference acquisitions, the DEM vertical calibration was
performed by normalising the layers, thus adding/subtracting the detected
offset to/from the regarded DEM. For the area of the Bárðarbunga caldera,
the determination of absolute phase offsets provided an empirical estimate of
mean X-band penetration depth and the vertical calibration of the layers al-
lowed accounting for radar penetration (Rossi et al., 2016).

The performance of the calibration was investigated evaluating cross-
sections (Bárðarbunga caldera only) and pixel distributions in non-dynamic
terrain in difference maps. The analysis of difference maps followed the ap-
proach in Poland (2014) and Xu and Jónsson (2014) and control areas were
selected in both study regions. Considering the Gaussian distribution of pixel
values, the control areas were analysed by means of a standard deviation and
an average value (Poland, 2014). The average value within the pre-defined
control areas is expected to be approximately 0 m for the study area of the
Bárðarbunga caldera and Holuhraun lava field. Due to volumetric scattering
and local variations in the seasonal snow cover, the height variances of the
non-dynamic terrain portions around the Bárðarbunga caldera are expected to
show slightly higher values compared to terrain portions around the lavafield.

2.3.1. Volume computation
In order to show the temporal development of topographical change

during the Bárðarbunga volcanic eruption, the pre-eruptive reference
DEMs were subtracted from the co- and post-eruptive DEMs in the time
sequences. The difference map between two DEMs then shows height
changes within the acquisition interval.

The volume change ΔV was computed for each DEM pair summing the
height changes within the area of the clipped ROI and multiplying it by the
pixel size (70 m2):

∑∆ = ∆V a h
i

i
(3)

where a is the pixel area, Δhi is the height difference of a given pixel and i is
the number of pixels within the ROI (Albino et al., 2015; Poland, 2014). For

the ROI of the lava field, the measured bulk lava volume was converted to its
dense-rock equivalent (DRE) (or bubble-free magma) using a bulk lava
density of 2600 kg1 m−3 (Gíslason et al., 2015; Gudmundsson et al., 2016)
and a basaltic magma density of 2750 kg1 m−3 (Gudmundsson et al., 2016).
The error E in the volume estimate was computed following the error pro-
pagation approach and using the height error maps (Poland, 2014):

∑= +E a h h(( ) ( ) )
i

Ai
err

Bi
err2 2

(4)

where h Ai
err and hBi

err are the pixel values of the height error maps of two DEMs.
To visualise the results, difference maps were created for each DEM pair and
cross-sections were analysed over selected terrain in the difference maps.

To assess the coupling between dyke intrusion and magma withdrawal
during the 2014–2015 Bárðarbunga eruption, a one-to-one volume com-
parison was provided for completeness. For many volcanic eruptions, the
volume loss deduced from surface deformation is considerably smaller than
the measured volume gain in dykes and the volume ratio rv can be in the
order of 5 ± 1 (Rivalta and Segall, 2008). In this study, the volume ratio
was calculated based on Rivalta and Segall (2008):

=
∆

∆
r

V
Vv

magma

chamber (5)

(ΔVmagma: volume gain in dyke; ΔVchamber: volume loss in magma chamber).
The volume in the dyke was estimated at 0.5 ± 0.1 km3 (Sigmundsson

et al., 2015). Together with the volume loss at the Bárðarbunga caldera and
the volume of DRE lava effusion, the volume ratio was approximated for
acquisitions covering the same date. A more in depth description of magma
compressibility can be found in Delaney andMcTigue (1994), Johnson et al.
(2000) or Rivalta and Segall (2008).

2.3.2. Computation of rates
The computed DRE volume was then referred to the time interval since

the eruption onset. Since there still exists confusion regarding the exact de-
finition of lava effusion or eruption rates, the parameters were calculated
based on the analysis in Harris et al. (2007). In this study, eruption rates were
defined as the total DRE volume at a given point in time divided by the
duration since the eruption onset. The average eruption rate then represents
the mean of all eruption rates. The mean output rate, on the other hand, was
computed by dividing the total erupted DRE volume by the total eruption
duration. Eruption rates were indicated in DRE volume per time [m3 s−1]
and displacement rates were additionally calculated in height per time
[cm1 d−1]. The computation in height per time was performed based upon
the maximum and average bulk lava height differences within the ROI and
was termed maximum displacement rate and mean displacement rate re-
spectively. To achieve comparability, subsidence rates were computed in the
same manner as lava rates but were termed mean subsidence rate and sub-
sidence rate rather than mean output rate and eruption rate respectively.

The percentage of subsidence and erupted DRE volume over time was
computed assuming the start of caldera collapse on 16 August 2014 (Riel
et al., 2015; Sigmundsson et al., 2015) and the start of major lava effusion
on 31 August 2014 (Gíslason et al., 2015). According to Gíslason et al.
(2015), the end of subsidence and lava effusion was on 27 February 2015.
Since DEMs were available for 26 February 2015, this acquisition was
taken as the end date for the calculation of volume and time proportions.

3. Results of the DEM temporal analysis

3.1. Analysis of the DEM relative calibration

The verification of the DEM relative calibration was performed with
control areas in difference maps and is presented in Table 2. For the Bárð-
arbunga caldera, the computed mean height differences were found to be
around 0 m for all control areas under study and the maximum calculated
standard deviation was detected at 3.03 m. The study area of the lava field
implied similar mean height differences and a slightly lower maximum
standard deviation of 0.97 m. While Figs. 4 (a) and 5 (a) show the location of
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Table 2
Mean μ and standard deviation σ of selected control areas in difference maps over the Bárðarbunga caldera and Holuhraun lava field respectively.

Control area 1 Control area 2 Control area 3 Control area 4 Study area

μ [m] σ [m] μ [m] σ [m] μ [m] σ [m] μ [m] σ [m]

0.62 2.53 −0.01 1.96 −0.13 2.29 0.30 3.03 Caldera
0.39 0.71 0.68 0.75 −0.24 0.75 −0.12 0.97 Lava field

(a) height difference map

(b) control area 1 (c) control area 2

(d) control area 3 (e) control area 4

Fig. 4. (a) TanDEM-X DEM difference map between 01 August 2014 DEM and 22 December 2014 DEM. The black polygons indicate the location of selected control areas. The histograms
(b–e) show the elevation distribution within the pre-defined control areas.
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the selected control areas for the caldera and lava field respectively, Figs. 4
(b–e) and 5 (b–e) illustrate the pixel distributions within the control areas.
The images reveal the wider spread of height values around the Bárðarbunga
caldera compared to control areas around the lava field. For the control areas
in Figs. 4 (b) and 5 (b–c), the distribution of pixel values shows a slight shift
towards positive values (Table 2). Moreover, the 12 August 2014 (Fig. 4 (b,
d)), 25 May 2015 (Fig. 4 (e)), 22 June 2015 (Fig. 5 (d)) and 04 February
2015 (Fig. 5 (e)) acquisitions deviate from the expected shape.

3.2. Topographical analysis at the location of the Bárðarbunga caldera

Fig. 6 reveals pre- and post-eruptive height changes within and around
the Bárðarbunga caldera. The 12 August 2014 difference map shows only
minor height fluctuations, mostly due to system noise, while the 26 February
2015 difference map clearly shows the subsided area with the major topo-
graphic change in the northeastern part of the Bárðarbunga caldera as well as
in the minor cauldrons southeast and west of it.

(a) height difference map

(b) control area 1 (c) control area 2

(d) control area 3 (e) control area 4

Fig. 5. (a) TanDEM-X DEM difference map between mosaicked TanDEM-X DEM and 22 December 2014 DEM. The white polygons indicate the location of selected control areas. The
histograms (b–e) show the elevation distribution within the pre-defined control areas.
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The quantitative results of the volume and rates computation are
presented in Table 3. Until 26 February 2015, the subsidence vo-
lume increased and reached a final value of −1.4 ± 0.1 km3,
where −1.36 km3 subsided within the boundaries of the main cal-
dera and −0.02 km3 within each of the minor cauldrons south of it
(Fig. 6 (b)). Peak subsidence (−74.5 m) was found for 26 February
2015 and reflects the maximum height difference within the
northernmost cauldron southeast of the caldera. For the area of the
Bárðarbunga caldera, the maximum height difference was detected
at −64.8 m. The sixth column in Table 3 lists the computed sub-
sidence rates. With 26 February 2015 as the eruption end date, the
mean subsidence rate was computed at 83.5 m3 s−1. Looking at the
temporal progression of all investigated rates, a decrease in sub-
sidence over time becomes apparent. Fig. 7 shows the temporal
development of maximum caldera subsidence with respect to the
entire ROI.

(a) 12 August 2014 (b) 26 February 2015

Fig. 6. TanDEM-X elevation difference maps illustrated as an overlay with the raw DEMs. (a) Difference map between 01 August 2014 DEM and 12 August 2014 DEM. The red lines
illustrate the location of selected height profiles. (b) Difference map between 01 August 2014 DEM and 26 February 2016 DEM. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 3
Quantitative results for the ROI of the Bárðarbunga caldera. The columns represent the acquisition date, the volume change and error ΔVref, the volume proportion V26.02., the days since
eruption onset Δd16.08., the proportion of days within the subsidence interval Δdactive, the subsidence rate es, the mean height change over the ROI∆href

roi, the mean displacement rate dr , the
maximum height change within the entire ROI hmax

roi� and the maximum displacement rate dr
max .

Date ΔVref [km3] V26.02. [%] Δd16.08. Δdactive [%] es [m3 s−1] ∆href
roi [m] dr [cm1 d−1] ∆hmax

roi [m] dr
max[cm1 d−1]

12.08.2014 −0.02 ± 0.18 1.43 ± 12.86 – – – +0.35 – −15.25 –
14.09.2014 −0.49 ± 0.15 35.00 ± 10.71 29 14.95 195.56 −7.09 −24.45 −33.71 −116.24
17.10.2014 −0.81 ± 0.13 57.86 ± 9.29 62 31.96 151.21 −11.67 −18.82 −44.12 −71.16
28.10.2014 −0.90 ± 0.14 64.29 ± 10.00 73 37.63 142.69 −13.03 −17.85 −48.47 −66.39
08.11.2014 −0.97 ± 0.13 69.29 ± 9.29 84 43.30 133.65 −14.06 −16.74 −51.02 −60.74
06.12.2014 −1.22 ± 0.16 87.14 ± 11.43 112 57.73 126.07 −17.66 −15.77 −61.48 −54.89
22.12.2014 −1.27 ± 0.13 90.71 ± 9.29 128 65.98 114.84 −18.38 −14.36 −61.12 −47.75
02.01.2015 −1.31 ± 0.13 93.57 ± 9.29 139 71.65 109.08 −18.86 −13.57 −63.85 −45.94
24.01.2015 −1.37 ± 0.13 97.86 ± 9.29 161 82.99 98.49 −19.76 −12.27 −67.90 −42.17
04.02.2015 −1.38 ± 0.13 98.57 ± 9.29 172 88.66 92.86 −19.93 −11.59 −68.77 −39.98
26.02.2015 −1.40 ± 0.13 100.00 ± 9.29 194 100.00 83.52 −20.22 −10.42 −74.48 −38.39
25.05.2015 −1.40 ± 0.13 100.00 ± 9.29 282 145.36 – −20.25 – −68.74 –

Fig. 7. Temporal development of maximum subsidence at the Bárðarbunga caldera. The
red star marks the end of the eruption. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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The 12 August 2014 difference map in Fig. 6 shows the location of
selected cross-sections and Fig. 8 illustrates the extracted height.
Stretching from north to south, transect 1 (Fig. 8 (a)) covers the two
minor cauldrons at the western rim of the Bárðarbunga caldera. The
analysis over the difference maps reveals the depressions in the glacier
surface, where the southern cauldron exhibits larger subsidence up to
approximately −55 m (Fig. 8 (a)), corresponding to a local mean dis-
placement rate of approximately 28.4 cm1 d−1.

Transect 2 (Fig. 8 (b)) stretches from northwest to southeast and
covers the eastern part of the Bárðarbunga caldera as well as the minor
ice depressions south of it. The extracted height change reaches its
maximum at the northern margin of the caldera (−58 m) and corre-
sponds to a local mean displacement rate of approximately
29.9 cm1 d−1. As visible in Fig. 8 (b), the southern ice cauldron shows
its maximum height change at approximately −30 m, corresponding to
a local mean displacement rate of 15.5 cm1 d−1.

Cross-section 3 runs from northwest to southeast and covers the
eastern part of the Bárðarbunga caldera as well as the minor ice de-
pressions in the southeast. Fig. 8 (c) reveals the extent of subsidence
with peak values around −50 m for the caldera and almost −70 m for
the ice cauldrons at its southern rim. According to this, the local mean
displacement rates were computed at 25.8 cm1 d−1 and 36.1 cm1 d−1

respectively.
The last investigated transect extends over the full width of the

Bárðarbunga caldera and covers the southernmost ice cauldron at the

western rim. Fig. 8 (d) reveals the shape of the caldera with the largest
height change in the northeast. The maximum elevation change was
measured at approximately −55 m for the Bárðarbunga caldera and ice
cauldron respectively. For both depressions, this corresponds to a local
mean displacement rate of 28.4 cm1 d−1. Similar to all other transects,
around half of the total height change within the main caldera appears
to have occurred in the initial period of the eruption. The final acqui-
sitions moreover indicate a slight height gain in areas of maximum
topographic change. In non-dynamic terrain, no topographical change
is visible and the acquisitions overlay each other almost perfectly.

3.3. Topographical analysis at the location of the Holuhraun lava field

The elevation difference maps in Fig. 9 reveal the temporal devel-
opment of lava effusion at the location of the Holuhraun lava field.
Looking at the elevation difference map between mosaicked TanDEM-X
DEM and the 06 December 2014 acquisition, the ROI of the lava field
was covered in most parts and the highest elevation change occurred
close to the eruptive vent, located in the western part of the ROI. Until
26 February 2015, topographical change was mostly visible at the
northern flanks of the flow and a major lava channel became apparent
in the northeast of the ROI.

The quantitative results of the volume and rates estimation over the
lava field are listed in Table 4. Until 26 February 2015, the measured
bulk lava volume gradually increased and reached its final value at

(a) cross-section 1 (b) cross-section 2

(c) cross-section 3 (d) cross-section 4

Fig. 8. Cross-sections 1 (a), 2 (b), 3 (c) and 4 (d) over the difference maps of the Bárðarbunga caldera. The location of the cross-sections is highlighted in Fig. 6 (a).
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(a) 06 December 2014

(b) 26 February 2015

Fig. 9. TanDEM-X height difference maps illustrated as an
overlay with the mosaicked TanDEM-X DEM (grey). (a)
Height differences between mosaicked TanDEM-X DEM and
06 December 2014 DEM. (b) Height differences between
mosaicked TanDEM-X DEM and 26 February 2015 DEM.

Table 4
Quantitative results for the Holuhraun lava field. From left to right, the columns represent the acquisition date, the bulk volume change and error ΔVref, the volume of bubble-free magma
(DRE) ΔVDRE, the DRE volume proportion V26.02

DRE , the days since eruption onset Δd31.08., the proportion of days within the eruption interval Δdactive, the eruption rate er, the mean height
change over the ROI ∆href

roi, the mean displacement rate dr , the maximum height change over the ROI ∆hmax
roi and the maximum displacement rate dr

max .

Date ΔVref [km3] ΔVDRE [km3] V26.02
DRE [%] Δd31.08. Δdactive [%] er [m3 s−1] ∆href

roi [m] dr [cm1 d−1] ∆hmax
roi [m] dr

max [cm1 d−1]

06.12.2014 1.19 ± 0.06 1.13 ± 0.06 83.09 ± 4.41 97 53.19 134.83 15.31 15.78 49.30 50.82
22.12.2014 1.28 ± 0.06 1.21 ± 0.06 88.97 ± 4.41 113 63.13 123.93 15.76 13.95 42.56 37.66
02.01.2015 1.34 ± 0.06 1.27 ± 0.06 93.38 ± 4.41 124 69.27 118.54 16.37 13.20 44.38 35.79
13.01.2015 1.38 ± 0.06 1.30 ± 0.06 95.59 ± 4.41 135 75.42 111.45 16.86 12.49 45.60 33.78
24.01.2015 1.41 ± 0.07 1.33 ± 0.07 97.79 ± 5.15 146 81.56 105.44 17.18 11.77 48.11 32.95
04.02.2015 1.45 ± 0.07 1.37 ± 0.07 100.74 ± 5.15 157 87.71 101.00 17.71 11.28 49.45 31.50
10.02.2015 1.43 ± 0.06 1.35 ± 0.06 99.26 ± 4.41 163 91.06 95.90 17.40 10.67 43.55 26.72
26.02.2015 1.44 ± 0.07 1.36 ± 0.07 100.00 ± 5.15 179 100.00 87.94 17.55 9.80 42.97 24.01
22.06.2015 1.42 ± 0.06 1.34 ± 0.06 98.53 ± 4.41 295 164.80 – 17.33 – 42.43 –
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1.44 ± 0.07 km3. The corresponding volume of bubble-free magma
(DRE) was computed at 1.36 ± 0.07 km3. Until 22 June 2015, the DRE
lava volume decreased to 1.34 ± 0.06 km3. Column 7, 9 and 11 list the
computed rates. Assuming 26 February 2015 as the final day of the
eruption, the mean output rate was computed at 87.9 m3 s−1 and the
average eruption rate over the whole study period was 109.9 m3 s−1.

3.4. Volume ratio and one-to-one volume and rates comparison

The computation of the volume ratio is presented in Table 5 and
Fig. 10 (a–d) illustrates the quantitative results of Tables 3 and 4.
With more detail, the one-to-one volume comparison in Table 5 re-
vealed a final volume ratio of approximately 1.3, thus a slightly

higher DRE and dyke (Sigmundsson et al., 2015) volume compared to
caldera subsidence. Taking into account the larger subsidence as
found in Gudmundsson et al. (2016), the volume ratio would ap-
proximate 1. Fig. 10 (a) shows the temporal development of lava
effusion and caldera subsidence over time and Fig. 10 (b) illustrates
the proportional development of the two processes. According to
Fig. 10 (b), lava effusion and caldera subsidence developed similarly
over time, where around 80% of the overall volume change occurred
within 50% of time. In Fig. 10 (c), eruption and subsidence rates
constantly decline over time and Fig. 10 (d) depicts the temporal
progression of mean height changes at the Bárðarbunga caldera and
Holuhraun lava field respectively. The images in Fig. 10 (a–b) reveal
the overall lower error bars for volume estimates over the lava field

Table 5
Computation of the volume ratio. From left to right, the columns represent the acquisition date, the volume of bubble-free magma ΔVDRE, the sum of bubble-free magma and the volume
in the dyke ∆Vmagma

total , the volume of caldera subsidence ΔVchamber and the volume ratio rv.

Date ΔVDRE [km3] ∆Vmagma
total [km3] ΔVchamber [km3] rv

06.12.2014 1.13 ± 0.06 1.63 ± 0.12 −1.22 ± 0.16 1.34
22.12.2014 1.21 ± 0.06 1.72 ± 0.12 −1.27 ± 0.13 1.35
02.01.2015 1.27 ± 0.06 1.77 ± 0.12 −1.31 ± 0.13 1.35
24.01.2015 1.33 ± 0.07 1.83 ± 0.12 −1.37 ± 0.13 1.34
04.02.2015 1.37 ± 0.07 1.87 ± 0.12 −1.38 ± 0.13 1.36
26.02.2015 1.36 ± 0.07 1.86 ± 0.12 −1.40 ± 0.13 1.33

(a) volume evolution (b) volume proportion

(c) rates evolution (d) mean height change

Fig. 10. Temporal development of the 2014–2015 Bárðarbunga eruption. (a) Volume evolution of magma intrusion and effusion compared to caldera subsidence. (b) Proportional
development of lava effusion and caldera subsidence. (c) Temporal development of eruption and subsidence rates. (d) Evolution of mean height changes within the ROI of the Holuhraun
lava field and Bárðarbunga caldera respectively.
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compared to estimates at the location of the Bárðarbunga caldera.
Fig. 11 finally shows the overall topographical change at the lava
field including the propagating dyke by means of graben formation,
visible on the glacier surface and in the Holuhraun plain. The graben
structure is around 1 km in width and 5 m in depth.

4. Discussion

4.1. Implications of the DEM uncertainty investigation

The results in Section 2.2.1 and in Table 1 reveal the overall better
quality of acquisitions over the Holuhraun lava field compared to ac-
quisitions over the Bárðarbunga caldera. The lower quality of the da-
taset over the Bárðarbunga caldera is the consequence of the local
surface properties and the different acquisition geometry with respect
to the Holuhraun dataset. According to Table 1, large baselines over the
Bárðarbunga caldera resulted in a lower mean coherence than similar
baselines over the lava field, being in agreement with the analyses in
Dall (2007) and Hoen and Zebker (2000), who reported a considerably
lower coherence in snow-covered than in snow-free terrain. At the same
time, large baselines yielded higher coherence loss than small baselines
(Mätzler, 1987) (Table 1). The computation of the mean height offset
between the layers raised penetration depths up to approximately 1 m
in summer months and 2.6 m in winter months and supports the esti-
mate in Rossi et al. (2016). The considerably large and varying height
offsets highlight the importance of accounting for radar penetration
into snow.

4.2. DEM temporal analysis of the 2014–2015 Bárðarbunga eruption

4.2.1. DEM normalisation
Moving the discussion to the temporal analysis of the Bárðarbunga

eruption, the analysis of DEM normalisation in Table 2 raised the cor-
rect vertical calibration of the DEMs. The slightly increased mean
height values in Fig. 4 (b) and in Fig. 5 (b–c) as well as the increased
standard deviation up to 3.03 m and 0.97 m for the Bárðarbunga cal-
dera and lava field respectively reflect the spread of height differences

due to local variations in surface morphology. Minor variations in ter-
rain height most likely occurred due to snow drift and the seasonally
varying snow cover over the Vatnajökull glacier (Björnsson and
Pálsson, 2008; Pálsson et al., 2014) as well as the frequent flooding of
the Dyngjusandur outwash plain in the area around the lava field
(Baratoux et al., 2011). The comparatively larger standard deviation
over the Bárðarbunga caldera is the result of volumetric scattering. The
maximum computed standard deviations are similar to the analyses in
Poland (2014) and Xu and Jónsson (2014), who revealed the variances
over non-dynamic, unvegetated terrain in TanDEM-X DEM difference
maps at Kīlauea Volcano, Hawai'i (3.03 m), and on Jebel at Tair island
in the Red Sea (1.9 m), respectively.

4.2.2. Topographical change at the Bárðarbunga caldera
DEM differencing finally revealed height and volume changes be-

tween two acquisitions. Starting with the estimates over the
Bárðarbunga caldera, the visual interpretation of transects (Fig. 8) in-
dicates the initially rapid and then slower collapse of the caldera floor.
Figs. 7 and 10 (c) strengthen this assumption revealing the near-ex-
ponential decrease of peak subsidence and subsidence rates and Fig. 10
(b) shows proportional subsidence with respect to time. Gudmundsson
et al. (2016) provide estimates for the temporal development of max-
imum caldera subsidence with 20 August 2014 as the start date and
report a similar trend, confirming the obtained results in Fig. 7 with
slight deviations due to the different time intervals. However, total
caldera subsidence is with 1.4 ± 0.1 km3 (26 February 2015) slightly
lower than the estimation in Gudmundsson et al. (2016)
(1.8 ± 0.2 km3), probably due to a considerably smaller vector layer
covering 69.2 km2 compared to 110 km2. The use of a smaller vector
layer within the present study results from the restriction of the esti-
mation to the main caldera, thus the vertical calibration of the DEMs to
the caldera rim. Gudmundsson et al. (2016) instead estimated the area
of caldera collapse analysing the subsidence of the bedrock topography
with radio-echo sounding and additionally considering topographical
changes up to −1 m outside the actual caldera rim. The repetitively
deviating estimates as well as the increased volume error of the 06
December 2014 acquisition (Table 3) reflects undulations in the DEM.

Fig. 11. Overall topographical change at the location of the
Holuhraun lava field. Height changes are illustrated using a
difference map between pre- (mosaicked TanDEM-X DEM) and
post-eruptive DEM (22 June 2015 DEM).
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Such noise structures can arise as a result of phase delays due to io-
nospheric propagation effects but are here not addressed in more detail
(Massonet and Feigl, 1998; Rosen et al., 2000).

The maximum vertical displacement within the borders of the main
caldera was detected at approximately −64.8 m (26 February 2015)
and supports the estimate of −65 m in Gudmundsson et al. (2016). The
shape and depth of transects 1 and 2 (Fig. 8 (a–b)) is in agreement with
the extracted cross-sections in the corresponding TanDEM-X acquisi-
tions and in complimentary C-band altimeter profiles in Rossi et al.
(2016). Cross-section 4 and the height difference map in Fig. 4 (a), on
the other hand, reflect the extracted height difference and asymmetric
shape of caldera collapse in Gudmundsson et al. (2016) and in Riel et al.
(2015). With the subsidence of the Bárðarbunga caldera being driven
by the reactivation and slipping of pre-existing subsurface ring faults,
the asymmetric collapse is most likely the result of an asymmetric
geometry of the ring fault (Gudmundsson et al., 2016; Riel et al., 2015).
Gudmundsson et al. (2016) used seismic data and distinct element
method numerical modelling to describe the geometry of the ring-fault
system as steeply outward-dipping (80°–85°) on the north side and near-
vertical (85°–90°), inward-dipping on the south side. This asymmetric
structure is very typical for asymmetric caldera collapses (Roche et al.,
2000; Holohan et al., 2013) and has been observed, e.g., at Tendürek
volcano in Turkey (Bathke et al., 2015). The larger deformation in the
northeastern part of the caldera can also be seen in several one-day
COSMO-SkyMed interferograms, e.g., in the 13–14 September 2014
interferogram (Riel et al., 2015) or in the 17–18 September 2014 in-
terferogram (Gudmundsson et al., 2016; Riel et al., 2015). The slight
height gain after the end of the eruption (Fig. 8 (b–d)) corresponds to
winter snow accumulation and ice flow towards the centre of the cal-
dera (Gudmundsson et al., 2016). Ice flow occurred in response to
caldera collapse and led to a maximum ice thickening up to approxi-
mately 3 m (February 2015) in the region of peak subsidence
(Gudmundsson et al., 2016). The observed collapse on 26 February
2015 and on 25 May 2015 includes this effect and could therefore be
reduced by several metres. The minor cauldrons around the Bárð-
arbunga caldera as well as at the northern margin of the Vatnajökull
glacier (Fig. 11) moreover indicate the occurrence of glacier floods,
resulting from subglacial volcanic or geothermal activity (Björnsson,
2003). However, glacier floods were never observed and the meltwater
most likely drained into the groundwater system beneath Vatnajökull
(Rossi et al., 2016).

4.2.3. Topographical change at the Holuhraun lava field
DEM differencing over the Holuhraun lava field yielded a similar

pattern with an extremely rapid lava effusion at the start of the erup-
tion. Even though acquisitions were available after 06 December 2014
only, the almost complete coverage of the ROI in the earliest difference
map (Fig. 9) indicates this trend. Fig. 10 again shows the near-ex-
ponential decrease of lava effusion over time. Other independent
sources report the same tendency for the 2014–2015 Bárðarbunga
eruption (Gudmundsson et al., 2016; Coppola et al., 2017) and Gíslason
et al. (2015) report a two to three times reduced average eruption rate
(100 m3 s−1) compared to the initial stage of the eruption. The average
eruption rate of 100 m3 s−1 in Gíslason et al. (2015) is in good agree-
ment with the computed average of all eruption rates in this analysis
(109.9 m3 s−1).

According to Lipman and Banks (1987), basaltic eruptions are very
commonly characterised by the reduction of lava effusion over time and
Harris et al. (2000) and Wadge (1981) modelled the temporal devel-
opment of fissure eruptions, e.g., at Krafla volcano, Iceland, using an
exponential function of time Qt=Q0e− t/τ, where τ is a time constant
and Qo is the initial flow rate. The considerations in Harris et al. (2000),
in Lipman and Banks (1987) and in Wadge (1981) most likely explain
the observed trend and were indeed modelled for the 2014–2015
Bárðarbunga eruption in Coppola et al. (2017) and in Gudmundsson
et al. (2016) to confirm the agreement with the measurements of this

analysis. Such modelling is particularly useful in hazard management to
predict the end of volcanic eruptions.

Gíslason et al. (2015) and the Icelandic Meteorological Office
(Icelandic Meteorological Office, 2015) confirm the interpretation of
difference maps in Fig. 9 and similarly report the formation of rapidly
growing lava channels in the northern part of the lava field as well as
the almost complete coverage of the ROI in December/January with an
ongoing thickening of the lava field. Considering the low error bars of
the final bulk lava volume estimate (1.44 ± 0.07 km3), the computa-
tion with masked raster layers delivered a very precise effusion volume
and is similar to the approximated volumes of 1.5 ± 0.2 km3 in
Gudmundsson et al. (2016) and of 1.6 ± 0.3 km3 in Gíslason et al.
(2015). The computation with masked layers was found to be particu-
larly important to improve the quality of the volume estimates and to
eliminate unreliable height information. Comparing volume and un-
certainty estimates with masked layers to computations without mask,
we found that masked volume estimates were insignificantly lower
while the corresponding uncertainty estimates were greatly reduced.
For 06 December 2014, for instance, the bulk lava volume and un-
certainty calculation with binary mask raised a volume change of
1.19 ± 0.06 km3 and the calculation without mask raised a result of
1.23 ± 0.07 km3. For the calculation with mask, the uncertainty and
volume estimates were consequently decreased by approximately 15%
and 3% respectively.

Looking at volume changes during the ongoing volcanic activity, the
Institute of Earth Sciences of the University of Iceland (Institute of Earth
Sciences, 2015) computed a volume of approximately 1.4 km3 and an
eruption rate of 100 m3 s−1 for 21 January 2015, being in good
agreement with the estimated volume (1.41 ± 0.07 km3) and eruption
rate (105.44 m3 s−1) of the 24 January 2015 acquisition in this analysis
(Table 4). With a total area of 84.2 km2, the shape file of the lava field
supports the estimate of 84.1 ± 0.6 km2 in Gíslason et al. (2015), who
used airborne SAR images to distinguish between lava flow area and
outwash plain. The minor subsidence after 26 February 2015, visible in
the volume computation as well as in the mean and maximum height
difference estimates, can most likely be explained in terms of the
cooling thus contraction of erupted lava (Lu et al., 2005; Poland, 2014;
Stevens et al., 2001). Due to the masking of the raster layer, the peak
height of the lava field was possibly higher than the one reported
(42.97 m). However, the Icelandic Meteorological Office (Icelandic
Meteorological Office, 2015) reported a maximum height of approxi-
mately 40 m on 30 December 2015, being in good agreement with the
estimate on 22 December 2014 (42.56 m) (Table 4). The 06 December
2014 difference map in Fig. 9 (a) as well as computations derived from
the 04 February 2015 acquisition deviated from the expected shape and
show undulations in the DEM. As above, such undulations most likely
occur due to ionospheric propagation effects or atmospheric perturba-
tions caused by heat ejection from the lava field (Massonet and Feigl,
1998; Rosen et al., 2000).

4.2.4. Comparison of volume uncertainties
Comparing the estimates over the Bárðarbunga caldera to estimates

over the lava field, the higher error bars for volume computations over
the ROI of the caldera become apparent (Fig. 10 (a–c)). This is the result
of the different surface properties and the reduction of coherence for
acquisitions over snow. Furthermore, the masking of extremely high
height errors for raster layers over the lava field allowed achieving a
more precise uncertainty estimate with the trade-off of a slight but
negligible underestimation of the total volume.

4.3. Relation between caldera subsidence and magma withdrawal

As specified in Section 2.3.1, the volume ratio can be in the order of
5 ± 1 and was calculated to assess the mechanical link between
magma chamber deflation and dyke intrusion. An increased volume
ratio can be explained in terms of magma sources too deep to be
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recorded or more likely by the material of the host rock, the shape of
the magma chamber and the magma compressibility (Rivalta and
Segall, 2008; Johnson et al., 2000). The 2005 Afar dyking episode, for
instance, involved a volume ratio between approximately 2.2 (Grandin
et al., 2009) and 5 (Wright et al., 2006) and the volume ratio of the
1984 Krafla rifting event was estimated between approximately 5 and 6
(Árnadóttir et al., 1998). The volume ratio is equal to 1 only, when the
magma is incompressible or when the bedrock material is compliable
(Rivalta and Segall, 2008). For volcanic events associated with piston-
like caldera collapses, volume ratios close to 1 are equally anticipated
and reflect the mechanical interplay between magma withdrawal and
piston collapse. With more detail, magma exiting the magma reservoir
leads to a pressure drop within the chamber and causes piston failure
and caldera subsidence (Geshi et al., 2002; Gudmundsson et al., 2016;
Staudacher et al., 2009). The collapsing piston in turn increases the
chamber pressure and almost constant pressure conditions are main-
tained within the magma reservoir. Consequently, the density of the
magma remains stable and mass is conserved. At the same time, magma
withdrawal is reinforced until a critical flow rate is reached (Coppola
et al., 2017; Gudmundsson et al., 2016). According to Fig. 10 and
Table 5, the volume ratio of the present study case was calculated at
1.3. With the 2014–2015 Bárðarbunga eruption being driven by piston
collapse, the explained interplay between caldera collapse and magma
drainage most likely explains the observed volume ratio and near-ex-
ponential decrease of caldera subsidence and lava effusion over time
(Coppola et al., 2017; Gudmundsson et al., 2016).

Because of the rare occurrence of caldera collapses, only few events
have been documented historically. The 2007 Piton de la Fournaise
eruption on La Réunion Island, for instance, was associated with the
collapse of the Dolomieu crater and a subsidence volume of approxi-
mately 0.1 km3 (Michon et al., 2007; Staudacher et al., 2009; Urai et al.,
2007). Together with the DRE magma volume (0.15 km3; Di Muro
et al., 2014), the volume ratio is in the order of 1.5 and not significantly
different to the volume ratio of this analysis. Another comparable event
is the 1991 eruption of Mount Pinatubo. With a DRE eruption volume of
3.7–5.3 km3 and a caldera subsidence volume of 2.5 km3, the volume
ratio lies between 1.48 and 2.12 (Scott et al., 1996). The 2000 Miya-
kejima eruption similarly led to summit collapse and the formation of a
caldera (Nishimura et al., 2001). The volume ratio of the Miyakejima
study case equals to 1.95 and was calculated based upon a subsidence
volume of 0.6 km3 and the drainage of 1.17 km3 of magma (Nakada
et al., 2005; Nishimura et al., 2001). Although the calculation of the
volume ratio presents a first approach towards deducing reservoir
pressure conditions from topographical analyses only, it highlights the
potential of DEM investigations for applications besides volumetric
change studies.

5. Conclusion

The use of TanDEM-X elevation data has proven its excellent ap-
plicability in volcanological research. Differential DEM time series were
found particularly useful to map geomorphological changes during the
2014–2015 Bárðarbunga eruption at remarkably high spatial and
temporal resolution. The quantitative calculation of height and volume
changes at both, the Bárðarbunga caldera and the Holuhraun lava field
is in good agreement with the wider literature and confirms the utility
of the applied workflow. The deduction of subsidence and eruption
rates as well as the analysis of lava flow emplacement, morphology and
areal extent highlights the potential of monitoring co- and post-eruptive
surface changes with spaceborne SAR interferometry and is a valuable
input e.g. for lava flow modelling or the further development of a near-
real time monitoring of hazardous volcanic edifices to prevent volca-
nological hazards. Moreover, the high quality of volume estimates at
both study areas allowed the computation of the volume ratio to assess
the mechanical link between magma chamber deflation and dyke in-
trusion. Due to the high temporal resolution of the available dataset,

the findings of this paper are the first of this extent for the 2014–2015
Bárðarbunga eruption.

To reveal potential errors due to the local surface properties, the
imaging geometry and the system parameters, a DEM uncertainty in-
vestigation was provided for completeness. For the area of the
Bárðarbunga caldera, the physical snow properties were identified as
the main error source causing a shift of the scattering phase centre and
introducing an elevation bias in the DEMs (Rossi et al., 2016). Active
lava flows, instead, led to temporal decorrelation effects and increased
height errors at the location of the Holuhraun lava field. These un-
certainty sources have been estimated to be in the order of 0.14 km3 on
average in the glacier area and of 0.06 km3 on average in the lava plain
area, being considerably smaller than the lava volume uncertainty re-
ported in Gíslason et al., 2015 (0.3 km3) and the caldera volume un-
certainty of 0.2 km2 in Gudmundsson et al., 2016. With more detail, the
high accuracy of volume changes estimated within this study reduced
known uncertainties in volume by approximately 30% and 80% for the
area of the Bárðarbunga caldera and the Holuhraun lava field respec-
tively. The significant reduction of volume uncertainties again em-
phasises the value of accurate InSAR DEM time series for large-scale
topographic change studies.
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