Experimental investigation of the reverse water-gas shift reaction at high temperature and elevated pressure

Sandra Adelung, Torsten Ascher, Fabian Klein, Ralph-Uwe Dietrich

Motivation: IATA Technology Roadmap

4. Edition, June 2013

Motivation: IATA Technology Roadmap

4. Edition, June 2013

Main goals:

- 1 Improvement of fuel efficiency about 1.5 % p.a. until 2020
- 2 Carbon-neutral growth from 2020
- 50 % reduction of CO₂ emissions by 2050

Closing the gap: ICAO vision (2017) \rightarrow "Power-to-Liquids: Sustainable alternative fuels produced from renewable electricity"

Power-to-Liquid Process

Power-to-Liquid Process – RWGS operating conditions

Increasing temperature...

Reaction kinetics

Material

Equ

 \rightarrow Tem

- Most investigations at elevated pressure use high temperature steel or stainless steel reactors

Decreasing pressure...

- Equilibrium composition
 - Less coke, CH₁
 - More CO

- Higher work-input for compression of recycle stream
- → Pressure range: 1-25 bar (FTS at 25 bar)

RWGS in Inconel 600 reactor

• Bustamente et al. (2004) found high CO₂ conversion in an Inconel reactor

Figure 16. Reverse WGS reaction in an Inconel 600 reactor. 1173 K, 0.101 MPa, $[H_2]_0 = [CO_2]_0$.

Equilibrium conversion at these conditions is 55%.

 Conversion was found to be 2 orders of magnitude higher than in quartz glass reactor

 Inconel 600: approx. 72 % Nicontent, Nickel catalyzes reaction

RWGS in stainless steel reactor

Stainless steel (1.4571) with 10.5-13.5 % Nickel content

- $H_2/CO_2 = 1.7$
- Residence time τ ≈ 5 s
- Pressure p = 1.5 bar

- Equilibrium composition (Gibbs in Aspen Plus with CO, CH₄ and C as possible products) reached for T > 600 °C
- To investigate performance of catalyst: High temperature zones must be inert (e.g. by using quartz glass)

- High temperature zone: inert
- Thermal expansion (Glass vs. Metal)
- High stress for reactor wall due to high temperature and elevated pressure

- High temperature zone: inert
- Thermal expansion (Glass vs. Metal)
- High stress for reactor wall due to high temperature and elevated pressure

- High temperature zone: inert
- Thermal expansion (Glass vs. Metal)
- High stress for reactor wall due to high temperature and elevated pressure

- High temperature zone: inert
- Thermal expansion (Glass vs. Metal)
- High stress for reactor wall due to high temperature and elevated pressure

- High temperature zone: inert
- Thermal expansion (Glass vs. Metal)
- High stress for reactor wall due to high temperature and elevated pressure

Reactor setup

Experimental results in new reactor

- Before: equilibrium composition reached above 600 °C
- With new setup:

- $H_2/CO_2 = 2$
- Residence time τ ≈ 2 s
- Pressure p = 25 bar

- CO₂ conversion in empty tube can be decreased significantly (below 2 %)
- Catalyst's performance can be investigated with new reactor

First results with noble catalyst (0.1 g catalyst)

Feed	p	V _{tot}	H ₂	CO ₂
	bar	L _N /min	L _N /min	L _N /min
2	25	10	2	1

CO₂ conversion reaches 50-60 % of equilibrium conversion

Concentration doubled: slight increase in CO₂ conversion

Residence time halved: significant decrease in CO₂ conversion

■ Feed 2 — Equil 2

Summary and Outlook

Summary

- Investigation of RWGS at elevated pressure relevant in PTL concept
- RWGS significantly catalyzed by stainless steel
- New reactor concept allows investigation of catalyst's performance at up to 900 °C and up to 25 bar

Outlook

- Kinetic performance of monolithic catalysts?
- Coke formation?

Thank you for your attention

Sandra Adelung
Institute of Engineering Thermodynamics
German Aerospace Center

