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Abstract

In automobile insurance, it is useful to achieve a priori ratemaking by resorting to gene-

ralized linear models, and here the Poisson regression model constitutes the most widely

accepted basis. However, insurance companies distinguish between claims with or without

bodily injuries, or claims with full or partial liability of the insured driver. This paper exa-

mines an a priori ratemaking procedure when including two different types of claim. When

assuming independence between claim types, the premium can be obtained by summing the

premiums for each type of guarantee and is dependent on the rating factors chosen. If the

independence assumption is relaxed, then it is unclear as to how the tariff system might

be affected. In order to answer this question, bivariate Poisson regression models, suitable

for paired count data exhibiting correlation, are introduced. It is shown that the usual

independence assumption is unrealistic here. These models are applied to an automobile

insurance claims database containing 80,994 contracts belonging to a Spanish insurance

company. Finally, the consequences for pure and loaded premiums when the independence

assumption is relaxed by using a bivariate Poisson regression model are analysed.
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1 Introduction

Designing a tariff structure for insurance is one of the main tasks for actuaries. Such pricing

is particularly complex in the branch of automobile insurance because of highly heterogeneous

portfolios. A thorough review of ratemaking systems for automobile insurance, including the

most recent developments, can be found in Denuit et al. (2007).

One way to handle this problem of heterogeneity in a portfolio -referred to as tariff segmenta-

tion or a priori ratemaking- involves segmenting the portfolio in homogenous classes so that all

insured parties belonging to a particular class pay the same premium. This procedure ensures

that the exact weight of each risk is fairly distributed within the portfolio. In the case of auto-

mobile insurance, in order to group the policies in homogenous classes, a series of classification

variables are used (i.e., age, sex and place of residence of driver or horsepower, class and use of

the vehicle). These variables are called a priori ratemaking variables, since their values can be

determined before the insured party begins to drive.

If all the factors influencing a risk could be identified, measured and introduced in the tariff

system, then the classes defined would be homogenous. However, this is not that case as there

are important risk factors that are not considered in the a priori tariff. Some examples are

especially difficult to quantify, such as a driver’s reflexes, his or her aggressiveness, or knowledge

of the Highway Code, among others. As a result, tariff classes can be quite heterogeneous.

Hence, the idea has arisen of considering individual differences in policies within the same class

by using an a posteriori mechanism, i.e., fitting an individual premium based on the experience

of claims for each insured party. This concept has received the name of a posteriori tariff,

experience rating or the bonus-malus system.

Here, only the first step in pricing is studied, the a priori ratemaking. In short, the classi-

fication or segmentation of risks involves establishing different classes of risk according to their

nature and probability of occurrence. For this purpose, factors are determined in order to classify

each risk, and it is statistically tested that the probability of a claim depends on these factors,

and hence, their influence can be measured. A priori classification based on generalized linear

models is the most widely accepted method; see e.g. Dionne and Vanasse (1989), Haberman
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and Renshaw (1996), Pinquet (1999), Bermúdez et al. (2001) and Boucher and Denuit (2006)

for applications in the actuarial sciences, and Mc Cullagh and Nelder (1989) or Dobson (1990)

for a general overview of the statistical theory.

The most commonly used generalized linear model for this tariff system is the Poisson re-

gression model and its generalizations (Denuit et al., 2007). Introduced by Dionne and Vanasse

(1989), the model can be applied if the number of claims for each individual policy observation

is known. Although it is possible to use the total number of claims as the response variable,

the nature of automobile insurance policies (covering different risks) is such that the response

variable is the number of claims for each type of guarantee. Therefore, a premium is obtained for

each class of guarantee as a function of different factors. Then, assuming independence between

types of claim, the total premium is obtained from the sum of the expected number of claims

of each guarantee.

Here, two different types of guarantee are assumed: third-party liability automobile insurance

and the rest of guarantees. Following the usual methodology, assuming independence between

types, the premium paid by the policyholder is obtained by summing the premiums for each

type of guarantee and this depends on the rating factors. However, the question remains as

to whether the independence assumption is realistic? When this assumption is relaxed, it is

interesting to see how the tariff system might be affected.

In this study, a bivariate Poisson regression model is introduced. Holgate (1964) provided a

practical basis for the bivariate Poisson distribution but its use has been largely ignored, mainly

because of computational difficulties. Therefore, only a few applications can be found, for

example, Jung and Winkelmann (1993) used a bivariate Poisson regression in a labour mobility

study and Karlis and Ntzoufras (2003) modelled sports data. For a comprehensive review of the

bivariate Poisson distribution and its applications (especially multivariate regression), the reader

should see Kocherlakota and Kocherlakota (1992, 2001) and Johnson, Kotz and Balakrishnan

(1997).

One early application of the bivariate Poisson distribution in the actuarial literature is des-

cribed in Cummins and Wiltbank (1983). In ruin theory, some applications of this distribution

are also to be found, for example Partrat (1994), Ambagaspitiya (1999), Walhin and Paris

(2000) and Centeno (2005). In microeconomic insurance, Cameron and Trivedi (1998) studied

the relationship between type of health insurance and various responses that measure the demand
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for health care by using a bivariate Poisson regression. In addition, two studies related to fitting

purposes should also be quoted, albeit that no factors are considered. First, Vernic (1997)

carried out a comparative study with the bivariate Poisson distribution based on data related

to natural events insurance and third-party liability automobile insurance. Second, Walhin

(2003) compared bivariate Hoffmann and bivariate Poisson distributions by fitting a data set for

accidents sustained by members of a sample of 122 shunters in two consecutive 2-year periods.

However, in a ratemaking context, bivariate Poisson regression models have not been used to

model claim counts that depend on the usual rating factors.

In the next section, the model used here is defined. This model is based on the bivariate

Poisson regression model, which is appropriate for modelling paired count data that exhibit

correlation. In Section 3 the database obtained from a Spanish insurance company is described.

In Section 4 the results are summarised. Finally, some concluding remarks are given in Section

5.

2 Bivariate Poisson regression models

Let N1 and N2 be the number of claims for third-party liability and for the rest of guarantees

respectively and N = N1+N2 . The usual methodology to obtain the a priori premium under the

assumption of independence between types of claims can be described as follows. First, the model

assumed is N1 ∼ Poisson(λ1) and N2 ∼ Poisson(λ2) independently, and λ1 and λ2 depend on

a number of rating factors associated with the characteristics of the car, the driver and the use of

the car. Second, with λ1 and λ2 estimated for each policyholder and following the net premium

principle, the total net premium1 ( π ) is obtained as π = E[N ] = E[N1] + E[N2] = λ1 + λ2 .

However, an amount inflates the net premium to ensure that the insurer will not, on average,

lose money. Many well-known premium principles can be applied for this purpose. Here the

variance premium principle is used. This principle builds on the net premium by including a

risk loading that is proportional to the variance of the risk. Under the above assumptions,

the variance is equal to the expected value, and the total loaded premium (π∗ ) is equal to

π∗ = E[N ] + αV [N ] = (1 + α)(E[N1] + E[N2]) .

In bivariate Poisson regression models, the independence assumption is relaxed. The model
1Assuming the amount of the expected claim equals one monetary unit.
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can be defined as follows. Let us consider independent random variables Xi (i = 1, 2, 3) to

be distributed as Poisson with parameters λi respectively. Then the random variables N1 =

X1 + X3 and N2 = X2 + X3 follow jointly a bivariate Poisson distribution:

(N1, N2) ∼ BP (λ1, λ2, λ3).

This is the so-called trivariate reduction method that leads to the bivariate Poisson distribution.

Its joint probability function is given by:

P (N1 = n1, N2 = n2) = e−(λ1+λ2+λ3) λn1
1

n1!
λn2

2

n2!

min(n1,n2)∑

i=0

(
n1

i

)(
n2

i

)
i!

(
λ3

λ1λ2

)i

. (1)

The bivariate Poisson distribution defined above presents several interesting and useful pro-

perties. First, it allows for positive dependence between the random variables N1 and N2 ,

moreover Cov(N1, N2) = λ3 and therefore λ3 is a measure of this dependence. Obviously,

if λ3 = 0 the two random variables are independent and the bivariate Poisson distribution

reduces to the product of two independent Poisson distributions, referred to as a double Poisson

distribution (Kocherlakota and Kocherlakota, 1992). Second, the marginal distributions for N1

and N2 are Poisson with E[N1] = λ1 + λ3 and E[N2] = λ2 + λ3 .

Hence, the total net premium can be obtained with π = E[N ] = E[N1] +E[N2] = λ1 +λ2 +

2λ3 . The variance necessary to obtain the loaded premium is now V [N ] = λ1 +λ2 +4λ3 . Since

λ3 is expected to be positive, the relaxation of the independence assumption leads to a variance

greater than the expected value. Overdispersion has often been observed when modelling claim

counts in automobile insurance data (Denuit et al., 2007).

Let us assume that N1j and N2j denote the random variables indicating the number of

claims of each type of guarantee for the jth policyholder. If covariates are introduced to model

λ1 , λ2 and λ3 , a bivariate Poisson regression model can be defined with the following scheme:

(N1j , N2j) ∼ BP (λ1j , λ2j , λ3j),

log(λ1j) = x′
1j β1,

log(λ2j) = x′
2j β2,

log(λ3j) = x′
3j β3, (2)

where j = 1, . . . , n denotes the observed policies with sample size n , xij denotes a vector of
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explanatory variables and βi denotes the corresponding vector of regression coefficients (i =

1, 2, 3).

In the case of the explanatory variables, two aspects should be stressed. First, different

covariates can be used to model each parameter λij . Second, to facilitate the interpretation, no

covariates are used to model λ3 . However, they can be included so as to know more about the

influence of the covariates on each pair of variables.

A problem arises when examining the joint probability function given in (1), particularly in

min(n1, n2) . In the database, looking at the entries in Table 2, it can be clearly seen that the

proportion of (0, 0) is larger than that of other frequencies. Moreover, most of policies have no

claims. Therefore, it seems reasonable to fit a zero-inflated model.

Few studies to date have discussed zero-inflated models in bivariate discrete distributions.

Such models have been proposed by Li et al. (1999) and Wang et al. (2003) who considered

inflation only for the (0, 0) cell, or Walhin (2001) who discussed zero-inflated bivariate Poisson

models. However, here we follow the zero-inflated bivariate Poisson model proposed by Karlis

and Ntzoufras (2005). In fact, they propose an extension of the simple zero-inflated model which

inflates the probabilities in the diagonal of the probability table. It seems reasonable to believe,

for instance, that there also exists a higher proportion of (1, 1) because the same accident can

lead to one claim of each type being made.

Taking the bivariate Poisson model (BP) defined above as the starting point, the diagonal

inflated bivariate Poisson model (DIBP) is specified by the probability function:

fDIBP (N1, N2) =





(1− p) fBP (N1, N2 |λ1, λ2, λ3) N1 6= N2

(1− p) fBP (N1, N2 |λ1, λ2, λ3) + p fD(N1 |θ) N1 = N2,
(3)

where fD(N1 |θ) is a probability function for a discrete distribution D(N1 |θ) defined on

{0, 1, 2, . . .} with parameter vector θ . Note that two special cases can be obtained from this

more general case. First, the bivariate Poisson model, taking p = 0 , and second, the zero-

inflated bivariate Poisson (ZIBP), taking D(N1 |θ) as a degenerate function at zero.

In contrast to the bivariate Poisson model, the marginal distributions of N1 and N2 of a

diagonal inflated model are not Poisson distributed and, as such, they can present underdisper-

sion or overdispersion. Let ED[N1] and ED[N2
1 ] be the first two moments of D(N1 |θ) , the
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marginal mean and variance for N1 are:

EDIBP [N1] = (1− p) (λ1 + λ3) + pED[N1]

VDIBP [N1] = (1− p)
{
(λ1 + λ3)2 + (λ1 + λ3)

}
+ pED[N2

1 ]

− {(1− p) (λ1 + λ3) + pED[N1])}2 .

(4)

Since ED[N1] = ED[N2
1 ] = 0 when only cell (0, 0) is inflated, the marginal distributions in

the zero-inflated model are overdispersed and the marginal mean and variance for N1 are:

EZIBP [N1] = (1− p) (λ1 + λ3)

VZIBP [N1] = (1− p)
{
(λ1 + λ3) + p (λ1 + λ3)2

}
.

(5)

For the analysis presented in the following sections, the covariance between N1 and N2 for

a zero-inflated model CovZIBP [N1, N2] needs to be calculated. From (3), it follows that:

EDIBP [N1 N2] = (1 − p) EBP [N1 N2] + pED[N2
1 ],

which for the zero-inflated model is:

EZIBP [N1 N2] = (1 − p) {λ3 + (λ1 + λ3) (λ2 + λ3)} .

Thus, the covariance for a zero-inflated model is given by:

CovZIBP [N1, N2] = (1 − p) {λ3 + (λ1 + λ3) (λ2 + λ3)}
− {

(1− p)2 (λ1 + λ3) (λ2 + λ3)
}

.
(6)

Different algorithms have been provided to implement bivariate Poisson regression models

(Ho and Singer, 2001; Kocherlakota and Kocherlakota, 2001; or adopting a Bayesian point of

view, Tsionas, 2001; Karlis and Meligkotsidou, 2005). Here an EM algorithm provided by Karlis

and Ntzoufras (2005) and its implementation using R (bivpois package) is used. Standard errors

for the parameters are calculated using standard bootstrap methods (boot package in R).

3 The database

The original sample comprised a ten percent sample of the automobile portfolio of a major

insurance company operating in Spain in 1995. Only cars categorised as being for private use

were considered. The data contains information from 80,994 policy holders. The sample is not
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representative of the actual portfolio as it was drawn from a larger panel of policyholders who

had been customers of the company for at least seven years; however, it will be helpful for

illustrative purposes.

Twelve exogenous variables were considered plus the yearly number of accidents recorded for

both types of claim. For each policy, the initial information at the beginning of the period and

the total number of claims from policyholders at fault were reported within this yearly period.

The exogenous variables, described in Table 1, were previously used in Pinquet et al. (2001),

Bolancé et al. (2003) and in Boucher et al. (2007). Moreover, in Table 2, the cross-tabulation

for the number of claims for third-party liability (N1 ) and number of claims for the rest of

guarantees (N2 ) are shown.

For this study, all customers had had a policy with the company for at least three years.

Therefore, variable v7 was rejected and variable v8 retained its definition and its baseline was

now established as a customer who had been with the company for fewer than five years.

The meaning of those variables referring to the policyholders’ coverage should also be clari-

fied. The classification here responds to the most common types of automobile insurance policies

available on the Spanish market. The simplest policy only includes third-party liability and a set

of basic guarantees such as emergency roadside assistance, legal assistance or insurance covering

medical costs. It does not include comprehensive coverage (damage to one’s vehicle caused by

any unknown party, for example, damage resulting from theft, flood or fire) nor collision cove-

rage (damage resulting from a collision with another vehicle or object when the policyholder is

at fault). This simplest type of policies conforms the baseline group, while variable v10 denotes

policies which apart from the guarantees contained in the simplest policies also include com-

prehensive coverage (except fire) and variable v11 denotes policies which also include fire and

collision coverage.

4 Results

4.1 Fitting bivariate Poisson models

First, in order to show the convenience of using the bivariate Poisson model, a simple bivariate

Poisson model (with constant λ1 , λ2 and λ3 ) was fitted. The estimated values for these

parameters were 0.067, 0.088 and 0.014, respectively. An AIC equals to 104,573.9 for the
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bivariate Poisson model was obtained, which was better than the values obtained for the double

Poisson model (106,546.1) and the saturated model (348,360.3). Even with a small correlation

between N1 and N2 , including λ3 in the model produced a better fit for the data used.

Once the effectiveness of the bivariate model had been assessed, covariates to model λ1 ,

λ2 and λ3 were included. In fact, first the same variables for λ1 , and λ2 were included,

maintaining λ3 constant. In Table 3 the results of fitting the bivariate Poisson regression model

(with constant λ3 ) and the results for the double Poisson regression model (without λ3 term)

are shown.

It can be seen that the intercept for λ3 was significant (at the 5% level) indicating that

the bivariate Poisson model is more appropriate for this data than is the model that assumes

independence between N1 and N2 (double Poisson). As regards the fit, the AIC values for

these models also indicate the improvement achieved with the bivariate model.

Focusing on λ1 (claims for third-party liability), for the bivariate Poisson model the pa-

rameters from v4 to v8 and v10 were significant. For the double Poisson model no important

differences were found except for the parameter v10 which was not significant. This difference

may indicate the convenience of including this covariate to model the covariance term λ3 (see

Table 4).

Following the discussion above concerning claims for third-party liability, driving experience

(v5 and v6 ) reduced the expected number of claims, while driving in northern Spain (v4 ) and

drivers with fewer than 5 years in the company (v8 ) caused the expected number of claims to

increase for this type of claim. As regards the type of coverage, only in the case of the bivariate

model, when including comprehensive coverage except fire (v10 ) was the expected number of

claims lowered.

Concentrating on λ2 (the rest of claims, except third-party liability), most of the para-

meters were significant and no noticeable differences were found between bivariate and double

Poisson models. In particular, the parameters for v2 to v5, v8 and v10 to v12 were statistically

significant.

Here, some differences with the third-party liability claims were found. First, parameters

related to the type of coverage (v10 and v11 ) were always significant and their presence increased

the expected number o claims markedly. Second, the car’s horsepower was also significant here.

When if was greater than or equal to 5500cc (v12 ), the probability of having a claim increased.
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Finally, driving in an urban area (v2 ) became significant and increased the expected number of

claims. As regards the driving zone and driving experience, the sign of the coefficient changed

for v4 and v5 variables with respect to third-party liability claims.

In order to model the covariance term (λ3 ), the covariates were introduced in the bivariate

Poisson model with the result that only the parameter for v10 was significant. In Table 4 the

results for this bivariate model with covariate on λ3 are shown. The improvement in AIC

with respect to the bivariate model with constant λ3 can be observed. However, no substantial

differences regarding the coefficients were found with the previous bivariate Poisson models from

Table 3. When the policy included comprehensive coverage(v10 ), the correlation between N1

and N2 was not as strong. Note that the guarantees covered by comprehensive coverage were

not caused by an accident and so no liability claims could be reported.

Finally, as it was mentioned in Section 2, looking at the entries of Table 2, it is clear that the

proportion of (0, 0) is larger than that of other frequencies. Therefore, two additional models

were fitted using zero-inflated bivariate Poisson models. In Table 5 the results for these models

are shown, the model with constant λ3 on the left-hand side and the model with regressor (v10 )

on λ3 on the right-hand side.

The parameter p referring to this zero-inflated model was significant and relatively large.

Moreover, the AIC values improved substantially with respect to those of the non zero-inflated

models. This suggests that the use of a zero-inflated model is a good choice for fitting this

database (Boucher and Denuit, 2008). Other models with inflation in diagonal were fitted, but

they were rejected because of the non significance of the respective elements of parameter vector

θ . Thus, the existence of a higher proportion of (1, 1) or (2, 2) cannot be considered for this

database.

4.2 Comparing a priori ratemaking when introducing dependence

An analysis of the impact of using these models in a priori ratemaking was conducted at the

same time as the differences between the models proposed in Section 3 were analysed through

the mean (a priori pure premium) and the variance (necessary for a priori loaded premium) of

the number of claims per year for some profiles of the insured parties.

Five different, yet representative, profiles were selected from the portfolio (Table 6). The

first can be classified as the best profile since it presents the lowest mean score. The second was
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chosen from among the profiles considered as good drivers, with a lower mean value than that

of the average for the portfolio (0.1833). A profile with a mean lying very close to this average

was chosen for the third profile. Finally, a profile considered as being a bad driver (with a mean

above the average) and the worst driver profile were selected.

Table 7 shows the results for the five profiles and the five models considered. From these

results, the differences in ratemaking when using a bivariate Poisson model as opposed to two

independent Poisson models can be observed. In general, without distinguishing between bi-

variate models, such models produce higher means for good risks and lower means for bad risks

while maintaining almost equal the average risks. As regards variances, the bivariate models

increased them in most cases. A further difference that should be emphasized with the double

Poisson model is the overdispersion detected in the bivariate models.

In Table 7, it can be observed that the zero-inflated bivariate models did not present any

noticeable differences with the non zero-inflated models in terms of the mean scores, but they

were present in the case of the variance. The bivariate Poisson models (BP1 and BP2) increased

the variances for the good risks more than they did for the bad ones, while the zero-inflated

bivariate models (ZIBP1 and ZIBP2) increased the variances much more for the bad risks.

Finally, the differences between the bivariate models with constant λ3 (BP1 and ZIBP1)

and those that included a covariate on λ3 (BP2 and ZIBP2) were examined. A comparison

of non zero-inflated models showed that the model including covariate (BP2) presented a mean

and variance lower than those presented by the BP1 model for good risks, yet higher than

those presented by the BP1 model for bad risks. However, no differences were detected between

zero-inflated models.

5 Conclusions

This paper has tested the independence assumption between claim types given a set of known

risk factors and it has shown that independence should be rejected. The bivariate Poisson model

is presented as an instrument that can account for the underlying connection between two types

of claims arising from the same policy2. The interpretation of a number of bivariate Poisson
2In Frees and Valdez (2008) a hierarchical model allows to capture possible dependencies of claims among the

various types through a t-copula specification.
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models has been illustrated in the context of automobile insurance claims and the conclusion

is that using a bivariate Poisson model leads to an a priori ratemaking that presents larger

variances and, hence, larger loadings than those obtained under the independence assumption.

For the five models analysed here there seems to be a relationship between the goodness

of fit and the level of overdispersion considered in each model. For the double Poisson model,

where the expected value and the variance (conditional on the risk factors) are equal for both

the marginal (N1 and N2 ) and the joint (N ) distributions, the lowest goodness of fit was

obtained according to the AIC criterion. An improvement in the fit was achieved by using the

bivariate Poisson model, which considers overdispersion only for the joint distribution since the

marginal distributions are Poisson distributed. Finally, the highest goodness of fit is observed

for the zero-inflated models where overdispersion is allowed both in the marginal and in the

joint distributions.

In short, the main finding is that the independence assumption that is implicitely used

when pricing automobile insurance by adding the pure premium for each guarantee (which are

obtained using count data regression models) is insufficient because correlations (conditional

on the covariates) are ignored. A natural extension for this paper would be to identify other

multivariate count data models that might consider correlations in pricing several guarantees

simultaneously in automobile insurance.
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Bolancé, C., Guillén, M., Pinquet, J., 2003. Time-varying credibility for frequency risk models:

Estimation and tests for autoregressive specification on the random effect. Insurance:

Mathematics & Economics 33 (2), 273–282.

Boucher, J.-Ph., Denuit, M., 2006. Fixed versus random effects in Poisson regression models

for claim counts: a case study with motor insurance. ASTIN Bulletin 36 (1), 285–301.

12



Boucher, J.-Ph., Denuit, M., Guillén, M., 2007. Risk classification for claims counts: a compar-

ative analysis of various zero-inflated mixed Poisson and Hurdle models. North American

Actuarial Journal 11 (4), 110–131.

Boucher, J.-Ph., Denuit, M., 2008. Credibility premiums for the zero-inflated Poisson model

and new hunger for bonus interpretation. Insurance: Mathematics & Economics 42 (2),

727–735.

Cameron, A.C., Trivedi, P.K., 1998. Regression analysis of count data. Econometric Society

Monograph No.30, Cambridge University Press.

Centeno, M.L., 2005. Dependent risks and excess of loss reinsurance. Insurance: Mathematics

& Economics 37 (2), 229–238.

Cummins, D.J., Wiltbank, L.J., 1983. Estimating the total claims distribution using multi-

variate frequency and severity distributions. Journal of Risk and Insurance 50, 377–403.
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Table 1: Explanatory variables used in the model

Variable Definition

v1 equals 1 for women and 0 for men

v2 equals 1 when driving in urban area, 0 otherwise

v3 equals 1 when zone is medium risk (Madrid and Catalonia)

v4 equals 1 when zone is high risk (Northern Spain)

v5 equals 1 if the driving license is between 4 and 14 years old

v6 equals 1 if the driving license is 15 or more years old

v7 equals 1 if the client is in the company between 3 and 5 years

v8 equals 1 if the client is in the company for more than 5 years

v9 equals 1 of the insured is 30 years old or younger

v10 equals 1 if includes comprehensive coverage (except fire)

v11 equals 1 if includes comprehensive and collision coverages

v12 equals 1 if horsepower is greater than or equal to 5500cc

Table 2: Cross-tabulation of data

N2

N1 0 1 2 3 4 5 6 7

0 71087 3722 807 219 51 14 4 0

1 3022 686 184 71 26 10 3 1

2 574 138 55 15 8 4 1 1

3 149 42 21 6 6 1 0 1

4 29 15 3 2 1 1 0 0

5 4 1 0 0 0 0 2 0

6 2 1 0 1 0 0 0 0

7 1 0 0 1 0 0 0 0

8 0 0 1 0 0 0 0 0
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Table 3: Results for bivariate Poisson and double Poisson models

Bivariate Poisson (BP1) Double Poisson (DP)

Variables Coeff. St. Err. P-value Coeff. St. Err. P-value

λ1 Intercept -2.380 0.126 < 0.01 -2.329 0.103 < 0.01

v1 0.011 0.051 0.822 -0.003 0.042 0.935

v2 -0.049 0.036 0.179 -0.050 0.035 0.145

v3 0.016 0.041 0.695 0.002 0.038 0.958

v4 0.157 0.040 < 0.01 0.180 0.037 < 0.01

v5 -0.228 0.100 0.022 -0.217 0.092 0.018

v6 -0.352 0.110 < 0.01 -0.345 0.104 < 0.01

v8 0.154 0.043 < 0.01 0.151 0.042 < 0.01

v9 0.139 0.064 0.031 0.115 0.063 0.068

v10 -0.302 0.054 < 0.01 0.061 0.053 0.252

v11 -0.061 0.039 0.120 0.062 0.033 0.062

v12 0.045 0.045 0.323 0.053 0.038 0.157

λ2 Intercept -4.822 0.146 < 0.01 -4.436 0.116 < 0.01

v1 0.060 0.037 0.107 0.044 0.039 0.264

v2 0.081 0.032 0.010 0.066 0.032 0.040

v3 0.172 0.034 < 0.01 0.151 0.033 < 0.01

v4 -0.220 0.042 < 0.01 -0.146 0.038 < 0.01

v5 0.324 0.127 0.010 0.273 0.097 < 0.01

v6 0.121 0.131 0.355 0.077 0.104 0.458

v8 0.248 0.042 < 0.01 0.235 0.038 < 0.01

v9 0.098 0.052 0.060 0.085 0.051 0.096

v10 3.114 0.055 < 0.01 2.887 0.055 < 0.01

v11 2.150 0.054 < 0.01 1.948 0.053 < 0.01

v12 0.170 0.053 < 0.01 0.165 0.045 < 0.01

λ3 Intercept -4.437 0.035 < 0.01

Log-likelihood -48135.98 -48882.95

AIC 96321.96 97813.9
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Table 4: Results for bivariate Poisson model with regressor on λ3

Bivariate Poisson (BP2)

Variables Coeff. St. Err. P-value

λ1 Intercept -2.383 0.129 < 0.01

v1 0.012 0.052 0.811

v2 -0.050 0.035 0.154

v3 0.020 0.042 0.640

v4 0.157 0.045 < 0.01

v5 -0.226 0.101 0.025

v6 -0.348 0.114 < 0.01

v8 0.154 0.049 < 0.01

v9 0.146 0.070 0.037

v10 -0.658 0.067 < 0.01

v11 -0.032 0.038 0.400

v12 0.045 0.043 0.293

λ2 Intercept -4.823 0.137 < 0.01

v1 0.062 0.040 0.123

v2 0.084 0.031 < 0.01

v3 0.179 0.030 < 0.01

v4 -0.228 0.041 < 0.01

v5 0.332 0.114 < 0.01

v6 0.129 0.120 0.280

v8 0.249 0.038 < 0.01

v9 0.102 0.047 0.029

v10 3.043 0.061 < 0.01

v11 2.158 0.060 < 0.01

v12 0.172 0.049 < 0.01

λ3 Intercept -4.867 0.051 < 0.01

v10 1.767 0.075 < 0.01

Log-likelihood -47873.37

AIC 95798.74
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Table 5: Results for zero-inflated bivariate Poisson models

Z-I Bivariate Poisson Z-I Bivariate Poisson

constant λ3 (ZIBP1) covariate on λ3 (ZIBP2)

Variables Coeff. St. Err. P-value Coeff. St. Err. P-value

λ1 Intercept -1.041 0.111 < 0.01 -1.055 0.130 < 0.01

v1 -0.008 0.047 0.874 0.001 0.047 0.981

v2 -0.064 0.035 0.065 -0.063 0.037 0.088

v3 -0.033 0.035 0.345 -0.024 0.044 0.582

v4 0.211 0.046 < 0.01 0.203 0.041 < 0.01

v5 -0.254 0.091 < 0.01 -0.249 0.114 0.029

v6 -0.357 0.102 < 0.01 -0.362 0.126 < 0.01

v8 0.127 0.047 < 0.01 0.135 0.045 < 0.01

v9 0.099 0.072 0.170 0.105 0.075 0.162

v10 -0.054 0.055 0.323 -0.255 0.068 < 0.01

v10 0.044 0.037 0.227 0.046 0.036 0.205

v12 0.044 0.041 0.284 0.045 0.041 0.275

λ2 Intercept -3.253 0.120 < 0.01 -3.269 0.125 < 0.01

v1 0.023 0.030 0.446 0.031 0.035 0.367

v2 0.048 0.024 0.047 0.052 0.025 0.037

v3 0.108 0.024 < 0.01 0.118 0.031 < 0.01

v4 -0.095 0.037 0.010 -0.114 0.037 < 0.01

v5 0.216 0.099 0.030 0.227 0.091 0.012

v6 0.043 0.102 0.676 0.044 0.092 0.630

v8 0.184 0.032 < 0.01 0.191 0.034 < 0.01

v9 0.049 0.047 0.302 0.053 0.045 0.239

v10 2.917 0.059 < 0.01 2.855 0.061 < 0.01

v11 2.057 0.059 < 0.01 2.050 0.062 < 0.01

v12 0.178 0.052 < 0.01 0.180 0.043 < 0.01

λ3 Intercept -4.741 0.152 < 0.01 -4.879 0.140 < 0.01

v10 1.962 0.191 < 0.01

p 0.714 0.005 < 0.01 0.710 0.006 < 0.01

Log-likelihood -45435.06 -45414.80

AIC 90922.11 90883.6
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Table 6: Five different policyholders to be compared

Profile Kind of Profile v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

1 Best 0 1 0 0 0 1 0 1 0 0 0 0

2 Good 0 0 1 0 0 1 1 0 0 0 0 1

3 Average 0 1 0 0 0 1 0 1 0 0 1 1

4 Bad 0 0 0 1 0 1 0 1 0 1 0 0

5 Worst 1 1 1 0 1 0 1 0 1 1 0 1

Table 7: Comparision of a priori ratemaking

1st Profile 2nd Profile 3rd Profile 4th Profile 5th Profile

Model Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

BP1 0.0955 0.1191 0.1207 0.1444 0.1849 0.2086 0.2440 0.2677 0.6725 0.6962

BP2 0.0873 0.1027 0.1131 0.1285 0.1804 0.1958 0.2824 0.3726 0.6920 0.7821

DP 0.0793 0.0793 0.1070 0.1070 0.1866 0.1866 0.2860 0.2860 0.6969 0.6969

ZIBP1 0.0834 0.1057 0.1046 0.1369 0.1905 0.2861 0.2816 0.4845 0.5500 1.3103

ZIBP2 0.0826 0.1037 0.1055 0.1371 0.1898 0.2822 0.2771 0.4963 0.5562 1.3440
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