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Abstract

In the literature on risk, one generally assume that uncertainty is uniformly distributed over
the entire working horizon, when the absolute risk-aversion index is negative and
constant. From this perspective, the risk is totally exogenous, and thus independent of
endogenous risks. The classic procedure is “myopic” with regard to potential changes in the
future behavior of the agent due to inherent random fluctuations of the system. The agent’s
attitude to risk is rigid. Although often criticized, the most widely used hypothesis for the
analysis of economic behavior is risk-neutrality. This borderline case must be envisaged with
prudence in a dynamic stochastic context. The traditional measures of risk-aversion are
generally too weak for making comparisons between risky situations, given the dynamic
complexity of the environment. This can be highlighted in concrete problems in finance
and insurance, context for which the Arrow-Pratt measures (in the small) give ambiguous
results (see, Ross, 1981). We improve the Arrow-Pratt approach (1964, 1971a, 1971b),
which takes into account only attitudes towards small exogenous risks, by integrating in the
analysis potentially high endogenous risks which are under the control of the agent. This
point of view has strong implications on the agent’s adaptive behavior towards risk in a
changing environment. It can be seen as a step further in the refinement of the risk-aversion
concept. It is necessary to have a very good understanding of the way the evolution of the
environment affects the risk perception of rational decision-makers. Based on multiple
theoretical and empirical arguments, this new approach offers an elegant study of the close
relationship between behavior, attitude and perceived risk.
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1. Introduction

The most common attitude of economic agents in decision-making problems is one
generated by risk-aversion. Such a behavior is characteristic for large gains as well as large losses.
Risk-aversion and rationality are generally considered together. Rational agents are goal
oriented, they are values and reference points and base their decisions on uncertain future.
They are confronted with multiple risks, which are generally different in different contexts.
The decision adopted is not made independently but jointly with other decisions, which places
the agents in risky situations. Decisions taken to avoid, even partially, a source of risk can be
affected by the presence of others.
It must distinguish between quantifiable risks (when the objective probabilities are supposed

to be known) and inherently unmeasurable uncertainties (when the objective probabilities are
not given in advance). In other words, it must distinguish between decisions under risk and
decisions under uncertainty.
Traditionally, risk-aversion is equivalent to the concavity of the utility function (viewed as

the measure upon which the agent bases his decisions). Formally speaking, that means that
for any arbitrary risk, the agent will prefer the sure amount equal to the expected value of the
risk rather than the risk itself. However, the condition of concavity is just a way of expressing
risk-averse preferences.
In the literature on risk, two polar cases can be distinguished according to the degree of

risk-aversion exhibited by the economic agent, namely, the risk-neutral case and respective the
infinitely risk-averse case. Both cases are based on strong and non-realistic assumptions.
The objective of this paper is to analyze how the traditional results are modified when

the risk attitude of economic agents depends on the system evolution. It offers an elegant so-
lution to the inconvenients that arise when modelling the behavior to risk as in Arrow-Pratt
traditional approach. Several realistic scenarios are analyzed in the context of a finite
discrete-time dynamic environment.
The proposed analysis investigates on the decision-makers’ psychology to risk, providing

new perspectives of research for theorists and empirical analysts.

2. Problem Statement

Consider a rational decision-maker characterized by a consistent and efficient outcome
oriented behavior (see, Dreze, J. H., 1990 and V., Walsh, 1996) who faces uncertainty
vis-à-vis of the future evolution of a stochastic environment. He disposes of an optimal set
of control instruments employed in order to drive the system as close as possible to a desired
reference trajectory which ensures its equilibrium and stability. These instruments are
optimally selected, on the basis of a non-decreasing endogenous information set.
We consider the context of a closed-loop control strategy, the information being utilized in

real time. In this case, the agent’s policy does not require some large periods of engagement.
The control rules are thus sensitive to the choice of the working horizon. This may be the case
when the relevant information acquisition cost is high, most likely due to permanent random
shocks in the system or because of the slow inertia of the environment. The decision-maker tries
to reduce the uncertainty related to his actions by acquiring information from the beginning
of the control to the moment of decision. He learns from errors and makes a self-assessment of
his risky actions. We call this a recurrent behavior.
The feedback control responds not only to the effects of random inputs, but also to the

measurement errors as well. Thus, it is not necessary to be able to identify and measure the
sources of disturbance. The feedback learning process is progressive, allowing to adjust the
agent’s ex-ante anticipations about the system trend. In this way, the agent will minimize
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the difference between actual and assumed system characteristics by monitoring its random
fluctuations.
The degree of information embedded in the observation of the state variable generally

depends on the selected values for the control variables, so that the extent of learning about
the latent parameters can be directly influenced by the decision-maker. It is the context of a
rational active learning (specific to a dynamic modelling) which allows for the decision-maker
to experiment. In a multiperiod setting, he can learn about the consequences of his actions
through experimentation. It helps to better anticipate the environment trend and thus to
avoid undesirable scenarios in the future. The environment can incite to active learning. The
agent bases his actions on his state of knowledge at the point where the actions are taken.
He has some influence over the rate at which information arrives. His behavior may gener-
ate information. The active learning makes the agent more experienced over time. However,
despite of potential benefits from active learning in stochastic optimization problems (see,
among others, Easley & Kiefer, 1988 and Kiefer & Nyarko, 1989), the potential
for learning is very limited if the model is very noisy.
The paper is organized as follows. Section 3 discusses the general model. Section 4 deals

with the choice of the criterion which ensures an unique solution for the problem of optimiza-
tion and control. Section 5 summarizes the traditional approach of Arrow-Pratt (1964,
1971a, 1971b). Section 6 introduces the concept of endogenous risk-aversion. Four dis-
tinct cases are discussed: a) when agent’s risk-aversion is based on a truncated history of
the process and rational anticipations of the system behavior in the future; b) when agent’s
risk-aversion is based only on a truncated history of the process; c) when agent’s risk-aversion
is based on past overall performances (a progressive history); d) when agent’s risk-aversion
is based only on rational anticipations of the system behavior in the future. We also ana-
lyze here the case of high potential shifts and fluctuating systems. A comparative empiri-
cal analysis based on multiple simulation results is given in this direction. Several qualita-
tive results on adaptive risk management / perception are given in Section 7. Three dis-
tinct cases are discussed: a) the context of small system deviations; b) the context of small
and large system deviations; c) the context of large system deviations. Section 8 introduces
the concept of excessive risk-averse decision-maker. This is defined with respect to an opti-
mal risk-aversion threshold chosen by the decision-maker before starting the control, which
must not be exceeded during the control period. We analyze, in this context, two distinct
types of economic agents: a) more risk-averse by nature; and b) less risk-averse by nature.
A differentiation of agents with common / distinct types becomes thus possible. Section 9
refines the analysis by taking into account potential sensitive periods which can influence the
choice of the optimal risk-aversion threshold. Section 10 discusses the general case where the
agent is characterized by a changing risk behavior, that is, when he becomes (depending on the
system evolution / perception) risk-averse, (almost) risk-neutral or risk-lover. A characteriza-
tion of the agent’s type in function of his individual preferences is provided. Section 11 draws
several important conclusions and makes suggestions for further research.

3. The Model

The type of model we analyze corresponds to a Data Generating Process (DGP) which is
dynamic, non-linear and managed by a system of discrete simultaneous equations.
If the action of the agent is purely quantitative, we say that he disposes of an instrument

(or control variable) with the help of which he tries to control the environment in an optimal
way.
Let xt ∈ Rq be the value of the control variable at time t. Note that xt is not strictly
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exogenous, in general the actions being dependent variables on the history and current state of
the system. Different contexts of decision making generally call for different actions.
Let yt ∈ Rp be the observable (not controlled) target variable and let zt ∈ Rr be an exoge-

nous variable not subjected to the control and hence observed outside the system considered.
This may be forecasted but cannot be influenced by the decision-maker.
Whether or not the variable zt is exogenous depends upon whether or not that variable

can be taken as “given” without losing information for the purpose at hand. Specifically, the
exogeneity of the variable zt depends on the parameters of interest of the decision-maker as well
as on the purpose of the model (statistical inference, forecasting, or policy analysis). Variations
in the process zt over time will generate variations in the process xt.
Denote byXt

not.
= {..., x−1, x0, x1, ..., xt} the history of the process x until the date t and simi-

lar forYt and Zt. Thus, we allow for the current state variable to depend not only on the agent’s
current decision but also on an arbitrarily complex history Xt. We make the following basic
assumptions:

Assumption 1. The evolution of the environment is modelled by a nonlinear
extended-memory process (i.e., with strong dependence between observations, see Clemhout
& Wan Jr, 1985) endogenously generated according to the structural state equation:

yt = F (Yt−1,Xt,Zt,βt, t) + ut, t ∈ Z

where ut ∈ Rp (exogenous environmental “white noise”) is the specific “risk” modelled like a
normal random variable, ut ∼ iN (0,Ψ). However, nothing constrains the DGP to be stable.
The parameter of interest βt (which specifies the structure of the model) varies according to
the information available at date t.
The adjustment function F is assumed twice continuously differentiable with respect to the

parameter-vector βt ∈ B ⊂ Rk. We make no particular assumption on the functional form of
F . In practice, the true distribution of the data is never known with precision. Several types
of errors can occur and bias the choice of the function F . The shape of F and the value of the
parameters of interest are generally determined from the behavior of the decision-maker.
In general, yt is not a Gaussian process. Non-linearity between yt and Yt−1 implies

non-normality (dynamic asymmetry) but non-normality does not necessarily imply non-linearity.
We point out that the variable t plays the role of a synthesis variable in the econometric

model.

Assumption 2. The agent’s objective is to constrain the system to follow a feasible optimal
path (aspiration level) η = {yg1 , yg2 , ..., ygT} by selecting the control variable xt in a suitable way.
This is a pre-specified condition which cannot be changed during the control period. We say
that η characterizes the decision-maker’s (discrete) preferences on the environment.
The targets and the dynamics are modelled simultaneously. The targets must be compatible

with the state of the system.
Taking into account foreseeable movements in y as well as possible economic constraints,

the agent will fix some optimal bounds lt (t = 1, ..., T ) such that 0 < ygt ≤ lt < 1 (the
constraints may change over time). It is important to note that the optimal bounds lt are
generally correlated with the agent’s type.
Since a real time control process is necessarily discrete, we cannot hope to converge with

precision to any target value, but only to a neighborhood of it. When the process of control
is finished, the decision-maker will obtain a stochastic neighbouring-optimal trajectory which
is expected to be close to the optimal path η. More is non-linear the model, more it will be
difficult to track the targets.
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When there is no cost on the control, the decision-maker should not have for objective to
follow a fixed optimal trajectory. It is the case of a “myopic” (pseudo optimal) behavior.

Assumption 3. The timing of the control is as follows: At each period t, the agent imple-
ments a risky action xt (after the exogenous variable zt was observed) that will be an external
stimulus for the system. This is purported to contribute to the equilibrium and stability of the
system. A shock ut is carried out and the agent observes the output yt (the impulse response)
which allows for extracting a dynamic signal about the environment trend. The question is:
how this signal will influence the agent’s risk behavior?
The information revealed by the output signal can increase the precision of the next control

instrument and decrease the agent’s risk-aversion in the future. This output together with the
corresponding action provides information on the data generating process. The agent emploies
this signal for strategic learning (specific to a closed-loop strategy) in order to reduce the
uncertainty on the system behavior and thus, to drive the system as close as possible to the
desired reference path η.
The uncertainty is ex-post reduced only, after the informative output-signal has been re-

ceived. The shock ut will have a persistent effect on yt that will disappear gradually over
time.

Assumption 4. The optimality of the instrument is considered with respect to a global cri-
terion (preference function) which measures the system deviations, ∆yt

not.
= yt − ygt ,

t = 1, ..., T . Let W (y1, y2, ..., yT ) be this criterion, supposed twice continuously differentiable
and strictly convex, at least in the feasible area of the model.

Assumption 5. The decision problem is to find the optimal values of the control instru-
ments which minimize the agent’s preference function by taking into account the constraint
relationships that exist between the controlled, partially controlled and uncontrolled variables.
The agent estimates his optimal policy bx(.) not

= (bx1, bx2, ..., bxT ) before to know the value of
y0. He obtains a random policy conditional to y0:

bx (.) = argmin
x(·)

Ex[W (y1, y2, ..., yT ) | y0]

where Ex is the expactation with respect to the controlled stochastic process induced by the
rule of decision x.
In practice, the initial state y0 can be fixed or random. It is crucial to treat the initial value

correctly and to measure its impact. Small variations of the initial conditions can have large
effects on the long-run outcomes.
It is very likely that difference between ex-ante decisions and ex-post results (i.e., between

ex-ante and ex-post optimality) exists.
This is the classic context, where the hypothesis of risk-neutrality for the decision-maker is

adopted for the entire period of control.

4. Choice of the Criterion

In order to avoid several local minima and thus to have a unique solution for the optimal
control problem, a necessary condition is to use a strictly convex criterion.
Using the parsimony criterion, we seek for the simplest strictly convex loss function. It is the

quadratic approximation which satisfies this condition. Interpretation is simple: a quadratic
objective function may be considered as a good local approximation of the true preferences,
exactly as a model approaches the behavior of the environment around the observed variables.
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This is reasonable because it induces a high penalty for large deviations of the state from
the target but a relatively weak penalty for small deviations. If we start with a much more
complicated loss function, we can always specify a quadratic approximation which will solve
the problem or achieve the goal.
Nothing prevents to suppose that the loss function is additively recursive, on the one hand

in order to simplify the determination of the formula for the optimal instrument and, on the
other hand, because it makes possible to apply the Bellman’s (1961) optimality principle.
A limited expansion of second order of W[1,T ](y1, ..., yT ) around a given feasible point

Y g = (yg1, ..., y
g
T ) gives us:

W[1,T ](y1, ..., yT ) = ∆Y 0K∆Y + 2∆Y 0d+ c

where

K(pT×pT )
not
=

∙
∂2W

∂Y ∂Y 0

¸
Y g

, d
not
=

∙
∂W

∂Y 0

¸
Y g

The function W being strictly convex and twice continuously differentiable, the matrix K
is symmetrical and positive semidefinite.
The decision criterion is supposed to be a function that puts weight (or measure) on the

possible outcomes indicating their desirability or undesirability. We have:

W[1,T ](y1, ..., yT )
def
=

TX
t=1

Wt(yt)

where Wt is a local quadratic loss function, strictly convex and twice differentiable.
By eliminating the constant (which leaves the minimization invariant), we can use the

following deviation-dependent asymmetrical specification for Wt:

Wt(yt) = (yt − ygt )
0Kt(yt − ygt ) + 2(yt − ygt )

0dt

where a prime denotes transpose.
Asymmetry derives from the difference in penalty costs which the decision-maker may attach

to errors, depending on whether these are errors of shortfall or errors of overshooting about the
targets.
Generally, the decision to choose certain parameters Kt and dt reflects the decision-maker’s

priorities and also depend on the available quantity of information concerning the future de-
velopment of the system parameters. However, it is far from probable that the decision-maker
will be able to assign values to the weights which represent his preferences correctly.
If the future evolution of the system is unpredictable, then the best weighting matrix Kt

which can be selected is the identity matrix, while the best value for dt is the unity vector.
If Kt is not diagonal, then the penalties also attach to the covariances of the state variable
deviations from its desired level.
The weights employed are anything but objective, since the deviation of the target variable

may be not of the same importance at different moments in time. The idea is to choose the
parameters which yield a smoother (i.e., less fluctuating) control and so a more stable system.
At each period t, the parameters Kt and dt are updated and new optimal values are chosen

in order to fulfill the requirements of the decision-maker. These requirements are based on
policy values presented at each period, and do not require any direct information about the
actual weighting that the decision-maker may have in mind.
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5. Sensitive Criterion to Risk: Static Approach

In the static approach of expected utility, the measure of risk-aversion is given by the
Arrow-Pratt index, which requires the existence of a Von Neumann-Morgenstern
utility function.
Let W[1,T ] be the usual quadratic non-symmetrical criterion and let U be the global utility

of the control given by:

U(W[1,T ]) =
2

ϕ

n
exp(−ϕ

2
·W[1,T ])− 1

o
which verifies:

−U
00(W[1,T ])

U 0(W[1,T ])
=

ϕ

2
, ∀ W[1,T ]

where a prime denotes the partial derivative with respect to W[1,T ].

Therefore, ϕ(W[1,T ])

2
(the absolute index of Arrow-Pratt) can be interpreted as a measure

of local risk-aversion at a particular W[1,T ], U being a global CARA utility.
This is the case of a totally exogenous risk, when the agent’s attitude to risk does not change

during the entire working horizon. This way to capture the risk is non-realistic.
The optimal strategy will be ϕ-dependent:

sgϕ (.) = argmax
x1,...,xT

E0[U(W[1,T ])]

sgϕ (t)
not
= bxt (It−1) | y0, ∀ t = 1, ..., T,

where It is the information set acquired until the date t and updated each time as new obser-
vation becomes available.
We define the sensitive criterion to risk by:

γ0(ϕ)
def
= E0(W[1,T ])

If ϕ·V0(W[1,T ](y1, ..., yT )) is small, then a limited expansion of second order justifies the following
approximation:

γ0(ϕ) ≈ −E0(W[1,T ](y1, ..., yT )) +
ϕ

4
· V0(W[1,T ](y1, ..., yT ))

We distinguish three distinct cases:
a) If ϕ < 0, then the function U(W[1,T ]) is negative, strictly concave and decreasing. Note

that the sign of U has no particular importance. When one maximizes γ0(ϕ), the above
approximation shows that the variability is penalized (the agent is afraid of large accidental
values of W[1,T ]).
There is a strong correlation between pessimism / prudence and risk-aversion. Indeed,

if ϕ decreases, the agent is convinced that some large values of W[1,T ] appear more and more
frequently and thus he will have some pessimistic expectations. The agent will be characterized
by a significative loss aversion.
b) If ϕ > 0, then the function U(W[1,T ]) is negative, strictly convex and decreasing.

The line W = −2/ϕ is an horizontal asymptote towards infinity of the curve U(W[1,T ]) and
(0, 0) ∈ Graph(U).
The situation is opposed to the previous case. There is rather an interest for moderate

values of W[1,T ] than for extreme values. We say that the agent is optimistic (or risk-lover).
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c) If ϕ = 0, then we obtain (using the Hospital’s rule):

lim
ϕ→0

γ0(ϕ) = −E0[W[1,T ](y1, ..., yT )]

Thus:
minE0[W[1,T ](y1, ..., yT )]⇔ max γ0(ϕ)

the term in the left-hand being the specific usual criterion from the risk-neutral case. We can
speak about a dual control problem. We have that U(W[1,T ]) →

ϕ→0
−W[1,T ] (the quadratic loss

function is obtained as a special case).
If ϕ1 ≤ 0 ≤ ϕ2, then we can write the following inequalities:

Uϕ1(W
∗
[1,T ]) ≤ U0(W

∗
[1,T ]) ≤ Uϕ2(W

∗
[1,T ])

We give below a graphical representation of the three above cases.

Figure 1: Risk-Aversion / Risk-Neutrality / Risk-Taking

Despite the fact that risk-averse agents hate uncertainty whereas the risk-neutral are
indifferent (their behavior remains unchanged), they often place a lower value on forecasting
than risk-neutral decision-makers do.
The need for a new approach requires a consistent study concerning the agent’s attitude to

risk in complex stochastic environments. It is important to have a very good understanding of
the way the evolution of the environment affects the risk perception of rational decision-makers.

6. Adaptive Endogenous Risk-Aversion

6.1. General Framework

Although there is a large amount of literature on risk (see, among others, Friedman,
M. and L. J. Savage, 1948, Bernoulli, D., 1954/1738, Pratt, J. W., 1964, Arrow,
K. J., 1951, 1971, D. Kahneman & A. Tversky, 1979, Ross, S. A., 1981, Yaari, M.,
1987, Kimball, M. S., 1993, Rabin, M. and R. H., Thaler, 2001), there is no theoretical
and empirical work for comparing the degree of risk-aversion of rational decision-makers in the
context of controlled dynamic stochastic environments.
Our purpose is to extend theArrow-Pratt traditional approach, which takes into account

only attitudes towards small exogenous risks, to the context of potentially high endogenous
risks. To do this, we focus our analysis in the general context of a varying-risk environment.
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The history of the process as well as the agent’s anticipations on the system behavior in the
future are closely linked to his attitude to risk over time. We formalize this point of view for
a general class of models and we detail the positive effects that it implies in the context of a
dynamic stochastic system which evolves over a finite and discrete horizon.
Because the behavior of the environment changes continuously, the agent’s sensitivity to

risk will also change, particularly when these changes are significant. We can speak about a
systematic risk assumed by the agent at each period of control.
There will be a better risk management due to a better learning (even if it is not perfect).

Following a permanent risk adjustment process, the agent’s objective is to diminish his degree
of risk-aversion over time. He moves from risk avoidance to risk elimination.
Consider a family of exponential anticipative local utility functions (performance criteria)

Ut generated by a dynamic absolute risk-aversion index ϕt and an evolutive loss W[1,t]:

Ut(W[1,t], ϕt)
def
=

2

ϕt

n
exp(−ϕt

2
·W[1,t])− 1

o
, t = 1, ..., T

with

W[1,t]
def
=

tX
s=1

Ws(ys)

It follows that:

−U
00(W[1,t], ϕt)

U 0(W[1,t], ϕt)
=

ϕt

2

where a prime denotes the partial derivative with respect to W[1,t].

Therefore,
ϕt(W[1,t])

2
measures locally (at the point W[1,t]) the decision-maker’s risk-aversion.

We define the local sensitive criterion to dynamic risk (at time t) by:

γ0(ϕt)
def
= E0Ut(W[1,t], ϕt)

We have:
minE0[W[1,t](y1, ...yt)]⇔ max γ0(ϕt)

To illustrate why the proposed risk-aversion index is informative about how attitudes
towards risk of the decision-maker change along the working horizon, we prove several
theoretical results in this direction.

Proposition 1. A more (less) risk-averse decision-maker is characterized by a smaller
(higher) local anticipative utility level.

Proof. In the appendix. ¥
This result characterizes the agent’s utility in function of the risk-aversion index evolution

over time. The objective is not to exceed a fixed limit threshold for the index over which the
agent becomes excessively risk-averse (being characterized by an over-pessimism). This strategy
prevents to exceed some threshold utility level under which the agent’s ex-post preferences are
suboptimal. Over-pessimism is an induced deviating behavior with respect to perceived states
of the system.
At each period of control, the interest of the agent is to choose an optimal action with a

higher ex-ante expected utility. We provide below a suggestive graphical representation of the
above result.
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Evolution of the local uti li ty function: the case of a risk-averse decision-maker
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Figure 2:

In an evolving environment, the utility function obviously does not remain constant over
time. It changes at each stage of the control, even if not significantly (the case of smooth
preferences). It does not exclude the possibility to have the same level of utility for various
periods. In this direction, we note a large class of decision rules which is representable by a
variation of the utility between each two consecutive periods (see, Gilboa, 1989). It comes
to consider the agent at different periods as though he were different individuals (see, Allais,
1947). It is important to stress that the current decision can affect the agent’s utility level
in the future. The decision-maker can benefit from the learning of preferences. This idea was
developed in first by Stigler and Becker (1977). However, it is far from probable that
the decision-maker exactly maximizes his utility (as well-being) at each stage of the control.
We rather face a nearly optimization behavior, where the control variable is continuously and
optimally adjusted over time to maximize some objective function (see, among others, Van
de Stadt, H. et al., 1985, and Varian, 1990). The stochastic disturbance in the system
will produce random shocks in the decision-maker’s preferences.
Before introducing new theoretical considerations on the concept of risk-aversion, a natural

question arises: how become the standard conclusions when modelling the attitude to risk of
the decision-maker according to the past and future dynamics of the system?

6.2. Risk-Aversion Based on a Truncated History of the Process and Rational
Anticipations of the System Behavior in the Future

The environment evolution can change the agent’s attitude to risk over time. In a dynamic
context, the agent can fully take advantage from the learning benefits. He can influence the
likelihood of the environment states by using a reinforcement of the active learning. We say
that the agent is not myopic in the sense of expecting. Future anticipations play an important
role in how the agent will decide what strategic actions and optimal risk to take. Suppose
that the agent is a strategic decision-maker. He thinks about the future. Depending on the
way the agent perceives future outcomes, both risk sensitivity and optimal decisions will be
affected during the process of optimization and control. An increased power of prediction is
an efficient method in order to reduce the uncertainty about the future system trajectory. The
forecast is updated each time as new observation becomes available. The future is regarded as
an extended present. A correct evaluation of the past is crucial for making optimal predictions
in the future. This is necessary for an optimal assessment of the agent’s risk-aversion over time.
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We make the following useful notations:

St, p_d
not.
= k yt−1 − ygt−1 k2 +...+ k yt−k1 − ygt−k1 k

2

(the sum of squared past deviations at time t)

St, a_f_d
not.
= k yat|It − ygt k2 +...+ k yat+k2|It+k2 − ygt+k2 k

2

(the sum of squared anticipated future deviations at time t)

St, w_p_d
not.
= k yt−1 − ygt−1 k2 Lt−1 + ...+ k yt−k1 − ygt−k1 k

2 Lt−k1
(the weighted sum of squared past deviations at time t)

St, w_a_f_d
not.
= k yat|It − ygt k2 Lt + ...+ k yat+k2|It+k2 − ygt+k2 k

2 Lt+k2

(the weighted sum of squared anticipated future deviations at time t)

where ygt+i (i = 0, ..., k2) represent fixed targets in the future (taking into account foreseeable
movements in y), yat+i|It+i (i = 0, ..., k2) are expected values of the target variable at time t+ i

based on non-decreasing endogenous information sets It+i and Lt−j1 (j1 = 1, ..., k1), Lt+j2

(j2 = 0, ..., k2) are weighting scalars attached to the system deviations (in the past and future)
with respect to the equilibrium path η. Permanent fluctuations in the system target variable
generate time-varying risk-aversion for the economic agent.
We are now in a position to give a definition of the agent’s risk-aversion index by taking

into account past performances of the system (a truncated history) and rational anticipations
of the system behavior in the future.

Definition 1. Using t to denote time, the absolute risk-aversion index ϕ
r_a
t, p_f evolves

according to:

ϕ
r_a
t, p_f

def.
=

St, w_p_d + St, w_a_f_dp
(St, p_d + St, a_f_d)2 + l

, t = 1, ..., T

where l ≥ 1 is a positive integer which characterizes the agent’s type, and:

1 ≤ k1 < T, k2 ≥ 0, 1 ≤ k1 + k2 ≤ T − 1
(fixed integers)

−1 < Lt−1 ≤ ... ≤ Lt−k1 ≤ 0, − 1 < Lt ≤ ... ≤ Lt+k2 ≤ 0

The weights may differ across individuals. They are updated during the control period
each time as new observation becomes available. The decision-maker gives a higher importance
to the past and future deviations which are closer to the moment of implementation of a new
optimal action. Smaller the weight is, higher is the importance given by the agent to the system
deviation from his local objective. Given the potential destabilizing role of a long memory, the
agent will include in the analysis only a limited history of the process. Distant past observations
might increase significantly the biais of the estimators in the econometric model. It generally
exists an arbitrary element as regards the choice of the backward lag k1. The objective is to find
the better compromise between fit and complexity. The larger the forward lag k2 is, the more
the prediction error increases. Distant forecasts are difficult to formulate due to unpredictable
external disturbances (which generally affect the system performance).
The risk can be interpreted like the agent’s degree of confidence in the future. It decreases

with uncertainty. It is only by taking into account both, the past and the expected future,
that the agent can optimally evaluate the risk in a changing environment. It allows for a better
risk allocation at each period of control. A mixing of objectivity and subjectivity will always
characterize the agent’s degree of risk-aversion. The complexity of this mixing is given by the
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changing environment design and the agent’s typology. Generally, there is an inherent inertia
effect of the environment due to its capacity of reaction.
Remark 1. We underline here the local nature of the agent’s risk-aversion. This is defined

for a neighborhood of the optimal fixed targets ygt−1, ..., y
g
t−k1 and respective y

g
t , ..., y

g
t+k2

. It will
therefore exist some neighborhood effects of the system dynamics on the risk-aversion index.
There is a strong relationship between the optimal targets selected by the decision-maker and
his attitude to risk during the control period. Smaller values of the targets are correlated with
a smaller degree of risk-aversion and hence a higher sensitivity to risk for the decision-maker.
Remark 2. The higher (lower) the degree of risk-aversion at time t, the lower (higher) the

absolute risk-aversion index ϕ
r_a
t, p_f . It is important to distinguish between local risk-aversion

(at each period t) and global risk-aversion (over the whole).
Remark 3. There is no loss of generality as regards the upper and lower bounds of the

absolute risk-aversion index ϕ
r_a
t, p_f (by construction, it belongs to (−1, 0]) because we can

always find an one-to-one function from (−1, 0] to (a, 0], with a < −1 a fixed real number.
Remark 4. Large deviations of the systemwith respect to the decision-maker’s fixed targets

leads to the following conditions:

k yt−j1 − ygt−j1 k À 1, j1 = 1, ..., k1

k yat+j2|It+j2 − ygt+j2 k À 1, j2 = 0, ..., k2

Proposition 2. The absolute risk-aversion index function t → ϕ
r_a
t, p_f (t = 1, ..., T ) is

non-monotonous over time. Risk perception changes with the system behavior as well as the
way the agent interprets its evolution.

Proof. In the appendix. ¥
In real world, the risk is not uniformly distributed over the entire working horizon.

During the control period, the decision-maker becomes more or less risk-averse according to the
system fluctuating behavior. Uncertainty does not necessarily diminish over time. It verifies
for simple systems as well as for complex dynamic environments. We give below a suggestive
graphic in this sense.
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It is interesting to remark that for smaller (higher) deviations of the system, we obtain
a smaller (higher) value of the quadratic loss function but a higher (smaller) value of the
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risk-aversion index. In other words, ϕ
r_a
t, p_f is a decreasing function of W[1,t]. The

decision-maker more readily accepts the risk when his loss is decreased. His behavior is
characterized by a smaller degree of loss aversion. It changes with increasing gains. We call
this the Decreasing Absolute Dynamic Risk-Aversion (DADRA) assumption.

Remark 5. In dynamic systems with a smooth evolution (but not only) it may be possible
to obtain the same index value at distinct periods of time. Mathematically speaking, this
behavior is due to the non-injectivity of the index function. We illustrate below two examples
of scenarios when all system deviations are small (high).
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6.3. Risk-Aversion Based only on Past Performances (a Truncated History of
the Process)

Suppose that the decision-maker takes into account only a truncated history of the
system in the process of estimation of the index. More exactly, only the most informative
information is considered. In this particular context, we propose the following definition for
the risk-aversion index:
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Definition 2.

ϕ
r_a
t, p

def.
=
k yt−1 − ygt−1 k2 Lt−1 + ...+ k yt−k1 − ygt−k1 k

2 Lt−k1q
(k yt−1 − ygt−1 k2 +...+ k yt−k1 − ygt−k1 k2)2 + l

, t = 1, T ; k1 = 1, T − 1

with l ≥ 1, a fixed integer which characterizes the agent’s type, and

−1 < Lt−1 ≤ ... ≤ Lt−k1 ≤ 0

some weighting scalars attached to the system deviations with respect to the optimal path η.
For further details, see Protopopescu, D., 2003a.

Two system deviations with respect to the agent’s fixed targets are said to be comparable
if and only if their ratio is very close to 1 in magnitude.

Proposition 3. Suppose that all system deviations are comparable. In this context, the
agent is characterized by a higher degree of risk-aversion at the same stage of the control if a
smaller value for the backward lag k1 is considered in the estimation of the local index ϕ

r_a
t, p .

Proof. In the appendix. ¥
This result proves the role played by the system history in estimating the agent’s degree of

risk-aversion. It is important to optimally use all the available information from the system. It
improves the risk assessment during the control period.
When all system deviations are small and comparable, we say that it is characterized by a
smooth evolution (i.e., without significative time-shifts). By contrast, a model with relevant
time-shifts is characterized by large (comparable) deviations.
It is interesting to underline that the shift amplitude of the system target variable is

computed with respect to the (fixed) optimal reference path η. We present below a graphic
illustration of this theoretical result.
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6.3.1. High Potential Shifts

Shift happens. The agent learns from failures. Every high deviation (seen as a failure) is
analyzed in order to avoid unexpected fluctuations of the system in the future. The moment
when a large deviation from the target is perceived is significant. We call a high positive shift
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a context where the system is characterized by consecutive small levels of performance followed
by a high level one. In the opposite case, we call this a high negative shift.
The agent’s objective during the period of control is to obtain smooth forward shifts with

respect to the fixed optimal targets. It contributes to the dynamic equilibrium and stability of
the system. The risky shift phenomenon is one of the key issues in economics, and in the study
of controlled dynamic systems in particular.
The concept of risk-aversion is appropriate to dynamic stochastic environments whose

behavior change significantly over time. It is the case of high fluctuating systems.

Proposition 4. Consider the following two opposite scenarios: i) the transition of the
system is from consecutive small deviations to a large deviation; and ii) the transition of the
system is from consecutive large deviations to a small deviation. For this type of scenarios,
the agent’s degree of risk-aversion is highly dependent on the weights attached to the large
deviations of the system.

Proof. In the appendix. ¥
It is an astonishing result. Sudden significative changes in the system behavior can affect

differently the agent’s risk perception. Large shifts are correlated with large deviations of the
system with respect to the fixed targets. The shift amplitude is generally different in different
contexts, depending on one hand, on the type of transition, and on the other hand, on the size
of the transition shock.
We give below three distinct attitudes to risk as regards the agent’s individual

perception about large fluctuations of the system (in both above contexts).

a) the large deviation of the system at time t − 1 (in the context of the first scenario) is
much more important for the decision-maker than all other (k1 − 1) large deviations obtained
in the context of the second scenario.
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b) the large deviation of the system at time t − 1 (in the context of the first scenario) is
much less important for the decision-maker than all other (k1− 1) large deviations obtained in
the context of the second scenario.
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c) the large deviation of the system at time t − 1 (in the context of the first scenario) is
either much more or much less important for the decision-maker than all other (k1 − 1) large
deviations obtained in the context of the second scenario.
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We underline that for the three above graphics, the risk-aversion index value at time
t = 1, ..., 4 corresponds, respectively, to the following distinct scenarios: 1) system
transition from four large deviations to one small deviation; 2) system transition from three
large deviations to one small deviation; 3) system transition from two large deviations to one
small deviation; 4) system transition from one large deviation to one small deviation.

6.3.2. Fluctuating System

In what follows, we analyze the impact of the system fluctuations on the agent’s attitude to
risk during the period of control. Suppose that all high deviations are comparable in magnitude.
We can distinguish two cases, according to the parity of k1.

Case 1. k1 is an even number (k1 = 2k0). We can imagine two distinct scenarios:

Scenario 1. System deviations fluctuate successively from one period to another such
that: k yt−2k0 − ygt−2k0 k is high, k yt−(2k0−1) − ygt−(2k0−1) k is small,..., k yt−2 − ygt−2 k is high,
k yt−1 − ygt−1 k is small.
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Scenario 2. System deviations fluctuate successively from one period to another such
that: k yt−2k0 − ygt−2k0 k is small, k yt−(2k0−1) − ygt−(2k0−1) k is high,..., k yt−2 − ygt−2 k is small,
k yt−1 − ygt−1 k is high.
For this type of scenarios, the system deviation at time t − 1 is the most significative for

the decision-maker. The value of the parameter Lt−1 is considerably higher than all others
parameters Lt−i (i = 2, ..., k1).

Proposition 5. For an even backward parameter k1, the agent is characterized by a smaller
degree of risk-aversion at time t for the first scenario, even if the negative and positive shifts
are in equal number.

Proof. In the appendix. ¥
This result proves that the sense of transition is perceived differently by a risk-averse

decision-maker. The initial state of transition plays a crucial role in estimating his degree
of risk-aversion at a given period of time. His objective is to anticipate significant fluctuations
in the target variable. It allows for a more refined perception of large system deviations and
thus for an improved assessment of the risk-aversion index over time.

Case 2. k1 is an odd number (k1 = 2k0 + 1)

Proposition 6. For an odd backward parameter k1, the agent is characterized by a smaller
degree of risk-aversion (at the same control period) for the second scenario compared with the
first one. We have the following inequality:

ϕ
r_a_first.sc.
t, p, k1=2k0+1

< ϕ
r_a_ sec ond.sc.
t, p, k1=2k0+1

, ∀ t = 1, ..., T

Proof. In the appendix. ¥
A natural question arises: in real world, does one more often envisage to pass from a high

variation of the system to a small one or the opposite? The answer is not obvious. When the
system inertia is high, the first scenario is not easy to be carried out. Also, an effective control
will prevent the realization of the second scenario. The decision-maker must avoid to much
deviate from the fixed targets. A robust control strategy (i.e., with a low sensitivity to changes
in the input data) is necessary in order to reach this objective. We give below two suggestive
graphics which illustrate the agent’s behavior to risk in the context of a fluctuating system. The
first (second) graph corresponds to a high (weak) risk-averse decision-maker who implements
his optimal policy in the context of a dynamic environment characterized by a large inertia.
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Effective management of the system inertia will have a positive impact on the agent’s
attitude to risk. It is interesting to analyze the correlation between the agent’s behavior to
risk and his degree of inertia. This is an exciting fruitful area for future research, with strong
implications in terms of policy-making.

6.4. Risk-Aversion Based on Past Overall Performances (a Progressive History
of the Process)

Suppose that the decision-maker has the interest to use a progressive history of the process
in the valuation of the risk-aversion index. This may be the case where the horizon length is
short and the agent needs more information useful in improving the process of risk-assessment.
The index value will be updated each time as new observation becomes available. In this
particular context, we define:

Definition 3.

ϕ
r_a
t, w

def
=
k yt−1 − ygt−1 k2 Lt−1 + ...+ k y0 − yg0 k2 L0p
(k yt−1 − ygt−1 k2 +...+ k y0 − yg0 k2)2 + l

, t = 1, ..., T

with l ≥ 1, a fixed integer which characterizes the decision-maker’s type, and

−1 < Lt−1 ≤ Lt−2 ≤ ... ≤ L0 ≤ 0

some weighting scalars attached to the system deviations with respect to the optimal reference
path η.
We denote by yg0 the target variable at time t = 0 (the initial state of the system) employed

by the decision-maker in the previous optimization scheme. It is supposed to be small.
The initial state of the process will influence the system trajectory and implicitly the

decision-maker’s attitude to risk during the period of control. For a dynamic system
characterized by a sensitive dependency of initial conditions, the variations of the index over
time will be significative. Agent’s sensitivity to risk (generally non-uniform over time) will
be more relevant. This behavior may be captured by the shape of the agent’s index curve.
An empirical analysis in the case of a free-floating initial state can illustrate this risk-sensitive
behavior.
We can imagine two distinct scenarios concerning the agent’s attitude to risk before to start

the control:
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a) y0 is small; in this case, the deviaiton k y0 − yg0 k is small and thus the absolute
risk-aversion index ϕ

r_a
1, w will have a high value. It is a strategic attitude for the agent to

start the control with a smaller degree of risk-aversion.

b) y0 is high; in this case, the deviation k y0 − yg0 k is high and therefore the absolute
risk-aversion index ϕ

r_a
1, w will have a small value. This will determine the agent to start the

control process.

The observability of the system is dependant only on the system states and the system
output. In real world, the relationship between the agent’s reaction to the perceived states of
nature and his attitude to risk is complex. This is a consequence of the importance the agent
places on the system states.
Generally, risk-aversion makes the reaction stronger than risk-neutrality. However, when

both players are risk-averse but at very different degrees, the less cautious of the two can have
a weaker reaction than in the risk-neutral case. This is an astonishing result that naturally
follows from the analysis of the relationship between high deviations and perceived states of
nature.
We give below two suggestive graphics which illustrate the variation of the risk-aversion

index ϕr_a
1, w in function of the system initial state y0.

0 2 4 6 8 10 12
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Risk-aversion index based on a progressive history: the case of a small initial deviation

time

ris
k-

av
er

si
on

 in
de

x 
le

ve
l

l=1

l=2

Figure 12:

0 2 4 6 8 10 12
-0.75

-0.70

-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

Risk-aversion index based on a progressive history: the case of a high initial deviation

time

ris
k-

av
er

si
on

 in
de

x 
le

ve
l

l=1

l=2

Figure 13:

19



Proposition 7. A decision-maker who manages more and more hardly the evolution of the
system will become more and more risk-averse over time.
Proof. In the appendix. ¥
As the number of consecutive failures increases, the economic agent will become less and less

confident and thus his degree of risk-aversion will be more and more raised. It is the context
when the agent becomes excessively risk-averse during the control period.
This type of scenario is possible when large deviations are correlated with a high inertia of

the system. The potential for learning is limited in this particular context.
In a noisy environment, the actions implemented by the agent have a weak impact on the

system irregular trend. The agent must avoid to much deviate from the optimal path η.
Reasoning by analogy, we conclude that in the case where the agent controls better and

better the system trajectory, he will become more and more confident over time; his degree of
risk-aversion will be less and less raised. It is important to note that the two above scenarios
are not symmetrical.
We give below a graphical illustration for these two distinct scenarios in the case where the

amplitude of the system deviation at time t = 1 is relatively small or very large.
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It is interesting to remark that in the case where the agent more and more hardly controls
the system trajectory, the index value decreases more quickly, while in the opposite case, this
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increases slowly. In other words, it is more easy to loss the control of the system than to
improve its trajectory. For the second scenario, the shape of the index curve is almost linear,
while for the first scenario, this is characterized by an important degree of nonlinearity. This
is a very surprising result, far from intuitive.

6.5. Risk-Aversion Based only on Rational Anticipations of the System Behavior
in the Future

In this section, we analyze the case where the agent takes into account only rational
anticipations about the system behavior when modelling the risk over time. It implies a
risk-attitude adjustment during the period of control. This may be the case where the agent
look towards the future rather than evaluating the evolution of the system in the past. In other
words, deviations from past targets are ignored except to the extent that they affect the future.
In this particular context, the absolute risk-aversion index is defined as follows:

Definition 4.
ϕ
r_a
t, f

def.
=

St, w_a_f_dp
(St, a_f_d)2 + l

, t = 1, ..., T.

6.6. Comparing the four Dynamic Risk-Aversion Definitions

Proposition 8. In a dynamic environment, the agent’s degree of risk-aversion varies
according to his adopted strategy to manage exogenous and endogenous risks.

Proof. In the appendix. ¥
Future uncertainty affects the agent’s attitude to risk. Anticipation of higher (smaller)

system deviations with respect to the fixed targets corresponds to a higher (smaller) degree of
risk-aversion only if the agent attributes appropriate weights to these deviations.
More information helps for better forecasting the risk but it does not necessarily decrease

the agent’s uncertainty. System dynamics and its inherent inertia can produce a significative
change in the agent’s attitude to risk.
Errors from learning occur. They can be improved but not eliminated when analyzing real

phenomena. The potential for learning is limited in a noisy environment.
It is useful to underline that the process of learning is generally non-monotonous over time.

We also note that for a risk-averse decision-maker, the benefits of active learning are important.
The agent dynamically adjusts his actions in order to minimize the distance between actual
state of the system and target trajectory.
Large endogenous risks are not easy to avoid due to their high correlation with high fluctu-

ations of the system. Random transitory (or permanent) shocks in observed movements of the
system will influence the agent’s degree of risk-aversion.
Contrary to what is generally believed or the intuition should suggests, the sensitivity to

risk can be lower when the agent does not explicitly integrate knowledge of the past in the
index formula. The observed outputs depend upon his ability to anticipate the future, as well
as other factors that are outside the agent’s control.
A natural question arises: how to define the optimal trade-off between past and expected

future when dealing with adaptive risk perception and optimal risk assessment?
We give below four suggestive graphics (corresponding to the four proposed risk-aversion

index definitions) which illustrate numerically the above theoretical result.
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We have the following index inequalities:

ϕ
r_a
1, p_f < ϕ

r_a
1, w < ϕ

r_a
1, p < ϕ

r_a
1, f , while ϕ

r_a
2, f < ϕ

r_a
2, w < ϕ

r_a
2, p_f < ϕ

r_a
2, p

ϕ
r_a
12, p < ϕ

r_a
12, w < ϕ

r_a
12, p_f < ϕ

r_a
12, f , while ϕ

r_a
6, f < ϕ

r_a
6, p_f < ϕ

r_a
6, w < ϕ

r_a
6, p

ϕ
r_a
3, p_f < ϕ

r_a
3, w < ϕ

r_a
3, p < ϕ

r_a
3, f , while ϕ

r_a
8, w < ϕ

r_a
8, p < ϕ

r_a
8, f < ϕ

r_a
8, p_f

Distinct agents, characterized by distinct risky preferences, have in general distinct perceptions
of endogenous risks in a given environment. It generally depends on how they succeed to manage
the available information from the system as well as future information from outside the system.
It is important to make distinction between risk-aversion before and after starting the control
process. They are not generally based on the same information set. Before to start the control,
the agent’s degree of risk-aversion is measured on the basis of an exogenous information set; it
defines the agent’s type at a given period of time. After to start the control, the agent’s degree
of risk-aversion is estimated on the basis of a non-decreasing endogenous information set. In
a dynamic evolving context, the agent’s type can change. In a static context (one aggregated
period of time), it is not justified to fix an arbitrary value for the risk-aversion index. All the
more, in a multiple-horizon dynamic environmemt, this procedure does not make sense.
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7. Qualitative Consequences on Risk Management

The object of this section is to explore the implications of the proposed risk-aversion concept
on the decision-maker’s adaptive behavior by developing realistic scenarios for the dynamic
environment (for further details, see Protopopescu, D., 2003b).

7.1. Small System Deviations

Proposition 9. Suppose that all system deviations in the past and future are small. For this
type of scenario, the decision-maker is characterized by a small risk-aversion
during the control period. When all system deviations are almost null (a borderline case), the
decision-maker becomes almost risk-neutral.

Proof. In the appendix. ¥
This result reveals the correlation that exists between risk-aversion and highly fluctuating

systems. It is interesting to note, in this case, that for small symmetrical deviations with
respect to the fixed targets, the decision-maker will adopt the same attitude to risk at time t.
Zero risk can exist if the agent does not attribute any importance to the system

deviations. This may be the case of a dynamic system characterized by small deviations.
However, when the deviations are (relatively) large, this scenario is not compatible with a
rational behavior (see, among others, Douard, J., 1996). Because at least one of the
system deviations (in the past or future) is strictly positive, the index value is non null.
This can be explained by the presence of significative random disturbances, the inherent
inertia of the system and the inevitable forecast errors in predicting the system trajectory.
The hypothesis of risk-neutrality for the entire working horizon, very often employed in the
literature, is very restrictive. In real world, this work-hypothesis is non-realistic, taking into
account the dynamic complexity of the environment. Its use in many theoretical and em-
pirical studies is satisfactory only for parsimony purposes. The apparent need for parsimony
is derived by the facility brought in the construction of the models. Parsimony may seems
desirable, but is in fact not because it generally introduces non-negligible errors in the model. It
limits an adaptive endogenous behavior to an exogenous pseudo-optimal one. We give below two
suggestive graphics that illustrate the adaptive behavior towards risk of the decision-maker in
the context of small (almost null) system deviations.
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We observe here the non-monotonous character of the risk-aversion index as well as the
intimate correlation between the choice of the parameter l and the agent’s risk perception
during the control period.

7.2. Small and Large System Deviations

Proposition 10. In the context of a dynamic system characterized by small and large
deviations, the agent will not be necessarily more risk-averse for the same control period
compared to the case where all system deviations are small. It depends on two distinct factors:
i) the moment of time when these deviations arrive in the past or are expected to be realized
in the future; and ii) the weighting scalars the agent will attach to the system deviations with
respect to the equilibrium path η.

Proof. In the appendix. ¥
The theoretical intuition of this result is based on two evidences: i) the effect of high

deviations in the past will diminish in time; and ii) large expected deviations in distant future
will have a non significative effect on the agent’s risk sensitivity. Individuals are more risk
tolerant on distant horizons. We give below a realistic scenario for the system evolution which
confirms this intuition.
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As is easily seen, at time t = 5, we ascertain a higher index value compared to that one
obtained when all system deviations are small.

7.3. Large System Deviations

Assumption 6: The parameter l verifies the additional conditions:

i) l/ k yt−j1 − ygt−j1 k
4 ∼= 0, ∀ j1 = 1, ..., k1

ii) l/ k yat+j2|It+j2 − ygt+j2 k
4 ∼= 0, ∀ j2 = 0, ..., k2

Proposition 11. When all system deviations are large and comparable, the agent’s
degree of risk-aversion is highly dependent on the weighting scalars attached to the system
deviations.

Proof. In the appendix. ¥
There is a relationship between risk-neutrality and perverted perception of the

environment. This is the case where the agent does not attribute any importance to the
system deviations. When the importance attached is negligible, the agent is characterized by
an almost risk-neutral behavior. By contrast, for non-negligible weighting scalars attached to
the system deviations, the agent’s degree of risk-aversion is significative. Risk perception and
environment impact are highly correlated.
It is interesting to note that for this type of scenario, the boundary condition imposed on

the fixed targets does not allow for a symmetrical evolution of the dynamic system.
In order to illustrate the above theoretical result, we give below three suggestive graphics

which show the strong correlation between the agent’s risk perception and the size of the
weighting scalars attached to the system deviations.
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Proposition 12. Suppose that all system deviations are comparable. A higher value of the
sum of k1(feedback period) and k2 (forward period) does not necessarily diminish the agent’s
degree of risk-aversion at the same stage of the control.

Proof. In the appendix. ¥
This result proves the trade-off between past and future evolution of the system. Neither

the past nor the future have a dominant effect on the agent’s risk behavior. In general, risk
perception is influenced by the aggregate cumulative effect of both temporal dimensions.
Often the past is a backwards indicator of the future. The weight that the agent places on

the future may be correlated with exogenous signals from the past. Depending on the context,
the past can provide more (or less) informative signals about the system future trend. They can
change the agent’s behavior to risk during the period of control. We give below two suggestive
graphics which illustrate this theoretical result.
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A smooth (or almost constant) evolution of the system will not significantly change the
agent’s attitude to risk. In this case, the past and the expected future will have relatively the
same impact on the agent’s risk behavior.
Generally, the agent’s risk sensitivity is highly correlated with a significative change in the

dynamic of the system. As a consequence, the more the system is non-linear, the more marked
will be the agent’s degree of risk-aversion over time.
There is a close relationship between the system inherent inertia and the agent’s risk

perception. Distinct agents develop individual behaviors with regard to how they respond in
similar risky situations. They are most often characterized by different degrees of risk-aversion.
However, it may be possible that their attitudes to risk be similar in a given risky situation.

8. Excessive Risk-Averse Decision-Maker

Experimental evidence shows that individuals overweight extreme events. They can modify
their individual type behavior. The ability to assess future risks associated with extreme events
is increasingly important to decision-makers.
Let ϕp_f

min be an optimal risk-aversion threshold fixed by the agent before starting the control
and for the entire working horizon. His objective is not to exceed it, if not he becomes excessively
risk-averse for the current period of control, being characterized by an extreme pessimism
(prudence).
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We correlate the exceeding of the threshold ϕp_f
min during the control period with at least one

high deviation of the system from the agent’s fixed targets.
There is a close relationship between the choice of the agent’s optimal targets and the

possibility to exceed the fixed risk-aversion threshold ϕ
p_f
min . Smaller optimal targets will

generally imply a smaller absolute risk-aversion index and thus a higher “probability” to exceed
the threshold ϕ

p_f
min .

An agent with a higher (smaller) risk-aversion before starting the control will choose a
smaller (higher) threshold ϕ

p_f
min .

If ϕr_a
t, p_f characterizes the agent’s local risk-aversion (at time t), ϕ

p_f
min will characterize his

global risk-aversion (over the whole). The optimal threshold ϕp_f
min must be selected such that it

offers the best characterization of the agent’s type. It depends on the particular environmental
context.
We must distinguish between ϕp_f

min and ϕ
r_a
1, p_f . It is a strategic attitude for the agent to fix

a threshold ϕ
p_f
min inferior to ϕ

r_a
1, p_f .

The above definition of ϕp_f
min give us a good explanation why the absolute risk-aversion

index is a non-monotonous function with respect to the time variable.
An increasing index would be in contradiction with the definition of ϕp_f

min (it would be never
exceeded). In real world, this limit threshold is most often exceeded by risk-averse agents.
In the case of a decreasing index, the dynamic learning would be inefficient. It would

constrain the decision-maker to exceed the threshold ϕp_f
min over time, whatever his strategy, and

hence he would become excessively risk-averse for the remaining period of control. It would be
non-realistic.
The decision-maker’s global utility function corresponding to the risk-aversion optimal

threshold ϕ
p_f
min is given by:

U[1,T ](W[1,T ], ϕ
p_f
min )

def
=

2

ϕ
p_f
min

{exp(−ϕ
p_f
min

2
·W[1,T ])− 1}

Proposition 13. Any risk-averse decision-maker is characterized by an optimal risk-aversion
threshold ϕ

p_f
min chosen in function of his individual type.

Proof. In the appendix. ¥
This result allows for a differentiation of common types as well as a total separation of

distinct types. Two common (distinct) types of decision-makers will not generally give the
same interpretation to the system evolution. Its endogenous impact is perceived differently by
different decision-makers.
With the same control policy instruments and some linear decision rules, they can implement

distinct optimal actions for a given period t. However, it may be possible that their actions be
the same for the same control period. It is the case of non-linear decision rules. This can be
explained by arguments based on the non-injectivity of the control rule, regarded as a function
of the index variable.
In this approach, we deal with a continuum of agents’ types and heterogenous risk

preferences. This type of modelling provides a better description of agents’ behavior as
decision-makers.
We illustrate below a realistic scenario concerning the choice of the agent’s

risk-aversion threshold.
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Choice of the risk-aversion threshold in the context of a six periods horizon
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In the following, we give an interesting theoretical result which characterizes the boundaries
of the decision-maker’s utlity function during the period of control.

Proposition 14. Any risk-averse decision-maker is characterized by a local utility function
whose upper and lower bounds vary according to the risk-aversion index level relative to the
optimal threshold ϕ

p_f
min .

Proof. In the appendix. ¥
An important consequence of the above result is the complete separability of the agent’s

risk-averse preferences, depending on the index variation with respect to the fixed optimal
threshold ϕ

p_f
min . It allows to characterize the agent’s type in function of his individual prefer-

ences.
The inherent disutility of the risk associated with extreme events is also proved from this new

perspective. We give below two suggestive graphics in this sense, in the case where ϕp_f
min = −0.5.

Evolution of the local uti li ty function: The agent does not exceed the optimal risk-aversion threshold
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Evolution of the local uti l i ty function: The agent exceeds the optimal risk-aversion threshold
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In order to illustrate the potential correlation between the length of working horizon and the
agent’s degree of risk-aversion, we give in the following an interesting result in this direction.

Proposition 15. There is a potential effect of the working horizon length on the
decision-maker’s attitude to risk.
Proof. In the appendix. ¥
This approach allows to characterize a closed-loop strategy as regards the attitude to risk

of a rational decision-maker in a dynamic environment. It is useful to note that the horizon
length may generate variations of risk-aversion over time. We illustrate below a realistic scenario
concerning the potential effect of the horizon length on the agent’s risk attitude.

Choice of the optimal risk-aversion threshold in the context of a four periods horizon

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

ris
k-

av
er

si
on

 th
re

sh
ol

d

0
2

4
6

8
10

12
regulator parameter1 2 3 4k1+k2+1

l*=0.4; k1=2; k2=1

Figure 31:

We remark that in the context of a four periods horizon, the decision-maker can choose an
optimal risk-aversion threshold ϕ

p_f
min inferior to −0.45, while for a six periods horizon, ϕ

p_f
min is

inferior to −0.57. In other words, the agent’s risk-perception (and implicitly his degree of risk-
aversion) is dependent on the fixed-horizon length. The above result proves that risk-aversion
increases with horizon length.
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9. Potential Sensitive Periods

It may exist some significant periods (with an important degree of uncertainty), when the
decision-maker has as objective not to exceed a local fixed risk-aversion index level. More
exactly, suppose that for each significant period t, the agent chooses, based on his rational
expectations, an optimal local value ϕloc.

t, p_f that he wants not to exceed (ϕ
loc.
t, p_f ≤ ϕ

r_a
t, p_f)

and such that ϕp_f
min ≤ ϕloc.

t, p_f . This can be explained by the fact that a global minimum is
always smaller or equal than a local one. One should not confuse ϕloc.

t, p_f (which is fixed before

starting the control and thus does not depend on the evolution of the system, like ϕp_f
min ; these

two thresholds are strictly exogenous, by definition) with ϕ
r_a
t, p_f (estimated after the control

begins). It is also important to distinguish between ϕ
p_f
min and ϕloc

t, p_f . The first one defines
the decision-maker’s type (for the entire period of control), while the second depends on his
objective at time t.
Let tj (j = 1, ..., k) be all significant periods on the interval [1, T ], where {t1, ..., tk} ⊆

{1, ..., T}. Note that ϕloc.
tj , p_f are defined only for the periods tj, while ϕ

p_f
min is chosen by the

decision-maker according to his expectations on all ϕloc.
tj , p_f . Consequently, these are ϕ

loc.
tj , p_f

(j = 1, ..., k) that influence ϕp_f
min and not vice versa. One can say that ϕ

loc.
tj , p_f is the equivalent

of ϕp_f
min , but only locally. In this context, we define:

ϕ
p_f
min ≤ min

n
ϕloc.
t1, p_f , ..., ϕ

loc.
tk, p_f

o
The agent’s utility level at time t, defined for a fixed threshold ϕloc.

t, p_f , is given by:

Ut(W[1,t], ϕ
loc.
t, p_f) =

2

ϕloc.
t, p_f

{exp(−
ϕloc.
t, p_f

2
·W[1,t])− 1}

We can write:
Ut(W[1,t], ϕ

p_f
min ) ≤ Ut(W[1,t], ϕ

loc.
t, p_f) ≤ Ut(W[1,t], ϕ

r_a
t, p_f)

if and only if
ϕ
p_f
min ≤ ϕloc.

t, p_f ≤ ϕ
r_a
t, p_f ∀ t = 1, ..., T.

Note that ϕloc.
tj , p_f can be viewed as a first control-threshold imposed by the agent in order not

to exceed ϕ
p_f
min . At each stage tj, it is possible to exceed ϕloc.

tj , p_f but not ϕ
p_f
min . This can be

explained by the fact that, in general, the local conditions are more restrictive than the global
ones. Since a real time control process is necessarily discrete, the dynamic of the risk-aversion
index ϕloc.

t, p_f cannot converge with precision to any fixed optimal value ϕ
loc.
tj , p_f , but only to a

neighborhood of it. When the process of control is finished, the decision-maker will obtain a
stochastic neighbouring-optimal trajectory of the risk-aversion index which is expected to be
close to the optimal path

n
ϕloc.
1, p_f , ..., ϕ

loc.
T, p_f

o
. It is very likely that difference between ex-ante

and ex-post behavior towards risk exists.
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10. Agent with a Changing Risk Behavior

The way the risk-aversion index is parameterized depends on the problem statement. We
refine the analysis by taking into account the case of an economic agent characterized by a
changing risk behavior. There may be periods when the agent is risk-averse and others when
he becomes (almost) risk-neutral or risk-lover. A mixture of pessimism and optimism can exist
(see, Toulet, 1982).
We consider the same definition of the index as in Chapter 6.2, with the only difference

that the weighting scalars attached to the deviations of the system from its reference level lie
inside the unit circle. Let us make the following notations:

eSt, w_p_d not.
= k yt−1 − ygt−1 k2 eLt−1 + ...+ k yt−k1 − ygt−k1 k

2 eLt−k1
(the weighted sum of squared past deviations at time t)

S0t, w_a_f_d
not.
= k yat|It − ygt k2 L0t + ...+ k yat+k2|It+k2 − ygt+k2 k

2 L0t+k2
(the weighted sum of squared anticipated future deviations at time t)

where
−1 < eLt−1 ≤ ... ≤ eLt−k1 < 1, − 1 < L0t ≤ ... ≤ L0t+k2 < 1

are weighting scalars attached to observed and expected deviations of the system. Their values
are selected according to the importance the agent places on the past and future.

Remark 6. We distinct, in this general context, two completely opposite scenarios:

i) the pure risk-aversion case, defined according to the following boundaries conditions:

−1 < eLt−1 ≤ ... ≤ eLt−k1 < 0, − 1 < L0t ≤ ... ≤ L0t+k2 < 0

ii) the pure risk-taking case, defined according to the symmetrical boundaries conditions:

0 < eLt−1 ≤ ... ≤ eLt−k1 < 1, 0 < L0t ≤ ... ≤ L0t+k2 < 1

A changing risk behavior can be regarded as a mixed case of risk-aversion, risk-neutrality
and risk-taking. System evolution will refine the agent’s type.

Definition 5. Using t to denote time, the absolute risk index ϕ
r_a_n_l
t, p_f evolves according

to:

ϕ
r_a_n_l
t, p_f

def.
=

eSt, w_p_d + S0t, w_a_f_dq
(St, p_d + St, a_f_d)2 + el , t = 1, ..., T

where el ≥ 1 is a positive integer which characterizes the agent’s type, and ki (i = 1, 2) represent
the backward (forward) lag parameters verifying the following constraints:

1 ≤ k1 < T, k2 ≥ 0, 1 ≤ k1 + k2 ≤ T − 1

In this general context, the boundary condition for the index changes. It is possible to
obtain negative values for some periods and positive (or null) values for others. All these
values are obtained by a “constant” mixing of objectivity and subjectivity. They depend on
several factors including, the available exogenous information from the system, the accuracy
of perception and respective the inherent discrepancies between ex-ante anticipations and the
corresponding ex-post quantities.
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The evolution of the system will not have, in this case, the same impact on the agent’s risk
perception. His optimal actions will be generally different compared to those selected in a pure
risk-aversion (risk-taking) context.
This type of modelling represents an important refinement of the concept of temporal

risk-aversion, very often employed in the literature (see, among others, Machina, M.,
1984 and Van der Ploeg, 1992). A clear useful distinction between temporal and timeless
risks is provided by our model. It improves the standard analysis of economic behavior under
temporal unceratinty (see, among others, Chavas, J-P., and Larson, B. A., 1994).

Proposition 16. A more (less) risk-taker decision-maker is characterized by a smaller
(higher) local anticipative utility level.

Proof. In the appendix. ¥
Agent’s preferences level will decrease with the growth of the risk-taker index.

His objective is not to exceed a fixed limit threshold for the index over which he becomes
excessively risk-taker, and thus he will be characterized by an over-optimism.
This strategical attitude prevents to exceed some threshold utility level over which the

agent’s ex-post preferences are suboptimal.
In order to reach his objective, the agent must avoid to much deviate from the fixed optimal

trajectory η. Over-optimism is an induced deviating behavior with respect to perceived states
of the system.
We give below a suggestive graphic which illustrates the evolution of the agent’s utility

function with respect to the anticipative loss and the risk-taker index.

Evolution of the local util ity function: the case of a risk-lover decision-maker
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Proposition 17. Any risk-lover decision-maker is characterized by an optimal risk-taker
threshold ϕ

p_f
max chosen in function of his individual type.

Proof. In the appendix. ¥
It is useful to note that risk-taking and risk-aversion are non-symmetrical behaviors. They

are analyzed in non-symmetrical contexts. We give below a suggestive graphic which illustrates
this theoretical result.
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Choice of the optimal risk-taker threshold in the context of a six periods horizon
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Proposition 18. Any risk-lover decision-maker is characterized by a local utility function
whose upper and lower bounds vary according to the risk-taker index level relative to the
optimal threshold ϕ

p_f
max.

Proof. In the appendix. ¥
A direct consequence of this result is the complete separability of the agent’s risk-taking

preferences. It depends on the index variation with respect to the fixed optimal threshold
ϕ
p_f
max. It allows to characterize the agent’s type in function of his individual preferences. We
give below two suggestive graphics in this sense, in the case where ϕp_f

min = 0.5.

Evolution of the local uti li ty function: the agent does not exceed the optimal risk-taker threshold
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Evolution of the local util ity function: the agent exceeds the optimal risk-taker threshold
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Proposition 19. There is a potential effect of the working horizon length on the
decision-maker’s risk-taking bahavior.

Proof. In the appendix. ¥
As in the case of risk-aversion, the agent’s goal is to reduce the exogenous effect of the

horizon length on the optimal policy decisions.
A particular environmental context can change the agent’s strategy employed in the process

of optimization and control and thus his adaptive behavior to risk. To fix a smaller / higher
horizon length generally depends on the agent’s strategic objective and his individual type.
This study take a step towards a more refined understanding of the concepts of short and

long horizon risk. This is a key topic for future research with implications in a wide range of
economic applications intrinsically linked to the study of policy implementation and analysis.
We give below a graphic representation of this theoretical result.

Choice of the optimal risk-taker threshold in the context of a four periods horizon
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We remark that in the context of a four periods horizon, the decision-maker can choose an
optimal risk-taker threshold ϕp_f

max inferior to 0.4, while for a six periods horizon, ϕ
p_f
max is inferior

to 0.55.

36



Proposition 20. Any rational decision-maker with a changing risk behavior is characterized
by two optimal thresholds chosen in function of his individual type: a “minimal” risk-aversion
threshold ϕ

p_f
min and respective a “maximal” risk-taker threshold ϕ

p_f
max.

Proof. In the appendix. ¥
The objective of a decision-maker characterized by a changing risk behavior is to maintain

the index risk level inside the interval defined by the risk thresholds ϕp_f
min and ϕ

p_f
max. It can be

possible if and only if the decision-maker succeeds to constrain the dynamic system to follow
the fixed optimal path η. When at least one of these thresholds are exceeded, the economic
agent is characterized by an excessive risk behavior.
Significative changes in the system evolution are necessary such that a transition from an

extreme risk behavior to the opposite one be possible. An interesting question is: which of these
two extreme attitudes are most probable to arrive in real world? The answer is not obvious.
The risk-neutrality case can be regarded as a transitory state in this dynamic process.

A changing risk behavior can be defined as a free floating state with respect to the agent’s
attitude to risk over time. For a stochastic system characterized by an “uniform” trend towards
lower values for the target variable, the agent’s behavior to risk is defined in a reasonably
neighborhood of the risk-neutrality transitory state.
Generally, risk-taking makes the reaction stronger than risk-neutrality. However, when both

players are risk-taker but at very different degrees, the more optimistic of the two can have a
weaker reaction than in the risk-neutral case. This is an astonishing result that can be explained
by the relationship that exists between high deviations and perceived states of nature.
The environment can encourage risk-taking or induce risk-aversion behavior. Outcomes as

large losses can induce risk-aversion, while outcomes as large gains can induce risk-taking.
We give below a realistic scenario which illustrates the strategic attitude to risk of a rational

decision-maker characterized by a changing risk behavior during the control period.

Choice of the optimal risk-aversion threshold: the case of an agent with a changing risk behavior
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For this scenario, the agent’s objective is not to exceed the optimal fixed thresholds
ϕ
p_f
min = −0.6 and ϕ

p_f
max = 0.4. If ϕ

p_f
min (respective ϕ

p_f
max) is exceeded at time t, the agent will

implement an excessive risk-averse (respective risk-taking) decision which will be
suboptimal. His utility function during the entire control period evolves according to the
following formula:
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Ut(W[1,t], ϕ
r_a_n_l
t, p_f )

def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

ϕ
r_a_n_ l
t, p_f

½
exp(−ϕ

r_a_n_ l
t, p_f

2
·W[1,t])− 1

¾
if − 1 < ϕ

r_a_n_l
t, p_f < 0

−W[1,t] if ϕ
r_a_n_l
t, p_f = 0

2

ϕ
r_a_n_ l
t, p_f

½
exp(−ϕ

r_a_n_ l
t, p_f

2
·W[1,t])− 1

¾
if 0 < ϕ

r_a_n_l
t, p_f < 1

We illustrate below its changing evolution as well as the agent’s adaptive behavior to risk
during the period of control.

Fluctuations of the local uti li ty function with respect to anticipative loss and agent's risk index
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In order to illustrate the complexity of the agent’s behavior to risk in a changing
environment, we give below a suggestive plot in the particular case where the objective is
not to exceed the optimal thresholds ϕp_f

min = −0.3 and ϕ
p_f
max = 0.4 during the entire period of

control.
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The action taken at time t = 1 will induce a weak risk-taking for the next period; the agent is
characterized by a small degree of confidence. A reinforcement of the active learning correlated
with an efficient feedback (closed-loop) strategy will progressively decrease the agent’s degree
of confidence in the two next periods.
At time t = 4, the agent becomes (almost) risk-neutral. For the following three periods,

we ascertain an increasing tendence in taking higher risks. However, the agent succeeds in not
overreaching the fixed optimal threshold ϕ

p_f
max.
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At time t = 8 and t = 10, the agent’s degree of confidence is almost null. Given the inherent
inertia of the system, the agent’s risk-aversion will increase (even if not significantly) for the
next period. He succeeds in not overreaching the fixed optimal threshold ϕp_f

min . In other words,
the agent’s strategic objective is reached.
The agent’s optimal policy employed in the process of optimization and control succeeds to

constrain the dynamic system to follow the reference trajectory η.
An interesting question arises: from what values, the optimal thresholds ϕp_f

min and ϕ
p_f
max

chosen by the economic agent, can be regarded as small or large? This generally depends on
the particular environmental context as well as on the agent’s individual type.

11. Concluding Remarks and Possible Extensions

The present paper contributes to the literature on risk by exploring the crucial role played by
the dynamics of the system on the agents’ attitudes towards risk. The definitions of the absolute
risk-aversion index proposed in this paper offer a variety of advantages. First, they allow to
see how endogenous uncertainty is captured over environmental changes and to make better
comparisons between risky situations. The agent interprets the system evolution and reveals his
adaptive behavior to risk over time. It is only by optimizing the past and present that he will
optimally anticipate endogenous risks in the future (regarded as an extended present). Second,
they allow for a better risk management by the use of reinforced active learning and closed-loop
feedback information. The integration of the risk-aversion index in the agent’s optimal policy
will improve the control and implicitly the system trajectory. The risk-aversion index provides
a good understanding on how the agent’s perception to risk evolves over time. Third, they
allow to characterize the agent’s type according to his degree of risk-aversion and individual
preferences. An interesting relationship emerges between behavior to risk and length of working
horizon. Although often criticized, the most widely used hypothesis for the analysis of economic
behavior is risk-neutrality. It appears as a borderline case in our model. We propose a natural
extension of the Arrow-Pratt theory (which takes into account only attitudes towards small
exogenous risks) by including in the analysis potentially high endogenous risks (the case of
large-amplitude fluctuations). This is necessary in order to overcome the limits imposed by
the standard measures of risk-aversion. Furthermore, we refine the analysis by developing
the general case of changing risk behavior. This type of modelling has the potential to be a
powerful tool for characterizing (based on the system evolution and the importance attached to
the past and future) the agent’s attitudes towards risk, including risk-aversion, risk-neutrality
and risk-taking. This study also contributes to the bounded rationality literature (see, among
others, Simon, H. A., 1982a, 1982b, and T. J., Sargent, 1993) in that it allows for
a refinement of the agent’s individual preferences in discrete time. The proposed analysis can
be easily extended to the more general context of stochastic dynamic games (cooperative or
non-cooperative), the objective here being to define and characterize the equilibrium of the
game according to the optimal risk-sharing between strategic players. We can also study the
identification of the emerging endogenous coalitions in interactive strategic environments, in
function of the players’ types and their risky objectives. Exploring such possibilities appears
to be a good topic for further research.

Appendix

Proof of Proposition 1.
Differentiating the expression of Ut(W[1,t], ϕ

r_a
t, p_f) with respect to ϕ

r_a
t, p_f (for an arbitrary
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fixed value of W[1,t]), we obtain:

U 0
t(W[1,t], ϕ

r_a
t, p_f) =

2 · exp[−ϕ
r_a
t , p_f

2
·W[1,t]](−ϕ

r_a
t , p_f

2
·W[1,t] − 1) + 1

(ϕ
r_a
t, p_f)

2

Let us define:

Vt(W[1,t], ϕ
r_a
t, p_f)

def.
= exp[−

ϕ
r_a
t, p_f

2
·W[1,t]](−

ϕ
r_a
t, p_f

2
·W[1,t] − 1) + 1

as a function of ϕr_a
t, p_f . After simple algebraic computations, we find for the first derivative of

Vt:

V
0
t (W[1,t], ϕ

r_a
t, p_f) = ϕ

r_a
t, p_f ·

W 2
[1,t]

4
exp(−

ϕ
r_a
t, p_f

2
·W[1,t]) < 0,

that is, Vt decreases with ϕ
r_a
t, p_f :

ϕ
r_a
t, p_f < 0⇒ Vt(W[1,t], ϕ

r_a
t, p_f) > Vt(W[1,t], 0) = 0

It follows that U 0
t(W[1,t], ϕ

r_a
t, p_f) > 0. The local utility function Ut(W[1,t], ϕ

r_a
t, p_f) is therefore

increasing in ϕr_a
t, p_f . We also have that Ut is decreasing inW[1,t]. This is in agreement with the

real world and strong empirical evidence.

Proof of Proposition 2.
Simple algebraic manipulations show that the sign of the difference:

ϕ
r_a
t+1, p_f − ϕ

r_a
t, p_f =

ξ0Lt + ...+ ξk1−1Lk1−1 + ξ1Lt+1 + ...+ ξk2+1Lt+1+k2q
(ξ0 + ...+ ξk1−1 + ξ1...+ ξk2+1)

2 + l

−ξ1Lt−1 + ...+ ξk1Lk1 + ξ0Lt + ...+ ξk2Lt+k2q
(ξ1 + ...+ ξk1 + ξ0 + ...+ ξk2)

2 + l

is either positive or negative or zero (it is extremely rare), depending on the values taken by
the norm-deviations:

ξj1
not.
= k yt−j1 − ygt−j1 k

(exogenous variables)

, j1 = 0, ..., k1

ξj2
not.
= k yat+j2|It+j2 − ygt+j2 k

(random variables)

, j2 = 0, ..., k2 + 1

Proof of Proposition 3.
Suppose that k1 < k01. Let us consider that k

0
1 = k1 + k, with k ≥ 1 a fixed integer. By

hypothesis, we have:

Lt−1 < Lt−2 < ... < Lt−k1 < Lt−(k1+1) < ... < Lt−(k1+k)

We can write:
Lt−1 + ...+ Lt−k1 + ...+ Lt−(k1+k)

k1 + k
− Lt−1 + ...+ Lt−k1

k1

=
−k[Lt−1 + ...+ Lt−k1 ] + k1[Lt−(k1+1) + ...+ Lt−(k1+k)]

k1(k1 + k)
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=
[−kLt−1 + Lt−(k1+1) + ...+ Lt−(k1+k)] + ...+ [−kLt−k1 + Lt−(k1+1) + ...+ Lt−(k1+k)]

k1(k1 + k)
À 0

In other words, we have proved that:

k1 < k01 ⇒
Lt−1 + ...+ Lt−k01

k01
(the average of k01 weights)

À Lt−1 + ...+ Lt−k1
k1

(the average of k1 weights)

Proof of Proposition 4.
Consider first the case where the system transition is from consecutive small deviations

to a large deviation. Denote by ϕ
r_a, s_h
t, p the risk-aversion index at time t for this type of

scenario. We have that ϕr_a, s_h
t, p → Lt−1, where Lt−1 represents the weight attached to the

system deviation at time t − 1. Let us denote by ϕ
r_a, h_s
t, p the risk-aversion index at time t

when the system transition is from consecutive large deviations to a small deviation. In this
case, we can write:

ϕ
r_a, h_s
t, p →

eLt−2 + ...+ eLt−k1
k1 − 1

where eLt−2, ..., eLt−k1 are weighting scalars attached to large system deviations (in the context

of the second scenario). Depending on the size of the parameters Lt−1 and
Lt−2+...+ Lt−k1

k1−1 , we
can imagine three distinct situations:
a) the large deviation of the system at time t − 1 (in the context of the first scenario) is

much more important for the decision-maker than all other (k1 − 1) large deviations obtained
in the context of the second scenario:

Lt−1 ¿ eLt−2, ..., Lt−1 ¿ eLt−k1
(sufficient condition)

⇒ Lt−1 ¿
eLt−2 + ...+ eLt−k1

k1 − 1

In this case, it follows that ϕr_a, s_h
t, p < ϕ

r_a, h_s
t, p , and hence a higher degree of risk-aversion

for the same control period in the context of the first scenario compared with the second
scenario.
b) the large deviation of the system at time t − 1 (in the context of the first scenario) is

much less important for the decision-maker than all other (k1− 1) large deviations obtained in
the context of the second scenario:

Lt−1 À eLt−2, ..., Lt−1 À eLt−k1
(sufficient condition)

⇒ Lt−1 À
eLt−2 + ...+ eLt−k1

k1 − 1

In contrast with the previous case, we obtain that ϕr_a, s_h
t, p > ϕ

r_a, h_s
t, p , and thus a smaller

degree of risk-aversion at time t in the context of the first scenario compared with the second
scenario.
c) the large deviation of the system at time t − 1 (in the context of the first scenario) is

much more or less important for the decision-maker than all other (k1 − 1) large deviations
obtained in the context of the second scenario:

Lt−1 ¿ (or À) eLt−2, ..., Lt−1 ¿ (or À) eLt−k1

In this case, it may be possible to obtain:
either

ϕ
r_a, s_h
t, p < ϕ

r_a, h_s
t, p
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or
ϕ
r_a, s_h
t, p > ϕ

r_a, h_s
t, p

This completes the proof.

Proof of Proposition 5.
In the context of the first (second) scenario, we obtain respectively:

ϕ
r_a_first.sc.
t, p, k1=2k0

→ Lt−2k0 + Lt−(2k0−2) + ...+ Lt−2

k0

ϕ
r_a_ sec ond.sc.
t, p, k1=2k0

→ Lt−(2k0−1) + Lt−(2k0−3) + ...+ Lt−1

k0

Suppose without loss of generality that:

Lt−2k0 + Lt−(2k0−2) + ...+ Lt−2 À Lt−(2k0−1) + Lt−(2k0−3) + ...+ Lt−1

It follows that:
ϕ
r_a_first.sc.
t, p, k1=2k0

> ϕ
r_a_ sec ond.sc.
t, p, k1=2k0

Proof of Proposition 6.
We have respectively:

ϕ
r_a_first.sc.
t, p, k∗=2k0+1 →

Lt−(2k0+1) + Lt−(2k0−1) + ...+ Lt−3 + Lt−1

k0 + 1

ϕ
r_a_ sec ond.sc.
t, p, k∗=2k0+1 →

Lt−2k0 + Lt−(2k0−2) + ...+ Lt−2

k0

Suppose without loss of generality that:

Lt−2k0 + Lt−(2k0−2) + ...+ Lt−2

k0
À Lt−(2k0+1) + Lt−(2k0−1) + ...+ Lt−3 + Lt−1

k0 + 1

It follows that:
ϕ
r_a_first.sc.
t, p, k1=2k0+1

< ϕ
r_a_ sec ond.sc.
t, p, k1=2k0+1

We also have:

ϕ
r_a_first.sc.
t, p, k1=2k0+1

< ϕ
r_a_first.sc.
t, p, k1=2k0

ϕ
r_a_ sec ond.sc.
t, p, k1=2k0

< ϕ
r_a_ sec ond.sc.
t, p, k1=2k0+1

This completes the proof.

Proof of Proposition 7.
It results from the following sequence of inequalities:

L0
1
À L0 + L1

2
À ...À L0 + ...+ Lt−1

t

Each above ratio corresponds (in this order) to the estimation of the risk-aversion index at
time τ = 1, 2, ..., t. For this type of scenario, it is supposed that L1 ¿ L0. In other words, the

42



impact of the deviations from τ = 1 to τ = t on the agent’s future uncertainty is much more
important compared with the impact at τ = 0.

Proof of Proposition 8.
It is easy to see that the sign of the following differences:

ϕ
r_a
t, p_f − ϕ

r_a
t, f , ϕ

r_a
t, p_f − ϕ

r_a
t, p , ϕ

r_a
t, f − ϕ

r_a
t, p , ϕ

r_a
t, f − ϕ

r_a
t, w

may be either positive or negative. In other words, the agent’s degree of risk-aversion is
correlated with his adopted strategy to manage the inevitable risk and uncertainty involved
in the process of optimization and control.

Proof of Proposition 9.

Denote by ξj1
not.
= k yt−j1 − ygt−j1 k, j1 = 1, ..., k1, and ξj2

not.
= k yat+j2|It+j2

− ygt+j2 k,
j2 = 0, ..., k2, the system norm-deviations at time t − 1, ..., t − k, and t, ..., t + k2,
respectively. These are supposed to be small but non-negligible. The absolute risk-aversion
index ϕt, p_f evolves according to:

ϕ
r_a
t, p_f =

ξ1Lt−1 + ...+ ξk1Lt−k1 + ξ0Lt + ...+ ξk2Lt+k2q
(ξ1 + ...+ ξk1 + ξ0 + ...+ ξk2)

2 + l
, t = 1, ..., T.

For ease of exposition, assume that lt = l∗ (a small value from (0, 1)) for all t = 1, ..., T . It
follows that:

ξj1 < l∗, ∀ j1 = 1, ..., k1 and ξj2 < l∗, ∀ j2 = 0, ..., k2
We have:

| ϕr_a
t, p_f | ≤

ξ1 + ...+ ξk1 + ξ0 + ...+ ξk2q
(ξ1 + ...+ ξk1 + ξ0 + ...+ ξk2)

2 + l

<
l∗(k1 + k2 + 1)p

(l∗(k1 + k2 + 1))2 + l
=

1p
1 + l/(l∗(k1 + k2 + 1))2

Because the agent anticipates small deviations of the system from the fixed targets, his de-
gree of risk-aversion will be small before starting the control. Consequently, he will choose a high
value for the parameter l. As k1 and k2 have generally small values, the ratio 1√

1+l/(l∗(k1+k2+1))2

(and implicitly the risk-aversion index ϕr_a
t, p_f) will be small. We have:

− 1p
1 + l/(l∗(k1 + k2 + 1))2

≤ ϕ
r_a
t, p_f < 0

In the particular case where k yt−j1 − ygt−j1 k → 0, ∀ j1 = 1, ..., k1 and k yat+j2|It+j2 − ygt+j2 k
→ 0, ∀ j2 = 0, ..., k2, it is clear that ϕ

r_a
t, p_f → 0 (a borderline case). In real world, this type

of scenario is rare to be realized due to continuous endogenous fluctuations of the system. The
assumption of risk-neutrality for the entire working horizon is generally non-realistic.
We have the following implication:

ϕ
r_a
t, p_f → 0⇒ Ut(W[1,t], ϕ

r_a
t, p_f)

def
=

2

ϕ
r_a
t, p_f

{exp(−
ϕr−a
t, p_f

2
·W[1,t])− 1}→−W[1,t]

and thus
maxE0Ut(W[1,t], ϕ

r_a
t,p_f) = minE0[W[1,t](y1, ...yt)]
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Proof of Proposition 10.
Suppose there is some large deviations of the system (in the past and future), say ξα1, ..., ξαN1

and ξβ1, ..., ξβN2
, respectively. We have:

α1,...,αN1 ∈ {1, ..., k1}, N1 < k1 and β1, ..., βN2 ∈ {0, ..., k2}, N2 < k2.

For simplicity, assume that all high deviations of the system are comparable. Denote by
ϕ
r_a, s_h
t, p_f the risk-aversion index at time t in the case when system deviations are mixed (i.e.,
small and large). Its value is defined by the following expression:

ξ1Lt−1 + ...+ ξαN1Lt−αN1 + ...+ ξk1Lt−k1 + ξ0Lt + ...+ ...+ ξβN2
Lt+βN2

+ ...+ ξk2Lt+k2q
(ξ1 + ...+ ξαN1 + ...+ ξk1 + ξ0 + ...+ ξβN2

+ ...+ ξk2)
2 + l

where
ξj1 , j1 = 1, ..., k1, j1 6= αN∗1

, N∗
1 = 1, ..., N1

and
ξj2 , j2 = 0, ..., k2, j2 6= αN∗2

, N∗
2 = 0, ..., N2

represent the system small deviations.
Denote by ϕ

r_a, s
t,p_f the risk-aversion index at time t in the case where there is only small

deviations of the system from the fixed targets. We can write:

ϕ
r_a, s
t, p_f =

ξ1Lt−1 + ...+ ξk1Lt−k1 + ξ0Lt + ...+ ξk2Lt+k2q
(ξ1 + ...+ ξk1 + ξ0 + ...+ ξk2)

2 + l

Without loss of generality, we also assume that all small deviations of the system are com-
parable. We have the following inplications:

ϕ
r_a, s_h
t, p_f →

Lt−α1 + ...+ Lt−αN1 + Lt+β1 + ...+ Lt+βN2p
(N1 +N2)2 + l

and

ϕ
r_a, s
t, p_f →

Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2p
(k1 + k2 + 1)2 + l

Depending on the moment when high deviations arrive in the past or are expected to be
realized in the future as well as on the weighting scalars attached to the system deviations, we
can obtain two distinct scenarios:

Lt−α1 + ...+ Lt−αN1 + Lt+β1 + ...+ Lt+βN2p
(N1 +N2)2 + l

¿ (or À) Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2p
(k1 + k2 + 1)2 + l

It follows that:

ϕ
r_a, s_h
t, p_f < (or >) ϕ

r_a, s
t, p_f

In other words, the decision-maker’s risk-aversion at time t is not necessarily higher when
system deviations are mixed, compared to the case where all system deviations are small. This
surprising result reveals the complexity of the agent’s behavior towards risk in a changing
environment.
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Proof of Proposition 11.
By hypothesis, we have:

k yt−j01 − ygt−j01
k / k yt−j001 − ygt−j001

k ∼= 1 for j01 6= j001 ; j
0
1, j

00
1 ∈ {1, ..., k1}

k yat+j02|It+j02 − ygt+j02
k / k yat+j002 |It+j002 − ygt+j002

k ∼= 1 for j02 6= j002 ; j
0
2, j

00
2 ∈ {0, ..., k2}

l/ k yt−j1 − ygt−j1 k
4 ∼= 0,∀ j1 = 1, k1; l/ k yat+j2|It+j2 − ygt+j2 k

4 ∼= 0, ∀ j2 = 0, k2
It follows that:

ϕ
r_a
t, p_f →

Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2

k1 + k2 + 1
(the average of all the weights - in the past and future)

∈ (−1, 0)

Depending on the weighting scalars values attached to the system deviations, the
risk-aversion index level at time t may be more or less close to −1 or 0. Thus, if all weighting
scalars approach −1, then the index value will be close enough to −1. In this case, the agent
will be characterized by an excessive risk-aversion. Contrary to what is generally believed, it
may be possible to have a small risk-aversion when the system deviations are large. It is the
case where all weighting scalars approach 0. We say that the agent is almost “risk-neutral” by
nature, that is, there is a small variability in his risk sensitivity over time.

Proof of Proposition 12.
Suppose that all system deviations are comparable. For ease of exposition, we consider that

k1 < k01 and k2 < k02. Let us make the following notations before proceeding: k
0
1
not.
= k1+ k∗ and

k02
not.
= k2 + k∗∗ with k∗, k∗∗ ≥ 1. We have:

Lt−1 + ...+ Lt−k01 + Lt + ...+ Lt+k02

k01 + k02 + 1
− Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2

k1 + k2 + 1
=

(Lt−1 + ...+ Lt−k1) + Lt−(k1+1) + ...+ Lt−(k1+k∗) + (Lt + ...+ Lt+k2) + Lt+(k2+1) + ...+ Lt+(k2+k∗∗)

k1 + k2 + 1 + k∗ + k∗∗

−Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2

k1 + k2 + 1
=

(k1 + k2 + 1)[Lt−(k1+1) + ...+ Lt−(k1+k∗) + Lt+(k2+1) + ...+ Lt+(k2+k∗∗)]

(k1 + k2 + 1 + k∗ + k∗∗)(k1 + k2 + 1)

−(k
∗ + k∗∗)(Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2)

(k1 + k2 + 1 + k∗ + k∗∗)(k1 + k2 + 1)

It is easy to see that:

k(Lt−1 + ...+ Lt−k1) < k1[Lt−(k1+1) + ...+ Lt−(k1+k∗)] ∀ k ∈ {k∗, k∗∗}

k(Lt + ...+ Lt+k2) < (k2 + 1)[Lt+(k2+1) + ...+ Lt+(k2+k∗∗)] ∀ k ∈ {k∗, k∗∗}
It follows that:

(k∗ + k∗∗)(Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2)

< 2k1[Lt−(k1+1) + ...+ Lt−(k1+k∗)] + 2(k2 + 1)[Lt+(k2+1) + ...+ Lt+(k2+k∗∗)]
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Let us examine the sign of the following difference:

k1[Lt−(k1+1) + ...+ Lt−(k1+k∗)] + (k2 + 1)[Lt+(k2+1) + ...+ Lt+(k2+k∗∗)]

−{k1[Lt+(k2+1) + ...+ Lt+(k2+k∗∗)] + (k2 + 1)[Lt−(k1+1) + ...+ Lt−(k1+k∗)]}
= (k2 + 1− k1){[Lt+(k2+1) + ...+ Lt+(k2+k∗∗)]− [Lt−(k1+1) + ...+ Lt−(k1+k∗)]}

Several distinct scenarios can be taken into account in the analysis:
i)

k2 < k1 and Lt+(k2+1) + ...+ Lt+(k2+k∗∗) À Lt−(k1+1) + ...+ Lt−(k1+k∗)

ii)
k2 > k1 and Lt+(k2+1) + ...+ Lt+(k2+k∗∗) ¿ Lt−(k1+1) + ...+ Lt−(k1+k∗)

iii)
k2 < k1 and Lt+(k2+1) + ...+ Lt+(k2+k∗∗) ¿ Lt−(k1+1) + ...+ Lt−(k1+k∗)

iv)
k2 > k1 and Lt+(k2+1) + ...+ Lt+(k2+k∗∗) À Lt−(k1+1) + ...+ Lt−(k1+k∗)

For the first two scenarios, we obtain:

Lt−1 + ...+ Lt−k01 + Lt + ...+ Lt+k02

k01 + k02 + 1
À Lt−1 + ...+ Lt−k1 + Lt + ...+ Lt+k2

k1 + k2 + 1

and hence, a smaller degree of risk-aversion for the agent (at the same stage of the control)
when he considers a higher value of the sum of k1(feedback period) and k2 (forward period).
We underline, in this context, the trade-off between complexity and perception.
For the last two scenarios, the agent’s degree of risk-aversion does not necessarily diminish

(at the same stage of the control) when the sum of k1 and k2 is higher. This is the case where
the agent attributes more importance to the past or to the future.

Proof of Proposition 13.
We can write the inequality:

| ϕr_a
t, p_f | <

St, p_d + St, a_f_dq¡
St, p_d + St, a_f_d

¢2
+ l

, t = 1, ..., T.

The agent’s objective is to constrain the system in such a way that:

k yt−j1 − ygt−j1 k < l∗, j1 = 1, ..., k1

k yt+j2|It+j2 − ygt+j2 k < l∗, j2 = 0, ..., k2

where l∗ is a small value from (0, 1). It follows that:

| ϕr_a
t, p_f | <

l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + l

,

that is,

−1 < − l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + l

< ϕ
r_a
t, p_f < 0

The objective is not to exceed the fixed optimal threshold ϕ
p_f
min during the entire period of

control (i.e., ϕr_a
t, p_f > ϕ

p_f
min ∀ t = 1, ..., T ). Two distinct scenarios can be possible:
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Either

−1 < ϕ
p_f
min, more < −

l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + lmore

or

− l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + lless

< ϕ
p_f
min, less < 0

with 1 ≤ lmore < lless two regulator parameters which characterize the agent’s type.
The first (second) scenario corresponds to a more (less) risk-averse agent. The two fixed

thresholds, ϕp_f
min, more and ϕ

p_f
min, less, are not exceeded during the control period if and only if

the agent succeeds in controlling the system fluctuations.

Proof of Proposition 14.
Suppose that W[1,t] > 0, ∀ t = 1, ..., T . We have the following inequality:

exp(−
ϕ
r_a
t, p_f

2
·W[1,t])− 1 > −

ϕ
r_a
t, p_f

2
·W[1,t] > 0

and hence
Ut(W[1,t], ϕ

r_a
t, p_f) < −W[1,t] < 0

The agent’s local utility level varies with the value of the risk-aversion index. If the agent
succeeds to manage the risk at time t (i.e., ϕp_f

min < ϕ
r_a
t,p_f < 0), then one can write:

Ut(W[1,t], ϕ
p_f
min ) < Ut(W[1,t], ϕ

r_a
t, p_f) < −W[1,t] = lim

ϕ
r_a
t,p_f→0

Ut(W[1,t], ϕ
r_a
t, p_f)

In the case where the agent does not succeed to manage the risk at time t (i.e., −1 < ϕ
r_a
t, p_f <

ϕ
p_f
min ), we have:

lim
ϕ
r_a
t,p_f→−1

Ut(W[1,t], ϕ
r_a
t, p_f) = Ut(W[1,t],−1) < Ut(W[1,t], ϕ

r_a
t, p_f) < Ut(W[1,t], ϕ

p_f
min )

What is optimal for the agent in the first context becomes unoptimal in the second context.
Optimality generally depends on context and adopted criteria.

Proof of Proposition 15.
We can write the sequence of inequalities:

ϕ
p_f
min, more < −

l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + lmore

,

− T√
T 2 + lless

< − l∗(k1 + k2 + 1)p
[l∗(k1 + k2 + 1)]2 + lless

< ϕ
p_f
min, less

For a higher (smaller) number of periods T , the value of the parameters k1 and k2 can be
higher (smaller) and thus the ratio − l∗(k1+k2+1)√

[l∗(k1+k2+1)]2+lless
(respective − l∗(k1+k2+1)√

[l∗(k1+k2+1)]2+lmore

) can

take a smaller (higher) value. In other words, a less (more) risk-averse decision-maker can
choose a smaller (higher) risk-aversion threshold ϕ

p_f
min, less (respective ϕ

p_f
min, more) depending on

the length of the working horizon. We must distinguish between “nature” and type. The agent
is considered risk-averse by nature, while his individual type is “more or less risk-averse”. The
evolution of the environment will refine the agent’s type.
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Proof of Proposition 16.
Following the same reasoning as in Proposition 1, we obtain that U r_l

t (W[1,t], ϕ
r_l
t, p_f) is

decreasing in ϕ
r_l
t, p_f and respective W[1,t], where:

U
r_l
t (W[1,t], ϕ

r_l
t, p_f)

def
=

2

ϕ
r_l
t, p_f

(
exp(−

ϕ
r_a
t, p_f

2
·W[1,t])− 1

)

represents the local utility function at time t of a risk-taker decision-maker.

Proof of Proposition 17.
Consider the case of a risk-taker agent. The weighting scalars verify the following conditions:

0 < eLt−1 < ... < eLt−k1 < 1, 0 < L0t < ... < L0t+k2 < 1

Following the same reasoning as in Proposition 13, one can write:

ϕ
r_l
t, p_f <

eSt, p_d + S0t, a_f_dq¡
St, p_d + St, a_f_d

¢2
+ el , t = 1, ..., T.

It follows that:

ϕ
r_l
t, p_f <

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + el ,

where l∗ is a small value from (0, 1) such that:

k yt−j1 − ygt−j1 k < l∗, j1 = 1, ..., k1

k yt+j2|It+j2 − ygt+j2 k < l∗, j2 = 0, ..., k2

The agent’s objective is not to exceed a fixed optimal risk-taker threshold ϕ
p_f
max during the

control period (i.e., ϕr_l
t, p_f < ϕ

p_f
max ∀ t = 1, ..., T ). Two distinct scenarios can be possible:

Either

0 < ϕ
p_f
max, less <

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elless < 1

or

0 <
l∗(k1 + k2 + 1)q

[l∗(k1 + k2 + 1)]2 + elmore

< ϕp_f
max, more < 1

with 1 ≤ elmore < elless two regulator parameters which characterize the agent’s type.
The first (second) scenario corresponds to a less (more) risk-taker agent. The two fixed

thresholds, ϕp_f
max, more and ϕ

p_f
max, less, are not exceeded during the control period if and only if

the agent succeeds in controlling the system fluctuations.

Proof of Proposition 18.
Following the same reasoning as in Proposition 14, we obtain the inequality:

U
r_l
t (W[1,t], ϕ

r_l
t, p_f) > −W[1,t], t = 1, ..., T

where by hypothesis, W[1,t] > 0. We distinguish two asymmetrical cases:
i) the agent does not exceed the optimal threshold ϕ

p_f
max at time t (i.e., ϕ

r_l
t, p_f < ϕ

p_f
max).
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ii) the agent exceedes the optimal threshold ϕ
p_f
max at time t (i.e., ϕ

r_l
t, p_f > ϕ

p_f
max).

In the first case, we have:

U
r_l
t (W[1,t], ϕ

p_f
max) < U

r_l
t (W[1,t], ϕ

r_l
t, p_f) < U

r_l
t (W[1,t], 0)

In the second case, we can write:

lim
ϕ
r_ l
t,p_f→0

U
r_l
t (W[1,t], ϕ

r_l
t, p_f) = −W[1,t] < U

r_l
t (W[1,t], ϕ

r_l
t, p_f) < U

r_l
t (W[1,t], ϕ

p_f
max)

Proof of Proposition 19.
We can write the sequence of inequalities:

ϕ
p_f
max, less <

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elless <

Tq
T 2 + elless ,

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elmore

< ϕp_f
max, more

For a higher (smaller) number of periods T , the value of the parameters k1 and k2 can be
higher (smaller) and thus the ratio l∗(k1+k2+1)√

[l∗(k1+k2+1)]2+lless
(respective l∗(k1+k2+1)√

[l∗(k1+k2+1)]2+lmore

) can take

a (higher) smaller value. In other words, a less (more) risk-taker decision-maker can choose a
higher (smaller) risk-taker threshold ϕ

p_f
max, less (respective ϕ

p_f
max, more) depending on the length

of the working horizon.

Proof of Proposition 20.
We have the inequality:

| ϕr_a_n_l
t, p_f | <

eSt, p_d + S0t, a_f_dq¡
St, p_d + St, a_f_d

¢2
+ el , t = 1, ..., T.

It follows that:

ϕ
r_a_n_l
t, p_f <

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + el if ϕ

r_a_n_l
t, p_f > 0

or

ϕ
r_a_n_l
t, p_f > − l∗(k1 + k2 + 1)q

[l∗(k1 + k2 + 1)]2 + el if ϕ
r_a_n_l
t, p_f < 0

where l∗ is a small value from (0, 1) such that:

k yt−j1 − ygt−j1 k < l∗, j1 = 1, ..., k1

k yt+j2|It+j2 − ygt+j2 k < l∗, j2 = 0, ..., k2

Following the same reasoning as in Proposition 13 and Proposition 17, we obtain the
following distinct scenarios:
i) either

−1 < ϕ
p_f, c_b
min, more < −

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elmore
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or

− l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elless < ϕ

p_f, c_b
min, less < 0

ii) either

0 < ϕ
p_f, c_b
max, less <

l∗(k1 + k2 + 1)q
[l∗(k1 + k2 + 1)]2 + elless < 1

or

0 <
l∗(k1 + k2 + 1)q

[l∗(k1 + k2 + 1)]2 + elmore

< ϕp_f, c_b
max, more < 1

with 1 ≤ elmore < elless, two regulator parameters which characterize the agent’s attitude to
risk. This completes the proof.
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