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Abstract

We consider one-to-one matching (roommate) problems in which agents (students) can
either be matched as pairs or remain single. The aim of this paper is twofold. First, we
review a key result for roommate problems (the “lonely wolf” theorem) for which we
provide a concise and elementary proof. Second, and related to the title of this paper,
we show how the often incompatible concepts of stability (represented by the political
economist Adam Smith) and fairness (represented by the political philosopher John
Rawls) can be reconciled for roommate problems.
JEL classification: C62, C78.
Keywords: roommate problem, stability, fairness.

1 Roommate Markets

We consider one-to-one matching problems in which agents can either be matched as pairs
or remain single. Gale and Shapley (1962, Example 3) introduced these so-called roommate
problems as follows: “An even number of boys wish to divide up into pairs of roommates.”
A very common extension of this problem is to allow also for odd numbers of agents and to
consider the formation of pairs and singletons (rooms can be occupied either by one or by
two agents). The class of roommate problems also include as special cases the well-known
marriage problems (Gale and Shapley, 1962).1
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1There is a large literature on the marriage problem; see, for instance, Roth and Sotomayor (1990)
and the two-sided matching bibliography on Al Roth’s game theory, experimental economics, and market
design page. In comparison, relatively few papers and books deal with roommate problems; some of the key
references concerning roommate problems are Chung (2000); Diamantoudi et al. (2004); Gusfield and Irving
(1989); Tan (1991).
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The aim of this paper is twofold. First, we review a key result for roommate problems
for which we provide a concise and elementary proof. Second, and related to the title of this
paper, we show how the often incompatible concepts of equilibrium or stability (represented
by Adam Smith2) and fairness (represented by John Rawls3) can be reconciled for roommate
problems.

Formally, a roommate problem (Gale and Shapley, 1962) is a pair (N, (ºi)i∈N) where N
is a finite set of agents and, for each i ∈ N , ºi is a total order over N .4 For each i ∈ N , we
interpret ºi as agent i’s preferences over sharing a room with any of the agents in N\{i}
and having a room for himself (or consuming an outside option such as living off-campus).
Preferences are strict, i.e., k ºi j and j ºi k if and only if j = k. The strict preference
relation associated with ºi is denoted by Âi. A solution to a roommate problem, a matching
µ, is a partition of N in pairs and singletons. Alternatively, we describe a matching by a
function µ : N → N of order two, i.e., for all i ∈ N , µ(µ(i)) = i. Agent µ(i) is agent
i’s match, i.e., the agent with whom he is matched to share a room (possibly himself). If
µ(i) = i then we call i a single.

A marriage problem (Gale and Shapley, 1962) is a roommate problem (N, (ºi)i∈N) such
that N is the union of two disjoint sets M and W (men and women), and each agent
in M (respectively W ) prefers being alone to being matched with any other agent in M
(respectively W ).

A matching µ is blocked by a pair {i, j} ⊆ N (possibly i = j) if j Âi µ(i) and i Âj µ(j). If
{i, j} blocks µ, then {i, j} is called a blocking pair for µ. A matching is individually rational
if there is no blocking pair {i, j} with i = j. A matching is stable if there is no blocking
pair. A roommate problem is solvable if the set of stable matchings is non-empty. Gale and
Shapley (1962) showed that all marriage problems are solvable and provided an unsolvable
roommate problem (Gale and Shapley, 1962, Example 3).

The following is a simplified version of Gale and Shapley’s example with three agents:
2 Â1 3 Â1 1, 3 Â2 1 Â2 2, and 1 Â3 2 Â3 3. Clearly, the matching where all agents are
singles is not stable (any two agents can block). So, assume two agents share a room. Then,
the single agent is the best roommate for one of these two agents and hence a blocking pair
can be formed. Tan (1991) provided a necessary and sufficient condition for the existence of
a stable matching.

Note that for marriage problems, an individually rational matching never matches two
men or two women, i.e., the partition consists of man-woman pairs and singletons.

2 Lonely Wolves, Medians, and Compromise

Our starting point is a solvable roommate problem. Typically there are multiple stable
matchings and with choice comes the opportunity to select a particularly appealing stable

2Adam Smith (1723–1790), a political economist, propagated the view that individuals even though
interested only in their own gains will still advance public interest (Smith, 1796).

3John Rawls (1921–2002), a political philosopher, discussed important aspects of fairness and justice
particularly suited for economic applications (Rawls, 1971).

4A total order is a binary relation that satisfies reflexivity, antisymmetry, transitivity, and totality or
comparability.
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matching, for example a stable matching that maximizes the number of matched pairs. It
turns out that no such selection is possible because an agent who is single at one stable match-
ing is also single at all other stable matchings (Gusfield and Irving, 1989, Theorem 4.5.2). In
fact, Gale and Sotomayor (1985, Proposition 1) already proved this “lonely wolf” theorem
for marriage problems. Here we provide an elementary proof.

Theorem 1 The lonely wolf theorem
Let µ and µ′ be stable matchings. Then, µ and µ′ have the same set of single agents, i.e.,
µ(i) = i ⇔ µ′(i) = i.

Proof Suppose µ(i1) = i1 6= i2 = µ′(i1) for some i1, i2 ∈ N . Since preferences are strict
and µ′ is individually rational, i2 Âi1 i1.

Define i3 := µ(i2). Then, i3 Âi2 i1 (otherwise {i1, i2} is a blocking pair for µ) and i3 6= i2
(otherwise {i2} is a blocking pair for µ′). Define i4 := µ′(i3). Then, i4 Âi3 i2 (otherwise
{i2, i3} is a blocking pair for µ′) and i4 6= i3 (otherwise {i3} is a blocking pair for µ). Next,
define agents i5, i6, . . . by

ip+1 :=

{
µ(ip) if p is even;
µ′(ip) if p is odd.

Similarly as before it follows that for all p ≥ 2, ip+1 Âip ip−1 and ip+1 6= ip. Since N is finite,
there is a p′ ≥ 1 with

ip′+1 = il for some l ≤ p′. (1)

Let p̄ be the smallest p′ ≥ 1 that satisfies (1). By showing that this leads to a contradiction,
we prove that µ(i1) = i1 implies µ′(i1) = i1.

Note that i3 6∈ {i1, i2} and therefore p̄ ≥ 3. In general, for all p ≥ 2, ip+1 6∈ {ip, ip−1}.
Hence, p̄ ≥ 3 and p̄ > l + 1 for all l ≤ p̄ with ip̄+1 = il.

Let l ≤ p̄ with ip̄+1 = il. Suppose p̄ is even, i.e., ip̄+1 = µ(ip̄). Then, µ(ip̄) = il. If l = 1,
then from the definition of i1, ip̄ = i1, contradicting that p̄ is the smallest p′ ≥ 1 that satisfies
(1). If l is odd and l 6= 1, then il−1 = µ(il) = ip̄, contradicting the definition of p̄. If l is
even, then il+1 = µ(il) = ip̄, contradicting the definition of p̄.

Suppose p̄ is odd, i.e., ip̄+1 = µ′(ip̄). Then, µ′(ip̄) = il. If l = 1, then from the definition
of i2, ip̄ = i2, contradicting the definition of p̄. If l is odd and l 6= 1, then il+1 = µ′(il) = ip̄,
contradicting the definition of p̄. If l is even, then il−1 = µ′(il) = ip̄, contradicting the
definition of p̄. ¥

Since no selection can be based on the set of matched agent, we next try to find a stable
matching that will be perceived as fair by the agents. Imagine that we ask each agent to
rank all stable matchings according to his preferences. For two (stable) matchings µ and µ′,
µ ºi µ′ ⇔ µ(i) ºi µ′(i). Note that since an agent might be matched to the same agent in
several stable matchings, this ranking is not strict. Clearly, we cannot always give the best
match to every agent, but can we implement fairness by finding a matching that matches
each agent with his k-th ranked match? We explain this idea in our next example and
show that this idea of fairness or compromise (at least if there is an even number of stable
matchings) is not always feasible.
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Example 1 An even number of stable matchings and no compromise
Consider the following roommate problem with 8 agents and preferences as listed in the table
below. The first column, for instance, means that 8 Â1 2 Â1 7 Â1 4 Â1 1 Â1 5 Â1 3 Â1 6.

Â1 Â2 Â3 Â4 Â5 Â6 Â7 Â8

8 3 4 2 6 7 8 5
2 5 6 1 3 5 6 7
7 1 2 3 8 4 1 1
4 4 5 5 2 2 2 2
1 6 1 6 1 6 3 8
5 8 7 8 5 1 4 6
3 7 3 7 7 3 5 4
6 2 8 4 4 8 7 3

There are 4 stable matchings:

µ1 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
µ2 = {{1, 2}, {3, 4}, {5, 8}, {6, 7}}
µ3 = {{1, 4}, {2, 3}, {5, 6}, {7, 8}}
µ4 = {{1, 4}, {2, 3}, {5, 8}, {6, 7}}

The following (weak) rankings on matchings are induced (∼ denotes indifferences):

µ1 ∼1 µ2 Â1 µ3 ∼1 µ4

µ3 ∼2 µ4 Â2 µ1 ∼2 µ2

µ1 ∼3 µ2 Â3 µ3 ∼3 µ4

µ3 ∼4 µ4 Â4 µ1 ∼4 µ2

µ1 ∼5 µ3 Â5 µ2 ∼5 µ4

µ2 ∼6 µ4 Â6 µ1 ∼6 µ3

µ1 ∼7 µ3 Â7 µ2 ∼7 µ4

µ2 ∼8 µ4 Â8 µ1 ∼8 µ3

Agents 1, 2, and 4 order their matches at the 4 stable matchings as 2, 2, 4, 4; 3, 3, 1, 1; and
1, 1, 3, 3 respectively. If agent 1 is given his first or second choice, then he is matched with
agent 2 who then receives his third or fourth choice. If agent 1 is given his third or fourth
choice, then he is matched with agent 4 who then receives his first or second choice. It
follows that matching all agents with a k-th ranked match is not possible. ¦

The impossibility result exhibited in the example is due to the fact that there is an even
number of (distinct) stable matchings. Next, we show that for roommate problems with an
odd number of stable matchings a compromise matching where each agent is matched to a
match of the same rank is possible. In fact, we prove that for any odd number of stable
matchings, a stable matching at which each agent is matched to his “median” match always
exists. Thus, for roommate problems with an odd number of stable matchings Adam Smith
(who stands for stability) and John Rawls (who stands for fairness) represent compatible
criteria and hence “can share a room.”5

5Example 1 is an example where the equilibrium and the fairness principles represented by Adam Smith
and John Rawls are incompatible: there they will never be able to share a room.
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The next lemma, which appeared in Gusfield and Irving (1989, Lemma 4.3.9), facilitates
the proof of our main result.

Lemma 1 Let µ and µ′ be stable matchings. Let i ∈ N . Suppose µ′(i) 6= µ(i) = j for some
j ∈ N . Then, j, µ′(i) 6= i. Moreover, µ(i) Âi µ′(i) implies µ′(j) Âj µ(j).

Proof By Theorem 1, j, µ′(i) 6= i. Suppose µ(i) Âi µ′(i) and µ(j) ºj µ′(j). Since
preferences are strict and µ(j) = i 6= µ′(j), µ(j) Âj µ′(j). Hence, {i, j} is a blocking pair for
µ′, contradicting stability. ¥

Our main result, Theorem 2, extends Theorem 4.3.5 in Gusfield and Irving (1989) from
three to any odd number of stable matchings.

Let µ1, . . . , µ2k+1 be an odd number of (possibly non-distinct) stable matchings. Let each
agent rank these matchings according to his preferences as explained before (Example 1).
We denote agent i’s (k + 1)-st ranked match by med{µ1(i), . . . , µ2k+1(i)}.
Theorem 2 Smith and Rawls share a room
Let µ1, . . . , µ2k+1 be an odd number of (possibly non-distinct) stable matchings. Then, µ∗ :
N → N defined by

µ∗(i) := med{µ1(i), . . . , µ2k+1(i)} for all i ∈ N

is a well-defined stable matching. We call µ∗ the median matching of µ1, . . . , µ2k+1.

In the context of the linear programming approach to so-called bistable matching problems,
Sethuraman and Teo (2001, Theorem 3.2) mentioned this result (without proof) as an in-
teresting structural property of stable roommate matchings. Here we provide an elementary
proof.

Proof First, we show that µ∗ is a well-defined matching, i.e., µ∗ is of order 2. Let i ∈ N
with µ∗(i) 6= i. We have to prove that µ∗(µ∗(i)) = i. Let j := µ∗(i). Without loss of
generality, µ1(i) ºi µ2(i) ºi · · · ºi µ2k(i) ºi µ2k+1(i). Then, µ∗(i) = µk+1(i) = j and
µk+1(j) = i. Let S = {µ1, . . . , µ2k+1}. Define

Bi := {µ ∈ S | µ ºi µk+1},
Wi := {µ ∈ S | µ ≺i µk+1},
Bj := {µ ∈ S | µ Âj µk+1}, and

W j := {µ ∈ S | µ ¹j µk+1}.
Clearly, {Bi,Wi} and {Bj,W j} are partitions of S, where possibly Wi = ∅ or Bj = ∅.

By Lemma 1, Wi ⊆ Bj. Suppose there exists µ ∈ Bj \Wi. Since Bi ∪Wi = S, µ ∈ Bi.
Thus, µ ∈ Bi ∩ Bj. Since µ ∈ Bj, µ Âj µk+1. In particular, since µk+1(j) = i, µ(j) 6= i.
Then, since µ ∈ Bi, µ Âi µk+1. Hence, {i, j} is a blocking pair for µk+1, contradicting
stability. So, Wi = Bj. Since {Bi,Wi} and {Bj,W j} are partitions of S, B̄i = W̄j. Hence,

Bi︷ ︸︸ ︷
µ1 ºi µ2 ºi · · · ºi µk+1 ∼i · · · Âi Wi

Wi Âj · · · ∼j µk+1 ºj {µ1, . . . , µk}︸ ︷︷ ︸
Bi
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In particular, it follows that µ∗(j) = µk+1(j). Hence, µ∗(µ∗(i)) = µ∗(j) = µk+1(j) = i.

We now prove that µ∗ is stable. By definition, µ∗ is individually rational. Suppose there
is a blocking pair {i, j} with i 6= j, i.e., j Âi µ∗(i) and i Âj µ∗(j). Then, i prefers j to at
least k + 1 stable matchings in {µ1, . . . , µ2k+1}. Similarly, j prefers i to at least k + 1 stable
matchings in {µ1, . . . , µ2k+1}. Hence, for at least one stable matching µ ∈ {µ1, . . . , µ2k+1},
j Âi µ(i) and i Âj µ(j), contradicting stability. ¥

We can easily extend the result of Theorem 2 to an even number of stable matchings
(Sethuraman and Teo, 2001, Theorem 3.3).

Corollary 1 Smith and Rawls (almost) share a room
Let µ1, . . . , µ2k be an even number of (possibly non-distinct) stable matchings. Then, there
exists a stable matching at which each agent is assigned a match of rank k or k + 1.

Proof By Theorem 2, the median of the first 2k − 1 stable matchings, i.e., µ∗ =
med{µ1, . . . , µ2k−1}, is a well-defined and stable matching. Then, for any i ∈ N ,

agent i is matched at µ∗ with his

{
k-th ranked match if µ∗(i) ºi µ2k(i);
(k + 1)-st ranked match if µ∗(i) ¹i µ2k(i). ¥

In the next example we calculate the median matching for three stable matchings and
demonstrate that the “median operator” is not closed, i.e., that the resulting median match-
ing is not always one of the stable matchings that were used to calculate it.

Example 2 An odd number of stable matchings and median matchings
Consider the following roommate problem with 8 agents and preferences as listed in the table
below.

Â1 Â2 Â3 Â4 Â5 Â6 Â7 Â8

4 7 2 6 2 1 4 7
2 4 8 2 6 2 6 2
5 6 5 5 4 8 1 5
3 8 4 8 7 3 3 1
8 1 6 3 8 4 5 4
7 5 1 1 3 5 2 6
6 3 7 7 1 7 8 3
1 2 3 4 5 6 7 8

There are 5 stable matchings:

µ1 = {{1, 3}, {2, 4}, {5, 7}, {6, 8}}
µ2 = {{1, 3}, {2, 7}, {4, 5}, {6, 8}}
µ3 = {{1, 7}, {2, 4}, {3, 6}, {5, 8}}
µ4 = {{1, 8}, {2, 4}, {3, 6}, {5, 7}}
µ5 = {{1, 8}, {2, 7}, {3, 6}, {4, 5}}

µ4 is the median matching of {µ1, µ2, µ3, µ4, µ5} and of {µ1, µ3, µ5}. ¦
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For marriage problems we even have a stronger result. Let µ1, . . . , µk be k (possibly non-
distinct) stable matchings for a marriage problem and assume that each agent ranks these
matchings according to his/her preferences. Using linear programming tools, Teo and Sethu-
raman (1998, Theorem 2) showed that the map that assigns to each man his l-th (weakly)
best match and to each woman her (k − l + 1)-st (weakly) best match determines a well-
defined and stable matching. We explain and discuss (generalized) medians as compromise
solutions for two-sided matching problems in Klaus and Klijn (2006). Below we provide an
elementary proof of this “generalized median result” for marriage problems.

Consider a marriage problem (M∪W, (ºi)i∈N). Let µ1, . . . , µk be k (possibly non-distinct)
stable matchings. Let each agent rank these matchings according to his/her preferences as
explained before. Formally, for each i ∈ M ∪W there is a sequence of matchings (µi

1, . . . , µ
i
k)

such that {µi
1, . . . , µ

i
k} = {µ1, . . . , µk} and for any l ∈ {1, . . . , k− 1}, µi

l(i) ºi µi
l+1(i). Thus,

for any l ∈ {1, . . . , k}, at µi
l agent i is assigned to his/her l-th (weakly) best match (among

the k stable matchings).
For any l ∈ {1, . . . , k}, we define the generalized median stable matching αl as the

function αl : M ∪W → M ∪W defined by

αl(i) :=

{
µi

l(i) if i ∈ M ;
µi

(k−l+1)(i) if i ∈ W .

Theorem 3 Marriage and compromise (generalized medians)
Let µ1, . . . , µk be k (possibly non-distinct) stable matchings for a marriage problem. Then,
for any l ∈ {1, . . . , k}, αl is a well-defined stable matching.

Proof Let l ∈ {1, . . . , k}. First, we show that αl is a well-defined matching, i.e., αl is of
order 2. Let m ∈ M with αl(m) = w ∈ W . We have to prove that αl(αl(m)) = m. Without
loss of generality, µ1(m) ºm µ2(m) ºm · · · ºm µl(m) ºm · · · ºm µk−1(m) ºm µk(m) and
αl(m) = µl(m). Then, µl(m) = αl(m) = w and µl(w) = m. By arguments similar to those
in the first part of the proof of Theorem 2,6

µ1 ºm · · · ºm µl−1 ºm µl ºm µl+1 ºm · · · ºm µk

{µk, . . . , µl+1} ºw µl ºw {µl−1, . . . , µ1}

In particular, µl(w) is the (k − l + 1)-st ranked match for woman w and therefore αl(w) =
µl(w). Hence, αl(αl(m)) = αl(w) = µl(w) = m.

We now prove that αl is stable. By definition, αl is individually rational. Suppose there
is a blocking pair {m,w} with m ∈ M and w ∈ W , i.e., w Âm αl(m) and m Âw αl(w). Then,
m prefers w to at least k− l+1 stable matchings in {µ1, . . . , µk}. Similarly, w prefers m to at
least l stable matchings in {µ1, . . . , µk}. Hence, for at least one matching µ ∈ {µ1, . . . , µk},
w Âm µ(m) and m Âw µ(w), contradicting stability. ¥

6Recall that in the first part of the proof of Theorem 2 only the relative rankings of agent i’s mates with
respect to µk+1 mattered – which exact rank µk+1 had did not play any role in that part of the proof.
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Fleiner (2002, Theorem 5.5), Klaus and Klijn (2006, Theorem 3.2), and Sethuraman et al.
(2006, Theorem 9) generalized Theorem 3 to college admissions problems (Gale and Shapley,
1962) with responsive preferences,7 in which students have to be matched to colleges based
on the students’ and the colleges’ preferences over the other side of the market and colleges’
capacity constraints. It is well-known that for this class of two-sided matching problems the
set of stable matchings is still non-empty and has the “lonely wolf” property, i.e., the set of
single students does not vary from one stable matching to another (see, for instance, Roth
and Sotomayor, 1990, Lemma 5.6 and Theorem 5.12). Mart́ınez et al. (2000) introduced the
domain of q-separable and substitutable preferences for colleges that contains the domain
of responsive preferences. They prove that even for this larger domain the set of stable
matchings is non-empty and that the “lonely wolf” property holds. Surprisingly, we cannot
extend Theorem 3 to the domain of q-separable and substitutable preferences as the following
example shows.

Example 3 No compromise for q-separable and substitutable preferences
Consider Mart́ınez et al.’s (2000, Example 2) college admissions problem with 4 students
s1, s2, s3, s4, 2 colleges C1 and C2 with 2 seats each, and preferences as listed in the table
below. The colleges’ preferences are q-separable and substitutable (for details see Mart́ınez
et al., 2000).

ÂC1 ÂC2 Âs1 Âs2 Âs3 Âs4

{s1, s2} {s3, s4} C2 C2 C1 C1

{s1, s3} {s2, s4} C1 C1 C2 C2

{s2, s4} {s1, s3}
{s3, s4} {s1, s2}
{s1, s4} {s1, s4}
{s2, s3} {s2, s3}
{s1} {s1}
{s2} {s2}
{s3} {s3}
{s4} {s4}

There are 4 stable matchings:

µ1 = {{C1, s1, s2}, {C2, s3, s4}}
µ2 = {{C1, s1, s3}, {C2, s2, s4}}
µ3 = {{C1, s2, s4}, {C2, s1, s3}}
µ4 = {{C1, s3, s4}, {C2, s1, s2}}

Considering the first three matchings, one straightforwardly checks that matching each agent
with its median match is not a matching: C1 would be matched with {s1, s3} but at the
same time s3 would be matched with C2. ¦

7By responsiveness (Roth, 1985), a college’s preference relation over sets of students is related to its
ranking of single students in the following way: the college always prefers to add an acceptable student to
any set of students (provided this does not violate the capacity constraint) and it prefers to replace any
student by a better student.
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