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Abstract

We extend Jackson and Watts’s (2002) result on the coincidence of S-stochastically stable
and core stable networks from marriage problems to roommate problems. In particular, we
show that the existence of a side-optimal core stable network, on which the proof of Jackson
and Watts (2002, Theorem 2) hinges, is not crucial for their result.

JEL classification: C62, CT78.

Keywords: Core, networks, roommate problems, stochastic stability.

1 Introduction

Jackson and Watts (2002), from now on JW, model network formation as a dynamic process
in which individuals form and sever links based on the improvement that the resulting network
offers them relative to the current network. JW’s contribution is twofold. First, they introduce
and characterize a dynamic solution concept for networks — stochastic stability. Second, for
marriage problems (Gale and Shapley, 1962) they show that the set of S-stochastically stable
networks coincides with the set of core stable networks (JW, Theorem 2).

In their seminal paper, Gale and Shapley (1962) also generalize (two-sided) marriage prob-
lems to (one-sided) roommate problems.!

Two features of the core (the set of core stable networks in JW’s terminology) do not extend
from marriage to roommate problems. First, not every roommate problem is solvable, i.e., a
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!There is a large literature on the marriage problem; see, for instance, Roth and Sotomayor (1990) and the
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core stable network does not always exist. Second, while in marriage problems side-optimal
core stable networks always exist and play a crucial role (e.g., in JW’s proof of Theorem 2), no
similarly prominent core stable networks exist for solvable roommate problems.

Our contribution has two dimensions. First, we extend JW’s Theorem 2 to a larger class of
network problems (from marriage to roommate problems).?2 Second, we provide a short proof
that does not use the existence of side-optimal core stable networks, on which the proof of JW
hinges. In particular, JW’s result is not a consequence of the “polarization structure” of the
set of core stable networks for marriage problems (which after all is absent for some roommate
problems).

2 Roommate Networks

We refer to JW (pp. 270-281) for the notation and definitions related to networks.

In a roommate problem, a set of players N has to be partitioned in pairs (roommates) and
singletons. Thus, a network is a roommate network if each player i € N is linked to at most one
other player. Hence, the set of roommate networks is G = {g | ij € g implies ik & g for k # j}.
For roommate networks the value function is defined by v(g) := >,cy ui(g) and the allocation
rule by Y;(v,g) := u;(g), where for each i € N, u; : G — R only depends on the player to which
i is linked (possibly himself). From now on we assume that networks are roommate networks.
Core stability, simultaneous improving paths, and S-stochastic stability are defined as in JW
(pp. 282-285). A roommate problem is solvable if the set of core stable networks is non empty.

Theorem 1. Consider any solvable roommate problem with strict preferences. Then, the set of
S-stochastically stable networks coincides with the set of core stable networks.

Proof: Let ¢’ be a core stable network. Given a network g, let n(g,¢’) denote the number of
links and single players that are common to g and ¢'. Interpreting n(-,-) as distance measure
we say g1 is closer to ¢’ than gs if n(g1,4") > n(ge, 9').

Diamantoudi et al. (2004, Claim, p. 21) show the following: For any § that is not core stable,
there exists a finite simultaneous improving path § = go, . . ., gz such that n(gr,g’) > n(g,¢')+1.
Repeated application of Diamantoudi et al.’s (2004) Claim leads to the following result.

Lemma 1. For any non core stable network g there exists a finite simultaneous improving path
d=3o,---,9r = g" of distinct networks such that g" is core stable and n(g”,q’) > n(g,q') + 1.

Claim 1. There exist no closed cycles.
This follows from Lemma 1.

Claim 2. If there is a singleton core stable network, then it is the unique S-stochastically stable
network.

This follows from Claim 1.

>This answers in the affirmative a research question posed by Diamantoudi et al. (2004). They showed that
Roth and Vande Vate’s (1990) convergence result for marriage problems also holds for solvable roommate problems.
Given that JW used Roth and Vande Vate’s (1990) convergence result to prove their Theorem 2, Diamantoudi
et al. (2004) asked whether the extended convergence result could be used to extend JW’s Theorem 2 as well.



Claim 3. If there are k > 1 core stable networks, then the resistance of any core stable network
s k—1.

Let {g1,92,.-.,9x} denote the set of core stable networks. We prove Claim 3 by constructing
a gi-tree with resistance k — 1.

First, we show how to connect the core stable networks go, ..., gr with one mutation each
to construct a subtree of the final gi-tree. We order core stable networks according to their
distance to g1: without loss of generality, n(g1,91) > n(g2,91) > ... > n(gr, 91)-

Let §o be an adjacent network of go such that n(g2,g1) > n(g2,g1).> Since g is core stable
and go is adjacent, r(g2,g2) = 1 and g2 is non core stable. By Lemma 1, there exists a finite
simultaneous improving path p = {gs, ..., g} of distinct networks such that g is core stable and
n(g,91) > n(g2,91) + 1. Recall that no core stable network is strictly closer to g; than gs. Thus,
g = g1. By definition of p the directed path

g27§27 -5 91
—_—
path p

is a gi-subtree of resistance 1 that contains g; and go together with the non core stable networks
on path p.

Let [ € {3,...,k} and assume that we have constructed a g;-subtree of resistance [ — 2
that contains g1, g2, ..., g;_1 together with some of the non core stable networks. Let g; be an
adjacent network of g; such that n(g;,g1) > n(g;, g1). Since g; is core stable and g; is adjacent,
r(g1,g1) = 1 and g; is non core stable. By Lemma 1, there exists a finite simultaneous improving
path p = {g;,..., g} of distinct networks such that g is core stable and n(g, g1) > n(g;, g1) + 1.
Recall that no core stable network in {g;i1,...,gx} is strictly closer to g1 than g;. Thus,
g=9i€{91,---, -1}

Case 1: Except for g, none of the networks on path p is connected to the existing gi-subtree.
We add the directed path
990, - - -5 9i
——
path p

to the existing gi-subtree. By definition of p the resulting graph is a gj-subtree of resistance
I — 1 that contains g1, go, ..., g; together with some non core stable networks.

Case 2: Some network on path p different from g is connected to the existing g;-subtree.

Let ¢* be the first network on path p that is connected to the existing gi-subtree. We now
only add the directed path g, g, ..., g* to the existing g;-subtree. Since p is a path of distinct
networks we obtain a gj-subtree of resistance [ — 1 that contains ¢1, g2, . . ., g; together with some
non core stable networks.

After k — 1 steps we have constructed a gj-subtree of resistance k — 1 that contains all core
stable networks together with some non core stable networks.

Finally, by Lemma 1, we can connect any remaining (non core stable) network that is not
connected to the gj-subtree through a zero resistance path (as in Case 2, paths have to be
adjusted if they contain already connected networks).

3Such a §» can be obtained by breaking a link in go that does not exist in ¢; or adding a link in go that exists
in g1 but not in go.



Hence, we have constructed a gi-tree with resistance kK — 1. As at least one mutation is
needed to connect two core stable networks, g; has resistance k — 1.
Claims 1, 2, and 3 establish the theorem. O
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