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Abstract

We analyze the formation of partnerships as a sequential game with moral hazard within
coaliti ons; once formed, partnerships compete a la Cournot in the marketplace. When
moral hazard within coaliti ons is very severe, no partnership will form. However, we show
that when moral hazard is not too severe the coaliti on structure will be either similar to or
more concentrated than it is without moral hazard. Concerning industry profits, without
moral hazard too many coaliti ons are formed in equili brium as compared to the eff icient
outcome, but moral hazard may be responsible for an ineff iciency of opposite sign.
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1.- Introduction

Game theory has provided a framework to analyze market structure determination; the

incentives of f irms to merge or to form associations can be usefully analyzed in games of

endogenous coaliti on formation with spill overs. In this literature, coaliti on formation is

analyzed as a two-stage game. In the first stage, players form groups and this process of

team formation is formalized as a non-cooperative game (either simultaneous or

sequential).
1
 Once the groups are formed, the members of each group are committed to

maximize the group's objective function in the second stage. This family of games defines

two levels of interaction among the players: first, within each coaliti on and, second, among

the coaliti ons. While the second level of interaction is formalized in a non-cooperative

way, the first one assumes complete cooperation among the coaliti on members.

Cooperation within a coaliti on can emerge if the coaliti on members have mechanisms that

allow them to commit to their behavior or all the relevant information is verifiable and

contracts are complete. However, one can imagine situations where full cooperation among

non-cooperative players is not possible. In other words, the abovee approach ignores that in

some circumstances players in a coaliti on may retain some decision-making power over the

strategic variables in the second stage, and they may not share exactly the same interests.

The problem of opportunistic behavior within coaliti ons can arise in games considering the

determination of market concentration and size of partnerships, when partners can free-ride

on their colleagues. It can also be present in situations like the formation of custom unions

                                                

1
 Different rules for coaliti on formation have been used in literature. Bloch (1995, 1996), Ray

and Vohra (1999) and Montero (1999) examine an infinite-horizon game where coaliti ons form
when all potential members agree. The former papers assume a fixed rule of order; in the latter,
the player who rejects an offer does not automatically become the next proposer. Ray and Vohra
(1997) consider a model where deviations can only serve to make the existing coaliti on structure
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or international tax agreements, where countries agree to form a coaliti on but keep some

room to take decisions departing from the coaliti on's global objective. OPEP may be cited

as an example.

Within a coaliti on, a problem of moral hazard arises when partners decide individually on

the second stage strategic variables.
2
 As Holmström (1982) proved, moral hazard in teams

leads to ineff iciencies for any (balanced budget) sharing rule since team members do not

receive the total revenue from their effort.

The aim of this paper is to analyze the equili brium coaliti on structures and the eff iciency of

the equili brium outcome in a model with moral hazard within coaliti ons, under the

assumption that productive coaliti ons compete à la Cournot and use an egalitarian profit-

sharing rule.
3
 In this context, a coaliti on is a set of players who agree to share output

(equally) but behave throughout the relationship in a non-cooperative way. To our

knowledge, this is the first paper that models this behavior.

To highlight the market competition and moral hazard effects we shall i gnore any team

economies; adding team economies would partly obscure the moral hazard problem: big

coaliti ons have more severe incentive problems but (with team economies) they would be

more eff icient.
4
 We focus on the interaction between moral hazard within the partnership,

product market competition, and the emergence of different coaliti on structures. Our

concern is the determination of the number of partnerships active in the market and their

                                                                                                                                                   

finer. Yi and Shin (1995) and Belleflamme (2000) study games in which non-members can join a
coaliti on without the permission of the existing members.

2
 See, for example, Macho-Stadler and Pérez-Castrill o (1997) for more details on incentives

and contract design under moral hazard.

3
 In this aspect, we follow Farrell and Scotchmer (1988), who define a partnership as a

coaliti on that divides its output equally.

4
 Bloch (1995) and Belleflamme (2000) consider the case where firms form associations in

order to decrease their costs. This aspect is also taken into account in the existing theory of
partnerships, where partners get together to exploit economies of scale (see, for example, Farrell
and Scotchmer, 1988; and Sherstyuk, 1998). In this partnership literature there is no market
competition, while in our approach partnerships form to get a higher market concentration, and
thus higher prices and profits, and they form despite the fact that there is a moral hazard problem.
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size, taking into account the demand and cost conditions. In the absence of moral hazard,

two forces affect the final market structure. On the one hand, decreasing the number of

firms implies benefits related to a lower degree of competition in the market, but, on the

other hand, a player may increase her profits by leaving a big coaliti on and setting up a

firm by herself. Therefore, the process of partnership formation may exhibit ineff iciencies

(from the industry point of view) due to a free-riding problem among coaliti ons.  Hence,

too many firms are formed in equili brium (this is a well known result; see Salant, Switcher

and Reynolds, 1984, Bloch, 1996, and Yi, 1997, among others).

The presence of moral hazard within coaliti ons adds a new effect to the previous ones:

building up a large coaliti on involves eff iciency losses as the incentive problems are more

severe in larger partnerships. In the extreme case of a very severe moral hazard problem,

we show that the equili brium market structure is very fragmented, with each player setting

up their own firm. However, if moral hazard is not so severe, not only we will not find a

very fragmented industry, but the number of coaliti ons will be lower than or equal to the

number that emerges without moral hazard. For intermediate levels of moral hazard, the

number of partnerships is strictly lower than without moral hazard. The reason behind this

result is that moral hazard makes it more diff icult to free ride on other players, precisely

because under moral hazard other players are less willi ng to form large coaliti ons.

As far as the eff iciency of the equili brium coaliti on formation is concerned, without moral

hazard the grand coaliti on is eff icient (it maximizes industry profits) but it is not an

equili brium market structure. We show that under moral hazard this may be no longer the

case. This effect is partly due to the fact that moral hazard also affects the eff iciency of the

grand coaliti on; when moral hazard is high enough, a monopoly is not eff icient and other

market structures may yield higher industry profits.

The paper is organized as follows. Section 2 describes the sequential model of partnership

formation, which follows Bloch (1996)’s sequential games of coaliti on formation, and

derives the utilit y function of each partner as a function of market structure. In Section 3,

we characterize the equili brium outcome. Section 4 is devoted to a discussion on the

robustness of our analysis. Section 5 deals with the eff iciency of the equili brium coaliti on

configuration. Section 6 concludes.
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2.- The model

We study the interaction among (ex-ante identical) partners as a game in two stages. In the

first stage, partners group into firms through a sequential process, and in the second stage

of the game firms compete à la Cournot with a homogeneous product. First, we describe

the process of constitution of partnerships. Then we analyze the market competition stage

with a moral hazard problem inside firms. We assume that gross profits are shared equally

among the partners but they decide individually how much effort to exert; this effort is not

verifiable and cannot be contracted upon. The implication is that partnerships competing in

the market will not necessarily be profit maximizing firms. In the last part of this section

we derive the payoff f unction for each partner as a function of market structure.

2.1.- The partnership formation game

The total number of partnerships competing in the market is determined endogenously.

There is a fixed number of ex-ante identical partners, n, and they have to decide, before

market competition, how many partnerships they will set up. We follow Bloch (1996)'s

approach and assume partnerships are formed sequentially.

Bloch (1996) and Ray and Vohra (1999) analyze an infinite-horizon sequential game that

we will denote by Γ, in which a coaliti on forms if and only if all potential members agree

to form the coaliti on. There is a rule of order ρ (an ordering of the players) on the set of

partners, N, that determines the order of moves in the sequential game. Partner 1, according

to the rule of order, makes an offer to other agents to form a coaliti on of partners T⊂N, to

which she belongs. Each prospective member in T responds to the offer in the order

determined by ρ. If all members in T accept the offer of partner 1, the partnership is formed

and partners in T leave the game. Then, the first partner in N\T, according to the rule of

order, starts the game (with N\T players) by making a partnership proposal, and the game

continues. If any member in T rejects the offer made by partner 1, that partner makes a

counteroffer and proposes the formation of a partnership S⊂N, to which he belongs. The

game continues until all players have left the game. The outcome of this game is a market

structure, that is, a partition of the set of partners, P = { T1, T2, ..., Tr}, representing all the

firms formed.
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Bloch (1996) shows that when players are ex-ante symmetric the partitions generated by

the infinite-horizon sequential game (i.e., the stationary symmetric subgame perfect

equili brium coaliti on structures) coincide with the partitions generated by the following

choice-of-sizes game.
5
 The first partner, according to the rule of order, announces an

integer s1, interpreted as the size of the firm, and the first s1 players form a coaliti on. Then

partner s1 + 1 announces an integer s2, and the next s2 players form a coaliti on, and the

game proceeds until s1 + s2  + s3  + ...= n. We shall solve the choice-of-sizes game to

determine the equili brium market structures brought about by partners' behavior under

moral hazard.

2.2.- The Moral Hazard Problem

Each firm A is an association of nA ex-ante identical partners who own and manage the

firm. Partners produce a homogeneous output and for simplicity we assume the only

production costs come from the effort exerted to produce. Output is normalized to be equal

to the productive effort so that the production function of f irm A is:

qA=    eiAΣ
i= 1

n A

,                                                           (1)

where qA  is output of f irm A and eiA is effort exerted by partner i in firm A.

Assume that there are r associations of partners competing in the market: 1, 2, ..., r. Gross

profits (ignoring the costs of partners' effort) for each firm A, A ∈ {1, 2,..., r} are

   ΠA( ei1Σ
i = 1

n1

, ei2Σ
i = 1

n2

,..., eirΣ
i =1

nr

) . Effort within the firm is not verifiable so that the output (or

revenue) due to each partner’s effort cannot be identified. Partners are assumed to share the

                                                

5
 A property of non-decreasing equili brium payoffs is needed for this result to hold; we discuss

this property after presenting the results. For more details on the infinite-horizon game and the
proof of this result see Bloch (1996).
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gross profits of the firm equally.
6
 The level of gross profits is verifiable and thus partners

can commit to an equal sharing rule in the first stage.

To compute the net profits of a firm we need to define the cost of a partner's effort, which

is assumed to be independent of the firm size, C(ei). Thus, net profits for firm A are:

                      ΠA
( e

i1Σ
i =1

n1

, e
i2Σ

i = 1

n2

,..., e
irΣ

i =1

nr

) – C(e
i
)Σ

i =1

n A

.

The interaction among partners in the second stage is modeled as a non-cooperative game

in which the level of effort eiA is decided by each partner i and is non-verifiable. Thus, each

partner i in firm A decides her level of effort to maximize her own payoff f unction:

                
   1

nA
Π

A
( ei1Σ

i = 1

n1

, ei2Σ
i = 1

n2

,..., eirΣ
i = 1

nr

) – C(eiA) .

Due to the moral hazard problem, this behavior implies that firms do not maximize profits.

2.3.- The Payoff Function

We shall assume that, after the process of constitution of partnerships, firms compete in the

market for a homogeneous product with linear market demand,  p = a  −  Q, where Q is

aggregate output. The production stage is formalized as Cournot competition. Gross profits

for firm A are:

   
ΠA ei1, ... , eirΣ

i= 1

nr

Σ
i= 1

n1

= a – ei1 + ... + eirΣ
i= 1

nr

Σ
i= 1

n1

eiAΣ
i= 1

n A

                                                

6
When partners are ex-ante identical, the equal-sharing rule is a natural division of payoffs.

Ray and Vohra (1999), in an infinite-horizon model, make the sharing rule endogenous and show
that equal sharing is an equili brium phenomenon. Note however that in their framework the
sharing rule will i nfluence the decision of whether (or not) to enter a coaliti on, while in our model
the sharing rule will also affect the incentives of the members of a coaliti on. Limited liabilit y
arguments or commitment problems can lead to equal sharing rules in our framework.
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The cost of exerting effort for partner i is: C(ei) = c ei, with c < a. The situation where there

is no moral hazard within the firm will be referred to as the benchmark case.

2.3.1.- The benchmark case. Assume that there is no moral hazard on partners' decisions.

Partners' effort is verifiable, so that the cooperative level can be implemented within a

coaliti on. Taking into account that partners are symmetric, the best response to rival firms’

effort can be expressed as:

A

Aj
jj

A n

cnea

e
2

∑
≠

−−
= ,

for A∈{1, ..., r}, where ej denotes the (symmetric) effort level by each partner in firm j.

Solving the system, from the optimal effort level, we have that:

                                             q n e
a c

rA A A
* *= =

−
+ 1

.  (2)

Note that q*A is independent of the size of the partnership nA, and the number of members

n, and depends only on the number of f irms r. This is because there is an optimal output

level for each firm as a function of market demand and cost conditions, and each firm just

divides the burden of producing the optimal output equally among its members. The payoff

function for each partner of f irm A in the benchmark case is:

                                          
   

π i(r, nA) =
a – c

2

(r + 1)2nA

.

2.3.2.- The Payoff Function under Moral Hazard. Due to the moral hazard problem, firms

do not maximize profits. Rather, each partner decides how much effort she will exert to

maximize her own objective function. Each partner in firm A will maximize her objective

function on the effort level eiA. From the first-order conditions, we obtain:

2

2∑∑
≠≠

−−−
= ik

kA
Aj

jjA

iA

enecna

e
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for A∈{1, ..., r}, i∈A, and where ej denotes the (symmetric) effort level by each partner in

firm j for j ≠ A. Efforts are strategic substitutes: if other players (from inside or outside the

relationship) increased their effort level, the best response for a member of f irm A would be

to decrease her own. Solving the system formed by the first order conditions of the n

partners, we obtain the optimal effort for each partner in firm A, and the optimal output for

firm A:

                         
[ ]

q n e
a c n r n

rA A A

A= =
+ − +

+
( )1

1
. (3)

Given the assumption of linear demand and cost, the output level qA does not depend on

the distribution of sizes of all the coaliti ons in the market, but only on nA, n, and r. The

optimal effort for a partner is decreasing in nA, since the higher nA the higher the intensity

of the moral hazard problem; it is increasing in n since this variable is a measure of the

aggregate output (the relative size) of the other coaliti ons. The effect of cost c is positive

(or negative) if the coaliti on is small (big) as compared to the others. Note that, in contrast

with the benchmark case, the output of a firm depends on its size.

The distortion introduced by the moral hazard problem can be seen by comparing

expression (3) to the effort in the benchmark case, given by expression (2):

 e
A
* – e

A
> 0 ⇔ n

A
> n+ 1

r + 1

Since   n + 1
r + 1 is approximately the average size of coaliti ons, for coaliti ons of a size higher

than the average, moral hazard causes a distortion in the usual direction, that is, it decreases

output. However, for coaliti ons of a size lower than the average the “best response effect”

(or strategic effect) dominates the partners’ incentives to take an opportunistic decision on

their effort. For these relatively small coaliti ons, the fact that rivals have a more serious

moral hazard problem than theirs induces them to expand output. With market competition,

what is important is how serious a firm's moral hazard problem is as compared to the

average moral hazard problem of its rivals, since this comparison determines the

relationship between own and rivals' production cost.
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We can also compare total output in the benchmark case and under moral hazard, for a

given coaliti onal structure. From the expressions:

1
*

+
−=∑

r

rcra
ne j

j
j ,        and        

1+
−=∑

r

cnra
ne j

j
j ,

the intuitive result that total output is lower under moral hazard can immediatly be

checked. Moral hazard reduces production, even if the smaller coaliti ons produce more

output than in the benchmark case. The strategic effect does not offset the overall distortion

associated to moral hazard. From the foregoing expressions, it can also be checked that this

distortion associated to moral hazard within coaliti ons is decreasing in r and increasing in n

and c. Total output in the benchmark case depends only on the number of coaliti ons while

with moral hazard it also depends on the total number of players, which summarizes (in

this linear model) the overall i neff iciency due to the size of the coaliti ons; note that the

distorsion introduced by moral hazard disappears when r = n.

Substituting the equili brium efforts, the payoff f or a partner can be expressed as:
7

   π i (r,nA) = 1
nA

a + cn
r + 1 – c a + cn

r + 1 – cnA
 .                                      (4)

Given the parameters of the model (n, a, c), payoffs depend on nA and r. This payoff

function for each of the n players, derived from competition in the product market, gives

the payoff to each partner as a function of the market structure, and it will determine the

outcome of the partnerships’ f ormation game.

3.- On the equilibria of the sequential partnership formation

game

We denote by ∆(n, a, c) the sequential game of size selection with n players, demand

parameter a, unit cost c, and payoffs given by (4). We recall the description of the  choice-

                                                

7
 If demand and cost were non-linear, profits (with or without moral hazard) would depend also on

the sizes of other coaliti ons.
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of-sizes game. Player 1 starts the game and chooses an integer s1 in the set {1, 2, …, n}.

Player s1 + 1 then moves and chooses an integer s2 in the set {1, 2, …, n − s1}, and so on.

The game continues until the sequence of integers (s1, s2, .., sr) satisfies si
i

r

=
∑

1

 = n.

Any subgame of ∆(n, a, c) such that, h coaliti ons have been formed already, h  ≤
 n − 1, and

the number of players who have not yet been assigned to any partnership is x, x  ≤  n − h,

will be denoted by the pair (h, x).
8
 In subgame (h, x), the player who makes the first

announcement is player (n − x+1) and she chooses sh+1 in the set {1, 2, …, x}.

A first result states the intuitive outcome that if moral hazard is very severe, which in our

model can be interpreted as c big as compared to a, then no player will j oin a coaliti on in a

subgame perfect equili brium (SPE). That is, partnerships are not sustainable in

equili brium.

Proposition 1.- If the degree of moral hazard is high enough, 
a

c

n

n
<

− 1
, the unique SPE

partition is all singletons.

Proof.- See Appendix.

The next two lemmas state technical results that will help us to analyze the outcome of the

choice-of-sizes game.

Lemma 1.- Consider that player (n − x +  1), deciding in subgame (h, x), has to choose size

s, under the assumption that the remaining (x − s) players will announce size 1 when it is

their turn. Then, her optimal choice is either s = 1, or s = x. Formally:

   max1 ≤ s≤ x πn-x+1(h+1+x−s, s)

                                                

8
  In our model, at any time in the game, h and x are the only relevant variables. More precisely,

(h, x) is a set of subgames with the same h, the same x and the same player (n−x+1) deciding
(although other aspects of the history may be different). All these subgames are equivalent as far
as the decisions of player (n−x+1) and subsequent players (according to the rule of order ρ) are
concerned.
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always has a corner solution.

Proof: See Appendix.

In order to identify the corner solution of the maximization problem presented in Lemma 1,

define the function g(h, x) as:

g h x h x h xn x n x( , ) ( , ) ( , )≡ + − +− + − +π π1 11 1 ,

where πn-x+1 is the function defined in (4). When g(h, x) is positive, the x players who have

not entered any partnership yet are better off joining a partnership than they are as

singletons. When g(h, x) is negative, however, they would rather form x firms than a single

firm.

Lemma 2.- (i)    For any subgame (h, x) of ∆(n, a, c):

sign[   g(h,x) ] = sign[(a+cn) (x  −  (h+1)2)  −  c (h+2) (x2  −  (h+1)2)].

(ii ) A necessary condition for g(h, x) ≥  0 is that:

                               x  −  (h+1)2 > 0.

(iii ) In a subgame (h, x) such that x ≤ (h+1)2, it is the case that g(h’ , x’) < 0 for any

subgame (h’ , x’) of (h, x).

Proof:  See Appendix.

Lemma 2 (i) rewrites the condition on the sign of g(h, x) in terms of the parameters of the

game. Part (ii ) gives a necessary condition for the sign of this function to be positive, i.e.

player (n − x+1) prefers forming a coaliti on with all the remaining players than a situation

in which all of them remain as singletons. Part (iii ) says that if x ≤ (h+1)2, then it is better

for player (n − x+1) in subgame (h, x), and also for all the remaining players in the game,

staying as singletons (s = 1) than joining all the subsequent players.

We now analyze the outcome of the game ∆(n, a, c). More precisely, we are going to

provide necessary conditions for coaliti on structures to be sustainable in a SPE of the

game. For convenience, we shall consider that the player who is indifferent between
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forming a coaliti on with the remaining players or breaking apart and inducing all the

remaining players to form singletons, will choose to form the coaliti on. The following

proposition starts the analysis by providing simple necessary conditions for the two

extreme coaliti on structures, monopoly and all singletons, to emerge.

Proposition 2.- (i) A necessary condition for monopoly to be an equili brium coaliti on

configuration is g(0, n) ≥  0, i.e.,  a
c ≥  n + 2.

(ii ) A necessary condition for all singletons to be an equili brium coaliti on configuration is

g(0, n) < 0, i.e.,  a
c < n + 2.

Proof.- (i) A monopoly forms only if s1 = n. We claim that this cannot be an equili brium if

g(0, n) < 0, since s’ 1 = 1 is a better strategy for player 1. Indeed, after s’ 1 = 1, the worst that

can happen to player 1 is that the other players also choose si = 1 and this is preferred by 1

to monopoly because g(0, n) < 0. Also, using Lemma 2 (i), it is easy to check that  a
c < n +

2 is equivalent to g(0, n) < 0.

(ii )   a
c ≥  n + 2 is equivalent to g(0, n) ≥  0. In this case, player 1 would rather form a

monopoly by choosing s1 = n than play a strategy that will l ead to an n-poly.    Q.E.D.

In the following proposition we provide necessary conditions for other coaliti on structures

to emerge. The argument goes as follows. For an r-poly to be an equili brium structure, it is

necessary that at least in one continuation of the game, once (r−1) coaliti ons have been

formed, the deciding responsible player should join all the others. The proposition

reproduces this argument in terms of the parameters of the model.

Proposition 3.- A necessary condition for an r-poly to be an equili brium coaliti on

structure, with n > r ≥  2, is:

 a
c ≥  

( )( )( )

( )

r n n r

n r r

+ + − +
+ − −

1 1 2 1

1 2  − n,            when n < r (1 + r + r 2 1− ) − 1, or

 a
c ≥  2 1 12r r r r( )( )+ + −  − n,         when  n ≥  r (1 + r + r 2 1− ) − 1.
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The above condition is also necessary for an r -poly to be an equili brium outcome, for any

r , with n > r ≥  r.

Proof.- The proof is merely outlined here. See the complete proof in the Appendix. It

proceeds in several steps. We first prove that, for r < n, a necessary condition for an r-poly

to be an equili brium coaliti on configuration is that g(r − 1, x) ≥  0, for some x ≤  n − r + 1.

Then, we rewrite this necessary condition in terms of the parameters of the model. Finally,

we prove that the necessary condition for an r-poly to emerge must also be satisfied for an

r -poly to emerge, with r ≠ n and r ≥  r ≥  2. Formally:

    ] ][ ]g r x x r n r( , ) , ,− ≤ ∀ ∈ − +1 0 12 ⇒ ] ][ ]g r x x r n r( , ) , ( ) ,< ∀ ∈ + −0 1 2 . Q.E.D.

To see if the number of f irms in an equili brium coaliti on configuration can be very high,

lets us consider the maximum possible number of partnership, excluding the possibilit y

that all players stay alone.  In other words, we derive an upper-bound to the number of

coaliti ons that can possibly constitute an equili brium coaliti on structure, different from all

singletons.

Proposition 4.-  If  an r-poly, with r < n, is an equili brium coaliti on structure, then r ≤

rmax(n), where:   rmax(n) = 
− + +1 5 4

2

n
.

Proof.- For an r-poly to fulfill t he necessary condition derived in Proposition 3,  there must

exist a non-degenerate interval with r2 < x ≤  n − r + 1. Hence, the maximum r that can be

stable is the rmax such that (rmax)2 = n − rmax + 1, i.e., rmax(n) = 
− + +1 5 4

2

n
. Q.E.D.

First of all , note that the upper-bound rmax(n) defined in Proposition 4 coincides with the

number of coaliti ons in the equili brium structure when there is no moral hazard. Bloch

(1996) shows that without moral hazard the equili brium coaliti on configuration is such that

all the first players choose to be singletons and the last coaliti on is formed by the last (the

first integer previous to) rmax(n) players. (For more details, see Bloch 1996, p. 122). Note

that rmax(n) is increasing in n.
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When the moral hazard problem is not very severe (a/c ≥ n+2), we know (by Proposition

2ii ) that all singletons cannot be an equili brium outcome. Proposition 4 states that, in this

case, the equili brium coaliti on structure is never more deconcentrated than without moral

hazard. In fact, for some values of the parameters it is strictly more concentrated.
9
 This is

the case even if moral hazard creates an ineff iciency that grows with the size of the

coaliti on and one would expect that partners would then try to avoid it by forming smaller

groups than in the benchmark case. The intuition is related to the sequential nature of the

game. Consider first the case without moral hazard. In equili brium, the first players free-

ride on the last players by standing alone, until the point where the deciding player faces

the alternative of inducing an all -singleton outcome or to joining the remaining players in a

single coaliti on. With moral hazard this free-riding by the first players is more diff icult.

The last players find forming a big coaliti on very harmful and they are only ready to group

into small coaliti ons in concentrated markets. It may be the case that they are willi ng to

form a partnership only in environments where the previous players have also joined

coaliti ons. Anticipating this reaction, the first players have less incentives to split off . This

effect may lead to a more concentrated structure than the equili brium outcome without

moral hazard.

In the following Corollary, we summarize the most relevant feature of the equili brium

outcomes.

Corollary 1.- For a given n, the equili brium coaliti on structure with moral hazard is either

the most deconcentrated outcome (all singletons) or one structure containing a number of

coaliti ons lower than or equal to the number of equili brium coaliti ons without moral

hazard.

In our model of Cournot competition with moral hazard, we cannot go further and provide

and explicit expression for the size and composition of partnerships at equili brium as a

function of the parameters of the model (a, c, n). However, we can compute the

equili brium outcome for given values of n. In Table 1 we present the equili brium outcome

                                                

9
 Our measure of market concentration is just the inverse of the number of partnerships.
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for n =18. The last row indicates the equili brium outcome in the benchmark case (without

moral hazard).

[Insert Table 1]

From Table 1 we see that, unless c is high enough (  a
c < 20) so that the only sustainable

partition is all partners as singletons, moral hazard makes the equili brium market structure

either similar to or more concentrated than the benchmark case. As the game is sequential,

the first players know that moral hazard would prevent the last players from forming large

groups; the threat of a less concentrated market structure makes the first players choose not

to stand alone. In fact, as this example ill ustrates, this threat induces the first player to find

it optimal to form a coaliti on with some other players in order to leave a low enough

number of players in the game so that it is profitable for them to collude.

4.- On the robustness of the results and the effects of moral

hazard under other stability concepts

We have shown the effects of moral hazard in a finite choice-of-sizes game. The interest of

this game comes from the following equivalence result by Bloch (1996) and Ray and

Vohra (1999): In a symmetric offer and counteroffer infinite game Γ, any symmetric

stationary perfect equili brium coaliti on structure can be reached as the outcome of a finite

game of choice of coaliti on sizes ∆. Moreover, if the equili brium coaliti on structure of the

finite game has the property that players' payoffs are non-increasing in the order in which

coaliti ons are formed, then any equili brium outcome of the game of choice of coaliti on

sizes ∆ can be obtained as a symmetric stationary equili brium coaliti on structure of the

sequential infinite game of coaliti on formation Γ.

However, as the example in Table 1 ill ustrates (for n = 18), in our model there are values of

the parameters (a, c, n) such that the payoffs of the first players are lower than the profits

of the last ones (that is for a/c ∈ [27, 28.2)). For those parameter values there is no

symmetric stationary equili brium of the infinite game; nevertheless, in those cases the

choice-of-sizes game still i dentifies an outcome that, as we show in the Appendix,

corresponds to an asymmetric stationary equili brium in the infinite game Γ. The idea for
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constructing such an equili brium of Γ is simple. When players' payoffs are increasing in

the order in which coaliti ons are formed, then there is no symmetric stationary equili brium

since any player will prefer to deviate (to reject the offer and to make an unaccepted offer)

in order to be in the last coaliti on (or the one having the highest payoffs). The asymmetric

equili brium presented in the Appendix is based on strategies such that a set of players

agree to form the first coaliti on in order to avoid an infinite playing of the game.

Even when the property holds (and the equivalence between the finite choice-of-sizes game

∆ and the infinite game Γ holds) the question remains as to whether moral hazard would

have the same effect (increasing market concentration) had we used a different game. To

analyze this point we have looked into the effect of moral hazard in some other coaliti on

formation games and different stabilit y notions.

A first observation is that the effect of moral hazard pointed out in this paper will not be

present unless the game is somehow sequential. Moral hazard makes unilateral defections

from a coaliti on more profitable so that, if the game with payoffs (4) is one-shot (see Yi

and Shin (1995) exclusive membership game), sustaining a concentrated coaliti on structure

(as a NE or a CPNE) is made harder when moral hazard is introduced.

We briefly consider here the effect of moral hazard using another sequential solution

concept. Ray and Vohra (1997) introduced the notion of equili brium binding agreements. A

coaliti onal structure is an equili brium binding agreement if there is no profitable deviation

for any set of players, but deviators take into account what happens after the deviation, in

particular, the strategies of the complement are not taken as given (the complementary

coaliti ons may break up).  Ray and Vohra define a profitable deviation (from one coaliti onal

structure to another) for a set of players as a deviation satisfying the following conditions:

(i) the final structure is an equili brium binding agreement, (ii ) the deviating players must be

a sub-coaliti on of one of the initial coaliti ons, (iii ) the deviating set of players must gain

from this move, and (iv) the other deviators fear a worse outcome if they do not move.
10

 In

this framework, under moral hazard the threat of inducing a deviation into a very

                                                

10
 See Ray and Vohra (1997) for the formal definition.
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competitive market may induce a more concentrated structure (as compared to stable

structures without moral hazard). To discuss the effect of moral hazard, we present the

results for n = 6 in Table 2.

[Insert Table 2]

For n = 6, with no moral hazard, the most concentrated stable outcomes are triopolies. With

moral hazard, some of these triopolies are unstable when moral hazard is strong enough. As

in Section 3, for 
a

c
 high enough we have the same result as without moral hazard. However,

when the moral hazard problem is important more concentrated structures are stable,

because then the asymmetric triopoly structure {1, 2, 3},{4, 5},{6} is no longer a stable

outcome; the larger coaliti on is suffering from an important ineff iciency and the deviation to

all singletons is profitable. This effect makes some duopoly coaliti on structures stable under

moral hazard. For example, for 
a

c
 ∈ [57, 106[, if a subset of players deviates from {1, 2, 3,

4, 5},{6} they will not reach a triopoly, but the stable outcome ({1},{2},{3},{4},{5},{6} ),

where competition is very strong.

5.- Industry Efficiency

In this section we briefly discuss the eff iciency of the outcome of the sequential process of

partnership formation described above. An eff icient partnership configuration is defined

here as one that (given that partnerships compete in the market in the second stage) yields

the highest industry profits among all the market structures.

With no moral hazard the eff icient outcome is always the grand coaliti on, where industry

profits are maximized. The equili brium market structure may be ineff icient since duopoly

or even less concentrated market structures obtain in equili brium. Moral hazard adds an

element of ineff iciency to large firms which can make the grand coaliti on ineff icient.
11

                                                

11
 Another way of understanding this point is that without moral hazard the grand coaliti on will

decide to form a single firm, while with moral hazard the grand coaliti on may decide to set up
more than one firm.
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Remark 1.- With moral hazard, the equili brium market structure may be eff icient.

We present an example where this happens to be the case. Let us consider the example of n

= 18. It can be easily checked that for some parameter configurations equili brium is an

eff icient outcome. More precisely, we find values of c for which the outcome maximizes

industry profits,    a
c ∈ [46,84), which is never the case in the absence of moral hazard.

When c is very low (  a
c ≥ 84) too many coaliti ons are formed. The reason for this

ineff iciency is the usual free-riding problem already present in the benchmark case.
 12

6.- Concluding comments

Previous work on endogenous coaliti on formation with externaliti es (spill overs) is based

on the assumption that the outcome of a coaliti on should be eff icient for that coaliti on.

Even though there is interaction among the players at two levels: within each coaliti on and

between coaliti ons, the first aspect has been neglected in the non-cooperative models of

coaliti on formation. The only aspect of that interaction that has been taken into account is

the definition of the sharing rule agreed upon by the coaliti on members. However, there is

a great deal of literature dealing with the ineff iciencies that arise within groups due to

imperfect effort observabilit y, the lack of incentives to cooperate, and the lack of

commitment capacity. This is the aim of our analysis: to provide some insight on the

effects that the internal organization of coaliti ons may have on the equili brium coaliti on

structure.

In a model with ex-ante identical players, we analyze the non-cooperative process of

coaliti on formation (this process is formalized as in Bloch, 1995, 1996), with a moral

hazard problem within coaliti ons, and we study the equili brium number and size of

coaliti ons. As compared to the case where members in a coaliti on fully cooperate, we show

that when moral hazard within coaliti ons is high enough, no coaliti on will form. However,

and this result is more surprising, when moral hazard is not too severe the coaliti on

                                                

12
 For low values of a/c the comparison is more artificial since the production of the firms in the

eff icient configuration may not be interior.
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structure will be either similar to or more concentrated than without moral hazard (that is, a

lower number of partnerships in a subgame perfect equili brium).

To emphasize some of the aspects of the relationship between the incentive problems

within partnerships, market competition, and stabilit y of coaliti onal configurations, we

have ignored other important elements of partnership organization. The firm may embody

interactions (joint task responsibiliti es, or specialization) between agents that increase the

productivity of a worker when they work in a large team. Another central aspect of the

model is that we obtain our results under the assumption that a coaliti on splits gross profits

equally. Under moral hazard the sharing rule is crucial, not only in deciding whether to join

a coaliti on or not, but also because it determines the partners’ effort decision and

consequently, gross profits. The lower the share of a partner, the more opportunistically she

will behave. However, equal sharing is the most natural sharing rule in a symmetric

framework and represents the spirit of what it is understood as a partnership.
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Appendix

Proof of Proposition 1.- From (4) we can deduce that π(r, s) > 0 if and only if 
a

c
+ n − s −

s r > 0, i.e., s < 
a c n

r

/ +
+ 1

. (Note that π(r, 1) > 0 for any r). Summing up for the r coaliti ons

we have that n < r 
a c n

r

/ +
+1

 is a necessary condition for π(r, s) > 0, which can be rewritten

as 
n

r

a

c
< .

If 
n

r

a

c
>  for any r < n, then the necessary condition for all the coaliti ons to have positive

profits does not hold. Thus, 1 <
a

c

n

n
<

− 1
 is a suff icient condition for the partition r = n to

be the only SPE partition.                       Q.E.D.

Proof of Lemma 1.- Player (n−x+1) deciding in subgame (h, x) the optimal size s, under

the assumption that the rest of the players will remain singletons, solves:

 

   

max1 ≤ s≤ x

a
c + n – (h + x – s+ 2) a

c + n –s (h + x – s+ 2)

s h + x– s+ 2
2

The first-order derivative has the same sign as:

G(s) ≡  −  (  a
c  + n  −  (h + x + 2)) (h + x + 2  −  3 s)  −  s2 (h + x  −  s).

For s = 1, G is negative (and the objective function is decreasing). Now, given that G'(s) =

3 (  a
c  + n  −  (h + x + 2))  −  2 s (h + x) + 3s2, and G"(s) =  −  2 (h + x) + 6 s, we know that

G'(s) has a minimum at s =   h + x
3 . At this point: G'(   h + x

3 ) = 9 [  a
c  + n  −  (h + x + 2)]  −

h+ x
2

3 .  Consequently:
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(a) If 9 (  a
c  + n  −  (h + x + 2))  −  (h + x)2 > 0, G'(s) is always positive, and G(s) is always

increasing.

(b)  If 9 (  a
c  + n  −  (h + x + 2))  −  (h + x)2 < 0, then G'(   h + x

3 ) < 0 and G'(s) has two zero

values (possibly outside the range of our parameter selection). G'(s) = 0 for

   

s=

(h + x) ± (h + x)2 – 9 a
c + n – (h + x+ 2)

1
2

3
. At the lowest of these values G(s) is

negative.

In both cases, G'(s) goes from a negative value at s = 1, to a (possibly) positive expression.

Hence, the objective function is either decreasing in s or convex in s. In any case the

solution to the maximization problem will be reached at a corner. Q.E.D.

Proof of Lemma 2.-

2 (i)  By the definition of g(h, x):
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Then:  sign[   g(h,x) ] = sign[(a+cn) [(h+x+1)2 − x(h+2)2]  −  c[(1+x) (h+2) (h+x+1)2  −  2x

(h+2)2 (h+x+1)]] = sign[(a+cn) (x  −  (h+1)2)  −  c (h+2) (x2  −  (h+1)2)]. Q.E.D.

2 (ii) From Lemma 2 (i), if x  −  (h+1)2 < 0 and x2  −  (h+1)2 ≥ 0, then g(h, x) < 0. If  x  −

(h+1)2 < 0 and x2  −  (h+1)2 ≤ 0, it can be checked that g(h, x) < 0. Thus, x  −  (h+1)2 > 0 is a

necessary condition for g(h, x) ≥  0. Q.E.D.
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2 (iii)  From Lemma 2 (ii ), assume that x ≤ (h+1)2, and hence g(h, x) < 0. Let us consider

any subgame (h’ , x’ ) of  (h, x). Then x’ < (h’+1)2 given that h’ > h and x’ < x. Therefore,

g(h’ , x’ ) < 0.            Q.E.D.

Proof of Proposition 3.- We define a function φ(h, x) = 
(h + 2)[x2 – (h + 1)2]

x – (h + 1)2 , in the

interval n − h ≥  x > (h+1)2. Note that the argument that max x  g(h, x) is the same as the

argument that minx φ(h, x). Moreover,  a
c  ≥ φ(h, x) − n is equivalent to g(h, x)  ≥ 0; and  a

c <

minx φ(h, x) − n is equivalent to max x g(h, x) < 0. Finally, it is easy to check that φ(h, x) is

an increasing function of h and it is convex in x. We proceed in several steps.

Step 1.- Let us define x(h) as the value of x that minimizes φ(h, x). Then,

x(h) = (h + 1) (h + 1 + h h2 2+ ).

Moreover, x(h) is increasing in h.

Proof.-  From the second-order derivative, it is easy to check that (in the relevant range)

φ(x, h) is convex in x. From the first-order derivative of φ(x, h) with respect to x we can

conclude that the minimum is reached at the solution of the following equation:

x2 − 2 x (h + 1)2 + (h + 1)2 = 0.

The solutions to this equation are:

x(h) = (h + 1) ((h + 1) ± h h( )+ 2 ).

Taking into account that we restrict our attention to x > (h + 1)2, we can conclude that the

minimum is reached at x(h) = (h + 1) ((h + 1) + h h( )+ 2 ). This function is increasing in h.

In fact, the solution in the set of natural numbers is an integer after or before x(h). We will

show in due course that this is not a problem when looking for necessary conditions.

Step 2.- For r < n, a necessary condition for an r-poly to be a stable coaliti on configuration

is that g(r − 1, x) ≥  0, for some x ≤  n − r + 1.
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Proof.- For an r-poly to be stable, it is necessary that (r  − 1) coaliti ons must be formed,

there must then be at least two remaining players and the player taking the decision must

choose to form a single coaliti on with all of them, or it must already be player n’s turn. We

are going to show that a necessary condition for the above property to hold is that there is

at least one x, x ≤  n − r + 1, for which g(r − 1, x) ≥  0.

We do the proof by contradiction, i.e., we assume that g(r − 1, x) < 0, for all x ≤  n − r + 1,

and we show that:

(a)  if (r − 1) coaliti ons have been formed and there are at least two players, the deciding

player will never form a single coaliti on,

(b)  a situation in which (r − 1) coaliti ons have been formed when player n is called to play

cannot be part of an SPE of the game.

(a) Suppose that (r − 1) coaliti ons are formed and there are x ≥  2 remaining players. Since

g(r − 1, x) < 0, player n − x + 1 (who is called to play) prefers the remaining players to split

off rather than forming a single coaliti on. We now claim that for player n − x + 1 staying

alone (i.e., choosing sr = 1) is better than forming a single coaliti on (choosing sr = x).

Indeed, from this player’s point of view, the most damaging strategy by the subsequent

players is for them to remain singletons (if any subgroup decided to form a coaliti on, the

profits of player n − x + 1 would increase). Even in this case, profits for player n − x + 1 are

higher than if she decides to form a single coaliti on.

(b) Suppose that (r − 1) coaliti ons are formed before player n. Now, take the last coaliti on

formed containing x ≥  2 players (note that we can put forward this argument because r <

n). For the player that forms this coaliti on, it must be the case that  π(r, x) ≥  π(r + x, 1),

i.e., g(r − 1, x) ≥  0, which contradicts our assumption.

Step 3.- For r < n, a necessary condition for an r-poly to be a stable coaliti on configuration

is:

i)  
a

c
 + n ≥

( )( )( )

( )

r n n r

n r r

+ + − +
+ − −

1 1 2 1

1 2  ,  if  x(r − 1) > n − r + 1, or
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ii )  
a

c
 + n ≥  2 1 12r r r r( )( )+ + − ,   if x(r − 1) ≤  n − r + 1.

Proof.- First note that for any 1 ≤  x ≤  r2, we always have that g(r − 1, x) < 0. By Step 2, a

necessary condition for an r-poly to be a stable coaliti on configuration is that g(r−1, x) ≥  0

for some x ≤  n − r + 1, i.e., g(r − 1, x) ≥  0  for some r2 < x ≤  n − r + 1. This condition is

equivalent to: 
a

c
 + n ≥  Min φ(r − 1, x) , for r2 < x ≤  n − r + 1.

i)  If  n − r + 1 < x(r − 1) then the minimum is reached at x = n − r + 1. Then, a necessary

condition for r-poly to be a stable coaliti on structure is 
a

c
 + n ≥  φ(r − 1, n − r + 1) =

( )( )( )

( )

r n n r

n r r

+ + − +
+ − −

1 1 2 1

1 2 .

ii )  If  n − r + 1 ≥  x(r − 1) then the minimum is reached at x(r − 1). Then, a necessary

condition for r-poly to be an stable coaliti on configuration is 
a

c
 + n ≥  φ(r − 1, x(r − 1)) =

2 1 12r r r r( )( )+ + − .
13

Step 4.- ] ][ ]g r x x r n r( , ) , ,− ≤ ∀ ∈ − +1 0 12 ⇒ ] ][ ]g r x x r n r( , ) , ( ) ,< ∀ ∈ + −0 1 2 .

Proof.- The previous implication is equivalent to

                                                

13
 As we have already mentioned, x(r − 1) need not be a natural number. But

] ]{ }Min r x x r n r x Rφ( , ), , ,− ∀ ∈ − + ∈1 12 ≤ ] ]{ }Min r x x r n r x Nφ( , ), , ,− ∀ ∈ − + ∈1 12 .

Therefore, ] ]{ }a

c
n Min r x x r n r x R+ ≥ − ∀ ∈ − + ∈φ( , ), , ,1 12 = φ(r−1, x(r−1)) is also a

(weaker) necessary condition for an r-poly to be a stable coaliti on structure.
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] ]{ }a

c
n Min r x x r n r+ < − ∀ ∈ − +





φ( , ), ,1 12 ⇒

] ]{ }a

c
n Min r x x r n r+ < ∀ ∈ + −





φ( , ), ( ) ,1 2 .

This in turn is equivalent to:

] ][ ]Min r x x r n rφ( , ), ,− ∀ − +1 12 < ] ][ ]Min r x x r n rφ( , ), ( ) ,∀ + −1 2 . This condition holds

since: a) φ is increasing in h, and b) φ(r − 1, n − r +1) < Min φ(r, n − r). Q.E.D.

An asymmetric stationary equilibrium of the infinite game ΓΓ

Let us denote by S1, S2, ..., Sh the coaliti ons already formed at subgame (h, x); X =

N\ ∪ h

k=1Sk, the players not allocated to a coaliti on yet, and S(S1, S2, ..., Sh, X) is the ongoing

proposal. A strategy for a player must specify an answer to any proposal made to her if she

is not the proposer, and a proposal when she is. Formally,

σi(S1, S2, ..., Sh, X) ∈ {Yes, NO}           if S(S1, S2, ..., Sh, X) ≠  ø

σi(S1, S2, ..., Sh, X) ∈ {S ⊂  X, i ∈ S}       if S(S1, S2, ..., Sh, X) = ø

When S(S1, S2, ..., Sh, X) ≠  ø, player i is a respondent to the offer by some other player;

when S(S1, S2, ..., Sh, X) = ø, it is player i’s turn to make an offer. If the strategy’s

prescription at any subgame depends only on the number of coaliti ons previously formed

and the number of players still i n the game, we simply write σi(h, x).

For n = 18 and [ [a

c
∈ 27282, . , let N1 = {1, 2, ..., 10} and N2 = {11, ..., 18}. Consider the

strategy profile for game Γ shown in Table 4. It is easy to check that the equili brium is not

symmetric since players in N1 and N2 follow different strategies; it is stationary because

players’ strategies depend only on (h, x).

[Insert Table 3]

Given the one-stage deviation principle for infinite games, in order to check that the

strategies lead to a subgame perfect equili brium it is suff icient to check that there is no (h,
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x) where a player can gain by deviating from the action prescribed by the strategy for that

history and conforming to the initial strategy thereafter. The one-stage deviation principle

holds whenever the infinite game is continuous at infinity, i.e., the events in the distant

future are relatively unimportant, which is the case in our infinite game if future payments

are discounted.

In order to check the equili brium, note first that for n = 18:

a

c
≥ ⇔27 g(1, 8) ≥  0  and   

a

c
< ⇔282.   g(1, 9) < 0.

In this interval, g(2, x) is always negative. Then, once two coaliti ons have been formed, the

best response for any remaining player is to stay alone, as the strategy in Table 3 states.

When one coaliti on has been formed, only coaliti ons sized 8 or less are profitable, as

prescribed by the strategy. The only asymmetry is in the prescribed actions for different

players when no coaliti on has been formed. Ten players, from 1 to 10, are ready to form a

10 player coaliti on, while the others are not. For the first players, there is no gain in

deviating to any other action (that will i nduce too much competition) since  the last players

will only join a coaliti on if the first players have done so before. Q.E.D.
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         Demand
and cost conditions

Equili brium market
        structure Partition

 a
c ∈ (1, 20) singletons [{ 1} ,{ 2} ...,{ 18} ]

 a
c ∈ [20,27) monopoly [{ 1, 2, ...., 18} ]

 a
c ∈ [27, 28.2) duopoly [{ 1, ...,10} ,{ 11, ..., 18} ]

 a
c ∈ [28.2, 30) duopoly [{ 1, ..., 9} ,{ 10, ..., 18} ]

 a
c ∈ [30, 32.143) duopoly [{ 1, ..., 8} ,{ 9, ..., 18} ]

 a
c ∈ [32.143, 34.5) duopoly [{ 1, ..., 7} ,{ 8, ..., 18} ]

 a
c ∈ [34.5, 37) duopoly [{ 1, ..., 6} ,{ 7, ..., 18} ]

 a
c ∈ [37, 39.6) duopoly [{ 1,...,5} ,{ 6, ..., 18} ]

 a
c ∈ [39.6, 42.27) duopoly [{ 1, 2, 3, 4} ,{ 5, ..., 18} ]

 a
c ∈ [42.27, 45) duopoly [{ 1, 2, 3} ,{ 4, ..., 18} ]

 a
c ∈ [45, 47.77) duopoly [{ 1, 2} ,{ 3, ..., 18} ]

 a
c ∈ [ 47.77, 123.14) duopoly [{ 1} ,{ 2, ..., 18} ]

 a
c ∈ [123.14,∞) triopoly [{ 1} ,{ 2} ,{ 3,..., 18} ]

        Table 1. Equili brium partnership configuration for n = 18
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Coaliti on structure Conditions for deviation
(with MH)

Stabilit y without
Moral Hazard

Stabilit y with
Moral Hazard

{ 1} ,{ 2} ,{ 3} ,{ 4} , { 5} ,{ 6} (none) By definition By definition
{ 1, 2} ,{ 3} ,{ 4} , { 5} ,{ 6} for any a/c, to

{ 1} ,{ 2} ,{ 3} ,{ 4} ,{ 5} ,{ 6}
No No

{ 1, 2, 3} ,{ 4} , { 5} ,{ 6} for any a/c, to
{ 1} ,{ 2} ,{ 3} ,{ 4} ,{ 5} ,{ 6}

No No

{ 1, 2} ,{ 3, 4} , { 5} ,{ 6} for any a/c, to
{ 1} ,{ 2} ,{ 3} ,{ 4} ,{ 5} ,{ 6}

No No

{ 1, 2, 3, 4} , { 5} ,{ 6} for any a/c, to
{ 1} ,{ 2} ,{ 3} ,{ 4} ,{ 5} ,{ 6}

No No

{ 1, 2, 3} ,{ 4, 5} ,{ 6} for a/c < 160, to
{ 1} ,{ 2} ,{ 3} ,{ 4} ,{ 5} ,{ 6}

Yes Yes, for
a/c ≥ 106

{ 1, 2} ,{ 3, 4} , { 5, 6} for a/c < 2.235, to
{ 1} ,{ 2} ,{ 3} ,{ 4} ,{ 5} ,{ 6}

Yes Yes, for
a/c ≥ 2.235

{ 1, 2, 3, 4, 5} ,{ 6} for a/c≥ 106, to
{ 1, 2, 3} ,{ 4, 5} ,{ 6}
for a/c < 57, to
{ 1} ,{ 2} ,{ 3} ,{ 4} ,{ 5} ,{ 6}

No Yes, for
57 ≤  a/c < 106

{ 1, 2, 3, 4} ,{ 5, 6} for a/c≥ 2.235, to
{ 1, 2} ,{ 3, 4} ,{ 5, 6}
for a/c < 2.235, to
{ 1} ,{ 2} ,{ 3} ,{ 4} ,{ 5} ,{ 6}

No No

{ 1, 2, 3} ,{ 4, 5, 6} for a/c < 3.55, to
{ 1} ,{ 2} ,{ 3} ,{ 4} ,{ 5} ,{ 6}
for a/c ≥  106, to
{ 1, 2, 3} ,{ 4, 5} ,{ 6}

No Yes, for
3.55 ≤  a/c < 106

{ 1, 2, 3, 4, 5, 6} for a/c < 106,  to
{ 1, 2, 3} ,{ 4, 5} , { 6}
for a/c ≥  106, to
{ 1, 2, 3, 4, 5} ,{ 6}

No No

Table 2. Equili brium Binding Agreements (Ray and Vohra) for n = 6
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           i N∈ 1               j N∈ 2

If   S(0, n) = ø

If   S(0, n) ≠  ø

σi(0, n) = N1

σi(0, n) = Yes    if # S(0, n) = 10

                 No    otherwise

σj(0, n) = N

σj(0, n) = No

If   S(1, x) = ø

If   S(1, x) ≠  ø

σi(1, x) = { i}     if x > 8

                X       if x ≤  8

σi(1, x) = Yes    if S(1, x) = X and

                                          x ≤  8
                 No    otherwise

σj(1, x) = X       if x ≤  8

               {j}     if x > 8

σj(1, x) = Yes   if S(1, x) = X and

                                          x ≤  8
                 No   otherwise

If   S(h, x) = ø,

             h ≥  2

If   S(h, x) ≠  ø,

             h ≥  2

σi(h, x) = { i}

σi(h, x) = No

σj(h, x) = { j}

σj(h, x) = No

Table 3. Strategies supporting the stationary and asymmetric equili brium of  Γ


