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Abstract

This paper analyzes secession and group formation in a general model

of contest inspired by Esteban and Ray (1999). This model encompasses as

special cases rent seeking contests and policy con‡icts, where agents lobby

over the choice of a policy in a one-dimensional policy space. We show that in

both models the grand coalition is the e¢cient coalition structure and agents

are always better o¤ in the grand coalition than in a symmetric coalition

structure. Individual agents (in the rent seeking contest) and extremists (in

the policy con‡ict) only have an incentive to secede when they anticipate

that their secession will not be followed by additional secessions. Incentives

to secede are lower when agents cooperate inside groups. The grand coalition

emerges as the unique subgame perfect equilibrium outcome of a sequential

game of coalition formation in rent seeking contests. Journal of Economics

Literature Classi…cation Numbers: D72, D74. Keywords: secession, group

formation, rent seeking contests, policy con‡icts.
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1 Introduction

Why doesn’t universal peace prevail? The world is riddled with con‡icts:

states …ght over territories, …rms over markets, individuals over honors and

prizes, political parties and interest groups over policies. In each of these

situations, agents are willing to waste valuable resources in order to compete

while they could enter into an e¢cient peaceful agreement.

There is of course a distinguished literature in peace and con‡ict theory

(and its natural extension in economics– the rent seeking theory pioneered

by Tullock (1967)) whose objective is precisely to understand how con‡icts

emerge and can be resolved.1 The focus of the theory of rent seeking has

always been on the level of resources spent in contests. For example, in

a recent article, Esteban and Ray (1999) analyze how the total amount of

resources spent in contests depends on the distribution of a population with

heterogeneous characteristics. But while the theory of contests has been

extended in a number of directions, it is still almost silent on one important

issue: why do agents form groups, or engage in contests when they could

agree to a universal agreement?

Our objective in this paper is to shed light on this issue, by studying

the incentives to secede from a universal agreement and to form groups in

a general model of contest. More precisely, we consider the following set

of questions. Given that the e¢cient structure is universal peace, where

all agents form a single group to divide rents or choose policy, why do we

observe con‡ict among agents or groups of agents? Which agents have an

incentive to secede from the universal agreement? What conjectures should

they form on the reaction of other agents to make the secession pro…table?

Alternatively, if agents are initially isolated, what is the process by which

1For an introduction to con‡icts and collective action, see the classical book of Olson

(1965) and the book by Sandler (1992)).)
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they end up forming a single, e¢cient group?

To answer these questions, we rely on the recent noncooperative models

of coalition formation developed, among others, by Hart and Kurz (1983),

Bloch (1996), Yi (1997) and Ray and Vohra (1999) . (See Bloch (1997) for

a survey.) These models, which to the best of the knowledge have not yet

systematically been applied to the study of con‡icts, enable us to obtain

sharp, general conclusions on the viability of universal agreements and the

formation of groups. Another distinguishing feature of our approach is that

we consider a general model of con‡ict, which admits as special cases the

traditional rent-seeking model as well as models of policy con‡icts, where

interest groups located on a one-dimensional space lobby for the adoption

of a policy. Our analysis sheds light on the common structure of con‡ict

models as well as on the speci…c features of rent-seeking contests and policy

con‡icts.

Our analysis starts with a description of a general model of con‡ict,

adapted from Esteban and Ray (1999). In this model, we explicitly allow for

the formation of groups and the existence of external e¤ects across groups.

This general model encompasses as speci…c cases pure rent seeking (with

a collective or private divisible good), as well as policy con‡icts where the

choice of a policy by the winning group induces external e¤ects on all the

agents. Our …rst results show that the e¢cient coalition structure is always

the grand coalition, where no resources are wasted on con‡ict and agents

divide rents or choose policy inside a single group. While this result is well

known and obvious in the case of rent seeking, it is not immediately obtained

in the case of policy con‡ict, and requires some quali…cation. We show that,

as long as the utility loss is a convex function of the distance between an

agent’s ideal point and the policy chosen, universal agreement will always

be the e¢cient coalition structure in the model of policy con‡ict.
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Our study then focuses on the incentives to secede from the grand coali-

tion. For the rent seeking contests and policy con‡icts, we construct a

valuation, expressing the utility of every player in every coalition structure.

In the rent seeking model, this valuation can be explicitly computed while in

the policy con‡ict, we can only construct the valuation for a small number

of players. However, our analysis shows that, generally, the payo¤s obtained

by every player in a symmetric coalition structure is lower than the payo¤

obtained in the grand coalition. This result suggests that if agents want

to secede, they only have an incentive to do so if the resulting coalition

structure is asymmetric. In fact, we establish that a single player (in the

rent seeking contest) or a single extremist (in the policy con‡ict) always has

an incentive to secede when all other players form a single group. Hence, it

appears that individual players have no incentive to secede when their seces-

sion results in a complete collapse of the universal agreement (a symmetric

coalition structure where all groups are singletons), but are always willing

to secede when their secession is not followed by any additional change. We

formalize this observation, using the terminology introduced by Hart and

Kurz (1983). In the ° model (where a secession is followed by the collapse

of the group), the grand coalition is an equilibrium, whereas it is not an

equilibrium in the ± model (where after a secession, members of a group

remain together). In the rent seeking model, we are able to go one step

further, and endogenize the reaction of other players to a secession. Consid-

ering the sequential model of coalition formation proposed in Bloch (1996)

and Ray and Vohra (1999), we show that the grand coalition is indeed the

unique equilibrium outcome of the process of coalition formation.

While the previous results were obtained under the assumption that ev-

ery agent chooses noncooperatively the amount of resources spent in the

con‡ict, we also consider a cooperative model where members of a group
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coordinate their investments in the contest. Our main …nding is that in-

centives to secede are lower in the cooperative model, as seceding players

face a higher level of con‡ict than in the noncooperative model. In fact,

while an individual still has an incentive to secede in the cooperative rent

seeking contest when all other agents remain together, in the policy con‡ict,

an extremist no longer has an incentive to secede, once she knows that all

other agents will choose their outlays cooperatively in the remaining group.

Our paper draws its inspiration from recent studies by Esteban and Ray

(Esteban and Ray (1999), (2001a) and (2001b)). Esteban and Ray (1999)

introduce the general model of con‡ict that we use. Their analysis focuses on

the relation between distribution and the level of con‡ict, and shows that this

relation is nonmonotonic and usually quite complex. We encounter the same

complexity in our study, but focus our attention to a di¤erent problem: the

endogenous formation of groups in models of con‡icts. By simplifying their

model in some dimensions (considering a speci…c contest technology and

assuming that agents are uniformly distributed along the line in the policy

con‡ict), we are able to obtain new results on the incentives to secede and

form groups in models of con‡icts, thereby progressing on a research agenda

which is implicit in their analysis (Section 4.3.2 on group mergers in Esteban

and Ray (1999), pp. 396-397.) Esteban and Ray (2001b) study explicitly the

e¤ect of changes in group sizes in a model of rent seeking with increasing

marginal cost and prizes having both private and collective components.

Again, they focus their attention on the global level of con‡ict, and do not

discuss incentives to form groups or secede from the grand coalition.

In the rent-seeking literature, the issue of group and alliance formation

has received some attention since the early 80’s (See Tullock (1980), Katz,

Nitzan and Rosenberg (1991), Nitzan (1991), and the survey by Sandler

(1993).) The early literature treated groups and alliances as exogenous, and
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did not consider incentives to form groups in contests. Baik and Shogren

(1995), Baik and Lee (1997) and Baik and Lee (2001) obtain partial results

on group formation in rent seeking models with linear costs. They consider

a three-stage model, where players form groups, decide on a sharing rule,

and then choose noncooperatively the resources they spend on con‡ict. Baik

and Shogren (1995) analyze a situation where a single group faces isolated

players, Baik and Lee (1997) consider competition between two groups and

Baik and Lee (2001) analyze a general model with an arbitrary number of

groups. In all three models, it appears that the group formation model

leads to the formation of groups containing approximately one half of the

players. Our paper is closest to Baik and Lee (2001) because we consider

the formation of arbitrary groups. Our analysis di¤ers from theirs in two

important respects: we consider very di¤erent models of group formation,

where players can choose to exclude other players from the group (they

only consider open membership games), and we analyze a variety of models

of con‡icts, whereas they focus on a pure rent seeking model with linear

costs. A recent strand of the literature (Skaperdas (1998) and Tan and

Wang (1999)) analyzes the formation of alliances in models with continuing

con‡ict: once an alliance has won a contest, a new contest is played among

members of the winning alliance. Tan and Wang (1999) consider a general

model with asymmetric players, but suppose that the amount resources

spent of con‡ict is exogenous. Skaperdas (1998) allows for an endogenous

choice of …ghting expenses, but limits his analysis to three players. The

main distinction between these models and ours is that we only consider

one con‡ict: once a group has won the contest, either it obtains the right to

decide collectively on the policy, or it shares the prize between its members

according to a …xed sharing rule.

Finally, our analysis of policy con‡icts bears some resemblance to the
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study of country formation and secession in local public goods games. (Alesina

and Spolaore (1997) and Le Breton and Weber (2000).) As in these models,

we analyze incentives to form groups for agents located on a line and whose

utility depends on the distance between their location and the location of

the local public good (or policy). There are two important di¤erences be-

tween local public goods economies and policy con‡icts, which make the

comparison between the two models di¢cult to interpret. First, in local

public goods economies, it may be e¢cient to divide the population into

di¤erent groups (when the cost of providing the public good is low with

respect to the utility loss due to distances between the location of the agent

and of the public good), whereas in the policy con‡ict the grand coalition

is always e¢cient. Second, in local public goods economies, as agents do

not bene…t from public goods o¤ered outside their jurisdiction, there are no

externalities across groups, whereas in the policy con‡ict, an agent’s utility

depends on the entire coalition structure, as it determines both the location

of the policies and the winning probabilities of the di¤erent groups.

The remainder of the paper is organized as follows. Section 2 describes

the model and preliminary results on the equilibrium of the games of con‡ict.

Section 3 focuses on rent seeking contests, and Section 4 discusses policy

con‡icts. Section 5 contains our conclusions and discussion of the limitations

of the analysis and future research.

2 A Model of Con‡icts and Contests

We borrow the model of con‡icts and contests from Esteban and Ray (1999),

and extend it to allow for the formation of groups of agents. This is a

general model encompassing as special cases the pure rent seeking contest

and con‡ict among lobbyists over the choice of social policies. We assume
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that there are n + 1 players, indexed by i = 0; 1; 2; :::; n. The set of all

players (with cardinality n+1) is denoted N . A coalition Cj is a nonempty

subset of N , and a coalition structure ¼ = fC1; C2; ::; Cmg is a partition of
the set of players into coalitions. Once a group of players Cj is formed, its

members spend e¤ort (or invest resources) in order to make the group win

the contest. We adopt the simple contest technology initially advocated by

Tullock (1967), and axiomatized by Skaperdas (1996). The probability that

group Cj wins is given by

pj =

P
i2Cj ri
R

;

where ri denotes the resources spent by agent i, and R =
P
i2N ri the total

amount of resources spent on con‡ict by all the agents. Resources are costly

to acquire, and each agent faces an identical quadratic cost function,

c(ri) =
1

2
r2i :

This speci…cation of the cost function di¤ers from the linear function

usually assumed in the rent seeking literature, and is adapted from the

general cost functions analyzed by Esteban and Ray (1999).2 We depart

from the usual linear speci…cation because, with heterogeneous agents and

groups, the cost function must satisfy c0(0) = 0 to guarantee the existence

of an interior equilibrium.

Upon winning the contest, the group Cj either obtains a …xed prize (in

the case of rent seeking contests) or the right to choose the policy imple-

mented for all agents (in the case of policy con‡icts). We denote by uij the

2Esteban and Ray (1999) conduct their analysis for cost functions satisfying c0(0) =

0; c0 > 0; c00 ¸ 0 and c000 ¸ 0. The quadratic cost is a special case of their general family
of cost functions.
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utility obtained by agent i when group Cj wins the contest. With all these

notations in mind, the utility of agent i can be written as

Ui =
mX
j=1

pjuij ¡ c(ri):

As in Esteban and Ray (1999), this formulation is general enough to cover

the case of pure rent seeking contests (where agents only derive positive

utility when their group wins the contest), and con‡icts (or contests with

externalities), where agents derive di¤erent utilities, when losing the contest,

according to the identity of the winning group. However, as opposed to

Esteban and Ray (1999), we do not suppose that all agents inside a group

obtain the same utility level, (uij may be di¤erent from ui0j for two agents

i and i0 in group Cj), nor that agents systematically favor the group they

belong to (uij may be smaller than uij0 for two disjoint coalitions Cj and

Cj0 where i 2 Cj): However, we will maintain Esteban and Ray (1999)’s
assumption that the total utility obtained by group Cj is higher when the

group wins than when any other group wins the contest, i.e.X
i2Cj

uij >
X
i2Cj

uik for all k 6= j

We distinguish between two models of interaction between members of

a group. In the noncooperative model, every agent chooses her contribution

ri individually. In the cooperative model, total contributions are chosen co-

operatively (and denoted Rj for the coalition Cj). Hence, in the cooperative

model, we can collapse the game into a game played by representatives of

each group, where each representative has a utility function given by

Uj =
mX
j=1

pj
X
i2Cj

uij ¡
X
i2Cj

c(ri):
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We start our analysis by deriving, for any coalition structure ¼, the

Nash equilibrium of the game of con‡ict and contest, where players choose

(either noncooperatively or cooperatively) the level of resources they spend

on con‡ict. It is easy to see that the cooperative con‡ict game is formally

identical to the game considered by Esteban and Ray (1999). Hence, we

refer to their Propositions 3.2 and 3.3 (Esteban and Ray (1999), p. 386) to

state:

Proposition 1 (Esteban and Ray (1999)). The cooperative game of con‡ict

admits a unique equilibrium (R¤1; R¤2; :::; R¤m); characterized by the interior

…rst order conditions:P
k 6=j Rk(

P
i2Cj uij ¡

P
i2Ck uik)

R2
=
Ri
jCij

Proof. See Esteban and Ray (1999). Our model is a special case of

their model, with a quadratic cost of acquiring con‡ict resources.

Using Proposition 1, we derive the indirect utility function of each agent

as

vi =
mX
j=1

R¤j
R¤
uij ¡ 1

2

R¤2j
jCjj2 :

This indirect utility function assigns to each coalition structure ¼ a vector

of payo¤s for all the agents. It enables players to evaluate the coalition

structures they form, and has been labeled a ”valuation” in the literature.

(See Hart and Kurz (1983) for an early example and Bloch (1997) for a

general discussion.) We denote this valuation by vCi (¼):

We now turn to the noncooperative game of con‡ict, which was not

considered by Esteban and Ray (1999), but retains close similarities with

the cooperative game. We obtain the …rst order condition:
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X
k 6=j

Rk
R2
(uij ¡ uik)¡ ri = 0: (1)

Notice that condition (1) does not guarantee that individual contribu-

tions to the contest will always be positive. If in fact,X
k 6=j

Rk(uij ¡ uik) < 0;

the agent will prefer to see her group lose, and will make negative contribu-

tions to the contest.3

Following the same lines as Esteban and Ray (1999), we can prove:

Proposition 2 The noncooperative game of con‡ict admits a unique Nash

equilibrium (r¤1; r¤2; :::; r¤n) characterized by the interior …rst order conditions::X
k 6=j

Rk
R2
(uij ¡ uik)¡ ri = 0:

Proof. To prove existence, note that the …rst order condition (1) de…ne

a unique best response of player i for all vectors of contributions (r¡i).

Furthermore, this best response is a continuous function of the contributions

(r¡i): As (uij ¡ uik) is …nite, condition (1) guarantees that ri is bounded
above by some positive real number R. Now consider the function ©i(r¡i)

de…ned over [0; R] by the …rst order conditions. Let © = £i©i:The function
© is a continuous map from a compact space into itself, and hence admits a

…xed point by Brouwer’s …xed point theorem. The …xed point of the function

© is clearly a Nash equilibrium of the game of the noncooperative game of

con‡ict.
3Negative contributions have to be understood as investments undermining the prob-

ability of success of the group. An alternative model could be considered, where players

make nonnegative contributions. The analysis and results would not be altered by placing

a positivity constraint on investments.
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To prove that the equilibrium is unique, suppose by contradiction that

there exist two equilibria r and r0. Without loss of generality, suppose that

R0 · R: Pick the index j for which the ratio pk
p0k
is maximal. Consider the

total contributions made by players in group Cj equilibrium r. A simple

summation of the individual …rst order conditions gives:

Rj =
1

R

X
i2Cj

X
k 6=j
(uij ¡ uik)pk

=
1

R

X
k 6=j

X
i2Cj

(uij ¡ uik)pk

As
P
i2Cj(uij¡uik) > 0; total contributions of group j are positive. Now

comparing total contributions made in the two equilibria r and r0 we obtain

Rj
R0j

=
R0

R

P
k 6=j

P
i2Cj (uij ¡ uik)pkP

k 6=j
P
i2Cj (uij ¡ uik)p0k

=
R0

R

P
k 6=j

P
i2Cj (uij ¡ uik)p0k(pk=p0k)P

k 6=j
P
i2Cj (uij ¡ uik)p0k

<
R0

R

pj
p0j
= (

R0

R
)2
Rj
R0j

· Rj
R0j
;

yielding a contradiction.

Again, we de…ne the valuation for each agent in the noncooperative

model as the indirect utility function

vNi (¼) =
mX
j=1

R¤j
R¤
uij ¡ r¤i

3 Rent Seeking Contests

In this Section, we analyze a …rst model of contest, where agents …ght over

a …xed prize V . The literature on group rent seeking discusses various

alternatives for the sharing of the prize among members of the winning
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group (see Nitzan (1991) and Baik and Shogren (1995)). Typically, one

considers a sharing rule which is a weighted combination of equal sharing

and sharing proportional to individual investments in the group. Equal

sharing induces group members to free-ride on the contribution of other

members, and results in lower investments in the contest ; proportional

sharing, on the other hand, induces a ”rat race” e¤ect, and results in higher

investments in the contest. While the role of various sharing rules and the

endogenous determination of the optimal rule have been emphasized in the

literature on group rent seeking, we focus in this paper on a di¤erent issue,

and simply assume that the prize is equally shared among members of the

winning group. Hence, the utility of an agent is given by

uij = V=jCjj if i 2 Cj;
uij = 0 if i =2 Cj:

In this simple group rent seeking model, it is well known that the e¢cient

coalition structure is the grand coalition. Formally, a coalition structure ¼

is e¢cient (in the cooperative or noncooperative sense) if there exists no

coalition structure ¼0 such that
P
i2N vi(¼

0) >
P
i2N vi(¼), where the valu-

ation v is de…ned respectively in the cooperative or noncooperative model.

We can state:

Lemma 3 In the rent seeking contest, the e¢cient coalition structure is the

grand coalition both in the noncooperative and cooperative models.

Proof. The proof is obvious. In the grand coalition, no resources are

dissipated and the sum of utilities is equal to the prize. Any model of

con‡ict (cooperative or noncooperative) with at least two groups results in

rent dissipation, and yields a smaller total payo¤.
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Our next result shows that the payo¤ received by any agent in a sym-

metric coalition structure is always lower than the payo¤ received in the

grand coalition. Formally, a coalition structure is symmetric if and only if

jCjj = jCkj for all groups Cj and Ck in ¼:

Lemma 4 In the rent seeking contest, both in the cooperative and nonco-

operative models, for any symmetric coalition structure ¼; vi(¼) < vi(fNg)
8i 2 N:

Proof. Consider …rst the rent seeking contest. In any regular coalition

structure withm groups of (n+1=m) players, the expected utility of a player

is:

V

m(n+ 1=m)
¡ c(ri) < V

n+ 1
:

Hence, any player gets a smaller payo¤ in a regular coalition structure than

in the grand coalition.

The intuition underlying Lemma 4 is easily grasped. In a symmetric

coalition structure, all agents are symmetric, and obtain the same expected

gain than in the grand coalition, but must also incur the cost of con‡ict.

While this Lemma is very simple, it will prove helpful in the analysis of

secession and group formation.

3.1 Valuations in rent seeking contests

We now derive explicitly the valuations in the noncooperative and cooper-

ative models of rent seeking contests. In the noncooperative model, we are
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able to derive an explicit analytical formula for the valuation. The interior

…rst order condition gives

V

jCj j

P
k 6=j Rk
R2

= ri 8i 2 Cj

Summing over all members of group Cj ;

V

P
k 6=j Rk
R2

= Rj:

Notice that this last expression is symmetric for all groups. Hence, in

equilibrium, every group will spend the same resources in the con‡ict, and

the winning probability is identical across groups. Straightforward compu-

tations then show that the total level of con‡ict and individual expenses can

be computed as:

R =
p
V (m¡ 1)

ri =

p
V (m¡ 1)
mjCj j

The valuation is thus given by

vNi (¼) = V f
1

mjCjj ¡
1

2

m¡ 1
m2jCj j2 g (2)

In the noncooperative model of rent seeking contest, the valuation thus

takes a particularly easy form. It only depends on the total number of

groups formed (m) and on the size of the group to which player i belongs

(jCjj). The valuation is independent of the size distribution of coalitions
to which the player does not belong, and of the total number of agents in

the society.4 We use the analytical expression to compute the valuation for
4This very simple expression is of course only obtained under very speci…c assumptions

on the contest technology, and would not obtain for alternative speci…cations. It is however

illustrative of the qualitative properties of the valuation in rent seeking contests. Notice

that a similar simple expression can be found in a very di¤erent context – cartel formation

in linear Cournot oligopolies studied in Bloch (1996) and Ray and Vohra (1999).
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small numbers of players. (Tables only report the values for some of the

partitions. The values for partitions which can be obtained by permutation

of the players are not given here.)

Player/Coalition Structure 0 1 2

012 V=3 V=3 V=3

0j12 3V=8 7V=32 7V=32

0j1j2 2V=9 2V=9 2V=9

table 1: valuations for the noncooperative rent seeking

contest (3 players).

Player/Coalition Structure 0 1 2 3

0123 V=4 V=4 V=4 V=4

0j123 3V=8 11V=72 11V=72 11V=72

01j23 7V=32 7V=32 7V=32 7V=32

01j2j3 5V=36 5V=36 2V=9 2V=9

0j1j2j3 5V=32 5V=32 5V=32 5V=32

table 2: valuations for the noncooperative rent seeking

contest (4 players).

Tables 1 and 2 illustrate some important properties of the valuation.

First of all, it appears that the payo¤ a players receives in the grand coalition

is only dominated by the payo¤ she receives when she is an isolated player,

facing a group of size (n¡ 1). Any other coalition structure results in lower
payo¤s for all the players. Furthermore, it appears that the formation of a

group (or the merger between groups) always creates positive spillovers to

the other players. (As can be seen from the analytical expression for the

valuation, a decrease in the total number of groups m induces an increase

in the payo¤ for any player not a¤ected by the merger.) This positive

externality is the source of a free-riding problem, which leads any player
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to prefer to let the other players form groups. This free-riding problem is

highlighted by the fact that the only case where a player obtains a higher

payo¤ than in the grand coalition is when it faces a group formed by all the

other players.5

When players choose cooperatively their contributions, an analytical ex-

pression for the pure rent seeking contest cannot be obtained. Instead, we

compute below the valuation for small numbers of players

Player/Coalition Structure 0 1 2

012 V=3 V=3 V=3

0j12 0:29V 0:21V 0:21V

0j1j2 2V=9 2V=9 2V=9

table 3: valuations for the cooperative rent seeking contest

(3 players)

Player/Coalition Structure 0 1 2 3

0123 V=4 V=4 V=4 V=4

0j123 V=4 0:14V 0:14V 0:14V

01j23 0:19V 0:19V 0:19V 0:19V

01j2j3 0:16V 0:16V 0:18V 0:18V

0j1j2j3 5V=32 5V=32 5V=32 5V=32

table 4: valuation for the cooperative rent seeking contest (4

players)

Tables 3 and 4 show that the valuation in the cooperative model dis-

plays the same qualitative properties as the valuation in the noncooperative
5A similar free-riding problem appears in the study of cartel formation. The cartel

game is also a game with positive spillovers. See Bloch (1997) and Yi (1997) for a general

discussion of games with positive spillovers.
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model. In the cooperative model, the payo¤ received in the grand coali-

tion dominates the payo¤ received in any other coalition structure.(The two

payo¤s are equal when one agent faces a group of three other agents). One

can also check that, for a small number of players, the cooperative model

displays positive spillovers. Finally, the payo¤s are typically lower in the co-

operative model than in the noncooperative model. This observation (which

may seem counterintuitive at …rst glance) is due to the fact that the total

level of con‡ict is higher in the cooperative model, as members of a group

coordinate their choices of investments in contest, and do not face free-riding

from other group members.

3.2 Secession in rent seeking contests

Given that the e¢cient coalition structure is the grand coalition, we now an-

alyze under which conditions the grand coalition is immune to secession. Our

analysis will be centered around individual deviations, and we ask: When

does an individual agent have an incentive to leave the group and initiate a

contest? The previous tables show that the answer to this question depends

on the anticipated reaction of the other players to the initial secession. As

a …rst step, we analyze individual incentives to secede, with an exogenous

description of the reaction of other agents.

Borrowing from Hart and Kurz (1983), we de…ne two possible reactions

of the external players. In the ° model, the grand coalition dissolves, and

all the players become singletons. In the ± model, after the secession of a

player, all other players remain together in a complementary coalition.6 We

6 In Hart and Kurz (1983)’s original formulation, the ° and ± models were de…ned

in terms of noncooperative games of coalition formation. In the ° model, a coalition is

formed if all its members unanimously agree on the coalition ; in the ± model, a coalition
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thus say that the grand coalition is °¡immune to secession by player i if
vi(fNg) ¸ vi(ff0g; :::fngg: (As the valuations obtained by a player in the
grand coalition and in the coalition structure formed of singletons are identi-

cal in the cooperative and noncooperative models, we do not need to specify

the model we use in the ° case). The grand coalition is ±¡immune to seces-
sion by player i in the noncooperative (respectively cooperative) models if

vi(fNg) ¸ vNi (ffig;Nnfigg) (respectively vi(fNg) ¸ vCi (ffig;Nnfigg)

Proposition 5 In the rent seeking contest, the grand coalition is °¡immune
to secession for all the players. The grand coalition is not ±¡immune to se-
cession in the noncooperative model for n ¸ 2 and it is not ±-immune to

secession in the cooperative model for n ¸ 4:

Proof. In the ° model, Lemma 4 immediately shows that the value of

every player in a coalition structure formed of singletons is lower than in the

grand coalition.

In the ± model, for the noncooperative case, a direct computation gives

the value vNi (ffig; Nnfigg) = V (12 ¡ 1
8) =

3V
8 > V

n+1 for n ¸ 2:
In the cooperative case, a simple computation shows that

vNi (ffig;Nnfigg) = V
2 +

p
n

2(1 +
p
n)2

>
V

n+ 1
for n ¸ 4:

Proposition 5 shows that the pro…tability of a secession depends on the

anticipated reaction of the other players. If the other players react by break-

ing into singletons, the deviation is not pro…table ; if, on the other hand,

is formed by all players who have announced the same coalition. A coalition structure is

then ° (respectively ±) immune to secession if and only if it is a Nash equilibrium outcome

of the ° (respectively ±) game of coalition formation.
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they react by staying into a single group, an individual deviation becomes

pro…table. Furthermore, payo¤s obtained in a cooperative contest are lower

than the payo¤s obtained in a noncooperative contest, so that the incentive

to secede is lower in the cooperative model.

3.3 Group formation in rent seeking contests

The analysis of the previous subsection relies on an exogenous speci…cation

of the behavior of players following a secession. We now turn to a group

formation model where the reaction of players to a secession is endogenized.

Bloch (1996) and Ray and Vohra (1999) propose a sequential model of coali-

tion formation, where every player acts optimally, anticipating the behavior

of subsequent players. This forward looking game of coalition formation

is formalized as follows. At each period t, one player is chosen to make a

proposal (a coalition to which it belongs), and all the prospective members

of the coalition respond in turn to the proposal. If the proposal is accepted

by all, the coalition is formed and another player is designated to make a

proposal at t + 1 ; if some of the players reject the proposal, the coalition

is not formed, and the …rst player to reject the o¤er makes a countero¤er

at period t + 1. The identity of the di¤erent proposers and the order of

response are given by an exogenous rule of order. There is no discounting in

the game but all players receive a zero payo¤ in case of an in…nite play. As

the game is a sequential game of complete information and in…nite horizon,

we use as a solution concept stationary perfect equilibria.

When players are ex ante identical, it can be shown that the coalition

structures generated by stationary perfect equilibria can also be obtained

by analyzing the following simple …nite game. The …rst player announces

an integer k1, corresponding to the size of the coalition she wants to see

formed, player k1 + 1 announces an integer k2, etc.;, until the total number
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n of players is exhausted. An equilibrium of the …nite game determines

a sequence of integers adding up to n, which completely characterizes the

coalition structure as all players are ex ante identical.

The characterization of the subgame perfect equilibrium outcome of the

sequential game of group formation requires an explicit analytical expression

for the valuation, and hence can only be done in the noncooperative rent

seeking contest. We obtain

Proposition 6 In the rent seeking contest, the grand coalition is the unique

equilibrium coalition structure of the sequential game of coalition formation.

Proof. To prove the Proposition, we consider the …nite game of an-

nouncement of coalition sizes, and compute by backward induction the

unique subgame perfect equilibrium. The proof of the Proposition relies

on the following Lemma.

Lemma 7 Suppose that K ¸ 1 coalitions have been formed and that there
are j remaining players in the game, with j ¸ 2. Then player (n + 1 ¡ j)
optimally chooses to form a coalition of size 1 when she anticipates that all

subsequent players form singletons.

To prove the Lemma, we compute the payo¤ of player n + 1 ¡ j as
a function of the size ¹ of the coalition she forms, anticipating that all

subsequent j ¡ ¹ players form singletons.

F (¹) =
1

(K + j ¡ ¹+ 1)¹ ¡
1

2

K + j ¡ ¹
(K + j ¡ ¹+ 1)2¹2

Let a = K + j and de…ne

G(¹) =
F (¹)

F (1)
=
a2
£¡2¹2 + ¹(2a+ 3)¡ a¤
(a¡ ¹+ 1)2¹2 (a+ 1)

22



and

h(¹) = (a¡ ¹+ 1)2¹2 (a+ 1)¡ a2 £¡2¹2 + ¹(2a+ 3)¡ a¤ :
We will show that h(¹) > 0 for all j ¸ ¹ > 1, thus establishing that the

optimal choice of player n+1¡ j is to choose a coalition of size 1. We …rst
note that h(1) = 0 and

h(j) = j[(j +
1

j
¡ 2)K3 + j (j ¡ 1) ¡K2 ¡ 1¢] > 0 as K ¸ 1 and j ¸ 2:

Next we compute

h0(¹) = 2(a+ 1) (a+ 1¡ ¹) (a+ 1¡ 2¹)¹¡ a2 [2a+ 3¡ 4¹]

and obtain

h0(1) = 2a(a¡ 2) ¸ 0 as a ¸ 2;

h0(j) = 2(K + 1¡ j)[(j ¡ 1)K2 + j2K + j)]¡ (K + j):

Finally, we compute the second derivative

h00(¹) = 2(a+ 1)[6¹2 ¡ 6¹(a+ 1) + (a+ 1)2] + 4a2

The second derivative h00 is a quadratic function, and the equation h00(x) = 0

admits two roots given by

x1 =
a+ 1

2
¡
p
¢; x2 =

a+ 1

2
+
p
¢

with ¢ = 48
h
(a+ 1)4 ¡ 4a2 (a+ 1)

i
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We conclude that the function h0 is increasing over the interval [¡1; x1],
decreasing over the interval [x1; x2] and increasing over the interval [x2;+1]:

We now distinguish between two cases. If h0(j) < 0; as the function h0

is continuous over [1; j]; and h0(1) > 0 > h0(j), there exists a value x for

which h(x) = 0:We show that this value is unique. Suppose by contradiction

that h0(x) = 0 admits multiple roots over the interval [1; j]: As h0(1) > 0

and h0(j) < 0, there must exist at least three values y1 < y2 < y3 with

h0(y1) = h0(y2) = h0(y3) = 0 and h00(y1) < 0; h00(y2) > 0; h00(y3) < 0:

However, our earlier study of the second derivative established that there

exist no values satisfying these conditions. Hence, there exists a unique

root x¤of the equation h0(x) = 0 in the interval [1; j] and h0(x) ¸ 0 for all
x 2 [1; x¤]; h0(x) · 0 for all x 2 [x¤; j]. Hence, the function h attains its
minimum either at ¹ = 1 or ¹ = j and as h(j) > h(1) = 0; h(¹) > 0 for all

j ¸ ¹ > 1.
If now h0(j) > 0, we necessarily have j < K + 1: Hence, j < a+1

2 < x2.

In that case, we show that there is no value x 2 [1; j] for which h0(x) = 0:
Suppose by contradiction that the function crosses the horizontal axis. Then

there exists at least two values y1 < y2 < x2 for which h0(y1) = h0(y2) = 0

and h00(y1) < 0; h00(y2) > 0: Our earlier study of the second derivative h00

shows that there exist no values satisfying those conditions. Hence h0(¹) > 0

for all ¹ 2 [1; j] and as h(1) = 0; h(¹) > 0 for all j ¸ ¹ > 1, completing the
proof of the Lemma.

We now use the preceding Lemma to …nish the proof. We …rst claim

that, in a subgame perfect equilibrium, after any coalition has been formed,

all players choose to form singletons. The proof of this claim is obtained

by induction on the number j of remaining players. If j = 1, the result is

immediate. Suppose now that the induction hypothesis is true for all t < j.

By the induction hypothesis, in equilibrium, all players following player
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(n ¡ j + 1) form singletons. By the preceding Lemma, player (n ¡ j + 1)
optimally chooses to form a coalition of size 1.

Finally, consider the …rst player. In a subgame perfect equilibrium, she

knows that players form singletons after she moved. Hence, she computes

her expected pro…t as

F (¹) =
1

(n¡ ¹+ 2)¹ ¡
1

2

n¡ ¹+ 1
(n¡ ¹+ 2)2¹2

=
(n¡ ¹+ 1)(2¹¡ 1) + 2¹

2(n¡ ¹+ 2)2¹2 :

To show that F (¹) < F (n+ 1) for all ¹ < n+ 1, notice …rst that

n+ 1 · ¹(n¡ ¹+ 2);

as the left hand side of this inequality de…nes a concave function of ¹, which

is increasing until ¹ = n
2 + 1, then decreasing and attains the values n+ 1

for ¹ = 1 and ¹ = n+ 1: We thus have:

(n¡ ¹+ 1)(2¹¡ 1) + 2¹
2(n¡ ¹+ 2)2¹2 · (n¡ ¹+ 1)(2¹¡ 1) + 2¹

2(n¡ ¹+ 2)¹(n+ 1)
<

2¹(n¡ ¹+ 2)
2(n¡ ¹+ 2)¹(n+ 1) =

1

n+ 1
;

establishing that the …rst player chooses to form the grand coalition.

4 Policy con‡icts

The second model we consider is a model of policy con‡ict inspired by Este-

ban and Ray (1999). In this model, agents lobby for a policy and each agent

receives utility from the policy chosen in the contest. We take the policy

space to be the segment [0; 1] and suppose that the n+1 are equally spaced

along the line. The location of agent i (which corresponds to the point i=n
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on the segment) represents her optimal policy. We suppose that agents have

Euclidean preferences and su¤er a loss from the choice of a policy di¤erent

from their bliss point. The primitive utility of agent i is thus a decreasing

function of the distance between the policy x and her ideal point i=n. More

precisely, we describe the primitive utility of agent i as

ui = V ¡ f(ji=n¡ xj);

where V denotes a common payo¤ for all agents, and f is a strictly

increasing and convex function of the distance between agent i and the

implemented policy x, with f(0) = 0.7

We restrict our attention to the formation of consecutive groups of

agents, i.e. groups which contain all the players in the interval [i; k] when-

ever they contain the two agents i and k. If a group Cj = [i; k] wins the

contest, we suppose that the policy chosen is at the mid-point of the interval

[i; k]:Whenever the group Cj contains an odd number of players, this point

is the policy chosen by the median voter. If the group Cj contains an even

number of players, this point can be understood as a random draw between

the optimal policies of the two middle voters.8 Furthermore, it is clear that

this policy choice is the one which maximizes the sum of payo¤s of all the

group members.

Hence, letting mj denote the midpoint of group Cj , the utility of an

agent i is given by
7 In some of the computations to follow, we will focus on linear utilities, and assume

that the function f is the identity.
8We are of course aware of the fact that, with an even number of group members, the

choice of this policy cannot be rationalized by a voting model. However, we have chosen

to make this assumption in order to keep the model simple, and allow us to derive results

independently of the fact that the number of agents is a group is odd or even.
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uij = V ¡ f(ji=n¡mj j):

The policy con‡ict is thus a contest model with externalities: the payo¤

of a losing agent depends on the identity of the winning group. An added

complexity of the model stems from the fact that agents are ex ante asym-

metric. It thus appears that policy con‡icts are much more complex to

analyze than rent seeking contests. However, in spite of these complexities,

we are able to obtain results which parallel the results obtained for the rent

seeking model. In particular, we can show:

Proposition 8 In the policy con‡ict, the e¢cient coalition structure is the

grand coalition both in the cooperative and noncooperative models..

Proof. The proof of the proposition amounts to showing that the sum

of utilities of all agents is higher in the grand coalition than in any e¢cient

structure and does not distinguish between the cooperative and noncooper-

ative cases. In fact, both in the cooperative and noncooperative cases, for

any coalition structure ¼;X
i

vi(¼) = nV ¡
X
i

X
j

pjf(ji=n¡mj j)¡
X
i

c(ri)

· nV ¡
X
i

X
j

pjf(ji=n¡mj j):

Now, reversing the order of summation,X
i

X
j

pjf(ji=n¡mj j) =
X
j

pj
X
i

f(ji=n¡mj j)

We will show that for any median midpoint mj ;X
i

f(ji=n¡mj j)¡
X
i

f(ji=n¡ 1=2j) ¸ 0;
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so the highest sum of utilities is obtained when the grand coalition is formed,

the policy chosen is 1=2 and no resources are dissipated in the con‡ict.

The computation of the sum of utilities depends on the parity of the car-

dinal of the coalition Cj and the total number of players, n+1: A straight-

forward computation shows thatX
i

f(ji=n¡mjj) =
X
i·mj

f(mj ¡ i=n) +
X
i¸mj

f(i=n¡mj)

=

mjX
t=1

f(t=n) +

n¡mjX
t=1

f(t=n) if jCjj is odd

=

mj¡1=2X
t=0

f(
2t+ 1

2n
) +

n¡1=2¡mjX
t=0

f(
2t+ 1

2n
) if jCjj is even.

Similarly,

X
i

f(ji=n¡ 1=2j) = 2

n=2X
t=1

f(t=n) if n is even

= 2

(n¡1)=2X
t=0

f(
2t+ 1

2n
) if n is odd.

Without loss of generality, we suppose that mj · 1=2: If jCjj and n+ 1 are
odd, we compute

X
i

f(ji=n¡mjj)¡
X
i

f(ji=n¡ 1=2j) = 0 if mj = 1=2

=

n¡nmjX
t=n=2+1

f(t=n)¡
n=2X

t=nmj+1

f(t=n) ¸ 0

if mj < 1=2

where the last inequality is obtained because f is increasing. If jCj j and
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n+ 1 are even, we obtainX
i

f(ji=n¡mjj)¡
X
i

f(ji=n¡ 1=2j) = 0 if mj = 1=2

=

n¡1=2¡nmjX
t=n=2+1=2

f(
2t+ 1

2n
)¡

n=2¡1=2X
t=nmj¡1=2

f(
2t+ 1

2n
) ¸ 0

if mj < 1=2:

Next suppose that jCjj is odd and n+1 is even. By convexity of the function
f;

2f(
2t+ 1

2n
) · f(t=n) + f((t+ 1)=n):

Hence,

2

(n¡1)=2X
t=0

f(
2t+ 1

2n
) · f(0) + 2

(n¡1)=2X
t=1

f(t=n) + f((n+ 1)=2n):

and as f(0) = 0;

X
i

f(ji¡ n=2j) · 2
(n¡1)=2X
t=1

f(t=n) + f((n+ 1)=2n)

As nmj is an integer and n=2 is not, the condition mj · 1=2 implies that
nmj · (n¡ 1)=2: Then,

X
i

f(ji=n¡mjj)¡
X
i

f(ji=n¡ 1=2j) ¸
nmjX
t=1

f(t=n) +

n¡nmjX
t=1

f(t=n)

¡2
(n¡1)=2X
t=1

f(t=n)¡ f((n+ 1)=2n)

= 0 if nmj = (n¡ 1)=2

=

n¡nmjX
t=(n+3)=2

f(t=n)¡
(n¡1)=2X
t=nmj+1

f(t=n) ¸ 0

if nmj < (n¡ 1)=2:
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Finally, suppose that jCj j is even and n + 1 is odd. By convexity of the
function f , for any t ¸ 1

2f(t=n) · f(2t¡ 1
2n

) + f(
2t+ 1

2n
):

Hence,

X
i

f(ji=n¡ 1=2j) = 2

n=2X
t=1

f(t=n) · f(0) + 2
n=2¡1X
t=0

f(
2t+ 1

2n
) + f((n+ 1)=2n)

= 2

n=2¡1X
t=0

f(
2t+ 1

2n
) + f((n+ 1)=2n):

As n=2 is an integer and nmj is not, the condition mj · 1=2 implies nmj ·
(n¡ 1)=2. Hence,
X
i

f(ji=n¡mjj)¡
X
i

f(ji=n¡ 1=2j) ¸
nmj¡1=2X
t=0

f(
2t+ 1

2n
) +

n¡1=2¡nmjX
t=0

f(
2t+ 1

2n
)

¡2
n=2¡1X
t=0

f(
2t+ 1

2n
)¡ f((n+ 1)=2n)

= 0 if nmj = (n¡ 1)=2

=

n¡1=2¡nmjX
t=n=2

f(
2t+ 1

2n
)¡

n=2¡1X
t=nmj¡1=2

f(
2t+ 1

2n
) ¸ 0

if nmj < (n¡ 1)=2

Proposition 8 shows that the grand coalition is also the e¢cient struc-

ture in the policy con‡ict game. A careful reading of the proof shows that

this result is independent of the contest technology, and only relies on the

convexity of the distance function. Because the distance function is convex,

the sum of utility losses incurred by the agents is minimized when the grand

coalition is formed, and the policy 1=2 is chosen with certainty.
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The next Proposition parallels Lemma 4 and shows that every player

obtains a lower payo¤ in a symmetric coalition structure than in the grand

coalition. Given that players are ex ante asymmetric, we de…ne a symmetric

coalition structure as a partition which is symmetric around the point 1=2.

Formally, a coalition structure ¼ is symmetric if, whenever two players i and

j belong to the same coalition in ¼; players n ¡ i and n¡ j also belong to
the same coalition in ¼:

Proposition 9 In the policy con‡ict, both in the cooperative and nonco-

operative models, for any symmetric coalition structure ¼; vi(¼) < vi(fNg)
8i 2 N:

Proof. For a symmetric coalition structure, consider the coalitions to

the left of 1=2, C1; :::; CJ ; and let p1; ::; pJ denote the winning probabilities

of the corresponding groups. We distinguish between two cases. (i) If CJ

contains players to the right of 1=2, there are in total 2J ¡ 1 coalitions in
¼, 2

PJ¡1
j=1 pj + pJ = 1; and the coalition CJ is centered around 1=2 (ii) If

CJ does not contain any player to the right of the 1=2, then there are 2J

coalitions in ¼ and 2
PJ
j=1 pj = 1: In both cases, we compute the payo¤

of any player i · n=2 in the coalition structure ¼: It turns out that the

computation does not rely on a speci…cation of the resources spent in rent

seeking and hence is identical in the cooperative and noncooperative cases.

Case (i) vi(¼) = V ¡
PJ¡1
j=1 pj(f(ji=n¡mj j)+f(1¡mj¡i=n))¡pJf(1=2¡

i=n)¡ c(ri): Now, if i=n · mj; by convexity of the function f ,

f(mj ¡ i=n) + f(1¡mj ¡ i=n) ¸ 2f(1=2¡ i=n):

If i=n ¸ mj, by convexity of the function f ,

f(i=n¡mj) + f(1¡mj ¡ i=n) ¸ 2f(1=2¡mj) ¸ 2f(1=2¡ i=n):
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Hence,

vi(¼) · V ¡ 2
J¡1X
j=1

pjf(1=2¡ i=n)¡ pJf(1=2¡ i=n)¡ c(ri):

As 2
PJ¡1
j=1 pj + pJ = 1;

vi(¼) · V ¡ f(1=2¡ i=n)¡ c(ri) < V ¡ f(1=2¡ i=n) = vi(fNg):

Case (ii). By a similar computation, we obtain:

vi(¼) · V ¡ 2
JX
j=1

pjf(1=2¡ i=n)¡ c(ri) = V ¡ f(1=2¡ i=n)¡ c(ri)

< V ¡ f(1=2¡ i=n) = vi(fNg):

Proposition 9 again is independent of the contest technology and only

relies on the convexity of the distance function. The proof of the Proposi-

tion exploits the fact that, in a symmetric coalition structure, the winning

probabilities of two coalitions which are symmetric around 1=2 are equal.

Hence, for any player i, the expected distance to the chosen policy point is

equal to ji=n¡1=2j: However, since the distance function is convex, the total
utility loss is necessarily at least as large as the loss incurred in the grand

coalition where the policy 1=2 is chosen with certainty.

4.1 Valuations in policy con‡icts

We now turn to a computation of the valuation for the policy con‡ict. Not

surprisingly, we have been unable to obtain an analytical expression for

the valuation, and derive below the valuations in the noncooperative policy

con‡ict for 3 and 4 players and linear utilities. Again, we have omitted from

the tables those coalition structures which can be obtained by a permutation

of the agents.
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Player/Coalition Structure 0 1 2

012 V ¡ 0:5 V V ¡ 0:5
0j12 V ¡ 0:49 V ¡ 0:37 V ¡ 0:74
0j1j2 V ¡ 0:59 V ¡ 0:41 V ¡ 0:59

table 5: valuation for the noncooperative policy conflict, (3

players)

Player/Coalition Structure 0 1 2 3

0123 V ¡ 0:5 V ¡ 0:167 V ¡ 0:167 V ¡ 0:5
0j123 V ¡ 0:47 V ¡ 0:33 V ¡ 0:32 V ¡ 0:65
01j23 V ¡ 0:55 V ¡ 0:34 V ¡ 0:34 V ¡ 0:55
01j2j3 V ¡ 0:61 V ¡ 0:38 V ¡ 0:36 V ¡ 0:51
0j12j3 V ¡ 0:58 V ¡ 0:41 V ¡ 0:41 V ¡ 0:58
0j1j2j3 V ¡ 0:57 V ¡ 0:40 V ¡ 0:40 V ¡ 0:57

table 6: valuation for the noncooperative policy conflict, (4

players)

Tables 5 and 6 clearly demonstrate the complexity of the structure of the

valuation in the policy con‡ict. It appears that, as in the case of the rent

seeking contest, the only case where an agent obtains a higher payo¤ than

in the grand coalition is when an extremist individual breaks away from the

grand coalition while all other players remain together. Furthermore, notice

that the spillovers due to the formation of a group are either positive or

negative depending on the coalition structure. In the four player case, when

players 0 and 1 have formed a group, they obtain a higher payo¤ when 2

and 3 merge than when 2 and 3 are independent agents. On the other hand,

it turns out that player 0 obtains a higher payo¤ in the coalition structure
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0j1j2j3 than in the coalition structure 0j12j3. There does not seem to be

any regularity in the direction of externalities induced by mergers between

groups of agents!

Player/Coalition Structure 0 1 2

012 V ¡ 0:5 V V ¡ 0:5
0j12 V ¡ 0:55 V ¡ 0:405 V ¡ 0:595
0j1j2 V ¡ 0:59 V ¡ 0:41 V ¡ 0:59

table 7: valuation for the cooperative policy conflict, (3

players)

Player/Coalition Structure 0 1 2 3

0123 V ¡ 0:5 V ¡ 0:167 V ¡ 0:167 V ¡ 0:5
0j123 V ¡ 0:54 V ¡ 0:38 V ¡ 0:24 V ¡ 0:57
01j23 V ¡ 0:56 V ¡ 0:39 V ¡ 0:39 V ¡ 0:56
01j2j3 V ¡ 0:56 V ¡ 0:40 V ¡ 0:39 V ¡ 0:58
0j12j3 V ¡ 0:57 V ¡ 0:40 V ¡ 0:40 V ¡ 0:57
0j1j2j3 V ¡ 0:57 V ¡ 0:40 V ¡ 0:40 V ¡ 0:57

table 8: valuation for the cooperative policy conflict (4

players)

Tables 7 and 8 again illustrate the complexity of the valuation in the

policy con‡ict, which does not seem to display any regularity. Notice that,

as opposed to the noncooperative case, the grand coalition dominates all

coalition structures: an extremist never bene…ts from breaking away. A

comparison between Tables 6 and 8 shows that agents do not necessarily

bene…t from choosing their resources collectively. This is due to the fact

that we do not allow transfers among agents in a group. Hence, even though
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agents collectively bene…t from cooperating in their choices of investment,

some agents may end up with a lower utility in the cooperative model.

4.2 Secession in policy con‡icts

As in the rent seeking contests, we now investigate whether the grand coali-

tion is immune to secession in the policy con‡icts.

Proposition 10 In the policy con‡ict, the grand coalition is °¡immune
to secession for all the players. The grand coalition is not ±¡immune to
secession by an extremist player in the noncooperative model with linear

utilities for n ¸ 2: However, the grand coalition is ±¡immune to secession
by an extremist player in the cooperative model with linear utilities.

Proof. The fact that the grand coalition is ° immune to secession is

a direct consequence of Proposition 9, as the coalition structure formed of

singletons is symmetric.

To show that an extremist bene…ts from breaking away in the noncoop-

erative model with linear utilities, we compute the equilibrium payo¤s. Let

C denote the coalition f1; ::; ng: We denote by r0 the equilibrium invest-

ment of agent 0 and by RC the total equilibrium investments of group C:

The distance between 0 and the midpoint of C is n+12n . Hence the …rst order

condition for player 0 is:

n+ 1

2n

RC
R2

= r0:

Now consider players in C. As long as i · n+1
4 , player i prefers the policy

choice of player 0 to the policy choice of the coalition C and contributes a

negative amount:

ri =
r0
R2
(4i¡ (n+ 1))

2n
:
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For n+14 · i · n+1
2 , player i contributes a positive amount:

ri =
(4i¡ (n+ 1))

2n

r0
R2
:

For players to the right of n+12 ; the di¤erence in distances is

(
n+ 1

2n
)¡ i

n
+
i

n
=
n+ 1

2n
;

and the contribution is given by the …rst order condition

n+ 1

2n

r0
R2

= ri:

Let rC denote the solution to this last equation. Then

RC =
X
i>0

ri = rc(Cardfi; i > n+ 1

2
g+

X
1·i·n+1

2

4i¡ (n+ 1)
n+ 1

):

We de…ne

A(n) = Cardfi; i > n+ 1

2
g+

X
1·i·n+1

2

4i¡ (n+ 1)
n+ 1

;

and the Nash equilibrium of the game of individual contributions can be

obtained by solving the system of two equations:

rcA(n)

R2
n+ 1

2n
= r0; (3)

r0
R2
n+ 1

2n
= rc: (4)

Dividing the two equations, we obtain r0 =
p
A(n) rc, and equation 3 yields:

r20 =
n+ 1

2n

p
A(n)

(1 +
p
A(n))2

:

Hence,

U0 = V ¡
p
A(n)

1 +
p
A(n)

n+ 1

2n
¡ n+ 1

4n

p
A(n)

(1 +
p
A(n))2

= V ¡ n+ 1
2n

p
A(n)(3 + 2

p
A(n))

2(1 +
p
A(n))2

:
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To show that player 0 obtains a higher pro…t than in the grand coalition, it

thus su¢ces to show

n+ 1

2n

p
A(n)(3 + 2

p
A(n))

2(1 +
p
A(n))2

<
1

2
: (5)

Inequality 5 is equivalent to

¡2A(n) + (n¡ 3)
p
A(n) + 2n > 0:

As A(n) < n, this inequality is always satis…ed for n ¸ 3: A direct compu-
tation (Table 5) shows that the inequality is also satis…ed for n = 2:

In the cooperative model, two cases must be considered according to the

parity of the number of elements in the set C = f1; :::; ng: The …rst order
condition for the extremist remains

RC
R2
n+ 1

2n
= r0

If n is odd, the …rst order condition for the complement coalition is

r0
R2
(n+ 1)2

4n
=
RC
n

and if n is even,

r0
R2
n+ 2

4
=
RC
n

In the latter case,

r0 =
(2(n+ 1)(n+ 2))

1
4p

2(n+ 1) + n
p
(n+ 2)

r
n+ 1

2

R =
1

2
(2(n+ 1)(n+ 2))

1
4

and the individual payo¤ is

ue0 = V ¡
n+ 1

4

3
p
2(n+ 1)(n+ 2) + 2n(n+ 2)

(
p
2(n+ 1) + n

p
(n+ 2))2

:
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When n is odd, an analogous computation shows:

uo0 = V ¡
n+ 1

4n

3
p
2n(n+ 1) + 2n(n+ 1)

(
p
2 +

p
n(n+ 1))2

It can be checked that

uo0 < x0 ,
n+ 1

4n

3
p
2n(n+ 1) + 2n(n+ 1)

(
p
2 +

p
n(n+ 1))2

>
1

2
, (3¡ n)

p
(n+ 1) +

p
2n(n¡ 1) > 0

The latter expression is increasing in n and positive for n = 1: Hence it

is always positive. In the even case

ue0 < x0 ,
n+ 1

4

3
p
2(n+ 1)(n+ 2) + 2n(n+ 2)

(
p
2(n+ 1) + n

p
(n+ 2))2

>
1

2
, (3¡ n)

p
(n+ 1)(n+ 2) +

p
2(n2 ¡ 2) > 0

(6)

Again the last term is increasing in n and positive for n = 2:We conclude

that an extremist never has an incentive to break away from the grand

coalition in the cooperative model.

Proposition 9 establishes a close parallel between incentives to secede in

rent seeking contests and policy con‡icts. An extremist agent has an incen-

tive to secede in the noncooperative policy con‡ict only when she anticipates

that all other agents remain in a single group (the ± model). If she believes

that her secession will lead to a dissolution of the group, an extremist agent

has no incentive to break away from the grand coalition. Interestingly, in the

cooperative policy con‡ict, an extremist agent does not have an incentive to

secede from the grand coalition, even when all other agents remain together.

This result is due to the fact that, by cooperating inside a group, all other

agents are able to increase the amount of resources spent on the contest, so

that the payo¤ of a seceding extremist is always lower in the cooperative

model than in the noncooperative model. Finally, note that we have been
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unable to characterize the incentives to secede by agents who are not at the

extreme points of the segment. While we strongly believe that these agents

have less incentive to secede than extremists, we have not been able to prove

it formally.

5 Conclusion

This paper analyzes secession and group formation in a general model of

contest inspired by Esteban and Ray (1999). This model encompasses as

special cases rent seeking contests and policy con‡icts, where agents lobby

over the choice of a policy in a one-dimensional policy space. We show that

in both models the grand coalition is the e¢cient coalition structure and

that agents are always better o¤ in the grand coalition than in a symmetric

coalition structure. As a consequence, individual agents only have an in-

centive to secede if their secession results in an asymmetric structure. We

show that individual agents (in the rent seeking contest) and extremists (in

the policy con‡ict) only have an incentive to secede when they anticipate

that their secession will not be followed by additional secessions. Further-

more, if group members choose cooperatively their investments in con‡ict,

incentives to secede are lower. In the policy con‡ict, an extremist never has

an incentive to secede when she faces a group of agents coordinating the

amount they spend in the con‡ict.

We should stress that our analysis su¤ers from severe limitations. We

have only considered individual incentives to secede, and do not consider

joint secessions by groups of agents. This focus on individual deviations

is motivated by the analysis of valuations with small numbers of players,

where it appears that the most favorable cases for secessions are secessions

by individual players (in the rent seeking contest) or individual extremists
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(in the policy con‡ict). However, a complete analysis of group secessions

is still needed to analyze the stability of the grand coalition. We have also

limited our analysis by forbidding transfers across group members. Allowing

for transfers in a model with individual secessions can only bias the analy-

sis in favor of the grand coalition, as the grand coalition could implement

a transfer scheme to prevent deviations by individuals. In a model with

group secession, the e¤ect of transfers is less transparent, as transfers would

simultaneously increase the set of feasible utility allocations in the grand

coalition and in deviating groups. This is an issue that we plan to tackle in

future research.

Finally, the main …ndings of our analysis leave us somewhat dissatis…ed.

We have found that the grand coalition is surprisingly resilient. In the

rent seeking contest, it is the only outcome of a natural procedure of group

formation. In the policy con‡ict, the grand coalition is immune to secession

when group members coordinate their choice of investments. This suggests

that the level of con‡ict, and the formation of groups and alliances that we

observe in reality cannot be justi…ed purely on strategic grounds. In order

to explain con‡ict, we probably need to resort to other elements – group

identity, ethnic belonging– which are not easily incorporated in an economic

model.
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