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Abstract

We explore the determinants of usage of six different types of health care services,

using the Medical Expenditure Panel Survey data, years 1996-2000. We apply a number

of models for univariate count data, including semiparametric, semi-nonparametric and

finite mixture models. We find that the complexity of the model that is required to fit

the data well depends upon the way in which the data is pooled across sexes and over

time, and upon the characteristics of the usage measure. Pooling across time and sexes is

almost always favored, but when more heterogeneous data is pooled it is often the case

that a more complex statistical model is required.
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1 Introduction

The demand for health care services may often be measured as the number of times that

some event, for example, a doctor visit, occurs in a given time period. Such variables, de-

fined on the natural numbers, are referred to as count data. There have been many recent

advances in the econometric analysis of count data, especially the development of flexible

density functions for univariate count data. In many cases, these papers include an empiri-

cal analysis of data on demand for health care. Examples of such contributions are Deb and

Trivedi (1997), who investigate finite mixture models; Cameron and Johansson (1997), who

adapt the polynomial reshaping technique of Gallant and Nychka (1987) to count data, and

Gurmu (1997), who uses a flexible density to model latent heterogeneity. All of these ap-

proaches define densities that allow for modeling frequently observed features of the data,

such as excess zeros and overdispersion, as well as more complicated departures from the

behavior implied by standard models such as the Poisson and negative binomial.

At the same time, new sources of data have become available. One of these is the Med-

ical Expenditure Panel Survey (MEPS). The MEPS data is a rich source of recent data on

demand for health care, insurance coverage, and related topics. This paper applies many of

the recently developed statistical models for univariate count data to the MEPS data, years

1996-2000. This allows comparison of models using a uniform, high quality data set. From

this we will be able to determine which models are most successful in capturing the fea-

tures of six different measures of demand for health care services1. Since the six measures

exhibit substantially different characteristics, they form an interesting test bed for the sta-

tistical models, at least within the general area of demand for health care. We seek to learn

which of the available models seem most useful for analysis of data similar to the usage

measures in the MEPS data. We also provide information about the usage measures in the

MEPS data, upon which further research can build. Guo and Trivedi (2002) provide a simi-

lar, though somewhat less extensive comparison of models, using two data sets on counts of

patents. Within the literature on demand for health care we are not aware of any papers that
1These are office-based doctor visits (OBDV), outpatient doctor visits (OPV), inpatient visits (IPV), emergency

room visits (ERV), dentist visits (DV), and number of prescription drugs taken (RX), all measures on an annual
basis.
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provide a similar comparison of models. Beyond the comparison of the statistical models,

we also investigate the stability of parameters over time and across sexes, and we present

brief estimation results for the most favored models.

To summarize the main results, we find that some of the newer models are useful ad-

ditions to the toolbox for analysis of health care usage, but others are almost always dom-

inated. The complexity of the model that is favored depends upon the type of data that

is analyzed. For variables that have relatively high means, significant overdispersion, and

relatively few zeros, relatively complex models are needed to fit the data well. For other vari-

ables such as the number of inpatient hospitalizations, the simple negative binomial density

is perfectly adequate. Another result is that pooling data across time and sexes leads to a

parsimonious model that still fits the data as well as separate models that allow all parame-

ters to vary. Pooling should be done when the data allow it. When more heterogeneous data

is pooled, it is more likely that a relatively complex statistical model will be required. With

relatively homogeneous data, the simple negative binomial statistical model often fits well.

2 Statistical models for count data dependent variables

Data on health care demand often exhibits overdispersion, which means that the ratio of

the conditional variance to the conditional mean is greater than one (Cameron and Trivedi,

1986; Pohlmeier and Uhlrich, 1995). Another common characteristic is that many zeros are

observed, possibly more than can be accounted for by simple count densities (Pohlmeier and

Uhlrich, 1995; Gerdtham, 1997). Factors such as latent variables or latent population groups

could induce more marked departures from standard densities, leading to bimodality or

especially fat right tails, for example. In this section we briefly survey some of the newer

univariate count data models that can allow for such departures. Before surveying the recent

models, we briefly discuss the more standard models upon which the newer approaches

build.
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Poisson (POISSON)

The Poisson density for a count random variable Y is

fY (y|λ) =
e−λλy

y!
.

To allow for covariates, λ is usually parameterized as λ = exβ . The Poisson density implies

that the conditional mean and the conditional variance of y are both equal to λ. Since data

on health care demand usually exhibit overdispersion and possibly excess zeros, the basic

Poisson model will usually not be suitable for analyzing demand for health care.

Negative binomial (NB)

If the Poisson mean contains a latent component, marginalization, under some assumptions,

will lead to a negative binomial density (see for example Cameron and Trivedi, 1998, pp.

100-102) . The negative binomial density may be written as

fY (y|φ) =
Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(

ψ

ψ + λ

)ψ ( λ

ψ + λ

)y

(1)

where φ = {λ, ψ}, λ > 0 and ψ > 0.2 When ψ = λ/α we have the negative binomial-I model

(NB-I), and ψ = 1/α gives the negative binomial-II (NB-II) model. Though other versions

exist, we limit attention to these in this paper. The moment generating function of the NB

density, which is needed below, is

MY (t) = ψψ
(

λ− etλ+ ψ
)

−ψ
. (2)

For the NB-I density, V (Y ) = λ + αλ. In the case of the NB-II model, we have V (Y ) =

λ+αλ2. For both forms, E(Y ) = λ. Thus, both forms capture overdispersion, with the NB-II

model allowing for a more extreme form. As with the Poisson models, the usual means of

incorporating conditioning variables is the parameterization λ = exβ . When this is done, the
2Among the numerous examples of application of the NB model to health care demand are Cameron et al.

(1988), Pohlmeier and Ulrich (1995) and Geil et al. (1997).
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previous formulae for moment will give the conditional moments.

Hurdle negative binomial (HNB)

As noted by Pohlmeier and Uhlrich (1995) and Gerdtham (1997), health care demand may

exhibit excess zeros with respect to what a NB model can accommodate. This leads us to

consider the hurdle version of the NB model. The hurdle3 negative binomial model first

models the zero vs. positive outcome using a probit or similar model. Then, conditional

on positive visits, the count follows a zero-truncated negative binomial density. Different

parameter vectors are associated with the binary and truncated densities. Hurdle count

models were introduced by Cragg (1971) and Mullahy (1986), who also presented “with-

zeros” (also known as “zero-inflated”) models. Here we present only the hurdle model,

since it seems to have been used more widely than the “with-zeros” model for analysis of

data on on usage of health care services.4 We follow Deb and Trivedi (1997), who use a NB

model to parameterize the Bernoulli trial. For a NB random variable,

Pr(Y = 0) = fY (0, φh) =

(

ψh
ψh + λh

)ψh

Pr(Y > 0) = 1 − Pr(Y = 0),

where the parameter of the hurdle process is φh = {λh, ψh}. To achieve identification one can

set αh = 1 when parameterizing ψh, which may be done as with the NB model. The above

probabilities are used to estimate the binary 0/1 hurdle process. Then, for the observations

where visits are positive, a truncated NB density, with a different parameter φ = {λ, ψ} is

estimated. This density is

fY (y, φ|y > 0) =
fY (y, φ)

1 −
(

ψ
ψ+λ

)ψ

=
Γ(y + ψ)

Γ(y + 1)Γ(ψ)

[

(

ψ

ψ + λ

)ψ

− 1

]

−1 (
λ

ψ + λ

)y

3Hurdle models are also known as “two-part” models.
4Examples of applications of the HNB model to health care demand include Pohlmeier and Ulrich (1995),

Gerdtham (1997) and Deb and Trivedi (1997).
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Since the hurdle and truncated components of the overall density for Y share no parameters,

they may be estimated separately, which is computationally less burdensome than estimat-

ing the overall model. The expectation of Y is

E(Y ) =

[

1 −

(

ψh
ψh + λh

)ψh

] [

1 −

(

ψ

ψ + λ

)ψ
]

−1

λ.

NB-I and NB-II versions that allow for conditioning variables follow from the appropriate

parameterizations of ψh, ψ, λh and λ.

The HNB model could possibly be considered the most sophisticated attempt to deal

with the issues of excess zeros and overdispersion in the modeling of health care demand

count data, up until 1996. Shortly after, the following models were introduced. All of these

models can account for excess zeros and overdispersion, so they can deal with the issues the

HNB model was designed to address. Some of the models are also more flexible than the

HNB model, even though they may be more parsimonious.

2.1 A semiparametric approach (PSP, HPSP)

A semiparametric approach to modeling count data has been developed by Gurmu and

Trivedi (1996), Gurmu (1997) and Gurmu et al. (1999). This approach introduces unob-

served heterogeneity in a Poisson model, and allows the unobserved heterogeneity to fol-

low a semi-nonparametric density. This is conceptually similar to the way that a negative

binomial model is obtained as a Poisson-gamma mixture density, but is more flexible in that

the latent variable is not restricted to follow a one parameter gamma density. The semi-

nonparametric density of the latent variable is closely related to that proposed by Gallant

and Nychka (1987). The difference is that Laguerre polynomials are used instead of Hermite

polynomials. Gurmu et al. (1999) show that, under weak assumptions, the Laguerre ex-

pansion density can consistently estimate densities of unknown form. As such, the mixture

density is semiparametric, since the Poisson specification is parametric but the modelization

of the heterogeneity is not.

Gurmu and Trivedi (1996) found that the basic semiparametric approach of Gurmu et al.
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(1999)5 did not fit data well - specifically, excess zeros were a problem. To overcome this

problem, Gurmu (1997) proposed a hurdle version of the semiparametric model.

The original semiparametric model is based upon an infinite mixture of a Poisson ran-

dom variable and an independent random variable V which captures unobserved hetero-

geneity. The assumption is that the Poisson mean is random, so that E(Y |V = v) = λv.

Integrating out the heterogeneity, one obtains the marginal density:

fY (y, λ, φ) =

∫

e−λv(λv)y

y!
gV (v, φ)dv (3)

=
λy

y!
My
V (−λ) (4)

whereM y
V (−λ) is the yth order derivative of the moment generating function of V , evaluated

at −λ. M 0
V (−λ) = MV (−λ), is the moment generating function itself.

To model the density gV (v, φ) flexibly, Gurmu et al. (1999) use a normalized Laguerre

polynomial expansion around a gamma baseline density. The gamma baseline density is

f(v, φ) =

(

vα−1βα

Γ(α)
e−βv

)

where φ = (α, β). The semi-nonparametric density for v is

gV (v|φ, γ) =
[hp (y, γ)]2 f(v|φ)

ηp(φ, γ)

where

hp (y, γ) =
p
∑

k=0

γkPk(v), (5)

γ = (1, γ1, γ2, ..., γp), and Pk(v) is the kth order Laguerre polynomial. The term ηp(φ, γ) =

γ′γ is the normalization factor that makes the density sum to one. The restriction γ0 = 1

is used to achieve identification, since the density is homogeneous in γ. This density is

semi-nonparametric in the sense that, under weak assumptions, there exist (φ, γ) such that a

density of unknown form can be approximated arbitrarily well as p goes to infinity. Gurmu
5The 1999 paper is based upon a 1996 working paper, which explains the dates of these references.
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et al. (1999) provide the consistency proof, which is similar to that of Gallant and Nychka

(1987).

Next, they are able to obtain a closed form for M y
V (−λ), which upon substitution into

equation 4 yields the semiparametric density for the count random variable Y. In estima-

tion, a restriction is imposed such that E(V ) = 1, which leads to E(Y ) = λ. In the course

of the empirical work reported below, we have found that the model is poorly identified

without this restriction, and that it is very difficult to obtain convergence if it is not imposed.

The results we report always impose the restriction. We will refer to this model as the Pois-

son semiparametric model (PSP). To incorporate conditioning variables, the Poisson-style

parameterization λ = exβ is used, so that E(Y |x) = exp(xβ).

To extend this to the hurdle case, Gurmu (1997) allows a first PSP model to determine

whether the zero/positive hurdle is crossed, and a second PSP model is used to model the

positives. For the hurdle crossing process, the relevant probabilities are

Pr(Y = 0) = MV (−λh)

Pr(Y > 0) = 1 − Pr(Y = 0).

The truncated version of the PSP density is

fY (y|y > 0, λ, φ) =

λy

y! M
y
V (−λ)

1 −MV (−λ)
.

Just as in the case of the HNB model, the binary and truncated components of the hurdle

Poisson semiparametric (HPSP) model may be estimated separately. Notationally, we will

let PSP(k) or HPSP(k) refer to a model that uses a k-order expansion.

2.2 Semi-nonparametric approaches (PSNP, NBSNP)

Cameron and Johansson (1997) directly adapt Gallant and Nychka’s (1987) semi-nonparametric

density to the count data case. They reshape a Poisson baseline density using a squared poly-

nomial, and then normalize the result to sum to one. We shall refer to this as the Poisson
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semi-nonparametric (PSNP) approach, though there has been no formal proof of the condi-

tions under which the density has nonparametric properties.6 The PSP and HPSP models

embed the semi-nonparametric density in a parametric density to obtain a semiparametric

model, after marginalization of the latent variable. As such, one expects that the approach

of Cameron and Johansson should be able to capture more extreme departures from the

baseline model, though perhaps at the cost of needing to estimate many parameters. For ex-

ample, the PSNP model can accommodate bimodal densities, while the PSP density cannot.

The PSNP density is

fY (y|λ, γ) =
[hp (y|γ)]2

ηp(φ, γ)

e−λλy

y!
, (6)

where

hp (y|γ) =
p
∑

k=0

γky
k, (7)

and ηp(φ, γ) is a normalizing factor to make the density sum to one. The normalizing factor

is

ηp(λ, γ) =
∞
∑

y=0

[hp (y|γ)]2
e−λλy

y!
.

Cameron and Johansson show that this has the closed form

ηp(λ, γ) =
p
∑

k=0

p
∑

l=0

γkγlmk+l (8)

where mr(λ) is the rth noncentral moment of the Poisson density. Because the term

[hp (y|γ)]2

ηp(λ, γ)

that reshapes the baseline density in equation 6 is a homogeneous function of γ, it is neces-

sary to impose a normalization to achieve identification: γ0 is set to 1. The moments of Y

may be calculated using the closed form expression in Cameron and Johansson’s equation 4.

The typical Poisson-style parameterization of the mean is used to incorporate conditioning
6The consistency proofs of Gallant and Nychka (1987) and Gurmu et al. (1999) are for continuous random

variables. While it seems reasonable to expect that the proofs could be adapted to discrete random variables,
this has not yet been done, to our knowledge.
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variables.

Since the NB model usually fits health care data dramatically better than does the Poisson

model, using only one more parameter, one might suspect that changing the baseline model

to the NB might allow the model to fit well using fewer parameters. What we shall refer

to as the negative binomial semi-nonparametric (NBSNP) model is obtained by making this

change. The density is

fY (y|φ, γ) =
[hp (y|γ)]2

ηp(φ, γ)

Γ(y + ψ)

Γ(y + 1)Γ(ψ)

(

ψ

ψ + λ

)ψ ( λ

ψ + λ

)y

,

where hp (y|γ) and ηp(φ, γ) are defined as in equations 7 and 8, respectively, and the raw

momentsmr(λ, ψ) are obtained from equation 2. The moments of Y are again obtained from

Cameron and Johannson’s equation 4, substituting the NB raw moments for those of the

Poisson density.7 The model can use either the NB-I or the NB-II as the baseline model.

We investigate both versions in what follows. Notationally, let NBSNP-I(3), for example,

indicate the NBSNP model using a NB-I baseline density, and a 3rd order polynomial ex-

pansion. To our knowledge, this is the first paper that applies this model to data on health

care demand. Guo and Trivedi (2002) apply a version of this model based upon an NB-II

base density to patent data.

2.3 A finite mixture approach (MNB, CMNB)

The finite mixture approach to fitting data on health care demand was introduced by Deb

and Trivedi (1997). The mixture approach can be interpreted as allowing for latent groups in

the population. The data for each group may be characterized by a parameter vector. Since

the group to which an individual belongs is not observed, a mixing probability is used to

classify individuals probabilistically. There may be two or more latent groups. The mixture

approach has been also applied by Gerdtham and Trivedi (2000), who find that it performs

better than the HNB approach.

The mixture negative binomial (MNB) model has the virtue of being conceptually simple.
7We used MuPAD version 2.51 to perform these calculations.
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The density is

fY (y, φ1, ..., φp, π1, ..., πp−1) =
p−1
∑

i=1

πif
(i)
Y (y, φi) + πpf

p
Y (y, φp),

where πi > 0, i = 1, 2, ..., p, πp = 1 −
∑p−1
i=1 πi, and

∑p
i=1 πi = 1. The f (i)

Y (y, φi), φi = {λi, ψi}

are p separate NB-I or NB-II densities, as in equation 1. Identification requires that the πi be

ordered in some way. We follow Deb and Trivedi (1997) by imposing π1 ≥ π2 ≥ · · · ≥ πp

and φi 6= φj , i 6= j. This is simple to accomplish post-estimation by rearrangement of the

component densities. Another issue is how to consistently estimate the number of compo-

nent densities, supposing that the true density is in fact a mixture density (see James, et al.

2001, for example). We skirt this issue by considering only the possibility of 2 component

densities.

The properties of the mixture density follow in a straightforward way from those of

the components. In particular, the moment generating function is the same mixture of the

moment generating functions of the component densities, whence E(Y ) =
∑p
i=1 πiλi.

The MNB density may suffer from overparameterization, since the total number of pa-

rameters grows rapidly with the number of component densities. To address this problem,

Deb and Trivedi propose a constrained mixture negative binomial model (CMNB) which re-

stricts all the slope parameters in λj = exβj to be the same across all component densities.

The constants and the overdispersion parameters αj are allowed to differ.

3 The MEPS data

3.1 Data Sources

The Medical Expenditure Panel Survey composed of four surveys of individuals, nursing

homes, health care providers, and employers in the United States. We use only the House-

hold Component, which is a survey of a nationally representative sample of households.

The Household Component uses an overlapping panel design where individuals are in-

terviewed five times over the course of 2.5 years, such that complete data for two calen-
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dar years is collected. Each year, a new series of contacts is initiated. Thus, data for a

given individual will appear in the data files for two consecutive years, and the samples

for consecutive years are not independent. The raw MEPS data files are available at the site

http://www.meps.ahrq.gov. The data files used are the Household Component Full-

Year files for years 1996-2000, which are files HC-012, HC-020, HC-028, HC-038 and HC-050,

respectively. These data files collect responses to many questions related to health care us-

age, health, insurance coverage, income, etc.

3.2 Variables

From these files we use six different measures of annual health care usage, for each of the

five years. These are office-based doctor visits (OBDV), outpatient doctor visits (OPV), emer-

gency room visits (ERV), inpatient hospital visits (IPV), dental visits (DV), and number of

prescription drugs taken (RX).

The explanatory variables used are months of public insurance coverage during the year,

divided by 12 (PUB), sex (SEX - coded as 0 for men and 1 for women), age (AGE), years of

schooling (EDUC), and family income in thousands of dollars (INC). Since health care issues

change considerably with age, we limit the sample to individuals between the ages of 40

and 65, inclusive. Work not reported here revealed that models that pool data for broader

age groups often do not pass specification tests. Also, extremely few younger people have

publicly provided insurance coverage. This fact causes problems in obtaining convergence

of models that use data limited to that for younger people. We also suspect that women’s and

men’s health issues are different enough to warrant the consideration of models that allow

the form of the model and all parameters to differ by sex. We investigate the possibility of

pooling the form of the model or some of the parameters across sexes.

We limit the sample to people who have private health insurance coverage during the

entire year. Originally we used months of private coverage as an explanatory variable. This

variable is very likely to be endogenous in a model for health care usage, since latent health

status will likely simultaneously affect choices regarding health care usage and purchase of
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health care insurance.8 The econometric problem is to find convincing instrumental vari-

ables for private coverage, that can reasonably be excluded from the equation that explains

health care usage. Since we were not able to find such variables in the survey data, we prefer

to simply estimate models conditional on full private insurance coverage, and avoid the is-

sue of possible endogeneity entirely. The analysis is more limited, but the results are sharper

and more reliable. Depending upon the year and the value of SEX, we loose between 20%

and 35% of the available sample due to this decision. We include the measure of publicly

provided insurance, PUB, to investigate the effects of double coverage. We believe that PUB

and the other explanatory variables may be safely considered as exogenous, a priori.

All the variables with the exception of PUB and INC are directly available from the sur-

vey data. PUB is simply the sum of the monthly indicators of public health care coverage,

divided by 12. Thus, it runs from 0 to 1, with 1 indicating that a person enjoys publicly

provided insurance coverage during the full year. INC was constructed by summing the

incomes of all members of the family. In the MEPS data, total personal income is the sum of

many different sources of income, which may or may not be directly reported. Observations

for which any source of any family member’s income was “hot decked” were dropped, since

hot decking introduces measurement error which leads to inconsistent estimation in the con-

text of regression analysis.9,10

We do not use any information on health status, and instead treat health status as entirely

latent. This is in contrast to many studies that have incorporated objective and/or subjec-

tive indicators of health status. The health status information in the MEPS data include

measures of perceived health status as well as objective measures of limitations to activities.

The recorded data is based upon one family member’s assessment of all family members’

healths. We have the problem that individual A and individual B may evaluate individual
8Exploratory work with Hausman-type tests suggested that endogeneity of private insurance coverage is in

fact a problem, especially for the OBDV and RX use variables. These results are not entirely reliable, however,
due to the problem of poor instruments, discussed in the body of the paper, and thus we do not present them in
detail.

9“Hot decking” is a term used in the MEPS documentation to describe a method of replacing missing data
with conditional or unconditional sample means of the variable. See the documentation at www.meps.ahrq/
Pubdoc/H12DOC.PDF for more details.

10The programs used to process the raw data, as well as the resulting data files are available upon request
from the authors.
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B’s health very differently, which at a minimum implies that this data will be subject to mea-

surement errors which can lead to inconsistency if not properly addressed (Windmeijer and

Santos Silva, 1997). In the case of limitations to activities, many variables are recorded in the

data sets. These include, for example, indicators of whether or not individuals have diffi-

culty standing 20 minutes, or difficulty in reaching over the head, and a number of similar

variables, and again, one family member reports for the entire family. These variables are

likely to be highly collinear, and none of them seems suitable as a single measure of overall

health status. Furthermore, it is not clear that results that are conditional on such measures

of health status are directly useful for many sorts of economic analysis. Since an economic

analysis would likely need to marginalize results that are conditional on these variables, and

since the only means of marginalizing them is using the sample information itself, we prefer

simply not to condition on them from the outset. Thus, we treat health status as a purely

latent source of heterogeneity, and we model it as such. The primary concern in treating

health status in this way is the possibility that latent health status might be correlated with

conditioning variables such as private insurance coverage, which would induce problems of

endogeneity. Our solution, as noted above, is to condition on full private insurance cover-

age, so that its level disappears as a regressor. We think that the other conditioning variables

may safely be assumed to be exogenous.

3.3 Descriptive Statistics

As noted above, we limit the data used in this paper to people between 40 and 65 years of

age, and initially we estimate separate models for women and men. The sample sizes by

year and sex are found in Table 1.

To obtain a first idea of the characteristics of the six measures of use, Tables 2 through 5

give descriptive statistics for women’s and men’s health care usage, for the the years 1996

and 200011. Studying these tables, we can make a few observations:

• Women, on average, use all six forms of health care more frequently than do men. This

result is very uniform and is stable over time. This suggests that models that pool
11Results for the other years are very similar and are omitted to save space.
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across sexes will require a dummy variable for sex.

• Men are more likely than women never to use forms of care. The difference is especially

notable in the cases of OBDV, DV, and RX, which are probably more elective forms of

care than are the other three measures.

• There is considerable temporal stability of the statistics, for all six measures of usage.

However, there are some temporal variations that are notable. For example, the mean

of ERV for women is 50% higher in 1996 than in 2000. This suggests the use of dummy

variables for years in models that pool across time.

• Most measures of health care use exhibit considerable unconditional overdispersion.

The IPV and ERV measures are in some cases reasonably close to unconditional equidis-

persion. For these measures it is possible that conditional equidispersion might hold,

and that a Poisson model might be adequate. In the other cases the models that allow

for overdispersion will likely be preferred.

• The percentage of zeros for the OPV, IPV and ERV measures is usually around 90%

or higher. The OBDV, DV, and RX measures have positive usage by a much larger

proportion of the sample.

Next, to obtain an idea of the characteristics of the explanatory variables, Tables 6 and 7

present descriptive statistics for the four conditioning variables, for women and men. We

present these statistics only for the year 2000 data, since the other years are substantially

similar. Highlights include:

• The means of AGE and EDUC are quite similar across sexes.

• There is a notable difference in the mean of INC, which presumably is due to a sex dif-

ferential in the incomes of single people (recall that INC is defined as family income).

The fact that maximum values of INC are the same is because INC was top-coded

during the execution of the survey.
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• Only a small part of the population has access to publicly-provided health care insur-

ance.

4 Model selection

We have under consideration 6 measures of health care usage, 2 sex groups, and 5 years of

data. For each of these 60 data sets we wish to determine which of a number of statistical

models is most appropriate. Some of the statistical models require determination of the spe-

cific parameterization (e.g., whether to use an NB-I or NB-II base model, or the degree of the

polynomial expansion for the PSNP, PSP, HPSP and NBSNP models). In the face of so many

comparisons to make we use an information criterion approach, concretely the consistent

Akaike information criterion (CAIC). The CAIC is defined as CAIC = −2lnL + p(lnn+ 1),

where lnL is the log-likelihood value, p is the number of parameters of the model, and n is

the sample size. The CAIC is a penalized goodness of fit criterion. Additional parameters

usually allow for better fit, in terms of the log-likelihood value, but the penalty term pre-

vents selection of overparameterized models. The CAIC is a consistent model selector, in

the sense that the correct model in a set of models will have the lowest CAIC value, as the

sample size tends to infinity (Sin and White, 1996)12 . The simple Akaike information crite-

rion (AIC), which has been used in some of the related literature, is not consistent, in that it

can favor overparameterized models. The Bayes (or Schwartz) information criterion (BIC)

that also appears in the literature can be expressed as BIC = CAIC − p. This criterion is

also consistent. It may favor a somewhat more highly parameterized model than the CAIC.

The BIC can be calculated using the information we provide in our results, but we do not

report it here, to save space.

We report CAIC values starting with the models that allow parameters to vary by both

sex and year, then we report results where parameters are constant across sexes (except for

the coefficient of a dummy variable for sex) but vary by year, and finally we report results

that pool both across sexes and time. The pooling across time is only for the years 1996, 1998
12If none of the models is the correct model, then the model that is closest to the correct model in the sense of

the Kullback-Leibler information criterion will have the smallest CAIC value, asymptotically.
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and 2000, so that no individual enters the sample in more than one year. In this way, the

observations are independent of one another. MLE estimation of models with dependent

observations would require specifying the nature of the dependence, which is a step we

prefer to avoid in this work.

It may be shown that, for two models that share no parameters and use disjoint data sets,

the overall CAIC value is simply the sum of the CAIC values of the two models. Thus, one

can compare the sum of the CAIC values for separate models for men and women in a given

year with the CAIC value of a model that pools across sexes using the data of the same year.

If the CAIC of the pooled model is lower, pooling is supported, otherwise, separate models

are favored. Likewise, we can compare models that pool across time with analogous models

that allow coefficients to vary by time. In this way we can determine what level of pooling

is supported by the data, for each of the 6 measures of use.

With regard to estimation details, some of the models lead to a log-likelihood function

that may have local maxima. For the models that do not have a globally concave log-

likelihood function, we used simulated annealing to find a rough maximizer which satisfied

convergence of the log-likelihood function out to 2 decimal places, then iterated to conver-

gence using a BFGS maximizer. For the other models we used the BFGS maximizer directly.

All estimation routines were programmed using GNU Octave (www.octave.org) and are

available from the authors.

Separate models by sex and year We begin with the CAIC values of the various models,

for the year 2000 data. For the other years we only report (below) the results for the favored

models, to avoid overwhelming the reader with details. Tables 8 and 9 report the relative

CAIC values, for women and men, respectively, for the statistical models that were discussed

in Section 2. For the model with the minimum CAIC value, the tables report this value. For

the other models the tables report the CAIC value relative to that of the favored model, to

facilitate comparisons. For the OBDV, DV and RX measures of use (which are those with

higher sample means), we can see that there are a number of models that reach a CAIC

within 1% of that of the favored model, while for the OPV, IPV and ERV measures of use,
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the distances between the favored model and the other models are often larger.

Tables 10 and 11 report which are the CAIC-favored models for each of the five years, for

women and men, respectively. Some points to note:

• The numbers of times models are favored are: NB - 44 times; PSP - 8 times; NBSNP - 6

times; and CMNB and HPSP, one time each. The other models are never favored.

• Some use measures exhibit considerable variation over time in the models that are

favored (e.g., OBDV and DV). The CAIC-favored model for these use measures has

“close competitors” in Tables 8 and 9. The favored model is very stable over time for

the IPV and RX use measures.

• One result that stands out is that the simple Poisson-style specification of the condi-

tional mean, E(y|x) = exβ , is used by the favored model in 52 of 60 cases (86.6%).

With relatively homogeneous data that are for single sex groups and single years, simple

models work well in the great majority of cases.

Pooling across sexes Table 12 reports the CAIC values for models that pool the coefficients

across sexes, and add a dummy variable that allows the constant to vary by sex, for the

year 2000. In the last row we present the sum of the CAIC values of the models that allow

all parameters to vary by sex, relative to the CAIC value of the favored model. We do not

present such detailed results for the other years, but instead only report the favored models

for this level of pooling, for each of the five years, in Table 13. In this table we can observe

that:

• Pooling across sexes is favored in all cases except for ERV in 1998. In all other cases,

use of a dummy variable and a common model and slope coefficients is favored.

• Only four models (apart from parameterization details) are ever favored: they are NB

(14 times), NBSNP (8 times), PSP (6 times), and CMNB (3 times).

• The simple Poisson-style specification of the conditional mean E(y|x) = exβ is implied

by the favored model in 20 of 31 cases (the NB and PSP models) which is 64.5% of the
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cases, down from the 86.6% for separate models by sexes. Pooling is supported in all

cases but 1 out of 30 (ERV, 1998), but pooling seems to require more flexible densities

to capture the greater heterogeneity of the data.

• There is considerable stability over time. For example, the NBSNP model is favored in

4 of 5 years for the DV use measure, and the PSP model is favored 4 of 5 times for the

OPV use measure.

• The Poisson model and the more highly parameterized hurdle and mixture models

(HPSP, MNB) are never favored.

• When the NBSNP model is favored, it is always the version that uses a NB-I base

density.

Pooling across years We have seen that pooling across sexes is almost always favored.

Next we present CAIC results for models that pool across the years 1996, 1998 and 2000,

adding dummy variables that allow the constant to vary by both sex and year. We do not

use the data from 1997 and 1999 so that a given individual appears only once in the sample,

and thus the data consists of independent observations.13 Table 14 presents the results. We

note that

• Pooled models are always favored. Time-wise heterogeneity seems to be adequately

captured by a dummy variable.

• Relatively complicated, newer models (PSP, NBSNP, CMNB) are favored in 5 of 6 cases.

However, for the ERV data where the PSP model is favored, the NB-I and NB-II models

have only slightly higher CAIC values.

• The simple Poisson-style mean function E(y|x) = exβ is favored in only 2 of 6 cases

(for IPV and ERV). Again, as we pool more heterogeneous data, more complicated

densities are required to fit the data well. These more complicated densities imply
13If we were to include the data from 1997 and 1999, but still treat the observations as independent, the esti-

mators would not truly be maximum likelihood estimators, and thus the use of the CAIC to compare models
would not be valid.
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more complicated conditional moments. Note that the cases where the simple mean

function is accepted are those where the unconditional mean of the dependent variable

is lowest, and the percentage of zeros is highest, and the mean/variance ratio is closest

to 1 (see Tables 2-5).

The overall conclusion is that pooling by age and sex is almost always favored, when data

is available to make it possible. Simpler models often work well when the data is relatively

homogeneous (for example, separate models by sexes, for a single year) and more complex

models are often required when more heterogeneous data is pooled. Of the statistical models

compared in this paper, some (the Poisson, PSNP, HNB and MNB) are always dominated,

and the HPSP model is likely too highly parameterized for all but exceptional cases. Of the

more complicated newer models, the NBSNP, PSP and CMNB models are found to be useful

contributions for analysis of this sort of data and probably deserve consideration in future

work.

5 Estimation results

Though a detailed economic analysis of estimation results for the favored models is beyond

the scope of this paper, Table 15 presents estimation results for the CAIC-favored models for

the pooled 1996-1998-2000 data, with pooling across sexes. The Table contains results for all

six use measures. The models are the favored models that appear in Table 14.

Examining the estimation results, we can make several notes:

• With respect to time trends, DV usage has declined significantly over the 1996-2000

period. Consumption of prescription drugs (RX) has increased significantly. No other

trends are clear.

• For all usage measures except DV, holding publicly-provided health care insurance

(PUB) has a positive and strongly significant effect on usage levels.

• The dummy variable that indicates that the individual is a woman is positive in all

cases, and is highly significant except for the IPV and ERV measures. The IPV and
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ERV measures are often associated with events such as serious illness or accidents that

are in a large part beyond the control of the individual.

• Age always has a positive coefficient, and is highly significant in all cases except the

ERV usage measure.

• Income is negative and significant for the IPV, ERV and RX use measures. It is positive

and significant for the DV measure.

• Education has a positive and significant effect upon the OBDV and DV measures, and

it has a negative and significant impact upon the IPV and ERV measures.

• There is evidence that low-income, low-education individuals use IPV and ERV ser-

vices more than the average individual. They make less use of dental care visits than

average. Other effects are not so clear.

• The CMNB model used for the OBDV, OPV and RX use measures is characterized by

mixing two NB densities, both of which are overdispersed, and at least one of which

is highly overdispersed. The mix (π) parameter is estimated with poor precision in all

three cases. The constant shifter for the second NB density is highly significant.

• The α and γ parameters of the PSP(1) density for the ERV usage measure are estimated

imprecisely. It appears that they are not well identified separately for this data set, but

that their joint impact is important (since the model had the best CAIC score).

• The α and one of theγ parameters are significant for the NBSNP model used for the

DV use measure. There appears to be a problem of poor separate identification similar

to that of the PSP(1) model for the ERV data. This problem was noted by Cameron and

Johansson (1997) for the PSNP model.

Of the forms of health care under consideration, OBDV and DV are those that are most likely

to include preventive visits such as checkups. We can see that more educated, and in the case

of DV, higher income individuals, use these two forms of care more frequently than average.

Likewise, IPV and ERV may be used more than average by people who have not taken care
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of their health through preventive care, or who are seeking to use emergency room visits in

place of ordinary doctor visits in an attempt to avoid insurance copayments. The fact that

poorer, less educated people use these forms of care more frequently than average might be

explained by such factors.

6 Conclusions

This paper has surveyed a number of statistical models for univariate count data and has

applied them data on health care usage from the Medical Expenditure Panel Survey, years

1996-2000. The objective of the paper has been to attempt to determine which models are

most appropriate for this sort of data. A secondary objective has been to determine which

level of pooling across time and sexes is supported by the data.

We have found that some of the newer models are quite useful and warrant serious con-

sideration when undertaking empirical work with this sort of data. In particular, depending

upon the usage measures and the level of pooling, the NBSNP, PSP, and CMNB models are

found to fit the data better than more traditional models such as the NB and especially the

HNB. Other newer models such as the MNB and HPSP are found to be excessively parame-

terized for the usage measures in the MEPS data used here, according to the CAIC criterion.

Another result is that pooling the data, both across time and across sexes, is almost al-

ways favored. There is enough parameter stability so that dummy variables can be used

to capture the important variations in a simple and parsimonious way, without imposing

overly strong restrictions on the model. As more heterogeneous data is pooled, more com-

plex statistical models become necessary so that the assumption of parameter constancy

(except changes in the constant captured by dummy variables) can be maintained. The basic

finding of the paper is that it is more parsimonious to use a relatively complex statistical

model with parameter constancy than to use simple statistical models with parameters that

vary across data groups. The degree of complexity of the statistical mode required for ade-

quate fit to the data depends upon the usage measure under consideration. Factors that lead

to more complicated models being needed are a high mean, low proportion of zeros, and
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overdispersion.

This paper has not focused upon estimation results or economic analysis of the such

results. Nevertheless, we have presented some limited results using the pooled by time and

sex data, which is the favored approach in all cases. We have seen that the coefficients of

the variables have signs that can be given a plausible economic interpretation. However, the

discussion has not been deep, since this sort of analysis is not the focus of this paper.

Some directions for further work are quite clear. Given that pooling across time has

been found to be desirable, it would be useful to develop models that allow for dependent

observations, so that the entire data set for all years could be used. This will require explicit

modeling of the dependency of use measures over time, which will lead to the consideration

of multivariate count data densities and issues of estimation of such nonlinear models with

panel data. Another direction for work would to be to try to tackle the endogeneity of private

health care insurance in a convincing way. This may not be possible using the MEPS data

due to lack of good instruments, but with other data sets it could be undertaken.
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Table 1: Sample Sizes

1996 1997 1998 1999 2000
Women 737 1205 477 830 817

Men 680 1104 478 802 800

Table 2: Descriptive Statistics, Use Variables, Women, 1996
OBDV OPV IPV ERV DV RX

mean 4.970 0.288 0.117 0.156 1.640 13.323
st. dev. 6.965 1.597 0.423 0.474 2.432 20.377
mean/var 0.102 0.113 0.651 0.696 0.277 0.032
min 0.000 0.000 0.000 0.000 0.000 0.000
max 93.000 37.000 4.000 5.000 32.000 142.000
% zero 0.195 0.870 0.913 0.877 0.392 0.187

Table 3: Descriptive Statistics, Use Variables, Men, 1996

OBDV OPV IPV ERV DV RX
mean 3.240 0.253 0.099 0.106 1.481 7.684
st. dev. 5.665 1.395 0.410 0.388 2.234 19.270
mean/var 0.101 0.130 0.585 0.702 0.297 0.021
min 0.000 0.000 0.000 0.000 0.000 0.000
max 54.000 19.000 4.000 4.000 17.000 296.000
% zero 0.309 0.893 0.929 0.915 0.488 0.349

Table 4: Descriptive Statistics, Use Variables, Women, 2000
OBDV OPV IPV ERV DV RX

mean 4.721 0.279 0.072 0.109 1.515 14.034
st. dev. 6.680 2.741 0.307 0.366 1.887 18.379
mean/var 0.106 0.037 0.768 0.813 0.425 0.042
min 0.000 0.000 0.000 0.000 0.000 0.000
max 89.000 77.000 4.000 3.000 11.000 124.000
% zero 0.170 0.864 0.936 0.906 0.424 0.176
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Table 5: Descriptive Statistics, Use Variables, Men, 2000

OBDV OPV IPV ERV DV RX
mean 3.027 0.161 0.083 0.130 1.100 8.810
st. dev. 4.532 0.734 0.344 0.588 1.639 16.566
mean/var 0.147 0.299 0.697 0.376 0.410 0.032
min 0.000 0.000 0.000 0.000 0.000 0.000
max 50.000 13.000 3.000 11.000 12.000 160.000
% zero 0.314 0.909 0.936 0.911 0.515 0.354

Table 6: Descriptive Statistics, Explanatory Variables, Women, 2000
mean st. dev. min max

PUB 0.045 0.197 0.000 1.000
AGE 50.770 7.140 40.000 65.000
INC 69.682 44.486 0.000 323.033
EDUC 13.542 2.521 0.000 17.000

Table 7: Descriptive Statistics, Explanatory Variables, Men, 2000

mean st. dev. min max
PUB 0.056 0.223 0.000 1.000
AGE 50.300 7.247 40.000 65.000
INC 71.963 43.813 0.000 323.033
EDUC 13.504 2.926 0.000 17.000
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Table 8: CAIC Values, Women, 2000

OBDV OPV IPV ERV DV RX
POISSON 1.6320 1.8007 1.0103 1.0094 1.1131 2.8494
PSNP(1) 1.5060 1.7249 1.0227 1.0189 1.1162 2.5116
PSNP(2) 1.3932 1.5585 1.0066 1.0126 1.0222 2.2547
PSNP(3) 1.2782 1.5037 1.0230 1.0250 1.0250 2.2560
PSP(1) 1.0019 1.0234 1.0119 1.0129 1.0032 1.0017
PSP(2) 1.0080 1.0582 1.0774 1.0927 1.0097 1.0069
PSP(3) 4332.1958 1.0126 1.0262 1.0253 1.0060 1.0030
HPSP(1) 1.0103 1.0638 1.1030 1.1175 1.0152 1.0092
HPSP(2) 1.0005 1.0096 1.0415 1.0372 1.0085 1.0028
HPSP(3) 1.0139 1.0732 1.1290 1.1407 1.0197 1.0118
NB-I 1.0031 1.0530 1.0008 622.1461 2752.9661 5844.7338
NB-II 1.0027 1.0514 471.1805 1.0021 1.0051 1.0012
HNB-I 1.0047 1.0864 1.0598 1.0551 1.0042 1.0032
HNB-II 1.0040 1.0616 1.0539 1.0574 1.0034 1.0032
MNB-I 1.0115 1.0289 1.0990 1.0729 1.0158 1.0048
MNB-II 1.0125 1.0234 1.1045 1.0841 1.0169 1.0069
CMNB-I 1.0014 1.0007 1.0400 1.0357 1.0053 1.0008
CMNB-II 1.0015 911.6805 1.0400 1.0367 1.0090 1.0033
NBSNP-I(1) 1.0057 1.0128 1.0200 1.0139 1.0027 1.0023
NBSNP-I(2) 1.0014 1.0212 1.0236 1.0258 1.0006 1.0036
NBSNP-I(3) 1.0031 1.0010 1.0456 1.0367 1.0032 1.0038
NBSNP-II(1) 1.0056 1.0139 1.0175 1.0155 1.0028 1.0062
NBSNP-II(2) 1.0031 1.0040 1.0236 1.0277 1.0045 1.0039
NBSNP-II(3) 1.0049 1.0125 1.0482 1.0367 1.0067 1.0033
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Table 9: CAIC Values, Men, 2000
OBDV OPV IPV ERV DV RX

POISSON 1.4931 1.2675 1.0317 1.1393 1.1277 3.1952
PSNP(1) 1.4693 1.2760 1.0439 1.1486 1.1307 2.7935
PSNP(2) 1.2857 1.0421 1.0143 1.0342 1.0254 2.4597
PSNP(3) 1.1948 1.0532 1.0309 1.0463 1.0287 2.4614
PSP(1) 1.0071 1.0054 1.0218 1.0005 1.0130 1.0065
PSP(2) 1.0118 1.0621 1.1195 1.0710 1.0242 1.0122
PSP(3) 1.0051 1.0164 1.0372 1.0099 1.0153 1.0071
HPSP(1) 1.0140 1.0795 1.1526 1.0908 1.0308 1.0136
HPSP(2) 1.0033 1.0274 1.0528 1.0221 1.0170 1.0074
HPSP(3) 1.0153 1.1010 1.1856 1.1144 1.0364 1.0168
NB-I 3564.8823 693.6498 463.0455 1.0027 2298.0098 4589.4350
NB-II 1.0051 1.0025 1.0064 634.1129 1.0097 1.0057
HNB-I 1.0056 1.0439 1.0748 1.0512 1.0129 1.0066
HNB-II 1.0083 1.0490 1.0706 1.0532 1.0141 1.0077
MNB-I 1.0099 1.0710 1.1045 1.0677 1.0170 1.0102
MNB-II 1.0138 1.0678 1.1128 1.0695 1.0313 1.0161
CMNB-I 1.0018 1.0261 1.0477 1.0244 1.0096 1.0032
CMNB-II 1.0032 1.0275 1.0545 1.0230 1.0185 1.0083
NBSNP-I(1) 1.0018 1.0125 1.0167 1.0167 1.0036 1.0022
NBSNP-I(2) 1.0005 1.0186 1.0324 1.0140 1.0066 1.0036
NBSNP-I(3) 1.0027 1.0293 1.0489 1.0260 1.0099 1.0049
NBSNP-II(1) 1.0069 1.0140 1.0233 1.0106 1.0127 1.0066
NBSNP-II(2) 1.0079 1.0239 1.0398 1.0195 1.0159 1.0081
NBSNP-II(3) 1.0100 1.0340 1.0553 1.0300 1.0192 1.0097

Table 10: CAIC-Favored Models, Women, 1996-2000

OBDV OPV IPV ERV DV RX
1996 PSP(3) NB-II NB-II NB-I NBSNP-I(3) NB-I
1997 NBSNP-I(2) NB-II NB-I NB-I NBSNP-I(3) NB-II
1998 NB-I NB-I NB-II NB-II PSP(1) NB-II
1999 HPSP(2) NB-II NB-I NB-II NB-I NB-II
2000 PSP(3) CMNB-II NB-II NB-I NB-I NB-I
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Table 11: CAIC-Favored Models, Men, 1996-2000

OBDV OPV IPV ERV DV RX
1996 NBSNP-II(2) PSP(1) NB-I NB-I NB-I NB-I
1997 PSP(3) PSP(1) NB-II PSP(2) NBSNP-I(3) NB-I
1998 NB-I NB-II NB-I NBSNP-I(3) NB-I NB-I
1999 NB-I PSP(1) NB-I NB-I NB-I NB-II
2000 NB-I NB-I NB-I NB-II NB-I NB-I

Table 12: CAIC Values, Pooling Across Sexes, 2000

OBDV OPV IPV ERV DV RX
POISSON 1.5736 1.5941 1.0273 1.0767 1.1222 3.0133
PSNP(1) 1.5727 1.5688 1.0346 1.0821 1.1240 2.6808
PSNP(2) 1.3665 1.3916 1.0085 1.0143 1.0231 2.6816
PSNP(3) 1.2445 1.3309 1.0177 1.0211 1.0247 2.3243
PSP(1) 1.0036 1.0100 1.0087 1233.0104 1.0094 1.0083
PSP(2) 1.0053 1.0329 1.0729 1.0452 1.0096 1.0064
PSP(3) 1.0001 1.0052 1.0179 1.0048 1.0100 1.0091
HPSP(1) 1.0048 1.0376 1.0905 1.0588 1.0129 1.0069
HPSP(2) 1.0012 1.0041 1.0270 1.0116 1.0087 1.0099
HPSP(3) 1.0062 1.0478 1.1089 1.0650 1.0150 1.0085
NB-I 1.0026 1.0274 912.9064 1.0025 5019.8251 10405.3000
NB-II 1.0046 1.0297 1.0004 1.0009 1.0078 1.0084
HNB-I 1.0034 1.0503 1.0469 1.0369 1.0044 1.0024
HNB-II 1.0028 1.0387 1.0452 1.0308 1.0052 1.0040
MNB-I 1.0096 1.0276 1.0613 1.0403 1.0103 1.0035
MNB-II 1.0091 1.0233 1.0646 1.0393 1.0157 1.0130
CMNB-I 7865.6354 1581.2384 1.0270 1.0121 1.0038 1.0002
CMNB-II 1.0009 1.0013 1.0268 1.0121 1.0110 1.0085
NBSNP-I(1) 1.0042 1.0331 1.0102 1.0104 1.0009 1.0014
NBSNP-I(2) 1.0003 1.0061 1.0191 1.0061 1.0025 1.0022
NBSNP-I(3) 1.0013 1.0027 1.0270 1.0129 1.0033 1.0023
NBSNP-II(1) 1.0062 1.0091 1.0101 1.0047 1.0093 1.0104
NBSNP-II(2) 1.0056 1.0144 1.0193 1.0113 1.0070 1.0110
NBSNP-II(3) 1.0066 1.0087 1.0284 1.0181 1.0085 1.0117
Separate Models 1.0040 1.0152 1.0234 1.0189 1.0062 1.0028
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Table 13: CAIC-Favored Models, Pooling Across Sexes, 1996-2000
OBDV OPV IPV ERV DV RX

1996 NBSNP-I(2) PSP(1) NB-I NB-I NBSNP-I(3) NBSNP-I(2)
1997 NBSNP-I(2) PSP(1) NB-I NB-I NBSNP-I(3) NB-I

1998 PSP(3) PSP(1) NB-I Women: NB-II
Men: NBSNP-I(3)

NBSNP-I(3) NB-I

1999 CMNB-I PSP(3) NB-I NB-I NBSNP-I(3) NB-I
2000 CMNB-I CMNB-I NB-I PSP(1) NP-I NB-I

Table 14: CAIC Values, Pooling across 1996-1998-2000 and Sexes

OBDV OPV IPV ERV DV RX
POISSON 1.6126 1.5517 1.0515 1.0583 1.1692 2.9997
PSNP(1) 1.5255 1.5465 1.0547 1.0608 1.1699 2.6795
PSNP(2) 1.4060 1.3059 1.0033 1.0076 1.0537 2.3916
PSNP(3) 1.2867 1.1573 1.0073 1.0106 1.0544 2.3920
PSP(1) 1.0047 1.0042 1.0050 3051.3255 1.0074 1.0057
PSP(2) 1.0055 1.0158 1.0390 1.0283 1.0008 1.0029
PSP(3) 1.0045 1.0005 1.0076 1.0019 1.0076 1.0051
HPSP(1) 1.0020 1.0203 1.0469 1.0344 1.0021 1.0024
HPSP(2) 1.0037 1.0000 1.0115 1.0050 1.0083 1.0055
HPSP(3) 1.0030 1.0241 1.0548 1.0399 1.0033 1.0032
NB-I 1.0043 1.0217 2338.3952 1.0003 1.0010 1.0004
NB-II 1.0061 1.0231 1.0003 1.0001 1.0081 1.0053
HNB-I 1.0040 1.0285 1.0272 1.0212 1.0031 1.0014
HNB-II 1.0042 1.0247 1.0274 1.0209 1.0030 1.0019
MNB-I 1.0077 1.0183 1.0350 1.0272 1.0046 1.0022
MNB-II 1.0044 1.0211 1.0362 1.0240 1.0097 1.0070
CMNB-I 19541.3171 4029.5548 1.0099 1.0052 1.0005 25190.7329
CMNB-II 1.0004 1.0002 1.0115 1.0052 1.0059 1.0050
NBSNP-I(1) 1.0050 1.0242 1.0043 1.0037 1.0016 1.0010
NBSNP-I(2) 1.0000 1.0112 1.0083 1.0027 13100.3787 1.0010
NBSNP-I(3) 1.0005 1.0054 1.0121 1.0057 1.0005 1.0011
NBSNP-II(1) 1.0068 1.0221 1.0042 1.0033 1.0088 1.0059
NBSNP-II(2) 1.0054 1.0117 1.0080 1.0044 1.0085 1.0060
NBSNP-II(3) 1.0058 1.0140 1.0117 1.0072 1.0092 1.0064
Separate Models 1.0057 1.0192 1.0354 1.0125 1.0039 1.0029
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Table 15: Estimation Results, Overall CAIC-Favored Models, 1996-1998-2000

OBDV OPV IPV ERV DV RX
Const. 0.2098 -3.8315 -2.6857 -1.7703 -1.6691 -0.1809

(0.210) (0.673) (0.549) (0.561) (0.200) (0.172)
[0.318] [0.000] [0.000] [0.002] [0.000] [0.294]

1998 0.0215 0.0038 -0.2639 -0.0865 -0.0112 0.0498
(0.044) (0.127) (0.168) (0.218) (0.049) (0.049)
[0.627] [0.976] [0.115] [0.692] [0.818] [0.306]

2000 -0.0163 -0.0603 -0.1818 -0.0635 -0.1732 0.1048
(0.038) (0.110) (0.138) (0.133) (0.044) (0.041)
[0.672] [0.582] [0.187] [0.633] [0.000] [0.011]

Pub 0.2804 0.4658 1.0211 0.6232 -0.1300 0.5118
(0.076) (0.208) (0.202) (0.333) (0.102) (0.104)
[0.000] [0.025] [0.000] [0.061] [0.205] [0.000]

Woman 0.3794 0.3271 0.1028 0.1323 0.2581 0.5490
(0.034) (0.097) (0.125) (0.114) (0.038) (0.037)
[0.000] [0.001] [0.410] [0.244] [0.000] [0.000]

Age 0.0279 0.0394 0.0260 0.0132 0.0185 0.0412
(0.002) (0.007) (0.009) (0.010) (0.003) (0.002)
[0.000] [0.000] [0.004] [0.178] [0.000] [0.000]

Income -0.0004 -0.0007 -0.0042 -0.0037 0.0017 -0.0012
(0.000) (0.001) (0.002) (0.002) (0.000) (0.000)
[0.315] [0.594] [0.026] [0.044] [0.000] [0.009]

Education 0.0175 0.0200 -0.0660 -0.0643 0.1115 0.0078
(0.007) (0.020) (0.022) (0.024) (0.009) (0.008)
[0.012] [0.318] [0.003] [0.006] [0.000] [0.305]

alpha 9.8375 0.4879 0.4579 0.4146 2.8892 12.7021
(0.224) (0.590) (0.173) (1.151) (0.078) (0.313)
[0.000] [0.408] [0.008] [0.719] [0.000] [0.000]

gam1/Const2 1.0000 -1.5483 na 0.2949 -0.0948 2.3131
(0.096) (0.732) (0.323) (0.055) (0.131)
[0.000] [0.034] [0.361] [0.084] [0.000]

gam2/alpha2 2.5659 17.5843 na na 0.0030 56.6040
(0.166) (0.546) (0.036) (0.400)
[0.000] [0.000] [0.934] [0.000]

mix 0.2278 0.5515 na na na 0.6577
(0.461) (1.354) (0.933)
[0.621] [0.684] [0.481]

( ) = standard errors; [ ] = p-values

30



References

[1] Cameron, A.C. and P.K. Trivedi (1986a), Econometric models based on count data: com-

parisons and applications of some estimators and tests, Journal of Applied Econometrics,

1, 29-54.

[2] Cameron, A.C. and P.K. Trivedi (1998), Regression analysis of count data, Econometric

Society Monographs, Cambridge University Press.

[3] Cameron, A.C. et al. (1988), A microeconometric model of the demand for health insur-

ance and health care in Australia, Review of Economic Studies, 55, 85-106.

[4] Cameron, A.C. and P. Johansson (1997), Count data regression using series expansions:

with applications, Journal of Applied Econometrics, 12, 203-23.

[5] Cragg, J.G. (1971), Some statistical models for limited dependent variables with appli-

cations to the demand for durable goods, Econometrics, 39, 829-44.

[6] Deb, P. and P.K. Trivedi (1997), Demand for medical care by the elderly: a finite mixture

approach, Journal of Applied Econometrics, 12, 313-36.

[7] Geil, P., A. Million, R. Rotte and K. Zimmermann (1997), Economic incentives and hos-

pitalization in Germany, Journal of Applied Econometrics, 12, 295-311.

[8] Gallant, A.R. and D.W. Nychka (1987), Seminonparametric maximum likelihood esti-

mation, Econometrica, 55, 363-90.

[9] Gerdtham, U-G. (1997), Equity in health care utilisation: further evidence based on

hurdle models and Swedish macro data, Health Economics, 6, 303-19.

[10] Gerdtham, U-G. and P.K. Trivedi (2000), Equity in Swedish health care

reconsidered: new results based on the finite mixture model, mimeo,

http://swopec.hhs.se/hastef/abs/hastef0365.htm

[11] Guo, J.Q. and P.K. Trivedi (2002), Flexible parametric models for long-tailed patent

count distributions, Oxford Bulletin of Economics and Statistics, 64, 63-82.

31



[12] Gurmu, S. (1997), Semi-parametric estimation of hurdle regression models with an ap-

plication to medicaid utilization, Journal of Applied Econometrics, 12, 225-42.

[13] Gurmu, S. and P.K. Trivedi (1996), Excess zeros in count models for recreational trips,

Journal of Business and Economic Statistics, 14, 469-77.

[14] Gurmu, S., P. Rilstone and S. Stern (1999), Semiparametric estimation of count regres-

sion models, Journal of Econometrics, 88, 123-50.

[15] James, L., C. Priebe and D. Marchette (2001), Consistent estimation of mixture complex-

ity, Annals of Statistics, 29, 1281-1296.

[16] Mullahy, J. (1986), Specification and testing of some modified count data models, Journal

of Econometrics, 33, 341-65.

[17] Pohlmeier, W. and V. Ulrich (1995), An econometric model of the two-part decision-

making process in the demand for medical care, Journal of Human Resources, 30, 339-61.

[18] Sin, Chor-Yiu, and H. White (1996), Information criteria for selecting possibly misspec-

ified parametric models, Journal of Econometrics, 71, 207-225.

[19] Windmeijer, F.A.G. and J.M.C. Santos Silva (1997), Endogeneity in count data models:

an application to demand for health care, Journal of Applied Econometrics, 12, 281-94.

32


