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Abstract. This article presents a way to associate a Grothendieck site struc-
ture to a category endowed with a unique factorisation system of its arrows. In
particular this recovers the Zariski and Etale topologies and others related to
Voevodsky’s cd-structures. As unique factorisation systems are also frequent
outside algebraic geometry, the same construction applies to some new con-
texts, where it is related with known structures defined otherwise. The paper
details algebraic geometrical situations and sketches only the other contexts.

Contents

Introduction 3
1. Lifting properties and factorisation systems 9
1.1. Lifting systems 9
1.2. Factorisation systems 12
1.3. From lifts to factorisations 14
2. Topology 17
2.1. Finiteness contexts and Etale maps 17
2.2. Points 18
2.3. Point covering families 18
2.4. Local objects 19
2.5. Nisnevich forcing 20
2.6. Spectra 21
3. Examples 31
3.1. Extremal examples 31
3.2. Zariski topology 32
3.3. Etale topology 37
3.4. Nisnevich topology 43
3.5. Domain topology 46
3.6. Proper topology 50
3.7. Proper Nisnevich topology 55
3.8. Remarks on the previous settings 57
3.9. Other examples 59
References 67

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13283051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Introduction

This article is about how certain Grothendieck topologies can be generated
from unique factorisation systems (or also unique lifting systems, see below). A
particular case of our construction will be the Zariski and Etale topologies of
algebraic geometry, and others related to Voevodsky’s cd-structures. As unique
factorisation systems are also frequent outside algebraic geometry, the same con-
struction applies to some new contexts, where it is often related with known
structures defined otherwise. The paper details algebraic geometrical situations
and sketch only those other contexts. Most of the results are well known, only a
systematic presentation using unique factorisation system is new here.

Topological interpretation of lifting diagrams. In a category C, a lifting diagram
is a commutative diagram as follows

P

u

��

// U

f

��
N //

`
>>|

|
|

|
X.

The arrow `, when it exists, is called a lift of u through f . The diagram is called
a lifting diagram if a lift exist, and a unique lifting diagram if the lift exists and
is unique. In this last case, u (resp. f) is said left (resp. right) orthogonal to f
(resp. u). A lifting system is defined as two classes of maps A, B ⊂ C such that
each map of A is left orthogonal to any of B and such that A and B are saturated
for this relation (cf. §1.1). A is called the left class and B the right class.

We propose the following topological interpretation of a unique lifting diagram:
all objects are to be thought as spaces, the composite map P → X is a point of
X (in the generalized sense of ’family of points’), the map u : P → N is a neigh-
bourhood (or a thickening) of P , the map N → X say that this neighbourhood
is “in” X, the map f : U → X is a open immersion X, and the map P → U says
that the open contains the point P . The unique lifting property then reads: in a
space X, any open U containing a point P contains every neighbourhood N of P
contained in X, which is exactly the fundamental intuition behind the classical
definition of open subsets of topological spaces. We proposed here an approach
of topology based on this remark.

In the topological setting the notion of neighbourhood is rather complicated
as they are objects not defined by some underlying set of points, and they are
quickly forgotten and replaced by the more convenient open subsets. Algebraic
geometry, on the contrary, possesses through spectra of local rings, a way to make
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the neighbourhoods “real” objects and this authorizes in particular an easy local-
global movement. The existence of these neighbourhoods will be a consequence of
the extra structure of a lifting system, and even a factorisation system, behind the
Zariski topology, distinguishing it from the Grothendieck topology of topological
spaces for which no such system exists.

Factorisation systems. It is a remarkable fact that lifting systems are related to
factorisation systems. A factorisation system on a category C is the data of
two classes of maps A, B ⊂ C and a factorisation X → φ(u) → Y of any map
u : X → Y ∈ C such that X → φ(u) ∈ A and φ(u) → Y ∈ B. The factorisation
is said unique if φ(u) is unique up to a unique isomorphism (cf. §1.2). The
two classes (A,B) of a unique factorisation system define always a unique lifting
system and the reciprocal is true under some hypothesis of local presentability
(cf. prop. 3). The unique lifting systems that will appear in this paper will all be
associated to unique factorisation systems.

The Zariski topology has the particularity that Zariski open embeddings be-
tween affine schemes are all in the right class of a unique factorisation system
(Conso, Loco) on CRingso (cf. §3.2). Loc is the class of localisations of rings and
Cons the class of conservative maps of rings: a map u : A→ B is conservative if
u(a) invertible implies a invertible, an example is the map A→ k from a local ring
to its residue field. Any map of rings u : A→ B factors in a localisation followed
by a conservative map A→ A[S−1]→ B where S = u−1(B×). In particular this
factorisation applied to a map u : A → k where k is a residue field of A gives
A→ Ap → k where Ap is the local ring of A at the kernel of p of u. Geometrically,
A → k corresponds to a point p of X = SpecZar(A), N = SpecZar(Ap) → X is
the germ of X at p and P = SpecZar(k) → N is the embedding of a point into
some neighbourhood. If U → X is a Zariski open subset of X containing P , this
data define a lifting square as above and the existence of the lift N → U is a
consequence of N being the limit of all U → X containing P .

With the previous considerations in mind, it is tempting to look at a unique
factorisation system (A,B), the following way: the right class B would be formed
of open embeddings and the left class A of abstract neighbourhoods. But the
example of Zariski topology, show us also that not all localisations of rings are
to be thought as open embeddings, they contain also germ at some points, so a
general map in the right class should rather be thought as a “pro”-open embed-
dings. Also, it is possible to see using a topological intuition, that a map lifting
uniquely the neighbourhood of some point, once given a lift of the point is not in
general an open embedding but rather an etale map. In the Zariski topology this
fact is almost invisible but the Etale topology is another example of the same
setting and makes it clear.
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So finally, we are going to propose an interpretation of the class B of a unique
lifting system as a class of “pro”-etale maps. A unique lifting systems is then
though as a theory of pro-etale maps and a tool to develop abstract analogs
of the Etale topology: this class B will be used to define the covering fami-
lies of a Grothendieck topology on C (cf. §2) that in the particular case of the
(Conso, Loco) lifting system on the category CRings of commutative rings will
give back Zariski topology (cf. §3.2).

We list here the four unique factorisation systems on the category CRings of
commutative rings that we are going to study in the sequel.

Name Left class Right class

Zariski localisations conservative maps

Etale ind-etale maps henselian maps

Domain surjections monomorphisms

Proper ind-proper maps integrally closed maps

A factorisation system (A,B) on C define another one (Ao,Bo) on Co and we
will in fact have more interests on the opposite systems of the previous four. To
each of them will be associated a Grothendieck topology on the opposite category
CRingso of commutative rings, the third one corresponding to Voevodsky’s plain
lower cd-topology in [Vo].

Results. From a factorisation system (in a category with finite limits), we built a
general scheme associating to it:

• a notion of etale map (§2.1),
• a notion of points of an object (§2.2),
• a notion of local objects (§2.4),
• a Grothendieck topology (called the factorisation topology) which covering

families are etale families surjective on points (§2.3),
• two toposes functorialy associated to any object X and called the small

and big spectra of X, the big one being always a retraction of the big one
(§2.6),
• and a structural sheaf on the small spectra of X whose stalks are the

“local forms” of X, i.e. pro-etale local objects over X (§2.6.2)

such that in the case of the four systems on CRingso these notions gives:
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Zariski Etale Domain Proper

Etale
maps

Zariski open
maps

etale maps Zariski closed
embeddings

proper maps

Points nilpotent
extension
of fields

nilpotent
extension
of separably
closed fields

fields algebraically
closed fields

Local
objects

local rings strict
henselian
local rings

integral
domains

strict integrally
closed domains
(cf. §3.6.2)

Small
spectrum
of A

usual Zariski
spectrum
(topos classi-
fying all
localisations
of A)

usual Etale
spectrum
(topos classi-
fying all strict
henselisation
of A)

a topos classify-
ing all quotients
domains of A

a topos classi-
fying strict in-
tegral closure of
quotient
domains of A

Big
spectrum
of A

usual big
Zariski topos
classifying
local A- alge-
bras

usual big
Etale topos
classifying
strict
henselian
local A- alge-
bras

a topos classify-
ing A-algebras
that are integral
domains

a topos classify-
ing A-algebras
that are strict
integrally
closed domains.

(The structure sheaves are the tautological ones.)

Then the main result of the paper is theorem 2.5 allowing one to compute the
categories of global points of the spectra using the local objects. We refer to it
as the moduli interpretation of the spectra, but we won’t study fully the moduli
aspects of our spectra in this paper, such a study would require a much more
topossic approach than we have chosen here and will be the subject of another
paper [An].

Nisnevich contexts. Nisnevich topology on schemes is defined by etale covering
families satisfying a lifting property for maps from spectra of fields. Such a lifting
property cannot in general be obtained by a single etale map and this does not
distinguish a class of maps B that could be part a factorisation system. For
this reason Nisnevich topology is not a factorisation topology, but it defines an
interesting operation on such that we called Nisnevich forcing. It consists to force
a class of objects to be local objects (cf. §2.5) by selecting the covering families
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of the factorisation topology that satisfy an extra lifting condition for maps from
the objects of the forcing class. Apply with the Etale topology and the class of
fields, this gives the usual Nisnevich topology. But an interesting other case is
to apply this, still with the class of field as forcing class, to the Proper topology;
the resulting topology is then the lower cd-structure of Voevodsky in [Vo].

The data of a factorisation system and a Nisnevich forcing class is called a
Nisnevich context (def. 11) and the construction of our spectra (§2.6) as well as
theorem 2.5 are defined directly in such a context. The previous table can then
be completed by the following one:

Nisnevich Proper Nisnevich

Local objects henselian local
rings

integrally closed
domains

Small spectrum of A topos classifying
ind-etale henselian
local A-algebra

topos classifying
ind-proper
integraly closed
A-algebra

Big spectrum of A topos classifying
henselian local
A-algebra

topos classifying
integraly closed
A-algebra

Other examples. Many example of unique factorisation system exists outside of
algebraic geometry and we sketch the details of some examples in §3.9. The two
first examples deal with the (Epi,Mono) factorisation systems that always exist
in a topos or an abelian category, the notion of point correspond to irreducibles
objects and the associated spectra are essentielly discrete spaces. Another ex-
ample study the factorisation systems on the category of small categories given
by initial (resp. final) functors and discrete left (resp. right) fibrations. The as-
sociated spectra of a category C are respectively the toposes of covariant and
of contravariant functors. Moreover this example share a duality of the same
flavour of that of etale and proper maps. We study also a factorisation system
on the category of simplicial sets left generated by inclusion of faces of simplices,
points and local objects are vertices and a more interesting situation is obtained
forcing all simplices to be local object. For this topology, the small spectrum of
a simplicial set is related to the cellular dual of the usual geometric realisation
(where vertices correspond to open).

Finally, we sketch an application to homotopy theory of what should be a
natural generalisation of our setting to homotopically unique factorisation on
higher categories. The example study Postnikov family of factorisation systems
(a.k.a Postnikov towers of morphisms), the associated spectra of a homotopy type
X are higher toposes of representations of its fundamental n-groupoid.
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Plan of the paper. Section 1 consists in some recollections and lemmas about
lifting and factorisation systems, the main result is proposition 3 describing the
construction of a unique factorisation from a lifting system, which will be used
in §3.3. All this can be skipped at first reading.

Section 2 is the core of the article. It develops the topological interpretations
and constructions associated to a factorisation system. It uses an extra structure
not mentionned yet called a finiteness context that we could have avoided in
the context of rings by simply looking at finitely presented objects, but it seems
to be an interesting degree of freedom of the theory (cf. §3.9). The notion of a
Nisnevich context and the associated small and big spectra are defined in §2.5 and
§2.6. The theorem of computation of their points is in §2.6.1 and their expected
structure is proven in §2.6 and §2.6.2.

At last, section 3 develops the examples. The first six are the one in algebraic
geometry mentioned above and are fully detailled, but our general setting gives
also interesting results in a priori less geometrical situations (§3.9).

Motivations and acknowledgments. The origin of this work was to understand
why Zariski and Etale topologies where coming with both notions of small and
big topos and a class of distinguished maps playing the role of “open embeddings”,
the classical theory of Grothendieck (pre)topologies being insufficient to explain
this extra structure. It is André Joyal that suggested to me that Zariski topology
should be related to the (Loc, Cons) factorisation system on commutative rings.
Although he won’t be satisfied with the way I’ve chosen to present the ideas
here, this paper have been influenced by numerous conversations with him. It is
after a conversation with Georges Maltsiniotis, that I had the idea for the notion
points, I am particularly grateful to him for listening the first one my raw ideas
and for his remarks. I learn first the excellent philosophy of thinking of spectrum
of an object X as the moduli spaces of some “local forms” of X from Joseph
Tapia, although all this is not fully described here this have been influential,
i’m grateful to him for our conversations on the subject. I’m also grateful to
Jonathan Pridham for pointing out to me that the orthogonal class of henselian
maps should be that of ind-etale ones.

Most of this study has been worked out during the excellent 2007-2008 program
on Homotopy Theory and Higher Categories in Barcelona’s crm, I’m very grateful
to the organizers for inviting me all year. It has been written while I was staying
at Montreal’s cirget that I thank also for inviting me.

Notations. For an object X of a category C the category of objects of C under
X is noted X\C and that of objects over X C/X . For a category C Ind(C) is its
the category of ind-objects. For a class B of maps of a category C, Ind − B is
the class of maps of C that can be defined as cofiltered colimits of maps in B.
CRings is the category of commutative rings. S will denote the topos of sets.



1. Lifting properties and factorisation systems

We recall the notion of lifting and factorisation systems from [Bou, Joy].

1.1. Lifting systems. In a commutative diagram square

P

u

��

// U

f

��
N //

`
>>|

|
|

|
X.

the map u is said to have the unique left lifting property with respect to f and
the map f is said to have the unique right lifting property with respect to u if it
exist a unique diagonal arrow ` making the two obvious triangles commutative.
The arrow ` will be called the lift or the lifting.

Let B a class of maps of C, a map u : X → Y ∈ C is said to be left (resp. right)
orthogonal to B iff it has the unique left (resp. right) lifting property with respect
to all maps of B. The class of maps left (resp. right) orthogonal to B is noted ⊥B
(resp. B⊥). If A ⊂ B then B⊥ ⊂ A⊥ and ⊥B ⊂⊥A.

Definition 1. The data of two classes A, B of maps of C such that A =⊥B and
B = A⊥ is called a unique lifting system on C. Such a system is noted (A,B).

For a class G of maps of C we define B = G⊥ and A =⊥B.

Lemma 1.1. The previous classes A and B form a unique lifting system.

Proof. We must show B = A⊥. By construction G ⊂ A so A⊥ ⊂ G⊥ = B, and
the inverse inclusion is a consequence of A =⊥B. �

Such a factorisation system will be qualified as left generated by the set G.
There is a dual notion of right generation.

Here are some properties of the classes of a lifting system.

Proposition 1. (1) A and B are stable by composition.
(2) A ∩ B is the class of isomorphisms of C.
(3) B is stable by pullback and has the left cancellation property (see proof).

In particular any section or retraction of a map in B is in B. (The dual
statement holds for A.)

(4) In the category of arrows of C, any limit of maps in B is in B. (The dual
statement holds for A.)

(5) (Codiagonal property) the class A contains the codiagonals of its mor-
phisms (see proof). (The dual statement holds for B.)

9
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Proof. The first and second properties are left to the reader.

3. Stability by composition and pullback are easy. A class B of maps in C has
the left cancellation property if for any X

u−→ Y
v−→ Z such that vu and v are

in B, so is u. We are going to prove that for a map a : X → Y ∈ C, the class a⊥

has the left cancellation property. Let u : Z → T and v : T → U ∈ B such that
vu ∈ B, for any square

X

a

��

// Z

u

��
Y

`
>>~

~
~

~

q
// T

we are looking for a lift `. Composing at the bottom by v gives

X

a

��

// Z

u

��
vu

��

Y // T

v

��
Y

s

GG�
�

�
�

�
�

�
�

// U

and a lift s of a through vu. We need to show that this is the good one, i.e. that
us = q. This can be seen in

X

a

��

// Z

u

��

u // T

v

��
Y

s
>>~

~
~

~

q
// T //

~~~~~~~

~~~~~~~
U

as us and q give two lifts of a through v. The conclusion follows as classes having
the cancellation property are stable by intersection.

As for 4., let I be the interval category {0 → 1}, CI is the arrow category of
C, B is a subclass of the class of objects of CI . If D : D → C is a diagram of
arrows all in B, then, if the limit of this diagram exists, it is in B. Indeed, let
Zd → Td ∈ B be the value of the diagram D at d and Z → T be the limit of D,
the existence of a lift ` for a square

X

a∈A
��

// Z

��
Y

`
>>~

~
~

~
// T
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is equivalent to the existence of lift for all

X

a∈A
��

// Zd

��
Y

`d
>>~

~
~

~
// Td

such that for δ : d→ d′ ∈ D

X

a∈A
��

// Zd

��

ζδ // Zd′

��
Y

`d
>>~

~
~

~ `d′

66nnnnnnnn // Td // Td′

ζδ ◦ `d = `d′ , but this is a consequence of the unicity of the lift.

5. The codiagonal of a morphism A → B is the map B ∪A B → B. It is a
retract of the inclusion B → B ∪A B which is a pushout of A→ B so it is in A
is A → B is. Then the cancellation property for A ensures B ∪A B → B ∈ A
too. �

The following lemma gives an interesting equivalence between the right can-
cellation property and having codiagonals.

Lemma 1.2. A subcategory G of C stable by cobase change satisfies the right
cancellation iff it contains the codiagonals of all its morphisms.

Proof. For u : A→ B ∈ G, i1 : B → B tA B is in G as cobase change of u along
itself. If G has right cancellation, δu : B tA B → B is in G as δu ◦ i1 = idB. For
u : A → B and v : B → C such that u, vu ∈ G, we want to prove that v ∈ G.
The square

B tA B
vtAidB

��

δv // B

u

��
C tA B

w // C

is a pushout. If G is stable by codiagonals w ∈ G. Then as i1 : C → C tA B is
in G as a pushout of vu, so is u = w ◦ i1. �

To finish we mention that there is an obvious notion of a general (non unique)
lifting system. The following result says that unicity of the lift is a property of a
non unique lifting system.

Lemma 1.3. A general lifting system (A,B) is unique iff the A is stable by
codiagonals iff the B is stable by diagonals.
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Proof. We are going to work only with the condition on A. Suppose we have a
square

A //

��

C

��
B //

`1
>>~

~
~

~ `2

>>~
~

~
~

D

with two lifts. These two lifts agree iff the following square have a lift:

B ∪A B //

��

C

��
B

(`1,`2)
//

::uuuuuu
D . �

1.2. Factorisation systems.

Definition 2. A unique factorisation system on a category C is the data of two
classes A, B of maps in C such that any arrow u : X → Y admits a factorisation

φ(u)
β(u)

!!CCCCCCCC

X
u //

α(u)
=={{{{{{{{

Y

with α(u) ∈ A and β(u) ∈ B, which is unique up to unique isomorphism,
i.e. for two such factorisations X → φ(u) → Y and X → ϕ(u) → Y there
exists a unique isomorphism φ(u)→ ϕ(u) making the two obvious triangles com-
muting.

For short, such a factorisation system will be noted C = (A,B). It is obvious
that (Bo,Ao) is another factorisation system on Co.

The definition of a unique factorisation system has many consequences toward
the following lemma.

Lemma 1.4. In C = (A,B), any commuting square

X //

α(u)
��

Z

b

��
φ(u)

β(u)
//

`

=={
{

{
{

Y

where X → φ(u)→ Y is a factorisation of some u : X → Y and b ∈ B, admits a
unique lifting `.

Proof. This follows by considering a factorisation of X → Z and using the unique-
ness of the decomposition of u. �
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The dual lemma considering a square

X //

a

��

φ(u)

��
Z //

`
=={

{
{

{
Y

with a ∈ A is also true.

Corollary 1. The classes A and B of a unique factorisation system define a
unique lifting system.

Proof. Given a commuting square

X //

a

��

Z

b
��

Y // T

with a ∈ A and b ∈ B, the result follows by considering a factorisation of the
diagonal X → T and by the above lemma and its dual. �

We are going to see in §1.3 that the converse is true if C is nice enough.

Proposition 2. This factorisation is functorial in the sense that, for any com-
muting square

X

��

u // Y

��
X ′ v

// Y ′

and any choice of factorisation of u and v is associated a unique map ϕ(u)→ ϕ(v)
such that the following diagram commutes:

X
α(u)

//

��

ϕ(u)
β(u)

//

��

Y

��
X ′

α(v)
// ϕ(v)

β(v)
// Y ′ .

Proof. From

X
α(u)

//

��

ϕ(u)
β(u)

// Y

��
X ′

α(v)
// ϕ(v)

β(v)
// Y ′ .
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one can extract the square

X
α(u)

//

��

ϕ(u)

��
ϕ(v)

β(v)
// Y ′ .

Then, the wanted map exists by the previous corollary. �

1.3. From lifts to factorisations. For non unique lifting system, the small
object argument is used to construct a non unique factorisation system. This
contruction works for unique lifting system (A,B) and the resulting factorisation
can be proved to be unique as a consequence of the stability of A or B by codi-
agonals or diagonals (cf. lemma 1.3). In case where C is a category of ind-objects
and the lifting system is left generated (cf. lemma 1.1) by maps between objects
of finite presentation we are going to present a more straightforward construction
of the associated unique factorisation. This will be used in 3.3.

The idea is the following: for a lifting system (A,B), suppose we have a fac-

torisation of a morphism X → Y in X
α−→ X ′

β−→ Y with α ∈ A and β ∈ B,
then for any square

X
α //

∈A
��

X ′

β

��
U //

∃!s
>>|

|
|

|
Y

there exists a section s. This suggests to build X → X ′ as a colimit of all X → U .
For the colimit to exist we are going to assume that we have a set G of left

generators for (A,B) and we define G as the set of all maps of C obtained as
pushouts of maps in G. Then, for u : X → Y we define Gu to be the category
whose objects are compositions X → Xg → Y , where X → Xg is this pushout of
some g ∈ G, and whose morphisms are diagrams

X // Xg

��

// Y

X // Xh
// Y.

where Xg → Xh is in G. It is a small category. The middle object of the
factorisation to be of X → Y is then defined as the colimit X ′ over Gu of all Xg.
The problem is now to check that X → X ′ ∈ A and X ′ → Y ∈ B. For this we are
going to assume that C = Ind(D), G ⊂ D and that Gu is cofiltered. As cofiltered
diagrams are connected, the colimit of the constant diagram X : Gu → C will be
X and the natural map X → X ′ is the colimit of maps X → Xg, and so is in A
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by its stability by colimits. As for X ′ → Y being in B, given a square

A //

h∈G
��

X ′

��
B // Y

X ′ being in Ind(D), the map A → X ′ will factors through some A → Xg. If
(Xg)h is the pushout of h along A→ Xg and if X → (Xg)h is still in Gu (which
is true if G is stable by composition), a map (Xg)h → X ′ would exist and be
unique by construction of X ′, proving that X ′ → Y is in B.

Proposition 3. If C = Pro(D) is endowed with a unique lifting system (A,B),
left generated by a small category G ⊂ D stable by cobase change in D and having
right cancellation, then (A,B) is associated to a unique factorisation system and
the factorisation of a map X → Y is given by X → X ′ → Y as above. In
particular A = Ind−G.

Proof. According to the previous discussion, it is sufficient to prove that Gu is
cofiltered and G is stable by composition. For the first point, we are going to show
that Gu has in fact all finite colimits. Gu is by construction stable by pushout
so Gu but it is not clear that the constructed object have the pushout universal
property internally in Gu, i.e. that the map p in the following diagram is in Gu:

Y //

��

Z

��

��

X //

//

X tY Z
p

$$IIIIIIIII

U .

However, this is true if G had right cancellation, the following lemma ensures
that this is the case.

Lemma 1.5. If G is a subcategory of D stable by cobase change and with right
cancellation, then its extension by cobase change G in Ind(D) has right cancel-
lation too.

Proof. For u : X → Y ∈ G, there exists an A→ B ∈ G such that X → Y is the
cobase change of A→ B along some A→ X. Now for two X → Y1 and X → Y2,
considering two associated Ai → Bi ∈ G as above, the maps gi : A1tA2 → BitAj
(where {i, j} = {1, 2}) are still in D and X → Yi is the cobase change of gi along
the map A1 t A2 → X. This proves that in the two maps Ai → Bi the sources
can be chosen to be the same.

If we have now a map Y1 → Y2 under X, we want to prove that there exists a
diagram A → B1 → B2 ∈ G such that X → Y1 → Y2 is its cobase change along
some A → X. To prove so, we first consider two A → Bi ∈ G as above giving
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X → Yi by cobase change, now they may not exist a map A1 → A2 over B as we
look for, but this map exists over B′ for some B → B′ ∈ D. Indeed A→ X is the
colimit of all A′ indexed by the cofiltered diagram of maps A→ A′ ∈ D factoring
A → X, so Y2 is the colimit of all A2 tA A′ indexed by the same diagram. Now
by property of ind-objects, the map A1 → Y2 must factor through one of the
A2 tA A′. X → Y1 → Y2 is then a pushout of A → A1 tA A′ → A2 tA A′ and
because G has right cancellation the map A1tAA′ → A2tAA′ is in G so Y1 → Y2

is in G. �

Now Gu has amalgamated sums and an obvious initial objet, so it has all finite
colimits and is cofiltered.

To finish the proof, it remains to show the stability by composition of G: given
two pushouts

A //

g

��

X

��
B // Y

and

C //

h
��

Y

��
D // Z

with g and h in G, we can build a diagram

A ∪ C //

g∪C
��

X

��
B ∪ C //

B∪h
��

Y

��
B ∪D // Z

where the two squares are still pushouts, and so their composition. Now g ∪ C
and B ∪ h are in G by its stability by pushout and so is B ∪ h ◦ g ∪ C by its
stability by composition, making X → Z in G.

As for the last remark about A = Ind−G, the inclusion A ⊂ Ind−G is clear
by construction and Ind−G ⊂ A comes from the stability of A by colimits. �

Remark. If C = Pro(D) and G ⊂ D is a set of left generators for (A,B), then
G can always be completed in a subcategory as in proposition 3, so only the left
generation is really important as an hypothesis on (A,B).

From now on, all unique lifting systems that we are going to consider will
always be associated to some unique factorisation sytems and we are going to
denoted them the same way.



2. Topology

This section presents the topological interpretation of factorisation systems
sketched in the introduction. Let C = (A,B) be a category with a unique factori-
sation system, as the purpose of this section is to transform the objects of C into
topological objects, we will need and assume some basic “geometric” properties:
C will be taken with finite limits and with a strict initial object (any map to it is
an isomorphism) if it exists. The initial object will be called empty and noted ∅
and the terminal one will be noted ∗.

The construction will take the form of a covariant functor

Spec : C −→ T opos
X 7−→ Spec(X)

where T opos is the category of toposes and geometric morphisms up to natural
isomorphisms.

2.1. Finiteness contexts and Etale maps. As explained in the introduction,
the basic idea is to think maps in the class B as defining some kind of etale
topology, but in algebraic geometry, where B can be a subclass of formally etale
maps, one do not want to take them all as etale and a finiteness conditions
is required. This suggest to consider a subcategory Cf of C of maps morally
satisfying some finiteness conditions.

Definition 3. A subcategory Cf ⊂ C is called a finiteness context for C if

a. it contains all isomorphisms (and therefore has the same objects as C),
b. it is stable by base change along morphisms of C,
c. (left cancellation) for all X ∈ C, Cf/X ⊂ C/X is full.

Maps in Cf will be called of finite presentation. An object in Cf/∗ will be called of

finite presentation, by cancellation, Cf/∗ is a full subcategory of C.

A particular example of Cf is of course the whole C. Another example, when
C = CRingso is the opposite of the category of commutative rings, is to take
Cf = (CRingsf )o the opposite of the category of morphisms of finite presentation.
These are the two examples we will use.

Definition 4. The data (C = (A,B), Cf ) of a category C with a unique factorisa-
tion system (A,B) and a choice of a finiteness context Cf is called a factorisation
context.

Definition 5. Given a factorisation context (C = (A,B), Cf ):
17
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a. A map U → X in B will be called f-etale and a f-etale open of X (the name is
chosen to recall formally etale maps of algebraic geometry).

b. A ind-etale map U → X in called an etale map and an etale open of X if it is
in Cf .

The intersections A∩Cf and B∩Cf will be noted Af and Bf . Bf is the category
of etale maps and Bf/X the category of etale opens of X. By left cancellation of

B and Cf , Bf/X is a full subcategory of C/X . It is this category that we are going

to endow with a topology to create the small spectrum of X.

2.2. Points. Now in order to extract from the class B some covering families,
we need a notion of surjectivity. Algebraic geometrical examples motivate the
following definitions.

Definition 6. Given a factorisation context (C = (A,B), Cf ):
a. An object P of C is called a (A,B)-point (or only a point if the context is clear)

if it is not empty and if any map U → P ∈ Bf where U is non empty has a
section (non necessarily unique).

b. A point of an object X is a map x : P → X from a point P .
c. The category of points of an objet X ∈ C, noted PtBf (X), is the subcategory

of C/X span by objects P → X, where P is a point. In particular, PtBf (C) :=
PtBf (∗), is the subcategory of C spanned by all points.

d. The set of points of an object X, noted ptBf (X) is defined as the set of con-
nected components of PtBf (X).

In topological terms, points are those objects such that any etale map has a
section, if one thinks monomorphic etale maps as open embeddings, a point will
have no non trivial opens as any monomorphism with a section is an isomor-
phism. This is one argument for the name ’point’ for this notion. Also, in the
study of rings, our points will correspond to various kinds of rings closed under
some operations (inverses, algebraic elements. . . ) extracting the classes of fields,
separably closed fields. . . which are indeed the ’points’ of algebraic geometry.

2.3. Point covering families.

Proposition 4. Given a family of etale maps {Ui → X}, the following two
properties are equivalent:

(1) Any point P → X lift to one of the Ui

Ui

∃i
��

P //

>>|
|

|
|

X .

(2) The induced map of sets tiptBf (Ui) −→ ptBf (X) is surjective.
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Proof. It is clear that 1. implies 2. Reciprocally, 2. says that for any P → X,
there exists an i and a morphism P ′ → P from another point P ′ such that
P ′ → X lift to Ui. But this forces Ui ×X P to be non empty and as B is stable
by base change, Ui ×X P → P must then have a section. �

We are now able to define our covering families.

Definition 7. A family {Ui → X} in Bf is a point covering family of X if it
satisfies one of the above two conditions.

Proposition 5. Point covering families of X define a pretopology on Bf/X and

Cf/X .

Proof. Our definition of pretopology is taken from [SGA4-1, II.1.3.]. Maps in B
are stable by pullbacks in B or in C, and so are maps surjective on points (easy
from the definition): any pullback of a point covering family is again a point
covering family. Identities are in B and surjective on points. And finally, for
{Ui → X, i} and for {Vij → Ui, j} all covering families, all Vij → X are etale by
composition and tVij → X is still surjective on points. �

The associated topology will be called the factorisation topology.

2.4. Local objects. We defined our covering families such that any points would
lift through them, but many more objects have this lifting property, this is the
idea of a local object. Topologically, they correspond to germs. This is nothing as
the notion of points of a topos and has nothing to do with factorisation systems,
but in the particular case of factorisation topologies, it gives back many known
classes of objects (such as local rings). We will define in fact two notions of
local objects with respect to a factorisation system. These notions should not be
equivalent in general, but they will coincide in all our examples.

A family {Ui → L} is said to have a section if there exists an i and a section
of Ui → L. A family {Ui → X} is said to have a section along L→ X (or to lift
through {Ui → X, i}) if there exists an i and a section of Ui ×X L→ L.

Proposition 6. For L ∈ C, the following assertions are equivalent:

(1) L is such that every point covering family {Ui → L} admit a section.
(2) L is such that for every point covering family {Ui → X} has a section

along any L→ X.

(3) L define a point of the topos C̃ of sheaves on C for the factorisation topol-
ogy.

Proof. The equivalence of 1. and 2. is trivial. As C is assumed to have finite lim-

its, a point of Ĉ is a left exact functor C −→ S. An object L ∈ C define a point

of Ĉ via C(L,−) : C −→ S. Now a point of Ĉ is a point of C̃ iff it send point cov-
ering families to jointly surjective families of sets, i.e. iff for any {Ui → X},
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tiC(L,Ui) → C(L,X) is surjective. But this is a reformulation of equivalent
to 2. �

Definition 8. Any object L satisfying those conditions wil be called local.

Lemma 2.1. If L is local and L→ L′ ∈ A, then L′ is local.

Proof. For L → L′ ∈ A, let {Ui → L′} be a point covering family of L′, the
pulled-back cover U ′i → L has a section by assumption on L and this give a
square where one can use property of the lifting system (A,B):

L

∈A
��

∃i // Ui

∈B
��

L′

>>|
|

|
|

L′ . �

As it is clear that points are local objects, the previous lemma authorizes the
construction of local objects by considering target of maps P → L ∈ A where P
is a point.

Definition 9. A pointed local object of C is an object L such that there exist a
point P → L ∈ A.

It is not clear in general that any local object can be pointed or that this point
would be unique, nonetheless this will be the case in our main examples.

Lemma 2.2. If C has a strict initial object ∅, it can never be a local object.

Proof. ∅ is strict if any map X → ∅ is an isomorphism, so, as points are supposed
not initial, the set of points of ∅ is empty. This prove that the empty family is a
point covering family of ∅ and such a family cannot have a section. �

In algebraic geometrical examples this will prove that the zero ring is never a
local object for the factorisation topologies.

2.5. Nisnevich forcing. Although the definition of the factorisation topology
(def. 7) will give back known topologies in algebraic geometry, it will be in gen-
eral too fine for other examples. In particular, the Nisnevich topology cannot
be defined as a factorisation topology and this example suggests to use the fol-
lowing general construction, that we will call Nisnevich forcing. Starting with
a topology given by some covering families, the idea is to select some of those
families satisfying an extra lifting condition. This is completely independent of
the existence of any factorisation system.

Definition 10. Let C be a category with a topology τ defined via some covering
families Ui → X, and L a class of objects of C.
a. A covering family Ui → X is said L-localising if for any object L ∈ L and any

map L→ X lift through the cover, i.e. if the pulled-back cover U ′i → L has a
section. It is clear that such covers are stable by base change.
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b. The L-Nisnevich forcing of τ (refered to for short as the Nisnevich topology),
noted τL, is the topology generated by L-localising covering families. This
topology is coarser than τ .

The class L will be called the forcing class. The saturation of L, noted L, is
defined as the subcategory of C of local objects (def. 8) for the topology τL, these
objects will be called Nisnevich local objects. τL = τL and L is maximal for this

property. If L = ∅ then τL = τ and ∅ = Loc; the category of local objects. If
L′ ⊂ L then L′ ⊂ L so one has always Loc ⊂ L.

Definition 11. The data N = (C = (A,B), Cf ,L) where (C = (A,B), Cf ) is a
factorisation context (def. 4) and L a full subcategory of C is called a Nisnevich
context. Two Nisnevich contexts are said equivalent if they have the same under-
lying factorisation context and if both localising classes have the same saturation.

Nisnevich contexts will be our basic data to generate spectra, but when the
localising class is trivial, we’ll refer to them simply as factorisation context.

Lemma 2.3. For a Nisnevich context N = (C = (A,B) , Cf ,L), if a map
L→ L′ ∈ A is such that L ∈ L then L′ ∈ L.

Proof. If {Ui → X} is a Nisnevich covering family, by hypothesis any L→ X lift
though on of the Ui → X. If the map L → X is coming from a map L′ → X,
this give a lifting square and a map L′ → Ui. �

Definition 12. A distinguished class of Nisnevich covering families is defined as
a class of Nisnevich covering families Ui → X with X (and therefore the Ui) in Cf/∗
such that an object L ∈ C is Nisnevich local iff it lift through any distinguished
Nisnevich covering family.

The Nisnevich topology can be restricted to Cf/∗ to define a topos C̃f/∗. The

previous condition can be stated as: points of C̃f/∗ are points of C̃, i.e. Nisnevich

local objects.

The following definition will be used in theorem 2.5.

Definition 13. A Nisnevich context (C = (A,B), Cf ,L) is said compatible if

a. for any X, C/X = Pro(Cf/X) and B/X = Pro(Bf/X)

b. and there exists a distinguished class of point covering families.

2.6. Spectra. For N = (C = (A,B), Cf ,L) a Nisnevich context.

Definition 14. a. Bf/X endowed with the Nisnevich topology is called the small

site of X. The associated topos is noted SpecN (X) and called the small N -
spectrum of X.
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b. Cf/X endowed with the Nisnevich topology is called the big site of X. The

associated topos is noted SPECN (X) and called the big N -spectrum of X.

When X = ∗ is the terminal object of C, SPECBf (∗) is simply noted C̃.
Let T opos be the category whose objects are toposes and morphisms equiva-

lence classes of geometric morphisms for natural isomorphisms.

Lemma 2.4. If C as finite limits, the category Bf/X has all finite limits and for

u : X → Y ∈ C, the base change functor u∗ : Bf/Y → B
f
/X is left exact.

Proof. As Bf/X has a terminal object, it is sufficient to prove that is has fiber

products. But, using the cancellation property as in prop. 3, they can be com-
puted independently of the base X in C (which will also imply the exactness of
u) and as B and Cf are stable by pullback the resulting diagram it is in Bf . �

Proposition 7. SpecN (−) and SPECN (−) are functors C → T opos. Moreover,
maps in Bf are send to etale maps of toposes.

Proof. We detail only the functoriality of the small spectrum. A map
u : X → Y ∈ C induces a base change functor u∗ : Bf/Y → B

f
/X is left exact by

lemma 2.4 and clearly preserve covering families, so it is continuous [SGA4-1,
III.1.6] and defines a geometric morphism (u∗, u∗) : SpecN (X) −→ SpecN (Y ).
Now the problem of compatibility with composition is taken care of in the def-
inition of T opos as a 1-category. (It could also be defined as a pseudo-functor
from C to the 2-category of toposes.) As for the second statement, recall that a
geometric morphism u : E → F is etale (local homeomorphism in [Jo2, C.3.3.4])
iff there exists an F ∈ F and an isomorphism F/F ' E such that u is equivalent
to the geometric morphism F/F −→ F . It is then clear by construction that
any X → Y ∈ Bf will give such a map. �

Proposition 8. For X ∈ C, if Cf/X is small, there exists two geometric mor-

phisms (natural in X) rX = (r∗X , r
X
∗ ) : SPECN (X) → SpecN (X) and sX =

(s∗x, s
X
∗ ) : SpecN (X)→ SPECN (X), such that

• rX∗ = s∗X ,
• r∗X and sX∗ are fully faithful, in particular rs ' id.

In other terms

• rX is left adjoint to sX in the 2-category of toposes,
• rX is a quotient with connected fiber,
• and sX is a subtopos embedding and a section of rX , i.e. the adjunction

(rX , sX) is a reflexion of SPECN (X) on SpecN (X).

Proof. The morphism of small sites ιX : Bf/X → C
f
/X commute to finite limits, and

the topology of Bf is induced by that of Cf/X , so ι is continous and cocontinuous
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by [SGA4-1, III.3.4], and induces three adjoint functors ιX! a ι∗X a ιX∗ :

SPECN (X)
ιX∗

//

ιX! //

SpecN (X).
ι∗Xoo

ιX being fully faithful, so are ιX! and ιX∗ . rX is defined as the adjonction (ι∗X , ι
X
∗ )

and sX is defined as the adjonction (ιX! , ι
∗
X). For sX to be a geometric morphism,

we need to check that ιX! is left exact, but this is a consequence of ι being left
exact. �

Corollary 2. The category of points of SpecN (X) is a reflexive full subcategory
of that of SPECN (X).

We study now the functoriality of our spectra with respect to the factorisation
system. We are going to focus only on Spec but the results are the same for
SPEC. Unique factorisation systems on C are entirely characterized by their
right classes B. It is then possible to put an order of them by looking at the
inclusion relation of the right classes. We say that (A1,B1) is finer than or
a refinement of (A2,B2) if B2 ⊂ B1. This order admit an initial and a ter-
minal element that are detailed in §3.1. More generaly, a Nisnevich context
N = (C = (A1,B1), Cf ,L1) will be said finer than (or a refinement of) N ′ =
(C = (A2,B2), Cf ,L2) if the underlying finiteness context are the same, if (A1,B1)
is finer than (A2,B2) and if L1 ⊂ L2.

Proposition 9. For two Nisnevich contexts N1 = (C = (A1,B1), Cf ,L1) and
N2 = (C = (A2,B2), Cf ,L2), if N1 is refinement of N2, there is a natural trans-
formation of functors SpecN1(−)→ SpecN2(−).

Proof. (A1,B1) is finer than (A2,B2). This implies PtBf1 ⊂ PtBf2 and so B2 point

covering families are B1 point covering families. The functor

B2/X −→ B1/X

is then continuous and gives a geometric morphism

SpecN1(X) −→ SpecN2(X),

i.e. Spec is covariant with respect to the refinement relation for factorisation
systems. As for the Nisnevich forcing, B2/X −→ B1/X will send covering families

to covering families iff the forcing class L1 is contained in L2. �

2.6.1. Moduli interpretation. We investigate a computation of the categories of
points of the two spectra. Theorem 2.5 establishes that under some hypothesis
they can be described as local objects. A complete study of the moduli aspects of
our spectral theory would ask to compute not only global points but all categories
of points of our spectra, but this would require to develop more the topos theoretic
aspects which we’ll do in another paper [An].
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If P → X is a point of an object X, we already interpreted the factorisation
P → L→ X as the germ of the point in X. This suggest the following definitions.

A local form of an object X is a map L→ X ∈ B where L is a local object, it
is pointed if L is. Any point of X define a (pointed) local form of X. Let Loc(X)
be the full subcategory of C/X generated by local forms of X, the left cancellation
property of B (prop. 1) ensures that all morphisms between local forms of X
are in B. More generally, for a Nisnevich forcing class L with saturation L, a
L-local form of X is a map L → X ∈ B where L ∈ L and the category L(X)
of L-local forms of X is defined as the subcategory of L/X generated by object

whose structural map is in B. Again, all morphisms of L(X) are in B.

Let’s recall the characterization of points of a site.

Proposition 10. Let D be a site with a topology given by some covering families,

the category of points of the associated topos D̃ is the full subcategory of Pro(D) of
those pro-objects of D that have the lifting property through any covering family.

Proof. Briefly (see [MM] for details). The category of points of D̂ is Pro(D) the

category of pro-objects of D. In Pro(D), an object P is a point of D̃ ⊂ D̂ iff it
transforms covering families into epimorphic families. This last part is equivalent
to have in Pro(D) a diagram

Ui

��
P //

∃i
??~

~
~

~
X

hence the statement of the result. �

Theorem 2.5. For a compatible Nisnevich context N = (C = (A,B), Cf ,L)
(def. 13):

(1) the category of points of SPECN (X) is that L/X of local objects over X

(2) and the category of points of SpecN (X) is that L(X) of L-local forms
of X.

Proof. The lifting condition for points of the two spectra is weaker than the one
used to define local objects so local objects will define points as soon as they
are pro-objects in the good category, which is what ensures the two conditions
Pro(Cf/X) ' C/X and Pro(Bf/X) ' B/X . Reciprocally, a point of SPECN (X) is

a local object by existence of a distinguished class of covering families for the
Nisnevich context, and so are points of SpecN (X) by cor. 2. The category of
points of SPECN (X) is then that of local objects of N over X. And that of
SpecN (X) is the subcategory of those local objects that are in B/X . �
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Remark. For a factorisation context F = (C = (A,B), Cf ) and a Nisnevich con-
text N = (C = (A,B), Cf ,L) if Loc  L, the set of points of SpecN (X) contains
strictly that of SpecF(X) and the same is true for big spectra. In particular not
all Nisnevich local objects will be pointed (as those that are are local for F).

To finish, we recall the definition of the set of points of a topos T as the set
of equivalence classes of geometric morphisms S → T for natural isomorphisms,
and that a topos is said spatial if can be written as the topos of sheaves of a
topological space. The category of points of such a topos is at most a poset, this
remark will be used to prove that most of our example of spectra are not spaces.

2.6.2. Structure sheaf. The naturality of sX and rX gives a diagram

SpecN (X)
sX //

u

��
(1)

SPECN (X)

U
��

rY //

(2)

SpecN (X)

u

��
SpecN (Y ) sY

// SPECN (Y ) rY
// SpecN (Y )

of which we are going to study the commutation properties.

Proposition 11. The square (2) is commutative up to a natural isomorphism,
and the square (1) up to a natural transformation α(u) : UsX → sY u. Moreover,
under the hypothesis of theorem 2.5, for each point S → SpecN (X) the morphism
induced by α(u) on points of SPECN (Y ) is in A.

Proof. For the square (2), it is sufficient to check it at the level of the inverse
images functors restricted to the generating sites, and it a consequence of the
stability of Bf by pullback in Cf . The result on (1) is then a consequence:
there is a natural isomorphism rYUsX ' rY sY u(' u), composing by sY and
using the unit and counit of the adjunction (rY , sY ), we obtain the wanted map
α(u) : UsX → sY u.

For the second part, points of a topos can be viewed as some pro-objects and the
effect on points of a geometric morphism (u∗, u∗) : E → F is understood looking
at the left pro-adjoint u! of u∗. If E is a topos, the category Pro(E) of internal
pro-objects of E is defined as the category of E-enriched left-exact (accessible)
endofunctors of E . In particular, it contains fully faithfully the category Pro(E)
of pro-objects of E view as a category

The left pro-adjoint of u∗ : F → E is defined the following way: every object
X ∈ E defined a geometric morphism iX = (i∗X , i

X
∗ ) : E/X → E , and by compo-

sition an endofunctor u∗i
X
∗ i
∗
Xu
∗ of F , this endofunctor is a composition of left

exact functors so it is itself left exact and define an internal pro-object u!(X) of
F . This construction is functorial in X and define a functor u! : E → Pro(F).
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As for the adjunction property:

X −→ u∗Y

X ' i∗X(X) −→ i∗Xu
∗Y

∗ ' iX∗ (X) −→ iX∗ i
∗
Xu
∗Y

∗ ' u∗(∗) −→ u∗i
X
∗ i
∗
Xu
∗Y ' HomPro(F)(u!(X), Y )

where HomPro(F)(−,−) is the F -enriched hom of Pro(F).

We will now compute the pro-adjoints of the following diagram and their action
on the categories of points.

Pro(B̃f/X)
šX! //

ǔ!

��

Pro(C̃f/X)

Ǔ!

��

Pro(B̃f/Y )
šY! // Pro(C̃f/Y )

where, for a geometric morphism (u∗, u∗) : E → F , ǔ! : Pro(E) → Pro(F) de-
notes the (internal) right Kan extension of u!. ǔ! is left adjoint to the right Kan
extension ǔ∗ of u∗. The diagram is still commutative up to a natural transfor-
mation constructed the same way as before (in a sense this is the same natural
transformation).

To extract the action on points we’ll use implicitly the following lemma.

Lemma 2.6. If in a diagram of functors

C
γ //

v

��

C ′

v′

��
D

δ
//

u

OO

D′

u′

OO

v is left adjoint to u, v′ left adjoint to u′, γ and δ are dense in the sense that any
object of C ′ (resp. D′) is a limit of objects of C (resp. D) and γu = u′δ, then
δv = v′γ, i.e. v is the restriction of v′ to C.

Proof. Any y ∈ D′ can be written y = limi δ(yi), so for all x ∈ C, y ∈ D:
D′(δv(x), y) ' limiD

′(δv(x), δ(yi)) ' limiC(x, u(yi)) ' limiC
′(γ(x), γu(yi)) '

limiC
′(γ(x), u′δ(yi)) ' limiD

′(v′γ(x), δ(yi)) ' D′(v′γ(x), y). �
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The functor šX! is the extension of the inclusion Bf/X → C
f
/X , so we have a

diagram:

L(X) //

��

B/X ' //

��

Pro(B̃f/X) // Pro(B̃f/X)

šX!
��

L/X // C/X ' // Pro(C̃f/X) // Pro(C̃f/X)

where the horizontal arrows are fully faithful and the vertical arrows are all
restrictions of šX! . The morphism induced on points is simply the inclusion of
L(X) in L/X . The analysis is analog for sY! .

For Ǔ! we have a diagram

L/X //

��

C/X ' //

��

Pro(C̃f/Y ) // Pro(C̃f/X)

Ǔ!

��

L/Y // C/Y ' // Pro(C̃f/Y ) // Pro(C̃f/Y ) .

u∗ : C/Y → C/X has a left adjoint u! given by composing with u, which is the

restriction of Ǔ!.
For ǔ! we have a diagram

L(X) //

��

B/X ' //

υ

��

Pro(B̃f/X) // Pro(B̃f/X)

ǔ!

��

L(Y ) // B/Y ' // Pro(B̃f/Y ) // Pro(B̃f/Y ) .

We will prove that the functor u∗ = − ×Y X : B/Y → B/X has a left adjoint
given by sending b : U → X to the φ(ub) → Y where U → φ(ub) → Y is the
factorisation of ub : U → X → Y . Indeed, given a choice of (A,B) factorisation
for any arrow of C, a map b : U → X defines a unique square

U
α //

b

��

φ(ub)

β

��
X

u // Y
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where U → φ(ub) → Y is defined as the factorisation of ub : U → Y . From this
we deduce a bijection between the set of squares

(∗) =

U //

��

V

��
X

u // Y

and that of morphisms of B/Y :

φ(ub) //

""EEEEEEEE
V

��
Y

(the map φ(ub) → V comes from the factorisation of X → V ). But squares (∗)
are also in bijection with morphisms in B/X :

U //

��

V ×Y X

zzuuuuuuuuu

X

which gives us the adjonction. Now, the restriction to L(X) clearly takes its
values in L(Y ) and is the morphism induced by u between the categories of
points.

Finally the situation is the following: a point b : L→ X is send on one side to
ub : L → Y and on the other to β : φ(ub) → Y and the natural transformation
α(u) is given by the factorisation

L
α //

bu ""DDDDDDDDD φ(ub)

β

��
Y .

This is what we meant saying that it was given by a map in A. �

Definition 15. The composition ONX : SpecN (X)→ SPECN (X)→ SPECN (∗)
is called the structural sheaf of X. For every point x : S → SpecBf (X), the stalk
of ONX at x is the induced point ONX,x : S → SPECN (∗).

Proposition 12. For a point x : S → SpecN (X) corresponding to a local form
L→ X, the stalk ONX,x is the objet L.

Proof. ONX is the composition SpecN (X)→ SPECN (X)→ SPECN (∗) and the
action of these morphisms on the points have been explained inside the proof of
proposition 11. �
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As a corollary of proposition 11, a map u : X → Y ∈ C induces a diagram of
toposes

SpecN (X)
sX //

u

��

SPECN (X)

U
�� ((PPPPPPPPPPPP

SpecN (Y ) sY
// SPECN (Y ) // SPECN (∗)

and α(u) induces a natural transformation O(u) : OX → OY ◦ u such that,
for every point of x : S → SpecBf (X), the induced map on the stalk
O(u)x : OX,x → OY,u(x) is in A.

Remark. The category of points of SPECN (∗) is that L of local objects and the
factorisation system of C restrict to L. This is in fact a general phenomenon and
for every topos T the category of morphisms from T to SPECN (∗) will inherit a
unique factorisation system. The point of view chosen for the exposition in this
article makes the details of this factorisation system a bit complicated to explicit
and we won’t explain this here. We won’t explain either the nice adjunction
property of the small spectrum implying that it is a universal localisation. We
will treat these questions in a better context in [An].

We study now the functoriality of the map SpecN (X) → SPECN (X) with
respect to the Nisnevich context.

Proposition 13. For two Nisnevich contexts N = (C = (A1,B1), Cf ,L1) and
N ′ = (C = (A2,B2), Cf ,L2), if N is finer than N ′, there is a diagram of geometric
morphisms

SpecN (X)
sX //

r

��
(1)

SPECN (X)

R
��

rX //

(2)

SpecN (X)

r

��
SpecN ′(X)

s′X

// SPECN ′(X)
r′X

// SpecN ′(X)

where R is a subtopos embedding, (2) commutes up to a natural isomorphism and
(1) commutes up to a natural transformation β. At the level of the category of
points, β is given by a map in B1 ∩ A2.

Proof. The assertion of R is due to the facts that SPECN (X) and SPECN ′(X)
have the same underlying site and the topology of SPECN (X) is finer. The
commutation of (2) can be seen at the level of inverse images restricted to
the sites. From this we deduced natural isomorphisms rX ' rrXsX ' rXRsX and
composing by sX and using unit of (rX , sX) we have a transformation
β : RsX → sXr. As for the action of β on points we need only to study the
pro-adjoint r!. We’ll use again lemma 2.6. By a reasoning analog to that in
the proof of proposition 11, the map (B2)/X → (B1)/X admits a left adjoint given
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by the (A2,B2) factorisation:

U

b !!CCCCCCCC
β // φ(b)

β′

��
X

β ∈ A2 by definition, and as both b and β′ are in B1, so is β by cancellation. The
map L1(X)→ L2(X) between the categories of points is then given also by this
factorisation. �

This result will be used in particular when N ′ is the Indiscrete factorisation
context (cf. §3.1) to defined the structural map of the structural sheaf.



3. Examples

This part deals with examples of the previous setting. After a short part on
the two trivial factorisation systems that always exist on a category, we present
how Zariski and Etale topology are associated to unique factorisation systems ac-
cording to the scheme of the previous section and how the general notion of point
and local objects, gives back known classes of objects. The Nisnevich topology
is also considered as an illustration and a motivation of the Nisnevich forcing.

Then, we study a sort of dual systems where Zariski closed sets play the role
of opens and proper maps that of etale maps. There is also a notion of Nis-
nevich topology in this context. This material has some flavour of Voevodsky
cdh topologies and, again, the general framework gives known classes of objects.
Section 3.8 contains some remarks about these two dual settings, but raises more
question than it gives answers.

The last section study very rapidly the situation of some other factorisation
systems outside of algebraic geometry, such as the (Epi,Mono) system of a topos
or an abelian category.

The opposite of any category with a factorisation system is of the same kind
but the new factorisation system has no reason to be compatible if its opposite
was. For this reason, and because the caracterisation of points is not straightfor-
ward, we do not present here a study of the opposite of Zariski of Etale systems
(or their duals).

3.1. Extremal examples. Every category C admits a two canonical unique fac-
torisation systems C = (Iso(C), C) and C = (C, Iso(C)) where Iso(C) is the sub-
category of isomorphisms. The factorisation of a map is then given by composing
with the identity of the source or of the target. These two systems will be called
respectively discrete and indiscrete because they behave like the discrete and
indiscrete topologies, being somehow the finest and the coarsest factorisation
systems.

We fix a finiteness context Cf for C.
Discrete factorisation system. C = (Iso(C), C) is the discrete factorisation system.
Points are objets P splitting every map U → P , their full subcategory in C is
a groupoid. Little can be said in general, beside that they will be points of any
factorisation system on C. Little can be said also about covering families or local
objects. The only remark is that the small and big toposes agree in this case
(and are noted SPECDis(X) = SpecDis(X)).

The Nisnevich context Dis = (C = (Iso(C), C), Cf , ∅) is the finest Nisnevich
context.

31
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In the case where C = CRingso is the opposite category of that of commutative
rings, the set of discrete points is empty. Indeed it would correspond to the set
of rings A such that any map A→ B has a retraction, i.e. an affine scheme such
that any scheme over it has a rational point. If B is a quotient of A it has to be
isomorphic to A, so A need to be a field, but now no non trivial field extension
A→ K has a retraction. This imply that the set of points of any object is empty
and so that the empty family will cover any object, collapsing Spec and SPEC
to the empty topos.

Indiscrete factorisation system. C = (C, Iso(C)) is the indiscrete factorisation
system. Every object is a point, Pt(C,Iso(C))(X) = C/X and the essentially only
point covering family of X ∈ C is the identity of X. The Nisnevich context
Ind = (C = (Iso(C), C), Cf , ∅) is the coarsest Nisnevich context. The small site
of X is reduced to a ponctual category and SpecInd(X) is the ponctual topos. As
for the big topos SPECInd(X) := SPECIso(C)f (X) it is the topos of presheaves

over Cf/X .

If X ∈ Pro(Cf ), the structural sheaf X : S ' SpecInd(X) −→ Ĉf is simply X

view as a point of Ĉf (hence the notation).

Comparisons. For any other Nisnevich context N , proposition 13 gives a diagram

SpecN (X)
ONX //

rInd

��

SPECN (X)

RInd
��

S X // SPECInd(∗)

and a natural transformations βInd : ONX → X ◦ rInd, called the structural map of
the structure sheaf.

Proposition 14. For a point x : S → SpecN (X) corresponding to a local form
L→ X, the map βInd,x : ONX,x → X ◦ rInd ◦ x is that map L→ X.

Proof. This is can be deduced from the proof of proposition 13. �

X ◦ rInd is the constant sheaf on SpecN (X) with value X and if x : S →
SpecN (X) is a point corresponding to a local object L → X over X, the stalk
of X ◦ rInd at x is X and the map β evaluated at x gives tautologically the map
L→ X.

3.2. Zariski topology. The category C is the opposite of that of commutative
unital rings, but to simplify the manipulation we are going to work in Co =
CRings. All definitions of points and local objects will have to be opposed, and
the role of left and right class of maps are interchanged: the (Loc, Cons) factori-
sation system that we’ll construct on CRings has to be though as (Conso, Loco)
in CRingso. We apologize to the reader for this inconvenience, but we felt that
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it was better to develop the general framework with the geometric intuition, as
sketched in the introduction, rather than the algebraic one.

3.2.1. Factorisation system. A map A → B in CRings is called a localisation
if there exists a set S ∈ A and B ' A[{xs, s ∈ S}]/({sxs − 1, s ∈ S}). The
class of localisation maps is noted Loc. A map u : A→ B in CRings is called a
conservative if any a ∈ A is invertible iff u(a) is. The class of conservative maps
is noted Cons.

The following lemma is a reformulation of the definition.

Lemma 3.1. A map is conservative iff it has the right lifting property with respect
to Z[x] −→ Z[x, x−1].

Proposition 15. The classes of maps Loc and Cons are the left and right class
of a unique factorisation system.

Proof. For a map u : A → B, we define S := u−1(B×) and A[S−1] the associ-
ated localisation. u factors A → A[S−1] → B, the first map is a localisation
by construction, it remains to prove that v : A[S−1] → B is conservative. Let
a/s ∈ A[S−1] such that v(a/s) = u(a)u(s)−1 has an inverse b ∈ B, this is equiv-
alent to the fact that u(a) has an inverse, i.e. to a ∈ S. Elements of A[S−1]
invertible in B are therefore fractions of elements of S, which are precisely the
invertible elements of A[S−1]. �

Lemma 3.1 shows that the (Loc, Cons) factorisation system can also be defined
as left generated by the single map Z[x] −→ Z[x, x−1]. But it happens that the
construction of the middle object is quite simple here.

Finiteness context. The finiteness context Cf = (CRingsf )o is taken to be the
opposite of subcategory of CRings of finitely presented maps. That Cf satisfies
the condition to be a finiteness context is classical and we will only focus on
its compatibility with the factorisation system (def. 13). First, any A-algebra is
the colimit of its finitely generated subalgebras and this poset if cofiltered, so

A\CRings = Ind(A\CRings
f ). To check that Loc = Ind− (Locf ) it is enough to

remark that the (Loc, Cons) system is generated by a map of finite presentation
between rings of finite presentation (cf. remark at the end of §1.3).

The compatibility will be proven when a distinguished class of coverings fami-
lies will be extracted, this will be the point of lemma 3.3.

We’ll use implicitly the following lemma in the sequel.

Lemma 3.2. A localisation is of finite presentation iff it can be define by inverting
a single element.

Proof. A localisation A→ A[S−1] is always the cofiltered colimit of A→ A[F−1]
where F run through all finite subsets of S. Now if A → A[S−1] is of finite
presentation, the identity of A[S−1] factors through one of the A[F−1] and this
gives a section s of r : A[F−1] → A[S−1]. Now by cancellation both s is an
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epimorphism and srs = s implies also sr = 1, so r is an isomorphism. Finally if
F = {f1, . . . , fn}, A[F−1] = A[(f1 . . . fn)−1]. �

3.2.2. Points. The opposite of the condition for a point gives the following: a
ring A corresponds to a point iff for any non zero localisation ` : A → A[a−1]
there exists s a retraction of `.

A nilpotent extension of a ring A is a map B → A such that any element in
the kernel is nilpotent.

Proposition 16. A ring A correspond to a point of the (Conso, Loco) factorisa-
tion system iff it is a nilpotent extensions of a field.

Proof. As a localisation is zero iff it inverses a nilpotent element of A, the con-
dition of being a point says that any non nilpotent element of A is invertible, so
Ared is a field. �

For short we are going to refer to these objects as fat fields. Any field is a fat
field and the reduction of any fat field is a field. Any fat field is a local ring, the
unique maximal ideal being given by the nilradical.

Proposition 17. The set of points of a ring A is in bijection with the set of
prime ideals of A.

Proof. The set of points of A is defined as a the set of all maps A → K with K
a fat field quotiented by the relation generated by A → K ∼ A → K ′ if there
exists K → K ′ such that A→ K → K ′ = A→ K ′. Any A→ K can be replaced
by one where the target is a field (A→ Kred) and K ′′ above can always be taken
to be a field too. This ensure that instead of fat fields one can use only fields to
define the same set. The result is then classical: the kernel of a map to a field is a
prime ideal and every prime ideal is the kernel of the map to its residue field. �

3.2.3. Covering families. It should be already clear that our covering families are
exactly Zariski covering families, but we’ll need the following result to compute
local objects.

Proposition 18. Finite presentation point covers are families A→ A[a−1
i ] such

that 1 is a linear combinaison of the ai. As a consequence all point covering
families admits a finite point covering subfamily.

Proof. For K a field, and a given A → K, ai is either in the kernel of invertible
in K, i.e. A → K factors through A[a−1

i ] or A/ai. So A → A[a−1
i ] is a cover

iff no non zero A → K factors through A/(ai; i) iff A/(ai; i) = 0. For the
last equivalence if A/(ai; i) 6= 0 it has at least one residue field giving a map
A → A/(ai; i) → K and if such a factorisation A → A/(ai; i) → K exists as
A → K is non zero, A/(ai; i) has to be non trivial. The conclusion is now
deduced from 1 ∈ (ai; i) ⇐⇒ A/(ai; i) = 0. �
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3.2.4. Local objects. A ring B is a local ring iff for any x, y ∈ B satisfying x+y = 1
(⇐⇒ x + y invertible), x or y is invertible. This condition can be read as: a
A-algebra B is a local ring iff for any x, y ∈ B, the map A[x, y, (x + y)−1] → B
factors through A[x, x−1] or A[y, y−1]. Now as 1 is a linear combinaison of x
and y in A[x, y, (x + y)−1], the two maps A[x, y, (x + y)−1] → A[x, x−1] and
A[x, y, (x + y)−1] → A[y, y−1] form a covering family and B and this gives the
following lemma.

Lemma 3.3. A A-algebra B is a local ring iff for any x, y ∈ B such that x+ y is
invertible, B lift through the point covering family A[x, y, (x+ y)−1]→ A[x, x−1]
and A[x, y, (x+ y)−1]→ A[y, y−1] of A[x, y, (x+ y)−1].

Proposition 19. A ring A corresponds to a pointed local object for the
(Conso, Loco) system iff it is a local ring.

Proof. In a local ring (A,m), elements not in m are invertible so A→ A/m is a
conservative map. Conversely, let u : A → K be a conservative map with target
a fat field, and x, y ∈ A such that x + y = 1, then the same equation holds in
K and K being a local ring, either u(x) or u(y) is invertible in K. But u being
conservative the same is true in A. �

Proposition 20. A ring A corresponds to a local object for the (Conso, Loco)
system iff it is a local ring.

Proof. Any local ring is a local object by prop. 19. Now, let A be a a local object
and x, y ∈ A such that x+ y = 1. The family {A→ A[x−1], A→ A[y−1]} is then
a cover by 18 and the existence of a section of this cover says that either x or y
is invertible in A. �

In this setting, the fact that pointed local and local objects coincide is a so-
phisticated way to say that any local ring has a residue field.

3.2.5. Spectra and moduli interpretation. It is clear that the topology given by
the general theory coincide with the Zariski topology for affine schemes.

Proposition 21. For A ∈ CRingso, SpecZar(A) is the usual small Zariski spec-
trum of A and SPECZar(A) is the usual big Zariski topos of A.

For the factorisation context Zar = (CRingso = (Conso, Loco), (CRingsf )o)
to be compatible, we need to show that the condition of being a local A-algebra
can be tested using only finitely presented covering families, but this is exactly
lemma 3.3, so we can apply theorem 2.5.

Proposition 22. SPECZar(A) classifies A-algebras that are local rings, such al-
gebras can have automorphisms so SPECZar(A) is not a spatial topos.
SpecZar(A) classifies localisations of A that are local rings.

The following result is highly classical but not obvious from our definition.
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Proposition 23. SpecZar(A) is a topological space.

Proof. The topos SpecZar(A) is generated by the category (A\Loc
f )o which is a

poset, so it is localic. This poset is formed of compact objects and we would
like to apply the result of [Jo1, II.3.] to deduced the local is coherent and then
spatial. To do that we have to check that the topology on (A\Loc

f )o is the jointly
surjective topology. First, (A\Loc

f )o is a distributive lattice: the intersection
of A[a−1] and A[b−1] is A[ab−1] and the union is the middle object C of the
(Loc, Cons) factorisation of A → A[a−1] ⊕ A[b−1] (indeed C will add to A all
elements invertible both in A[a−1] and A[b−1], such C will be some A[c−1]); and
to prove the distributive law the lemma is the following: if B → C → D is a
(Loc, Cons) factorisation, for any b ∈ B, B[b−1] → C[b−1] → D[b−1] is still a
(Loc, Cons) factorisation, i.e. C[b−1] → D[b−1] is still convervative but as new
invertible elements in B are fractions of denominator b with invertible numerator,
they can be lifted to C[b−1].

As for the topology on (A\Loc
f )o: for a finite family ai ∈ A, c ∈ A is invertible

in all the A[a−1
i ] iff (ai; i) ⊂

√
c, in particular there is an equivalence (ai; i) = A iff

c is invertible, so A[a−1
i ] is a joint covering family iff (ai; i) = A, which is also the

characterisation of point covering families. The same reasoning work relatively
to any B ∈ (A\Loc

f )o and this proves that the factorisation topology is the jointly
surjective one. �

Also in this case the two notions of points (of the factorisation system and of
the spectrum) agree.

Proposition 24. For A ∈ CRings, the category of points of SpecZar(A) is a
poset equivalent to the opposite of that of prime ideals of A. In particular the set
of point of SpecZar(A) is in bijection with ptZar(A).

Proof. We need to prove that this set is in bijection with that of prime ideals of
A. This is well known: any prime ideal p ⊂ A defines a point of SpecZar(A) by
A → Ap = A[(A \ p)−1]. And given a localisation of A → B where B is a local
ring, the inverse image of the maximal ideal of B is a prime ideal p of A and
B ' Ap. �

3.2.6. Remark on a variation. A class L of maps in a site (C, τ) is said to be local
if, for u : X → Y , for any covering Vi → Y and any covering of uij : Uij → Vi×YX,
the map u is in L iff all uij are in L. Such classes are stable by intersection, so it is
always possible to saturate any class L into a local class Lloc of maps locally (after
pullback) maps in L. If the class L had moreover the property that covering sieves
of τ can be generated by families of maps in L, it is clear that covering families
in Lloc will generate the same topology.

We claim that the class Loco is not local for the Zariski topology on CRingso

and its saturation is the class Zeto of etale maps that are locally trivial for
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the Zariski topology (called Zariski etale maps). We claim also that, remark-
ably, the class Zet is again the left class of a unique factorisation system
(Zet, Conv) on CRings where Conv is the class of conservative maps having
an extra unique lifting property for idempotents, i.e. (Zet, Conv) is left gener-
ated by Z[x] → Z[x, x−1] and Z → Z[x]/(x2 − x) ' Z × Z. Maps in Conv have
connected fiber and are thus proposed to be called connervative maps.

We could replace in the previous study the factorisation system (Loc, Cons) by
(Zet, Conv) to generate the same factorisation topology and the same spectra,
but with different sites. Only the proof of the spatiality of SpecZar(X) is less
straightforward.

3.3. Etale topology. The category C is again CRingso and we keep the same
convention of opposing everything as in the Zariski case.

3.3.1. Factorisation system. A map of rings is said etale if it flat and unramified
[Mi, §3]. The class of etale maps of finite presentation is noted Etf , that of etale
maps between rings of finite presentation is noted Etf∗ . A map of rings is said
henselian if it has the right lifting property with respect to Etf∗ . The class of
henselian maps is noted Hens.

Proposition 25. ⊥Hens is the class indEt = Ind− Etf∗ and the classes indEt
and Hens are respectively the left and right classes of a unique factorisation
system on CRings.

Proof. Etf∗ satisfies hypothesis of proposition 3: the compactness of objects is
clear, the stability by cobase change also and the right cancellation comes from
the fact that the codiagonal of a finite presentation unramified (and thus etale)
map is an open immersion [Mi, prop. 3.5] and lemma 1.2. �

The factorisation of A→ B is not explicit but morally it consists in a separable
closure of A relatively to B: one needs to add an element to A for every simple
root in B of a polynomial of A[X].

Lemma 3.4. (1) Hens ⊂ Cons and Loc ⊂ indEt.
(2) Locf point covering families are Etf point covering families.

Proof. 1. From properties of lifting systems that the two inclusions are equiva-
lent. Any map lifting u : Z[X] → Z[X,X−1] is conservative, so as u is etale any
henselian morphism in conservative.

2. As Loc ⊂ indEt, points of the (Henso, indEto) system are points of the
(Conso, Loco) system. �

Let Nil be the class of maps in CRings that are extensions by a nilpotent
ideal. The class Nil⊥ is the class fEt of formally etale maps and if Nil =
fEt⊥, (fEt,Nil) is a unique lifting system that we are going to compare to
(Hens, indEt).

Lemma 3.5. Nil ⊂ Hens and indEt ⊂ fEt.
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Proof. indEt is the class of ind-etale maps of finite presentation, now as fEt
contains Etf and is stable by any colimit, indEt ⊂ fEt. �

Proposition 26. The inclusion indEt ⊂ fEt is strict.

Proof. Let A be a noetherian henselian local ring with residue field k and Â its

completion for its maximal ideal, the residue field of Â is still k. As Â is also

henselian,both maps A → k and Â → k are henselian and so is A → Â by

cancellation. This implies that A→ Â is ind-etale iff it is an isomorphism. Now

A→ Â is always formally smooth but not always an isomorphism. �

Lemma 3.6. If CRingf is the category of maps of finite presentation between
rings, indEt ∩ CRingf = Etf

Proof. Clearly Etf ⊂ indEt∩CRingf , and as indEt ⊂ fEt and fEt∩CRingf =
Et, indEt ∩ CRingf ⊂ Etf . �

Remark. The unique lifting system (fEt,Nil) induces another unique factorisa-
tion system different from (indEt,Hens) that we won’t study here as it is not
compatible: (fEt)f = Etf but ind − Etf = indEt 6= fEt. Nonetheless, taking
all CRingso as finiteness context, the big spectrum of the (fEt,Nil) factorisa-
tion context should be related to the topos classifying complete local rings with
separably closed residue field, and the Nisnevich forcing along fields should relate
to the classifying topos of complete local rings.

Finiteness context. The finiteness context Cf = (CRingsf )o is still taken to be the
opposite of subcategory of CRings of finitely presented maps. The compatibility
with ind-etale maps, is clear by construction. The class of distinguished covering
family will be extracted in §3.3.4.

3.3.2. Points. A ring A corresponds to a point if any map A→ B ∈ Etf admits
a retraction.

Proposition 27. A ring A is a point for the (Henso, indEto) system iff it is a
nilpotent extension of a separably closed field.

Proof. It is sufficient to prove that Ared is a separably closed field. First, Ared
is a field from the fact that a localisation Ared → Ared[a

−1] is an etale map,
so any non zero element of Ared has to be invertible. Then a field is separably
closed if, embedded in an algebraic closure, it contains all elements which minimal
polynomial has simple roots. Any such polynomial P being irreducible, it defines
a normal extension N of Ared containing all roots of P ; the map Ared → N is
etale and the lifting property of A gives a retraction, ensuring that all roots of P
are in Ared.

Reciprocally, if Ared is a separably closed field, it is in particular en henselian
local ring (§37). Now for a henselian local ring (B,m) with residue field B/m = k,
an etale extension B → C has a retraction iff there exists a maximal ideal n of
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C sent to m which residue field is also k [Mi, thm 4.2]. As Ared = B = k in our
case, for any Ared → C etale, a maximal ideal n over m always exist and as k is
separably closed the residue field at n has to be k, so a retraction exists. �

Proposition 28. The set of points of a ring A is in bijection with that of prime
ideals of A.

Proof. Lemma 3.4 implies ptEt(A) ⊂ ptEt(A). Now the same reasoning as in
prop. 16 proves that separably closed fields are enough to compute points, and
the inverse inclusion is then a consequence of the fact that any field has a separable
closure. �

3.3.3. Covering families and local objects.

Proposition 29. Point covering families of Et are ordinary etale covers.

Proof. By lemma 3.6 Etf = indEt∩(Cf )o. Then, by prop. 28, a family of A→ Ai
of finitely presented etale maps is a cover iff it induces a surjective family on the
set of prime ideals, which is the ordinary definition. �

A local ring (A,m) is called henselian ([Mi, thm. 4.2.d]) if any etale map A→ B
such that there exists a maximal ideal n of B lifting m with the same residue
field has a section.

Proposition 30. A local ring (A,m) is henselian iff A → A/m is an henselian
map.

Proof. Etale maps being stable by pushout, it is sufficient to prove the lifting
property of A→ A/m for squares

A

��

A

��

B // A/m

where A → B is etale. As A → B is etale, B ⊗A A/m is separable extension
of k, sum of the residue fields of maximal ideals of B over m. If k is one of
these fields, k is an extension of A/m and the map B → A/m gives a map
k → B ⊗A A/m → A/m so in fact k ' A/m. So any A → B entering such
square is of the kind of extension used in the definition of a henselian ring.
And reciprocally any such extension define a square like above. Hence the
equivalence. �

A henselian local ring (A,m) is called strictly henselian if moreover A/m is a
separably closed field.

Proposition 31. A ring A is a pointed local object for the (Henso, indEto) sys-
tem iff it is a strictly henselian local ring.
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Proof. A point K is a nilpotent extension of a separably closed field, so by
lemma 3.5 K → Kred is a henselian map. Therefore a map A→ K is henselian iff
A → Kred is (the necessary condition uses the cancellation property). So a ring
A is pointed local iff there exists a henselian map A → K with K a separably
closed field. As henselian maps are conservative, prop. 19 tells us that A is a local
ring. Then, if m is the maximum ideal of A, A → K factors through (A/m)sep,
the separable closure of A/m in K. Now, by construction, (A/m)sep → K is
henselian and the cancellation property says that so is A→ (A/m)sep. �

Proposition 32. A ring A is a local object for the (Henso, indEto) system iff it
is a strictly henselian local ring.

Proof. Local objects correspond to rings A such that any etale cover {A → Ai}
as a retraction of one of the A→ Ai. As etale covers contain Zariski covers, A is
local by prop. 20.

Now we are going to prove that A → k (k residue field of A) is a henselian
map. Let A → B be an etale map lifting the residue field k, we need to show
that it admits a section (necessary unique). To prove this we consider an affine
Zariski cover {A→ Ai, i} of the complement of the closed point of A, the family
{A → B} ∪ {A → Ai; i} is an etale cover (if fact even a Nisnevich cover, this
will be useful to prove prop. 37). So there exists a map of this family admitting
a retraction, and because all A → Ai are strict open embeddings it can only be
A → B. It remains to prove that k is separably closed. We are going to prove
that any separable (i.e. etale) extension k → k′ admits a retraction. A being
henselian there is a bijection between finite etale A-algebras and finite etale k-
algebras, so k′ defines an etale A-algebra A′ which is an etale covering family (or
can be completed as such in the same way as before), and so admit a retraction
from A, proving the same for k → k′. �

3.3.4. Distinguished covering families. In order to apply theorem 2.5 we need to
show that the condition of being a strict henselian ring can be tested using only
finitely presented point covering families.

A point covering family {B → Bi, i} of an A-algebra B is said distinguished if
every B → Bi is of finite presentation over A and if it satisfies one of the following
two conditions

a. it is a Zariski covering family,
b. or it consists of single etale map (such map will be called an etale covering

map).

Lemma 3.7. Any finitely presented etale map B → C between finitely pre-
sented A-algebras can be factored into a finitely presented localisation followed
by a finitely presented etale covering map B → D → C.

Proof. The etale map B → C defines a degree function which associate to each
point p of B the dimension of C ⊗B κ(p) as a κ(p)-vector space. This dimension
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is finite because the map is finitely presented and it is a lower semi-continuous
function [EGA4-4, 18.2.8]. The level set of value zero is a finitely presented
closed Zariski subset whose complement is a localisation D′ of B. The natural
map C → C⊗BD′ is an isomorphism of B-algebras as it can be checked at every
prime ideal of B, this gives a factorisation B → D′ → C of B → C. We use the
(Loc, Cons) factorisation onB → C to obtain a localisationD ofB. AsB → D′ is
another intermediate localisation, the universal property of D gives a localisation
D′ → D. Geometrically the Zariski spectrum of D′ contains that of D, which
means that every prime ideal of D has a non empty fiber over it. Reciprocally, if
K is a separably closed field and if B → C → K is a point of B factoring through
C, it gives a map B → D → K whose first map is a localisation, so D has a map
to the middle object Ap of the (Loc, Cons) factorisation of B → K. This means
that any prime ideal that has a non empty fiber is in D, and so D = D′. Finally,
the map D → C is ind-etale and of finite presentation by cancellation. �

Proposition 33. A A-algebra B is a strictly henselian local ring iff it lifts through
any distinguished covering families.

Proof. The necessary condition is obvious by characterisation of local objects as
strictly henselian rings. Reciprocally, the lifting condition with respect to finitely
presented Zariski covering families says that B is a local ring (lemma 3.3). If m
is the maximal ideal of B and κ(m)sep some separable closure of its residue field,
we are going to prove that the map B → κ(m)sep is henselian. It has to have the
left lifting property with respect to finitely presented etale maps C → D between
finitely presented A-algebras, we are going to transform this problem into a lifting
through an etale covering map. We can complete the lifting diagram as

C[c−1]

et.cov.map

��

// B[c−1]
u

'
yys s s s s s

C //

��

<<xxxxxxxxx
B

��

D[c−1]

%%JJJJJJJJJ

`

99ssssss

D //

<<yyyyyyyyy
κ(m)sep

where C → C[c−1]→ D is the localisation of lemma 3.7. The map u exists and is
an isomorphism because B[c−1] is a localisation of B still containing the maximal
ideal. Now the lift ` exists by property of B. �

3.3.5. Spectra and moduli interpretation. The factorisation context will be called
Et = (CRingso = (indEt,Hens), (CRingf )o), the results of §3.3.1 and §3.3.4
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says that it is compatible. Prop. 29 ensures that the topology given by the
general theory coincide with the usual etale topology for affine schemes.

Proposition 34. For A ∈ CRingso, SpecEt(A) is the usual etale spectrum (small
etale topos) of A and SPECEt(A) is the usual big etale topos of A.

As for the moduli interpretation of etale spectra, theorem 2.5 gives us some-
thing well known.

Proposition 35. SPECEt(A) classifies A-algebras that are strictly henselian
local rings and SpecEt(A) classifies ind-etale A-algebras that are strictly henselian
local rings. In particular those A-algebras can have automorphisms and neither
of SPECEt(A) or SpecEt(A) is a spatial topos.

Again in this case, the two notions of points agree.

Proposition 36. For A ∈ CRings, the set of points of SpecEt(A) is in bijection
with ptEt(A).

Proof. We need to construct a bijection between the set of points of SpecEt(A)
and the set of prime ideals of A. First, for p a prime ideal, we have the
map A → Ap → κ(p) → κ(p)sep where κ(p)sep is a separable closure of κ(p).
If A → Ashp → κ(p)sep is the (indEt,Hens) factorisation of the previous map,

Ashp is a strictly henselian local ring (as a pointed local object) called a strict
henselisation of A at p (it depends up to a unique iso of the choice of κ(p)sep).
To prove that p can be recover from A → Ashp we are going to show that the

composition A → Ap → Ashp is the (Loc, Cons) factorisation of A → Ashp , so Ap
(and then p) will be uniquely determine by Ashp . We only need to prove that

h : Ap → Ashp is conservative: in the square

Ap
Cons //

h
��

κ(p)

ι

��
AshpHens⊂Cons

// κ(p)sep

the map ι is conservative (as any map between fields is a monomorphism) then
h is conservative by cancellation. All this creates an injective map from the set
of prime ideals of A to that of points of SpecEt(A). We prove now that this map
is surjective. If B is a stricly henselian local ring with residue field K separably
closed, and A → B an ind-etale map, the (Loc, Cons)-factorisation of A → B
give a local ring Ap. The map Ap → K factors through some separable closure of
κ(p) and defines a strict henselisation Ashp of A at p. With the above notations,
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we have the diagram

A
indEt //

Loc
��

B
Hens // K

Ap
indEt

//
Cons

==||||||||
Ashp Hens

// κ(p)sep .

Hens

OO

Then the map A → B → K admits another (indEt,Hens) factorisation A →
Ashp → K so B ' A′p. �

This proof gives the following construction of the ind-etale henselian local
A-algebra at a prime p ⊂ A: it is the middle object Ashp of the (indEt,Hens)
factorisation of the map A → κ(p)sep where κ(p)sep is a separable closure of the
residue field at p.

3.3.6. Remark. The two factorisation systems (Loc, Cons) and (indEt,Hens) are
related by the inclusion Loc ⊂ indEt. For a map A→ B, this constructs in fact
a triple factorisation system

A
Loc // C

indEt & Cons// D
Hens // B

where A → C → B is the (Loc, Cons) factorisation and A → D → B the
(indEt,Hens) factorisation. As shown in lemma 3.7, the mapA→ C is the “open
support” of the etale map A→ D and the map C −→ D is an etale covering.

This triple factorisation will be inspire the construction of the (IntSurj,
IntClo) factorisation system in §3.6.

3.4. Nisnevich topology. The Nisnevich topology on CRingso is not associ-
ated to a factorisation system, but will be constructed from the etale factorisation
system by Nisnevich forcing (§2.5), more precisely by forcing fields, to be local
objects. The setting is the same as in §3.3.

An etale point covering family A→ Ai is a Nisnevich covering family if for any
field K and any map A→ K

Ai
∃i

!!C
C

C
C

A

OO

// K .

This is equivalent to the condition that the pull-back (in CRingso) of A → Ai
to any field admit a global section. If F is the subcategory of CRings generated
by fields, (CRingso = (Henso, indEto),F) is a Nisnevich context.

The following lemma is a consequence of lemma 3.4 and of the definition of
Nisnevich covering families.

Lemma 3.8. Zariski point covering families are Nisnevich covering families.
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3.4.1. Local objects.

Proposition 37. A ring is a Nisnevich local objects iff it is a henselian local
ring.

Proof. Let A be a local object. Zariski covering families are Nisnevich covering
families so prop. 20 shows that A is a local ring. Let k be the residue field of A,
we need to prove that A → k is a henselian map. The argument is the one use
in the proof of prop. 32. �

Let fF be the category of fat fields, i.e. nilpotent extension of fields (§3.2.2).

Corollary 3. (CRingso=(Henso, indEto),F) and (CRingso=(Henso, indEto),
fF) are two equivalent Nisnevich contexts.

Proof. As F ⊂ fF , localising by fF selects less covering families so more local
objects: F ⊂ fF . The reciprocal inclusion is equivalent to fat fields being
henselian rings, i.e. that the map K → Kred is henselian. This is a consequence
of lemma 3.5. �

This corollary is interesting as fF is exactly the category of points of the
(Loc, Cons) factorisation system (§3.2.2), which is a way to say that this Nis-
nevich localisation is not arbitrary (see §3.8).

3.4.2. Distinguished covering families. The finiteness context Cf = (CRingsf )o

is still taken to be the opposite of subcategory of CRings of finitely presented
maps. Compatibility conditions have been checked in §3.3.4, we need only to
extract a class of distinguished coverings sufficient to detect henselian rings.

A Nisnevich point covering family {B → Bi, i} of an A-algebra B is said
distinguished if it is of finite presentation over A (i.e. there exist A → B′ → B
where A → B′ is of finite presentation and all B → Bi are pushout of some
B′ → B′i) and satisfy one of the following two conditions

a. it is a Zariski covering family,
b. or there exist a radical ideal I of B′ such that A → A/I factors through one

of the B′ → B′i and the others B → Bi are localisations of B′ covering the
complement of I. In particular, this implies that the B′i factoring B′ → B′/I
is unique.

Geometrically (for the Zariski topology), this last condition says that the covering
family is distinguished if it covers the complement of a finitely presented closed
set Z by Zariski opens and has another etale map covering Z that moreover has
a section over Z.

Proposition 38. A A-algebra B is a henselian local ring iff it lifts through any
distinguished Nisnevich covering families.

Proof. We need to prove only the sufficient part. Lifting through finitely pre-
sented Zariski covering families says that B is a local ring (lemma. 3.3), we need
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then to show that, if m is the maximal ideal of B and κ(m) its residue field, the
map B → κ(m) is henselian. This is true if it has the left lifting property with re-
spect finitely presented etale maps C → D between finitely presented A-algebras,
we can use the same trick as in prop. 33 and replace C → D by an etale covering
map. We are now going to transform C → D into a distinguished Nisnevich
covering of the second kind. The Zariski closed set involved will be the closure p
of the image p of the ideal m by C → B, but we need to show that C → D has a
section over it. The finitely presented etale map κ(p)→ D⊗C κ(p) has a section
which furnishes an idempotent of D⊗C κ(p) [Mi, cor. 3.12], this idempotent can
be lifted as some element d ∈ D and the composition C → D[d−1] is still finitely
presented etale covering map but is now of degree exactly one over p. The set
Z of prime ideals of C over for which C → Dis of degree exactly 1 is a closed
Zariski subset, over which C → D is even an isomorphism. Then, the wanted
section exists as Z contains on p. Completing C → D by a Zariski covering of
the complement of p, and pushing forward to B, there exists a retraction of one
of the covering maps and it can be only of B → D⊗C B as all other maps misses
m in their image by construction. �

3.4.3. Spectra and moduli interpretation. Let F be the full subcategory of C =
CRingso generated by fields. Nis := (C = (Henso, indEto), Cf ,F) is a Nisnevich
context (def. 11) and prop. 37 says that F is the category of henselian rings.
§3.4.2 finishes the proof of the compatibility of this context, we can use theorem

2.5 to compute the points of our spectra.

Proposition 39. For A ∈ CRingso, SPECNis(A) classifies A-algebras that
are henselian local rings and SpecNis(A) classifies ind-etale A-algebras that are
henselian local rings. In particular those A-algebras can have automorphisms and
neither of SPECNis(A) or SpecNis(A) is a spatial topos.

To any prime ideal p of A is associated two points of SpecNis(A): first,
SpecEt(A) being a subtopos of SpecNis(A), the strict henselisation of A at p
is also a point of SpecNis(A); the second one is the henselisation of A at p: it is
the middle object Ahp of the (indEt,Hens) factorisation of the map A → κ(p)
where κ(p) is the residue field at p.

3.4.4. Context Comparisons. We have three Nisnevich contexts Zar = (CRingso

=(Conso, Loco), (CRingsf )o, ∅), Et=(CRingso=(Henso, indEto), (CRingsf )o, ∅),
and Nis = (CRingso = (Henso, indEto), (CRingsf )o,F). Et is clearly a refine-
ment of Nis and of Zar and as objects of F are local for Zar, Nis is also a
refinement of Zar. This give the following diagram

SpecEt(X)

sX
��

// SpecNis(X)

sX
��

// SpecZar(X)

sX
��

// SpecInd(X)

sX
��

SPECEt(X) // SPECNis(X) // SPECZar(X) // SPECInd(X)
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and associated natural transformations of structural sheaves OEtX → ONisX →
OZarX → X (pulled-back on SpecEt(X). The bottom row of the diagram consists
in inclusions of subtoposes, and reads at the level of points: strict henselian local
rings are henselian local rings which are local rings which are rings.

The example of a field. The Etale topos is the classifying topos of the galois
group of k, its category of points is the groupoid of separable closure of k.
The Zariski topos of a field k is a point, but the Nisnevich topos of a field is
not, its category of points is the opposite of that of algebraic extensions of k.
(As k is henselian, an ind-etale k-algebra A is a product of local k-algebras Ai
and if A is henselian so are the Ai. If ki is the residue field of Ai, as both maps
k → ki and k → Ai are ind-etale so is Ai → ki. It is then an isomorphism if Ai is
henselian.) This category has an terminal object (k itself) and geometrically, the
Nisnevich spectrum can be thought as a sort of cone interpolating between k and
the groupoid of its separable closures. Homotopically, unless the etale spectrum,
it will be contractible.

3.5. Domain topology. We are now going to investigate the obvious
(Surj,Mono) factorisation system on CRings with the same convention as
before, i.e. thinking of the opposite factorisation system (Monoo, Surjo) on
CRingso. Let u : A → B ∈ CRings with kernel I, the (Surj,Mono) factori-
sation of u is A→ A/I → B. A map A→ A/I is called a surjection or a quotient
and a map A→ B with 0 kernel is called a monomorphism.

The following lemma gives a set of left generators.

Lemma 3.9. A map is a monomorphism iff it has the right lifting property with
respect to Z[x] −→ Z : x 7→ 0.

It is interesting to remark that this map Z[x] −→ Z is the “complement” of the
generator Z[x] −→ Z[x, x−1] of the (Loc, Cons) system. This simple fact seems
to be the source of an unclear duality between the (Surj,Mono) and (Loc, Cons)
systems (cf. §3.8).

3.5.1. Finiteness context and points. The finiteness context Cf = (CRingsf )o

is still taken to be the opposite of subcategory of CRings of finitely presented
maps. The fact that every surjection A → B, of kernel I, is a ind-object in
finitely presented surjection can be seen by writing B as the limit of the filtered
diagram of quotients of A by a finite number of elements of I. Distinguished
families will be extracted from lemma 3.10.

Proposition 40. A ring corresponds to a points of the (Monoo, Surjo) factori-
sation system iff it is a field.

Proof. A ring A corresponds to a point if any quotient A → A/I by a finitely
presented ideal admits a retraction. But this forces q to be a monomorphism and
then an isomorphism. An element a ∈ A is either zero, invertible or non-zero
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and non invertible. In the first case the quotient by a is A, in the second 0 and
in the third something non isomorphic to A. This third case is excluded by the
previous remark, so every element in A as to be either zero or invertible. �

The same classical argument as in prop. 17 gives the following.

Proposition 41. The set of point of a ring A for the (Monoo, Surjo) system is
that of prime ideals of A.

3.5.2. Covering families and local objects. Point covering families of the
(Monoo, Surjo) system are families of quotients A→ A/Ii by finitely generated
ideals such that any residue field of A factors through one of the A/I. Using the
geometric intuition coming from the Zariski topology, this correspond to cover a
scheme by non reduced closed subschemes of finite codimension.

A ring B is an integral domain iff for any x, y ∈ B, xy = 0 iff x = 0 or y = 0. If
B is an A-algebra this can be read as, for any x, y ∈ B, the map A[x, y]/(xy)→ B
factors through A[x, y]/(xy) → A[y] or A[x, y]/(xy) → A[x]. Those two maps
form a covering family of A[x, y]/(xy): for any map A[x, y]/(xy) → K to some
field, either x or y has to be zero in K.

This proves the following lemma dual to lemma 3.3.

Lemma 3.10. A A-algebra B is a integral domain iff for any x, y ∈ B such that
xy = 0 is invertible, B lift through the point covering family A[x, y]/(xy)→ A[x]
and A[x, y]/(xy)→ A[y] of A[x, y]/(xy).

The following results justify the name chosen for this topology.

Proposition 42. A ring is a pointed local object of the (Monoo, Surjo) system
iff it is an integral domain.

Proof. If A → K is a monomorphism with target a field, then A is an inte-
gral domain, and reciprocally for any such ring is associated a monomorphism
A→ K(A) into the fraction field. �

Proposition 43. A ring is a local object of the (Monoo, Surjo) system iff it is
an integral domain.

Proof. Let A be a domain and {A → A/Ii} a cover, then in order to cover the
generic point of A it must contain a copy of A itself. Reciprocally, if A is a
ring such that any cover {A → A/Ii} has a retraction, the family of inclusions
of irreducible components, i.e. A → A/pi where pi’s are minimal prime ideals,
defines a point covering family of A and then must have a retraction. So 0 is one
(and the only) of the primes pi. �

3.5.3. Spectra and moduli interpretation. For the factorisation context Dom =
(CRingso = (Monoo, Surjo), (CRingf )o) to be compatible, we need to show
that the condition of being an integral domain can be tested using only finitely
presented point covering families, but this is lemma 3.10. So we can apply
theorem 2.5.
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Proposition 44. For A ∈ CRings, points of SPECDom(A) are A-algebras that
are integral domains and points of SpecDom(A) are quotients of A that are do-
mains.

Proposition 45. For A ∈ CRings, the set of points of SpecDom(A) is in bijection
with ptDom(A).

Proof. This a way to say that the set of points of SpecDom(A) is that of prime
ideals of A: it is well known that a quotient of A that is an integral domain iff
the kernel is a prime ideal. �

We are now going to prove that SpecDom(A) is a topological space. We would
like to apply the same argument as in prop. 23 but the equivalence between the
jointly surjective topology and the point covering topology will fail without a
slight modification of the site defining SpecDom(A) (cf. end of proof of prop. 47).

For a ring A, the subset
√

0 of all nilpotent elements is also the intersection of
all prime ideal of A.

Lemma 3.11. For a ring A, A→ A/
√

0 is point covering family and any sheaf
for the factorisation topology send such a map to an isomorphism.

Proof. Any field K is an integral domain so any A → K factors through A/
√

0.
For the second part, any sheaf as to send A → A/

√
0 to the kernel of A/

√
0 ⇒

A/
√

0 ⊗A A/
√

0, but as A/
√

0 ⊗A A/
√

0 = A/
√

0 this kernel is the identity of
A/
√

0. �

Corollary 4. The domain topology is not subcanonical.

Proof. Both A and Ared will have the same spectra, this will be developped further
below. �

Lemma 3.12. A family B → B/Ii in A\Surj
f corresponds to a point covering

family iff B → B/(∩Ii) is a point covering family iff ∩Ii ⊂
√

0.

Proof. B → B/(∩Ii) factors every B → B/Ii, so it has the joint of the lift-
ing properties of all B → B/Ii and so is a point covering family. Recipro-

cally, if Ii = (a1
i , . . . a

ki
i ), ∩Ii is generated by products

∏
i a

k(i)
i for some function

i 7→ 1 ≤ k(i) ≤ ki, we want to prove that for any point A→ K factoring through
A → A/(∩Ii), there exists an i such that all aki are send to zero in K. If this

is not the case, for all i there would exist a a
k(i)
i not sent to zero in K, and so

their product will not either, contradicting the fact that A→ K factors through
A→ A/(∩Ii).

As for the second equivalence, if p is a prime ideal of B with residue field κ(p),
the existence of a lift B/(∩Ii)→ κ(p) of B → κ(p) proves that p has not become
the zero ideal in B/(∩Ii) so ∩Ii ⊂ p. This says that (∩Ii) is contained in every
prime ideal of B. �
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SpecDom(A) is the topos associated to (A\Surj
f )o with the factorisation topol-

ogy, it depends only on Ared. If A\RedSurj
f is the sub-category of A\Surj

f formed
of reduced finitely presented quotients of A, the factorisation topology restrict
to it. The inclusion ι : A\RedSurj

f ⊂A\ Surjf has a left adjoint red given by

A→ Ared = A/
√

0 which if continuous (the reduction of a covering family is still
a covering family).

Lemma 3.13. A family B → B/sqrtIi in (A\RedSurj
f )o is point covering family

iff ∩
√
Ii =

√
0.

Proof. This is a consequence of lemma 3.12 and of ∩
√
Ii =

√
∩Ii. �

Proposition 46. The continuous functor red : (A\Surj
f )o −→ (A\RedSurj

f )o is
an equivalence of sites.

Proof. Recall that a continuous functor is an equivalence of sites if the geometric
map (red∗, red∗) induced on the toposes is a equivalence. We have a diagram

̂(A\RedSurjf )o

a

��

red∗ // ̂(A\Surjf )o
red∗

oo

a

��

˜(A\RedSurjf )o

OO

red∗ // ˜(A\Surjf )o

OO

red∗
oo

where the a’s are the sheafification functors. We have to prove that a presheaf on
(A\Surj

f )o is a sheaf iff its restriction to (A\RedSurj
f )o is a sheaf. It is enough

to check it on the level of generators where red∗ = ι∗. The unit and counit
of (red∗, red∗) are those of (red, ι): the counit is always an isomorphism and
lemma 3.11 prove that the unit of (red, ι) is transform in an isomorphism by
sheafification. �

Proposition 47. SpecDom(A) is a topological space whose poset of points is equiv-
alent to that of prime ideal of A.

Proof. We are going to apply the same argument as in prop. 23. SpecDom(A)
is generated by the category (A\RedSurj

f )o which is a poset of compact object,
so it is a localic topos. [Jo1, II.3.] will say it is coherent and spatial as soon
as the topology on (A\Surj

f )o is the jointly surjective topology. (A\Surj
f )o is a

distributive lattice: the intersection of A/
√
I and A/

√
J is A/

√
I + J and the

union is A/
√
I ∩ J ; the distributivity law is the lemma: for I, J,K three finitely

generated ideals of A, K+ (I ∩J) = K ∩ I+K ∩J . As for the topology, a family
A→ A/

√
Ii is jointly surjective iff

√
∩Ii =

√
0 but this is the characterisation of

point covering families of lemma 3.13. (This last equivalence is in fact the whole
reason of considering the site (A\RedSurj

f )o.) �

The poset of points of SpecDom(A) is the opposite of that of SpecZar(A), in
particular generic points of one are closed point of the other. We can think
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those two space as as “opposite” as categories can be opposed. In fact the two
sites A\RedSurj

f and A\Loc
f are opposite categories and this duality between

SpecDom(A) and SpecZar(A) is part of a general duality on compactly generated
spaces exposed in [Jo1] (SpecDom(A) is the domain spectrum of [Jo1, V.3.11]).

3.5.4. Remark. The same remark as in §3.2.6 is true: the class Surjo is not local
for the Domain topology on CRingso. Its saturation is the class EtSurjo op-
posite to that of integrally closed maps (cf. §3.6) that are locally trivial for the
Domain topology (called etale-surjective maps). Again, we claim that EtSurj
is the left class of a unique factorisation system (EtSurj,MIdem) on CRings
whereMIdem is the class of monomorphisms having the extra unique lifting prop-
erty for idempotents, i.e. (EtSurj,MIdem) is left generated by Z[x] → Z and
Z→ Z×Z. Replacing the factorisation system (Loc, Cons) by (EtSurj,MIdem)
in the previous study would generate the same factorisation topology and the
same spectra.

3.6. Proper topology. For a inclusion of rings A ⊂ B an element b ∈ B is said
integral over A if there exists a monic polynomial P with coefficients in A such
that b is a root of P . In particular every element of A is integral. More generally
for any map A → B of kernel I, an element of B is said integral over A if it
is integral over A/I. As any monic polynomial of (A/I)[X] can be lifted in a
monic polynomial of A[X], it is equivalent to say that b ∈ B is integral over A if
it exists P ∈ A[X] monic such that P (b) = 0. A ⊂ B is said integrally closed if
any element integral over A is in A. The set of integrally closed monomorphism
of rings is noted IntClo. The following proposition is [Mat, thm. 9.1].

Proposition 48. For any monomorphism of rings A ⊂ B, the subset C of
elements integral over A in B is a ring, and C ⊂ B is integrally closed.

This constructs a factorisation system on monomorphisms of rings, with the
right class being IntClo. To have a factorisation for every morphism, we use
the (Surj,Mono) factorisation. A map A → B of kernel I is called integrally
surjective if every element of B is integral over A. The set of integrally surjective
maps is note IntSurj. The archetypal example of a integrally surjective map
is a integral extension A → (A/I)[x]/P (x) for some ideal I and some monic
polynomial P .

Proposition 49. IntSurj and IntClo are the left and right classes of a unique
factorisation system.

As IntClo ⊂ Mono and Surj ⊂ IntSurj, the (IntSurj, IntClo) factorisa-
tion system compares to the (Surj,Mono) as (Loc, Cons) and (indEt,Hens)
compared in §3.3.6: they define a triple factorisation system

A
Surj // C

Mono & IntSurj// D
IntClo// B
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where A → C → B is the (Surj,Mono) factorisation and A → D → B the
(IntSurj, IntClo) factorisation.

Proposition 50. The (IntSurj, IntClo) factorisation system is left generated
by the set of maps A→ (A/I)[x]/P (x) where A is of finite presentation, I some
finitely generated ideal of A and P a monic polynomial.

Proof. First, it is clear by definition that such a map A → (A/I)[x]/P (x) is in
IntSurj. Then, as a factorisation system is entirely determine by one of the left
or right classes, it is sufficient to prove that the class of maps right orthogonal to
A→ (A/I)[x]/P (x) is IntClo. For a map B → C, a lifting for the square

Z[x]

��

// B

��
Z //

=={
{

{
{

{
C ,

exists iff the kernel of B is reduced to 0, i.e. that B → C is a monomorphism.
Now for a square (with P monic and B → C a monomorphism)

A

��

// B

mono

��
A[x]/P (x) //

::t
t

t
t

t

C

the image of x in C is an element integral over B and any such can be defined
by such a square. The existence of a lift states that any element integral over B
is image of an element in B, i.e. that B is integrally closed in C. �

The following lemma justifies the name chosen for this topology.

Lemma 3.14. A finitely presented map A→ B is integrally surjective map iff it
is proper.

Proof. An integrally surjective map A→ B of kernel I decomposed in a quotient
followed by an integral extension A → C = A/I → B. Quotient are always
proper and so are integral extensions when they are finitely presented (as they
are finite morphisms), which is the case here by cancellation. �

As a consequence of theorem 2.5 (the compatibility will be proven below),
general integrally surjective maps are inductive limits of proper map of finite
presentation. Despite this coincidence, we have chosen to keep the more sophisti-
cated name ’integrally surjective’ as it reflects better our practical manipulations
of rings.
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3.6.1. Finiteness context and points. The finiteness context Cf = (CRingsf )o

is still taken to be the opposite of subcategory of CRings of finitely presented
maps. Using 3.5.1, it remains to show that an integral extension A → B is a
ind-object in finitely presented integral extension can be seen by writing B as the
colimit of the filtered diagram of its sub-A-algebras generated by a finite number
of elements. The distinguished class of covering families will be constructed in
§3.6.3.

Proposition 51. A ring is a point of the (IntSurj, IntClo) factorisation system
iff it is an algebraically closed field.

Proof. A ring A corresponds to a point iff any finitely presented integrally surjec-
tive map A→ B admits a section. From prop. 50, it is necessary and sufficient to
prove this only for maps A→ B where B = A/I for some finitely generated ideal
I or B = A[x]/P (x) and some monic or zero polynomial P . Prop. 40 says that
existence of retraction for quotients A→ A/I implies that A is a field. A field A
is now a point iff every monic polynomial has a root in A. But with coefficients
in a field every polynomial is proportional to a monic one and A is a point iff
every polynomial has a root in A. �

Proposition 52. The set of points of a ring A is in bijection with the set of
prime ideals of A.

Proof. As Surj ⊂ IntSurj, ptProp(A) ⊂ ptDom(A). The inverse inclusion is a
consequence of the existence of an algebraic closure for every field. �

3.6.2. Covering families and local objects. A family {A → Ai} of integrally sur-
jective finitely presented maps is a point covering family iff any map A→ k to a
residual algebraically closed field factors through some A → Ai. This is equiva-
lent to the fact that any map A → k to a residue field of A lift through one of
the A→ Ai after an algebraic extension of k.

Proposition 53. Pointed local objects are integrally closed domain which fraction
field is algebraically closed.

Proof. Let K be an algebraically closed field, and A → K an integrally closed
map. We need only to show that the fraction field K(A) = A[(A∗)−1] of A is
algebraically closed. But the stability by localisation of integral closure implies
that K(A)→ K[(A∗)−1] ' K is again integrally closed. �

In analogy with strict henselian local rings, such rings will be called strict
integrally closed domains.

Proposition 54. Local objects are integrally closed domain which fraction field
is algebraically closed.

Proof. Let A be a local object. As it must be a local object for the (Surj, Loc)
factorisation system, it must be an integral domain. Now we have to prove
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that the map A → K(A) = A[(A∗)−1] is integrally closed. As is it already
a monomorphism it is sufficient to prove that it has the unique right lifting
property with respect to maps A→ A[x]/P (x) where P is monic. We are going
to use the same argument as for the local objects of etale topology. Given such
a map A → A[x]/P (x) lifting the fraction field of A, it can be completed in a
(IntSurj, IntClo)-covering family by adjoining A → (A/p)int for prime ideals
different from 0. Then the hypothesis on A gives a retraction of one the map of
the cover which can only be A→ A[x]/P (x). This gives a lifting square

A

IntSurj
��

A

IntClo
��

A[x]/P (x) //

88qqqqqq
K(A)

so the lift is unique because (IntSurj, IntClo) is a unique lifting system.
To prove that the fraction field K(A) is algebraically closed, we are going to

prove that any algebraic extension K(A)→ K(A)[x]/P (x) where P is irreducible
in K(A)[X] has a retraction. The composite A→ K(A)→ K(A)[x]/P (x) factors
as A → A′ → K where A′ is the integral closure of A in K, this map A → A′

is a (IntSurj, IntClo)-covering family (or can be completed as such in the same
way as before) and thus admits a retraction, which gives the wanted retraction
for K(A). �

3.6.3. Distinguished covering families. In order to apply theorem 2.5 we need to
show that the condition of being a strict integrally closed domain can be tested
using only finitely presented point covering families. We are going to copy the
situation of §3.3.4.

A point covering family {B → Bi, i} of an A-algebra B is said distinguished if
all the B → Bi are maps of finite presentation of A-algebras and satisfy one of
the following two conditions

a. it is a (Monoo, Surjo) point covering family,
b. or it consists of single integral extension (such map will be called an integral

covering map).

Lemma 3.15. Any finitely presented integrally surjective map B → C between
finitely presented A-algebras can be factored into a finitely presented quotient
followed by a finitely presented integral covering map.

Proof. We use the (Surj,Mono) factorisation on B → C to obtain a quotient
D/I of B with I the kernel of B → C. I is finitely generated so D → B is finitely
presented and so is D → C by cancellation.

We have to prove that D → C is an integral covering map. C is generated
by some finite set of elements ci zero of some monic polynomials of B[X]. If
K is algebraically closed and D → K is a point, K → C ⊗D K is an algebraic
extension generated by the image of the ci (because the relations are monic, they
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are still non trivial and C ⊗D K is not empty). So as K is algebraically closed
there exists a retraction, proving that any point of D lift though D → C. �

Proposition 55. An A-algebra B is a strictly integrally closed ring iff it lifts
through any distinguished covering families.

Proof. The necessary condition is clear by characterisation of local objects as
strict integrally closed rings. Reciprocally, the lifting condition with respect to
finitely presented (Monoo, Surjo) point covering families says that B is a integral
domain (lemma. 43).

If K(B)alg is an algebraic closure of the fraction field of B, we are going to prove
that B → K(B)alg is integrally closed. It has to have the left lifting property with
respect to finitely presented integrally surjective map C → D between finitely
presented A-algebras, we can transform this problem into a lifting through an
integral covering map.

C/I

int.cov.map

��

// B/IB
u

'
yys s s s s s

C //

��

<<xxxxxxxxx
B

��

D/ID

%%KKKKKKKKK

`

99rrrrrr

D //

<<zzzzzzzzz
K(B)alg

where I is the kernel of C → D. The map u exists and is an isomorphism as
B/IB is a quotient of B still containing the generic point. And the lift ` exists
by property of B. �

3.6.4. Spectra and moduli interpretation. Prop=(CRingso=(IntCloo, IntSurjo),
(CRingsf )o) is a compatible factorisation context, we can apply theorem 2.5 to
prove the following.

Proposition 56. SPECProp(A) classifies A-algebras that are strict integrally
closed domains and SpecProp(A) classifies integrally surjective A-algebras that
are strict integrally closed domains. In particular those algebras can have auto-
morphisms and neither of the two spectra is spatial.

The two notions of points agree.

Proposition 57. For A ∈ CRings, the set of points of SpecProp(A) is in bijection
with ptProp(A).

Proof. We need to prove that the set of points of SpecProp(A) is in bijection
with that of prime ideals of A. We proceed as in prop. 36. Given a prime
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ideal and the associated integral domain quotient A → A/p, we consider
A/p → K(A/p) → K(A/p)alg where K(A/p)alg is an algebraic closure of the
fraction field K(A/p). The (IntSurj, IntClo) factorisation of this maps defines
an object (A/p)sint which is a point of SpecProp(A). (A/p)sint is called the strict
integral closure of A at p. The map A/p → K(A/p)alg is injective and so is
A/p → (A/p)sint which implies that p is the kernel of A → (A/p)sint. We have
constructed an injective map from prime ideals to points of SpecProp(A); we prove
now the surjectivity. For A → B a point of SpecProp(A), B being an integral
domain, the kernel of A → B is a prime ideal. With the notation of before, we
have a diagram

A
IntSurj //

Surj

��

B
IntClo // K(B)

A/p
IntSurj

//
Mono

::uuuuuuuuuuu
(A/p)sint

IntClo
// K(A/p)alg

IntClo

OO

presenting A→ (A/p)′ → K(B) as another factorisation of A→ B → K(B), so
B ' (A/p)sint. �

3.7. Proper Nisnevich topology. Integral domains, integrally closed domains
and strict integrally closed domains behave like local rings, henselian local rings
and strictly henselian local rings, so it is tempting to define a Nisnevich localisa-
tion of the (IntSurj, IntClo) setting so that local object are non strict integrally
closed domains.

We consider the class F of fields and the associated Nisnevich forcing of the
previous setting. A (IntSurj, IntClo) point covering family {A → Ai, i} of
A is F -localising iff for any map A → K to a field, there exists an i and a
factorisation of A → K through A → Ai. In particular, (Monoo, Surjo) point
covering families are F -localising. The Nisnevich context NSurj := (CRingso =
(IntCloo, IntSurjo), (CRingf )o,F) will be called the proper Nisnevich context.

Proposition 58. A ring is in the saturation of F iff it is an integrally closed
domain.

Proof. Let A be an integrally closed domain, i.e. a integral domain such that
the map A → K(A) to the fraction field is integrally closed, and A → Ai a
F -localising point covering family. By definition of such a family there exists an
i and a factorisation A → Ai → K(A) of A → K(A). This forces A → Ai to be
an integral extension and, as A is integrally closed, there exists a retraction. The
reciprocal part has already been proven in the proof of prop. 54. �

The following lemma is a consequence of Surj ⊂ Intsurj and of the definition
of Nisnevich covering families.

Lemma 3.16. (Monoo, Surjo) point covering families are proper Nisnevich cov-
ering families.
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3.7.1. Distinguished covering families. The finiteness context Cf = (CRingsf )o

is taken to be the opposite of subcategory of CRings of finitely presented maps.
Compatibility conditions have been checked in §3.3.4, we need only to construct a
class of distinguished covering families sufficient to detect integrally closed rings.

A proper Nisnevich point covering family {B → Bi, i} of an A-algebra B is said
distinguished if it is of finite presentation over A, i.e. there exist A → B′ → B
where A→ B′ is of finite presentation and all B → Bi are pushout of some maps
B′ → B′i between algebra of finite presentation, and satisfies one of the following
two conditions

a. it is a (Monoo, Surjo) point covering family,
b. or the family is reduced to two elements B′ → B′0 and B′ → B′1 where
B′0 = B/b for some b ∈ B and B′1 is an integrally extension of B′ such that
B′[b−1]→ B′1[b−1] admit a retraction.

Geometrically (for the Zariski topology), this last condition says that the covering
family is distinguished if it contains a finitely presented Zariski closed set Z and
cover its complement by some integral extension that has a section over the
complement of Z.

Proposition 59. A A-algebra B is an integrally closed domain iff it lifts through
any distinguished proper Nisnevich covering families.

Proof. We need to prove only the sufficient part. Lifting through finitely pre-
sented (Monoo, Surjo) point covering families says that B is an integral domain
(lemma. 3.10), we need then to show that, if K(B) is it fraction field of B, the
map B → K(B) is integrally closed, i.e. has the left lifting property with re-
spect integrally surjective map between finitely presented A-algebras of the type
C → (C/I)[x]/P (x) for some finitely presented I and some monic polynomial
P , we can use the same trick as in prop. 55 and suppose I = 0. We are going
to complete C → D into a distinguished proper Nisnevich covering family. In a
diagram

C //

��

B

��
C[x]/P (x) //

`

88qqqqqqqqqqq
K(B)

we can always assume C to be an integral domain by quotienting by the ker-
nel of C → K(B), so x can be describe in K(C) as some fraction a/b so
C[b−1] → C[b−1][x]/P (x) has a section. This will be the distinguished locali-
sation of the covering family, we complete it in a cover with C → C/b. Now by
hypothesis C → B will factor one of the two maps of the cover, and it cannot be
C → C/b as the map K(C)→ K(B) send b to an invertible element. �

3.7.2. Spectra and moduli interpretation. PNis=(CRingso=(IntCloo, IntSurjo),
(CRingsf )o,F) is a compatible Nisnevich context so we can apply theorem 2.5.
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Proposition 60. For a ring A, points of SPECPNis(A) are A-algebras that
are integrally closed domains and points of SpecPNis(A) are integral extension of
quotients of A that are integrally closed domains.

As in §3.4.3, the small Proper Nisnevich spectrum of A have in general more
points than the set of prime ideals of A. Also, a prime ideal p of A still define two
points of SpecPNis(A), the first one is the point of SpecProp(A) associated to p and
the second on is the integrally closed domain obtained by the (IntSurj, IntClo)
factorisation of the residue map A→ κ(p).

3.8. Remarks on the previous settings. It is folkloric that etale and proper
maps look alike, but the structure behind this duality is still undefined. We do
not formalize this structure here, but we think our approach using factorisation
systems should help and we group here a few remarks in this spirit.

Etale-Proper duality. We would like to sketch here a parallel between the six
previous studied contexts. Recall that F is the subcategory of CRings generated
by fields, and that fF that generated by fat fields (§3.2.2). The finiteness context
being understood as CRingsf , the parallel is the following.

Etale context Proper context

Primary factorisation system (indEt,Hens) (IntSurj, IntClo)

Secondary factorisation system (Loc, Cons) (Surj,Mono)

Nisnevich context ((Loc,Hens), fF) ((Surj,Mono),F)

Where the ’secondary factorisation system’ is obtained from the primary one by
looking only at those maps in the left class that are epimorphisms in CRings:
localisations are those ind-etale maps that are epimorphisms and surjections are
those integrally surjective maps that are epimorphisms. The secondary factorisa-
tion context can be thought as a way to extract open embbedings from etale maps.
Also both Nisnevich localising classes are exactly the points of the secondary fac-
torisation context. We are not sure how much these remarks are meaningful, but
they do sketch a general structure. Thinking as C as CRingso, one can define
canonically from a factorisation context (C = (A,B), Cf ) a secondary factorisa-
tion context as (C = (⊥(B ∩ Mono),B ∩ Mono), Cf ) and a Nisnevich context
(C = (A,B), Cf ,Pt(B∩Mono)f )(C).

Points and local objects. We recall the comparison between the points and local
objects for the different contexts.
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Etale context Proper context

Secondary points fat fields fields

Primary points fat separably
closed fields

algebraically
closed fields

Secondary local objects local rings integral domain

Primary local objects strict Henselian
local rings

strict integrally
closed domains

Nisnevich local objects Henselian
local rings

integrally
closed domains

It is remarkable that for the four factorisation systems the set of points of a
ring A is always the set of prime ideals of A and that it always coincide with the
set of points of the associated spectra (i.e. every local object is pointed). Also for
every prime ideal p ⊂ A there exists always a (essentially unique) distinguished
map A→ κ(p)! where κ(p)! is the residue field or some extension of it at p, such
that the local object at p can be constructed by factorising A → κ(p)! for the
underlying factorisation system.

Other dual notions.

Etale context Proper context

secondary generators Z[x]→ Z[x, x−1] Z[x]→ Z

(Gm → A1) ({0} → A1)

locality condition x+ y invertible ⇒
x or y invertible

xy = 0⇒
(x = 0 or y = 0)

(x+ y ∈ Gm ⇒
x or y ∈ Gm)

completion henselisation normalisation

Normalisation of a noetherian ring A: if pi are the minimal prime of A and κ(pi)
the associated residue fields, NA is the middle object of the (IntSurj, Intclo)
factorisation of A→

∏
i κ(pi). It is always a product of the normalisation NAi of

the A/pi, indeed the idempotents associated with
∏

i κ(pi) are elements integral
over Z so they belong to NA.

Henselisation of a semilocal ring A: if mi are the maximal prime of A and
κ(mi) the associated residue fields, HA is the middle object of the (indEt,Hens)
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factorisation of A→
∏

i κ(mi). As A is the product of its localisations Ami , HA
is the product of the henselisation HAi of the Ami .

Dual lifting properties. The duality between the Etale and Proper contexts can
be also thought as follow. Having in mind that points of a local ring are all
generisation of the closed point, and that points of a integral domain are all spe-
cialisation of the generic point, the dual lifting properties for etale and proper
maps are dual in the same sense than a category and its opposite.
Another illustration of this is the fact that the poset of points of Zariski and
Domain spectra are opposite categories. All this recall Grothendieck’s smooth
and proper functors [Ma1] for which a functor F : C → D is smooth iff its oppo-
site F : Co → Do is proper. It is stated in [Ma1] that this property of functors has
no analog in algebraic geometry, but these dual topologies could be a hint toward
a more precise analogy. However the classes of smooth and proper functors are
not know (yet?) to be part of factorisation systems so a link with our theory is
not obvious.

The example to follow (§3.9.3) of left and right fibrations of category also has
a flavour of the same kind of duality, but the situation is clearer in this setting
as the opposition of categories exchange the two dual factorisation systems. Is
there an operation of the same kind exchanging the etale and proper factorisation
systems?

3.9. Other examples. This section sketches the results of the study of some
common unique factorisation systems. Proofs are left to the reader.

3.9.1. (Epi,Mono) topology in a topos. We investigate the (Epi,Mono) factorisa-
tion system of maps of a topos T , the finiteness context is taken to be the whole
of T .

An object P 6= ∅ ∈ T is a point iff any monomorphism U → P (U 6= ∅) admits
a section. This forces U → P to be an isomorphism: points are objects without
any proper subobject. These objects are called atoms of the topos [Jo2, C.3.5.7].
Maps between atoms are always epimorphisms and all quotients of atoms are
atoms. Points of an object X are called atomic subobjects of X, any two atomic
subobjects are either equal or disjoint in X. Any morphism A → X with A an
atom factors through a unique atomic subobject of X, so the set of points of X
is that of its atomic subobjects. The family of all atomic subobjects of X is the
finest point covering of X, so local objects coincide with points and Specatom(X)
is the topos of presheaves over the set of atomic subobjets of X.

We are going to illustrate this in the topos BG = G-Sets classifying G-torsors
for some discrete group G. Objects of BG are sets with a right action of G and
can be thought as particular groupoids, a map is a monomorphism if, viewed as
a map of groupoids, it is fully faithful. Points of (Epi,Mono) system of BG are
sets with a transitive action of G. The category of all points is then the orbit
category of G and the set of points of X ∈ BG is simply the set of orbits of the
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action of G. A point covering family is a family of monomorphisms surjective
on orbits, or view through the associated groupoids, a family of fully faithfull
maps globally essentially surjective. The family of all orbits of a given X is the
finest point covering family of X, and Specatom(X) is equivalent to the topos of
presheaves on the set of orbits of X.

3.9.2. (Epi,Mono) topology in an abelian category and discrete projective spaces.
Any abelian category C has an (Epi,Mono) unique factorisation system, its initial
object 0 is also final and so not strict but this is not important. The finiteness
context is taken to be the whole of C.

Points are non zero objects without any proper subobject, i.e. simple objects.
Any map to M from a simple object is either 0 or a monomorphism, the set of
points of M is then the set of simple or null subobjects of M . The family of
all simple subobject of M is the finest point covering family of M , so all local
objects are points and the small spectrum SpecEpi(M) is the topos of presheaves
on the poset of simple or null subobjects of M . All simple subobjects correspond
to closed points and 0 to a generic point.

If C is the category of vector spaces over some field k, SpecMono(M) is a sort
of discrete projective space for M , with an extra generic point. Forgetting about
this generic point, a map M → N can be though as inducing a partially defined
transformation (it is not defined on the kernel of M → N) between the associated
projective spaces.

The big spectrum SPECMono(0) is the category of presheaves over the category
of simple objects of C. And the structure sheaf map Spec(M)→ SPEC(0) send
a simple subobject of M to its underlying simple object.

As C has both finite limits and finite colimits, this system is easily dualisable
in (Co = (Epi,Mono) = (Monoo, Epio). Points of Co are objects without any
proper quotient, which are again simple objects; the set of points of an object M
is that of simple or null quotients of M and SpecEpi(M) is a the “dual” projective
space of SpecMono(M) still with an extra point, which is this time the only to be
closed.

3.9.3. Discrete fibrations of categories. We are going to study two unique factori-
sation systems on the category CAT of small categories, the reference for all the
results is [Joy].

Let [n] be the ordinal with n + 1 elements 0 < · · · < n viewed as a category.
[0] is the punctual category. The two functors [0]→ [1] will be called 0 and 1. In
CAT , the unique factorisation system (Fin,DRFib) is defined as left generated
by 1, Fin is called the class of final functors, and DRFib the class of discrete
right fibrations. There is a dual system (Ini,DLFib) left generated by 0, Ini is
called the class of initial functors, and DLFib the class of discrete left fibrations.
It is easy to see that C → D ∈ LFib iff Co → Do ∈ RFib.
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We are only going to detail the factorisations in a special case: if c : [0]→ C is
an object of a category C, the (Fin,DRFib) factorisation of c is [0]→ C/c → C
and the (Ini,DLFib) factorisation of c is [0]→ c\C → C. We want say much of
the left classes only that in the previous factorisation [0] → C/c points the final
object of C/c and [0] → c\C the initial object of c\C. As for the right classes, it
can be shown that any D → C ∈ DRFib is associated a presheaf F : Co → S
such that D is isomorphic to C/F and that any D → C ∈ DRFib is associated a
functor F : C → S such that D is isomorphic to F\C. From this we can deduced
that the categories DRFib/C and DLFib/C are respectfully equivalent to the

category Ĉ of contravariant functors C → S and to that Č of covariant functors
C → S.

We are now going to study the (Fin,DRFib) system, the associated factorisa-
tion topology will be called the right topology. A point is a non empty category
P such that any any discrete right fibration C/F → C has a section. Using the

Yoneda embedding in Ĉ, this condition says every presheaf on C has a global
section. Such categories can be highly non trivial (∆ is an example) and the set
of points of category is difficult to described, but fortunately the point covering
families are simple to understand. Certainly [0] is a point, and so a point covering
family of C has to be globally surjective on the objects of C. This condition is
also sufficient: indeed if P → C is a point of C, it will lift through a covering
family Ui → C iff one of the fiber product Ui ×C P is not empty, but if Ui → C
is assumed surjective on the points, it cannot happen that all fiber products are
empty.

A local object is a category such that any epimorphic family of presheaves
contains a presheaf with a global section. In particular any category with a
terminal object is a local object (as proven already by the factorisation c : [0]→
C/c → C). We don’t know if all local object are of this type, neither if they are
all pointed.

A discrete right fibration C/F → C is surjective on the objects iff F (c) 6= ∅ for

all c ∈ C iff F →∈ Ĉ is an epimorphism. In the same way a family Ui → C of
discrete right fibrations is globally surjective on objects iff it is globally epimorphic

in Ĉ. The small site of C is Ĉ and the previous remark show that the topology is

the canonical one, so SpecRight(C) is the topos Ĉ. Its category of points is that
of pro-objects of C.
SPECRight(C) is the topos of presheaves over CAT/C . Every object c ∈ C

define a point of Ĉ, the associated local object is C/c and the structural map
is C/c → C. Using a topological vocabulary, one can say that C/c is the right
localisation of C at c.

For the (Ini,DLFib) system the same reasonning leads a topology called the
left topology and to SpecLeft(C) being the topos Č.
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Analogy with the etale-proper duality. The pair of (Fin, LFib) and (Ini, RFib)
looks dual in the same sense that (Loc, Cons) and (Surj,Mono) or (IndEt,Hens)
and (IntSurj, IntClo) are in CRings. (Fin, LFib) is left generated by 1: [0]→
[1] and (Ini, RFib) is left generated by 0: [0] → [1], thinking of [1] = 0 → 1 as
a specialisation morphism, 0 is then generic point and 1 the closed point. With
this vocabulary a discrete right fibration lift any generisation of any object that is
lifted and so behave as an open map, and a discrete left fibration lift any speciali-
sation of any object that is lifted and so behave like a closed map. This situation
is to compare with the facts that Zariski open embeddings lift any generisation
of any point that is lifted and that closed embeddings lift any specialisation of
any point that is lifted.

Also, the generators Gm → A1 and {0} → A1 of the (Loc, Cons) and
(Surj,Mono) systems on CRings, which also are a generic point and a closed
point. However, seen geometrically in CRingso the generators are this time in
the right class.

Moreover in this case, Ĉ and Č have a duality pairing given by the coend:

Ĉ × Č −→ S

(F,G) 7−→
∫ C

F ×G

This pairing is moreover “exact” in the sense that the natural map

Ĉ → CAT (Č,S) is an equivalence on the subcategory of functors commuting

with all limits and Č → CAT (Ĉ,S) is an equivalence on the subcategory of
functors commuting with all colimits.

Is this a feature of the same duality? Does a similar pairing exist for spectra
of rings?

Locality properties between the two systems. Those two system have also some
compatibility conditions together. The left class of a factorisation system is not
in general stable by base change but Fin and Ini are stable by base change along
DLFib and DRFib respectively. This has an interesting consequence as a map
C → D can be characterized to be final iff its pull-back along every d\D → D for
some d ∈ D is final

d\C //

��

C

��
d\D // D.

Now this can be read using a topological langage: d\C is the localisation of C at

d in D̂ and being a final maps is a local property for the Right topology. Dually
of course, being initial is a local property for the Left topology. Also, these
topologies can be used to interpret Quillen’s theorem A and many definitions of
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[Ma1] as proving locality properties of some classes of functors with respect to
the left or right topology.

Groupoids. Restricted to the category of groupoids, DRFib and DLFib coincide
and define the class of coverings functors (discrete fibrations) and In and Fin
coincide too and define the class of connected functors. In fact both factorisation
systems restrict to the categrory of groupoids and define a factorisation system
compatible with weak equivalence such that, when groupoids are taken as models
for homotopy 1-types, it induces the 0-th Postnikov system of §3.9.5.

3.9.4. A dual topological realisation for simplicial sets. Let ∆ be the category of
finite (non empty) ordinals and order preserving maps. Writing [n] := (0 < 1
< · · · < n) for the (n + 1)th ordinal, a map u : [n] → [m] ∈ ∆ decomposes into
[n]→ [p]→ [m] where [n]→ [p] is a surjection and [p]→ [m] a monomorphism.
This factorisation system is left generated by the single map [1]→ [0].

The category SSets = ∆̂ of presheaves on ∆ is the category of simplicial sets,
objects of ∆ view in SSet will be noted ∆[n] and called simplices.

Lemma 3.17. If C is a full subcategory of a cocomplete category D, any unique
factorisation system C = (A,B) left generated by compact objects extend to a
unique unique factorisation system D = (A′,B′) such that A = A′ ∩ C and
A = A′ ∩ C.

Proof. Let G be a set of left generators, so B = G⊥ and A =⊥ B in C. We define
now B′ := G⊥ and A′ :=⊥ B′ in D. It is clear that C ∩B′ = B and so we have also
C ∩ A′ = A. Now the set of generators G can always be completed to satisfies
assumptions of prop. 3 so we only have to prove that the factorisation in D of a
map in C coincide with the factorisation in C, but this is obvious by unicity of
the factorisation. �

Corollary 5. The unique factorisation system (Surj,Mono) on ∆ can be ex-
tended to SSet in a system noted (Deg,NDeg).

A map in Deg will be called degenerated and a map in NDeg non degenerated.

Proposition 61. NDeg is the class of maps of simplicial sets u : Y → X sending
non degenerate simplices of Y to non degenerate simplices of X. In particular, a
map ∆[n]→ X is in NDeg iff it is a non degenerate simplex of X.

Proof. First we claim that a particular case of the factorisation is the one of the
Eilenberg-Zilber lemma saying that a map ∆[n] → X ∈ SSet factors through
a unique ∆[n′] where n′ ≤ n so that the map ∆[n] → ∆[n′] is a surjection and
∆[n′]→ X is a non degenerate simplex. So the simplex ∆[n]→ X is degenerated
iff n′ < n. Using this factorisation on the top and bottom arrows, we can develop
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any lifting square in

∆[n]
surj. //

surj.

��

∆[n′]
non deg.//

��

Y

��
∆[m]

surj.
// ∆[m′]

non deg.
// X

where ∆[n′]→ ∆[m′] is a surjection by cancellation. The map Y → X is orthog-
onal to surjection of simplices iff the map ∆[n′]→ ∆[m′] is an isomorphism. But
this condition says exactly that a non degenerated simplex of Y is send to a non
degenerated simplex of X. �

Raw spectrum. The finiteness context is taken to be the whole SSet.

Proposition 62. The only point is ∆[0].

Proof. It is easy to see that ∆[0] is a point. Reciprocally, a simplicial set X is
a point if Y → X ∈ NDeg every it admit a section. Applied to ∆[0] → X this
forces X to be ∆[0]. �

The set of points of an object X is exactly the set of vertices X. A family of
maps Ui → X ∈ NDeg is a point covering family iff it is surjective on vertices.
For any simplicial set X, the family of maps ∆[0] → X is the finest cover of X.
As a consequence, the only local simplex is ∆[0] (and of course every local object
is pointed local).

Proposition 63. SpecNDeg(X) ' SX0.

Proof. For any U → X, the nerve of the covering by simplices of U is constant
si a presheaf F : NDego/X −→ S is a sheaf for the factorisation topology iff

F (u : U → X) =
∏

x∈U0
F (u(x)). �

Simplectic Nisnevich Spectrum. To make this setting a bit more interesting, we
are going to make a Nisnevich localisation along the category ∆ of simplices. Cov-
ering families of the Nisnevich context ∆Nis :=(SSets=((Deg,NDeg), SSets,∆)
are families of maps Ui → X ∈ NDeg lifting not only vertices but any simplex
of X.

Lemma 3.18. The family of all maps ∆[n] → X ∈ NDeg for all n, is a Nis-
nevich covering family of X.

Proof. We need to prove that any ∆[m] → X factors through one of the
∆[n]→ X ∈ NDeg, but this Eilenberg-Zilber lemma. �

Corollary 6. Local objects of the Nisnevich context ∆Nis are simplices.
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Proof. By definition of the context, simplices are local. Reciprocally by
lemma 3.18 it is enough to use the family of all ∆[n] → X ∈ NDeg. Let
d : ∆[n] → X be a map of the family having a section s, s is in NDeg and so is
sd. But the only non degenerate endomorphism of δ[n] is the identity, so d is an
isomorphism. �

As a consequence, the set of points of the Nisnevich spectrum Spec∆,NDeg(X)
is the set of maps ∆[n] → X ∈ NDeg, i.e. the set of non degenerate simplices
of X.

Proposition 64. Let P (n) be the poset of faces of ∆[n]. Spec∆Nis(∆[n]) is the
topos of presheaves over P (n). In particular this is a spatial topos whose poset of
points is P (n).

Proof. For the first assertion, we just need to prove that the topology is trivial, but
any cover of ∆[m] admits a copy of ∆[m] so the identity is the finest cover. The
category of points is Pro(P (n)) which turns out to be equivalent to P (n). This
is a consequence of the fact that any functor f : I → P (n) where I is a filtered
category factors through a category J with a terminal object (hence every pro-
object will be representable). To see this it is enough to consider I to be a poset,
and a poset is filtered iff for any two objects i and j, there exists an object k and
two arrows k → i and k → j. If f : I → P (n) is a filtered diagram, f(i), f(j) and
f(k) are faces of ∆[n] and if f(i) is a vertex then necessarily f(k) = f(i) and
f(i) is a vertex of f(j). This implies that there can be at most one vertex of ∆[n]
in the image of f and this vertex is a terminal element for the image poset of f ,
proving our assertion. If no vertices are in the image of f , there can be at most
a single edge in the image of f which is then the terminal element of the image
poset. If no edges are in the image of f , one has to continue the same argument
with higher dimensional faces. �

Corollary 7. Spec∆Nis(X) is topological space such that any non-degenerate
∆[n]→ X is an open embedding.

Remark. The small Nisnevich spectra of a simplicial set X can be thought as a
geometric realisation of X as it is a spatial object that does not see the degenerate
part of X. This geometric realisation is such that any vertex of X is open in
Spec∆Nis(X) and as show the computation of Spec∆Nis(∆[n]), it can be thought
as a cellular complex dual of the usual geometric realisation (use for example in
the theory of Poincaré duality).

This “duality” raises the question of the existence of another factorisation sys-

tem on ∆̂ for which the small spectra of a simplicial set would be (a combinatorial
form of) the usual geometric realisation. Unfortunately, for this realisation, the
only open of a n-simplex would be the cell of dimension n but such a cell without
its boundary is not a simplicial object. In fact, ordinary geometric realisation
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being constructed by glueing along closed subsets, they are not local for the
topology of the realisation and toposic techniques do not seem relevant here.

3.9.5. Postnikov factorisation systems in Hot. We present here a situation that
is not an example our setting but an example of a natural generalisation to
(∞, 1)-categories and homotopically unique factorisation systems.

If C is an (∞, 1)-category, a homotopically unique factorisation system is still
the data of two classes (A,B) factoring all maps but the axiom of unicity is
replaced by the higher analog: the∞-groupoid of maps between two factorisation
has to be contractible. We claim that our constructions of the small and big
spectra generalize, but they are now ∞-toposes [Re, HAG1, Lu].

We are going to sketch the study of the Postnikov factorisation systems in
the case of the (∞, 1)-category H of homotopy types. But it could be any
(∞, 1)-topos. Fix n ∈ N ∪ {∞}. A type X is said to be n-truncated if all
its homotopy invariants of rank > n are trivial. A map X → Y is said to be
n-truncated if all its homotopy fibers are n-truncated. The class of n-truncated
maps is noted n-Trunc. A map X → Y is said to be n-connected if it has the
left lifting property with respect to n-truncated maps. The class of n-connected
maps is noted n-Con.

Proposition 65. n-Con and n-Trunc are respectively the left and right class of
a unique factorisation system on Hot.

Proof. This just a reformulation of the relative theory of Postnikov towers: any
map X → Y factors as X → PnX → Y where PnX → Y is n-truncated and is
a homotopical terminal object for the category of all factorisation X → Z → Y
where Z is n-truncated. �

P ∈ Hot is a point iff every n-truncated map Y → P , with Y 6= ∅ admits a
section. This is equivalent to P being n-connected (having no homotopy invari-
ants of rank ≤ n). Then one can show that a family Ui → X of n-truncated
map is a cover iff it is surjective on connected components. The small site of X
is the (∞, 1)-category Πn(X) (in fact an (n, 1)-category) of all n-truncated maps
over X, this is an n-topos in the sense of [Lu, 6.4] and the factorisation topology
coincide with the canonical topology, so the small spectrum of X is the n-topos
Πn(X). Higher Galois theory says that n-truncated coverings of X depend in
fact only of the nth stage Pn(X) of the Postnikov tower of X → ∗, i.e. Πn(X) is
the topos of representations of the n-groupoid Pn(X).

In the case of the category H of homotopy types, the case n =∞ is trivial as
the small spectrum of X is the ∞-topos H/X . But in the general case of T a
non t-complete ∞-topos [Re, HAG1, Lu], the case n =∞ of the small spectrum
gives the t-completion of T/X .

Introducing some finiteness contexts can also give some known features. Any
kind of condition on the homotopy invariants of the homotopy fibers of maps ofH
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will create a finiteness context (that may not be compatible). For example if we
looked at maps whose homotopy fibers have finitely many non trivial homotopy
invariants and if those invariants have an underlying finite set, the associated
small spectra are the toposes of representations of the profinite completions of
the n-groupoids Pn(X). If we look at maps whose homotopy fibers have homotopy
invariants that are p-groups, the associated small spectra should be the toposes
of representations of the p-completions of the n-groupoids Pn(X).
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des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math. 32 (1967).
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