
MONOPOLES IN ARBITRARY DIMENSION

PABLO DÍAZ AND JOAN-ANDREU LÁZARO-CAMÍ

Abstract. A self-contained study of monopole configurations of pure Yang-
Mills theories and a discussion of their charges is carried out in the language
of principal bundles. A n-dimensional monopole over the sphere Sn is a par-
ticular type of principal connection on a principal bundle over a symmetric
space K/H which is K-invariant, where K = SO(n + 1) and H = SO(n).
It is shown that principal bundles over symmetric spaces admit a unique K-
invariant principal connection called canonical, which also satisfy Yang-Mills
equations. The geometrical framework enables us to describe their associated
field strengths in purely algebraic terms and compute the charge of relevant
(Yang-type) monopoles avoiding the use of coordinates. Besides, two correc-
tions on known results are performed in this paper. First, it is proven that
the Yang monopole should be considered a connection invariant by Spin(5) in-
stead of by SO(5), as Yang did in his original article [Y78]. Second, unlike the
way suggested in [GT06], we give the correct characteristic class to be used to
calculate the charge of the monopoles introduced by Gibbons and Townsend.

1. Introduction

Monopoles in gauge theories have deserved a lot of attention since Dirac intro-
duced his magnetic monopole [D31], mainly due to the fact that monopoles carry
an intrinsically associated charge which only takes discrete values, something that
could easily explain the observable quantization of the charge in electromagnetic
theory. Recall that the Dirac monopole can be seen as a static singular solution
on R3 of a field theory with gauge group U (1). In practice, monopoles have
never been observed, and their existence is only justified from a theoretical point
of view in order to build a bridge between classical and quantum field theories.
After Dirac and the explosion of the popularity of gauge theories, there have been
other attempts to generalize the concept of monopole to different (non-abelian)
gauge groups in higher dimensions. Among them, [Y78] is one of the most cele-
brated generalizations.

One of the most remarkable aspects of monopoles is that their charge is related
to the topological properties of the underlying space and strongly depends on the
way the gauge potential is attached to it. In other words, monopoles cannot
be understood at a local level but their properties need to be described form
a global point of view. In particular, unless additional boundary conditions are
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required, there cannot exist monopoles in the Euclidean space Rn, n ∈ N, but,
on the contrary, monopoles exhibit a singularity at the origin 0 ∈ Rn, where the
charge is supposed to be. Therefore, 0 ∈ Rn needs to be removed. On the other
hand, it is widely known that the theory of principal bundles provides the most
satisfactory framework to study and develop gauge theories from a geometrical
(global) point of view (see [DV80], [B81], and [EGH80]). Although the reader is
supposed to be familiar with the geometrical framework of gauge theories, we are
going to recall in this paper the main features of principal bundles for the sake
of a clearer exposition.

If we restrict to pure Yang-Mills theories, the framework of principal bun-
dles over Rn\{0} seems to be the main mathematical tool to tackle monopoles.
However, the classification theory of principal bundles over paracompact mani-
folds ([M56a] and [M56b]) requires in general a rather sophisticated topological
machinery that we would like to avoid as much as possible. Since Rn\{0} is
homotopic to Sn−1, we can study principal bundles either over Rn\{0} or Sn−1

indistinguishably as far as the global properties of monopoles is concerned; for a
given gauge group G, principal bundles over Rn\{0} and Sn−1 are homomorphic
and their structure can be recovered from one to the other. Remember that two
principal bundles are called homomorphic is there exits a smooth map between
them equivariant with respect to the actions of the gauge group. The key point
is that Sn is a homogeneous space; for example, Sn ∼= SO(n+ 1)/SO(n), where
SO(n) denotes the special orthogonal group. Since such spaces and their associ-
ated structures have been extensively studied, a huge geometrical machinery is
consequently available to deal with them.

Using a geometrical language, gauge potentials and field strengths in gauge field
theories are described in terms of principal connections on principal bundles and
their curvature, respectively. On the other hand, the Chern-Weil homomorphism
provides a mechanism to associate to the curvature some de Rham cohomology
classes H2k(Sn) of even order, known as characteristic classes. Roughly speaking,
the Chern-Weil homomorphism allows us to remove the dependence of the field
strength on the gauge indices (or the color, in a physics language), which should
not appear in any observable physical quantity. In this context, a monopole
configuration on Sn is a principal bundle π : P → Sn with a principal connection
such that:

(i) There exists a characteristic class in Hn (Sn) whose integral over Sn is
different from zero. This means that we can associate a non-vanishing
charge to the monopole. As we will discuss in Section 5, there is no general
consensus on which topological invariant should represent the charge of
a monopole and some authors chose others. Observe that n needs to be
even in order to n/2 be an integer. That is, there will be no monopoles
in even (spatial) dimensions.
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(ii) The principal connection is SO(n+ 1) invariant. This property is usually
referred to as spherical symmetry of the monopole in the literature.
In particular, it implies that we need to be able to define an action of the
group of rotations of Rn+1 on our principal bundle so that the principal
connection is invariant with respect to it. This is not always possible, as
it actually happens for the Yang’s monopole, despite the explicit reference
to the SO(5) invariance Yang did in [Y78]. We will see that, in the Yang
case, spherical symmetry needs to be implemented through an action of
Spin(5) instead of SO(5), contrary to what was usually thought.

It is customary in gauge theories to give monopole configurations locally on
coordinate patches and then to impose some compatibility conditions where these
patches overlap. The use of coordinates is sometimes unavoidable in computa-
tions, but it is often very tedious. Fortunately, there are many features that
can be seen intrinsically. The purpose of our paper is to convey to the physics
community some of the global tools from differential geometry perfectly tailored
to study monopoles. The main contributions of this paper are the following:

1. We explicitly show that there exists a bijective correspondence between
principle bundles over the Euclidean space R2n+1\{0} and principal bun-
dles over the sphere S2n and their principal connections are Yang-Mills if
and only if they are Yang-Mills on the latter.

2. We will see that on S2n, seen as a symmetric space, only the so-called
canonical connections are SO(2n+1)-invariant. Moreover, it is proved (see
Proposition 11) that they automatically satisfy the Yang-Mills equations.

3. Despite the widely spread idea that the Yang monopole on S4 is SO(5)
invariant, it is shown that the concept of spherical symmetry needs to
be implemented by its universal covering group Spin(5). This is because
there does not exist any principal bundle with structural group SU(2)
admitting a (left) SO(5) action. When describing the monopole on S4 by
means of local sections as Yang did, Spin(5) acts through SO(5), which
explains why such a confusion arises.

4. We make precise some of the results about monopole configurations found
in the literature. Explicitly, in Section 6 we discuss that the charge of the
monopoles over S2n with gauge group SO(2n), n > 2, recently intro-
duced in ([GT06]) can only be implemented through the so-called Euler
class. Although, broadly speaking, the main ideas behind Gibbons and
Townsend SO(2n)-monopoles do not differ too much from ours, the way
they introduce the field strength and the charge of the monopole is im-
precise and leads them to assert wrong statements. We fix this point by
clarifying the way to define properly these concepts in geometrical terms.

5. We give a depiction of monopoles on homogeneous symmetric spaces only
in algebraic terms (Section 4). More concretely, if π : P → K/H is a prin-
cipal bundle over a symmetric Lie space related to a monopole with gauge
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group G, K and H ⊂ K two Lie groups, then a monopole is completely
described in terms of the Lie algebras k, h, and g. This simplifies a lot
the amount of manipulations needed to compute any relevant quantity
associated to monopoles (no local coordinates are needed) and, what is
more important, allows us to go from a geometrical framework to an alge-
braic one which, in practice, makes quantities computable. For example,
we show in Section 4 and 5 that field strengths and Chern classes can be
easily computed for monopoles without much effort.

6. We clarify the structure of monopole configurations from a geometrical
point of view. This means that our approach is global as we try to em-
phasize the intrinsic nature of the structures involved in such configura-
tions and, consequently, avoid using local coordinates. As we said, this
approach seems to be suitable since the properties of monopoles are topo-
logical.

7. We gather some results on principal bundles over homogeneous spaces
which have appeared since the late 1950’s and make them available to
physicists interested in monopoles. Although they are widely known
among geometers, there still exists surprisingly some confusion in the
community about the precise meaning of some concepts such as spheri-
cally symmetric potentials, for instance, or the relationship between the
charge of a monopole and the topological invariants of a principal bundle
expressed by the Chern-Weil homomorphism.

The paper is structured as follows: in Section 2, we recall on the one hand
the main geometric tools of principal bundles emphasizing their importance in
gauge theories and, on the other, we proof that principal bundles over S2n and
R2n+1\{0} can be recovered ones from the others. In Section 3, we introduce
homogeneous principal bundles Pλ → K/H over homogeneous spaces. These
bundles, which admit a left action by the Lie group K, are the geometric back-
ground for monopole configurations. We characterize the principal connections
(gauge potentials) ω ∈ Ω1 (P ; g) which are invariant by K and show that, when
K/H is a symmetric space, there exists a unique connection with these properties.
We present in Section 4 an explicit procedure to give the spherically symmetric
field strengths Ωω associated to monopole configurations in terms of the Lie al-
gebras of the groups involved. This procedure is implemented in some examples.
In Section 5, we recall the Chern-Weil homomorphism, a mechanism to associate
some de Rham cohomology classes of S2n to the field strength Ωω of Pλ → S2n.
We also show how to define the charge of a monopole from these classes using the
algebraic description of Ωω given in Section 4. Finally, in Section 6, we apply the
tools developed throughout the paper to revise the classical examples by Dirac
and Yang, and the more recent monopoles introduced by Gibbons and Townsend
([GT06]).
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Notation: All manifolds M in this paper will be of class C∞. The set of smooth
vector fields on M will be denoted by X (M) and the set of differential forms by
Ω (M). If M and N are two manifolds, the tangent map of a smooth function
F : M → N at a point m ∈ M between the tangent spaces TmM and TF (m)N of
M and N at m ∈ N and F (m) respectively will be denoted by TmF . The symbol
d will be reserved for the exterior differential d : Ω (M) → Ω (M). If V is a real
vector space, Λ (V ) = ⊕k≥0Λk (V ) will be the space of multilinear alternating
maps from V to R. On the other hand, Sn will denote the symmetric group
of order n ∈ N and |σ| = ±1 the parity of a permutation σ ∈ Sn. The wedge
product of two forms α ∈ Ωk(M) and β ∈ Ωl (M) is defined as

(α ∧ β) (X1, . . . , Xk+l)

=
1

k!l!

∑
σ∈Sk+l

(−1)|σ| α
(
Xσ(1), . . . , Xσ(k)

)
β
(
Xσ(k+1), . . . , Xσ(k+l)

)
,

{X1, . . . , Xk+l} ⊂ X (M), and the differential dα satisfies

dα (X1, . . . , Xk+1) =
k∑
i=1

(−1)i+1 α
(
X1, . . . , X̂i, . . . , Xk+1

)
+∑

i<j

(−1)i+j α
(

[Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xk+1

)
.

It is worth noticing that, in the literature, some authors sometimes use different
factors in these expressions.

2. Geometric preliminaries

We recalled in the introduction that principal bundles over R2n+1\{0} and S2n

are in a bijective correspondence. In this section, we are going to give more details
about how this bijection works. The idea is to use it in subsequent sections to
switch from R2n+1\{0} to S2n and take advantage of the geometric tools available
when S2n is considered as a homogeneous space. Moreover, we want to see that, if
a principal connection on S2n satisfies the Yang-Mills equations, so does the cor-
responding induced connection on R2n+1\{0}. The rest of this section is devoted
to recalling the basics of gauge theories such as principal connections (Subsec-
tion 2.2) and the Hodge operator (Subsection 2.3). After introducing Yang-Mills
connections, we will conclude the section by seeing that a principal connection
is Yang Mills on S2n if and only if it is Yang-Mills on the corresponding bundle
over R2n+1\{0} (Proposition 1).

2.1. Correspondence between principal bundles over R2n+1\{0} and S2n.
Let π : P → M be a principal bundle with structural group G over a manifold
M and right action R : G × P → P . Let f : N → M a smooth function from a
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manifold N to M . The pull-back of π by f is a fiber bundle over N defined as

f ∗ (P ) = {(p, x) ∈ P ×N | π (p) = f(x)}
π : f ∗ (P )→ N , π ((p, x)) = x.

With the natural right action (p, x) · g = (Rg(p), x), g ∈ G, inherited from
π : P →M , it is easy to verify that π : f ∗ (P )→ N is indeed a principal bundle.
An important result is that, if f, h : N → M are two homotopic smooth maps,
then the pull-backs f ∗ (P ) and h∗ (P ) are isomorphic (see [I89, page 121],[M01]),
that is, there exists a map F : f ∗ (P )→ h∗ (P ) over the identity on N such that
F (z · g) = F (z) · g for any z ∈ f ∗ (P ). This rather simple result allows us to
explicitly draw the bijection between principal bundles over R2n+1\{0} and S2n,
respectively. Indeed, let π : P → R2n+1\{0} be a principal bundle and let P |S2n

be the restriction of P to S2n, which coincides with the pull-back of P by the
inclusion of the sphere into R2n+1\{0} ([I89, page 120]). On the other hand, the
map

f : R2n+1\{0} −→ S2n ⊂ R2n+1\{0}
x 7−→ x

‖x‖ ,
(2.1)

is homotopic to the identity Id: R2n+1\{0} → R2n+1\{0}, where ‖x‖ =√∑2n+1
i=1 (xi)2 denotes the Euclidean norm. Therefore, the principal bundles

f ∗ (P ) and P are isomorphic. But clearly f ∗ (P ) = f ∗ (P |S2n). So we conclude
that principal bundle structures on S2n are induced by restriction from those on
R2n+1\{0} and, conversely, that principal bundles over S2n induce principal bun-
dles over R2n+1\{0} by means of (2.1), both procedures being commutative. As
a consequence, we can study monopole configurations on the sphere S2n and then
pull them back onto R2n+1\{0} using the projection (2.1). Before that, we will
continue recalling more geometric ingredients of gauge theories; concepts that
are quite common for physicists in the context of Riemannian geometry but less
known in more general principal bundle framework.

2.2. Principal connections. Let π : P → M be a principal bundle with struc-
tural group G. A principal connection ω ∈ Ω1 (P ; g) is a one form on P with
values in the Lie algebra g of G such that

R∗g ω = Adg−1 ω, (2.2a)

ω(p)

(
d

dt

∣∣∣∣
t=0

Rexp(tη)(p)

)
= η (2.2b)

for any g ∈ G, p ∈ P , and η ∈ g. In this expression Ad denotes the adjoint
representation of G on g and exp: g→ G the usual exponential map. We will de-
note the vector field d

dt

∣∣
t=0

Rexp(tη) simply by ηP , η ∈ g. Any principal connection

ω ∈ Ω1 (P ; g) defines the horizontal space Horp = kerω at any p ∈ P such that
TpP = Horp⊕Verp, where Verp ⊂ TpP is the vertical space Verp = kerTpπ. An
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arbitrary form is called horizontal if it vanishes when contracted with vector
fields in the vertical space.

Given a g valued r-form ϕ ∈ Ωr (P, g) on a principal bundle π : P → M and
a principal connection ω ∈ Ω1 (P, g), the covariant derivative Dωϕ of ϕ is
defined at any point p ∈ P as Dωϕ(p) := dϕ|Hp . That is, we calculate the
standard exterior differential of ϕ and then we restrict it to the horizontal space.
In particular, the curvature of the connection is Ωω := Dωω. When regarded
as a potential, we will usually refer to the curvature as the field strength. It is
customary to find the curvature in the literature written as Ωω = dω + 1

2
[ω, ω].

This is the so-called structural equation. If ϕ ∈ Ωr (P, g) and ψ ∈ Ωk (P, g),
the bracket [·, ·] is defined as

[ϕ, ψ] (X1, . . . , Xr+k)

=
1

r!k!

∑
σ∈Sr+k

(−1)|σ| [ϕ
(
Xσ(1), . . . , Xσ(r)

)
, ψ
(
Xσ(r+1), . . . , Xσ(r+k)

)
]g.

In this equation, the bracket [·, ·]g is that of the Lie algebra, X1, . . . , Xr+k ⊂ X (P )
are arbitrary vector fields on P , and Sr+k denotes the permutation group of r+k
elements.

2.3. The Hodge operator and Yang-Mills connections. Given a principal
bundle π : P → M with structural Lie group G, the adjoint bundle Ad (P )
is the associated bundle P ×Ad g. That is, the space of equivalent classes of
P × g under the equivalence relation (p, ξ) ∼ (Rg(p),Adg−1 ξ), p ∈ P , ξ ∈ g,
and g ∈ G. It is a rather standard result in differential geometry (see [M07,
Theorem 19.14]) that the space Ωequiv(P ; g)Hor of horizontal g-valued forms on P
which are G-equivariant by (2.2a) can be identified with the space Ω (M ; Ad (P ))
of Ad (P )-valued differential forms on the base manifold M . This identification
works as follows: having a (principal) connection ω ∈ Ω1 (P ; g) amounts to having
a splitting of the exact short sequence

0 −→ Vp −→ TpP
xΓp−→ Tπ(p)M

at any point p ∈ P such that X = Γp (Tpπ(X)) ∈ Horp for any X ∈ TpP .
Thus, we naturally associate to any ϕ ∈ Ωr(P ; g)Hor the Ad (P )-valued form
ϕ̃ ∈ Ωr (M ; Ad (P )) such that

ϕ̃(m) (Y1, . . . , Yr) = [p, ϕ(p) (Γp (Y1) , . . . ,Γp(Yr))]
∼ (2.3)

for any Y1, . . . , Yr ∈ X (M). In (2.3), p ∈ π−1(m), and the bracket [·, ·]∼ denotes
the equivalent class of a point (p, ξ) ∈ P × g into P ×Ad g. It is not difficult to
check that (2.3) does not depend on the choice of the fiber point p ∈ π−1(m).

Suppose now that M is a n-dimensional Riemann manifold with Riemannian
volume form µ ∈ Ωn (M) and we have a Ad-invariant metric h on g. For example,
h could be taken to be (minus) the Killing-Cartan form if G was a semi-simple
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compact Lie group. Recall that the inverse of the Riemann metric on M can be
used to define a C∞ (M)-bilinear pairing

〈·, ·〉M : Ωq (M)× Ωq (M) −→ C∞ (M) , q ∈ N,
([B81, Chapter 0]). On the other hand, h induces a metric on the fibers of the
vector bundle P ×Ad g→M in a standard way. We keep on denoting this metric
by h. Both 〈·, ·〉M and h applied together define a C∞ (M)-bilinear product

〈·, ·〉 : Ωq (M ; Ad (P ))× Ωq (M ; Ad (P )) −→ C∞ (M) .

Additionally, the induced metric h allows us to define a wedge pairing

∧ : Ωr (M ; Ad (P ))× Ωq (M ; Ad (P )) −→ Ωr+q (M)

via the equality

(ϕ ∧ ψ)(m) (Y1, . . . , Yr+q)

:=
1

r!q!

∑
σ∈Sr+q

(−1)|σ|hm
(
ϕ
(
Yσ(1), . . . , Yσ(r)

)
, ϕ
(
Yσ(r+1), . . . , Yσ(r+q)

))
for any ϕ ∈ Ωr (M ; Ad (P )), ψ ∈ Ωq (M ; Ad (P )), and any Y1, . . . , Yr+q ∈ X (M).
More importantly, there is a natural operator called the Hodge operator

∗ : Ωr (M ; Ad (P )) −→ Ωn−r (M ; Ad (P ))

characterized by the relation

θ ∧ ∗ϕ = 〈θ, ϕ〉µ ∈ Ωn (M)

for any ϕ ∈ Ωr (M ; Ad (P )) and any θ ∈ Ωn−r (M ; Ad (P )). The Hodge operator
defines the inner product

(θ, ϕ) :=

∫
M

θ ∧ ∗ϕ =

∫
M

〈θ, ϕ〉µ

provided this integral exists. Finally, given ω ∈ Ω1
equiv (P ; g), the covariant

codifferential δω is defined by

δωϕ = −(−1)n(r+1) ∗ ◦Dω ◦ ∗ϕ ∈ Ωr−1
equiv(P ; g)Hor, ϕ ∈ Ωr

equiv(P ; g)Hor,

where we have used the identification Ω (M ; Ad (P )) = Ωequiv(P ; g)Hor in order
to apply the Hodge operator to a g-valued horizontal form on P .

In a pure Yang-Mills theory, the Yang-Mills functional YM associates to
any principal connection ω ∈ Ω1 (P ; g) the real number

YM (ω) := (Ωω,Ωω) =

∫
M

Ωω ∧ ∗Ωω.

Roughly speaking, the Yang-Mills functional gives a measure of the total cur-
vature of the principal connection ω. Critical points of the functional, the so
called Yang-Mills connections, are the most important for physical purposes
because their corresponding field strengths model physical interactions in gauge
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theories. A classical result shows that ω ∈ Ω1 (P ; g) is a Yang-Mills connection
if and only if

δωΩω = 0 (2.4)

(see [B81, Theorem 5.2.3] for a modification of (2.4) in the presence of currents).
Now, suppose that ω ∈ Ω1 (P ; g) is a Yang-Mills connection of some bundle

π : P → S2n. We have already argued that the map (2.1) can be used to define
principal bundle structures on R2n+1\{0} from those on S2n. Let F : f ∗ (P )→ P
be the bundle homomorphism from the pull-back of π by f : R2n+1\{0} → S2n

given in Equation (2.1). The next proposition, whose proof can be found in the
Appendix, shows that the principal connection F ∗ (ω) ∈ Ω1 (f ∗ (P ) ; g) on f ∗ (P )
is also Yang-Mills.

Proposition 1. Let π : P → S2n be a principal bundle with structural group G
and let ω ∈ Ω1 (P ; g) be a principal connection. Let f : R2n+1\{0} → S2n be as
in (2.1) and F ∗ : f ∗ (P )→ P the corresponding principal bundle homomorphism.
Then

δF
∗(ω)ΩF ∗(ω) = − 1

π∗ (r2)
F ∗ (δωΩω) ,

where r ∈ C∞ (R2n+1\{0}) is the radius function r (x) = ‖x‖, x ∈ R2n+1\{0}.
In particular, ω is a Yang-Mills connection if and only if F ∗ (ω) is a Yang-Mills
connection.

3. Principal bundles over homogeneous spaces

The aim of this section is to introduce the main geometrical ingredients to study
gauge theories over homogeneous spaces. Since we are interested in gauge theo-
ries over the n-dimensional sphere Sn = SO(n + 1)/SO(n). However, among all
the possible principal bundle structures over Sn, we need to characterize those ad-
mitting a (left) SO(n+1)-action in order to talk properly about spherically sym-
metric quantities. This will be done in the first subsection. We will see that these
principal bundles can be labelled by a Lie group homomorphism λ : SO(n)→ G
from the isotropy group to the gauge group. Moreover, they can be understood as
homogeneous spaces themselves, a perspective that will be extremely fruitful. At
the end we will give a characterization of the four more relevant examples of our
study, the principal bundles which will correspond to Dirac, Yang, and Gibbons-
Townsend monopoles. Once we have learnt how to build such principal bundles,
we will characterize in Subsection 3.2 the principal connections (gauge potentials)
which are invariant by the rotations group in terms of linear maps W : so(n)→ g
satisfying some compatibility conditions. Finally, in Subsection 3.3, we introduce
symmetric spaces, a particular subclass of homogeneous spaces whose Lie algebra
can be suitably decomposed. For example, the sphere Sn is a symmetric space.
Over them, we will show that there exists a unique SO(n+ 1)-invariant principal
connection; that is, a monopole potential one-form. This means that requiring
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a principal bundle to admit a SO(n + 1)-action equals to having an essentially
unique spherically symmetric configuration on it.

3.1. Homogeneous principal bundles. Let K and G be two Lie groups and
H ⊂ K a closed subgroup. A homogeneous principal bundle π : P → K/H
with structural group G is a principal bundle over a homogeneous space K/H
together with a left K-action on P by automorphisms which projects to the
left multiplication of K on the base manifold K/H. According to [HSV80] and
[W58], homogeneous principal bundles π : P → K/H with structural group G
are (modulo isomorphisms) in one-to-one correspondence with group homomor-
phisms λ : H → G (modulo conjugation) so that π : P → K/H is isomorphic to
the associated bundle Pλ := K ×H G; that is, the space of orbits of the right
action

Ψλ : (K ×G)×H −→ K ×G
((k, g) , h) 7−→ (kh, λ(h)−1g) .

(3.1)

Denoting the elements p of Pλ as equivalent classes, p = [k, g]∼ such that k ∈ K
and g ∈ G, the projection π is simply given by [k, g]∼ 7−→ kH ∈ K/H. If
p ∈ π−1 (o) is some point in the equivalence class o ∈ K/H of e ∈ K, the
homomorphism λ : H → G can be understood by the relation

h · p = p · λ(h), h ∈ H,
where the dot · denotes the left action of K or the right action of G on Pλ
respectively. We encourage the reader to check with [M07] for a brief review on
the basic facts about associated bundles.

Furthermore, Pλ can be also seen as the homogeneous space (K ×G)/ H̃, where

H̃ is the closed subgroup H̃ = {(h, λ(h)) | h ∈ H} ⊂ K × G, clearly isomor-
phic to H: that is why the principal bundles Pλ are called homogeneous. The
isomorphism works as follows:

Υ : (K ×G)/ H̃ −→ Pλ
(k, g) 7−→ [k, g−1]∼,

(3.2)

where (k, g) and [k, g−1]∼ denote the equivalent class of (k, g) ∈ K × G in

(K ×G)/ H̃ and Pλ respectively.
Finally, we fix some notation for later convenience. The left action LPλ : K ×

Pλ → Pλ and a right action Rλ : G × Pλ → Pλ that we have on a homogeneous
principal bundle are respectively given by

(Lλ)k̄ ([k, g]∼) = [k̄k, g]∼ and (Rλ)ḡ ([k, g]∼) = [k, gḡ]∼, (3.3)

where g, ḡ ∈ G, k, k̄ ∈ K.

Remark 2. In the general classification theory of bundles, two principal bundles
with the same base manifold and the same structural group are called equivalent
if there exists a homomorphism between them which projects onto the identity
map on the basis. When the base manifold is the n-dimensional sphere Sn, such
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equivalence classes are in bijection with the elements of the homotopy group
πn−1(G) provided the gauge group G is connected (see [S51]). Take for example
n = 3 and G = SO(3). Since π2 (SO(3)) = 0, we know that, essentially, there
exists a unique principal bundle over S3 with structural group SO(3). Namely,
π : SO(4) → S3 = SO(4)/SO(3). Therefore, π : SO(4) → S3 is trivializable
and SO(4) is diffeomorphic to SO(3) × S3. However, they are not isomorphic
as Lie groups (see Proposition 14). On the other hand, there exist at least
two homomorphisms λ : SO(3) → G = SO(3) which are not conjugated: the
trivial homomorphism λ (h) = e ∈ SO(3) for any h ∈ SO(3), and the identity
homomorphism, λ = Id. So, according to what we have said so far, there exist
two different principal bundles over S3 with gauge group SO(3) admitting a left
action of SO(4). Is this a contradiction? The answer is no. Everything relies on
the notion of equivalence of principal bundles we use. In general, when we forget
about the SO(4)-left action, there always exists a fiber preserving diffeomorphism
between two any principal bundles over S3. But my notion of equivalence changes
when SO(4) acts upon our principal bundles in the way we stated. Then, the
previous diffeomorphism needs to be also equivariant with respect to the two
SO(4) actions, a requirement that prevents some bundles from being equivalent.
In other words, we can define at least two different SO(4)-left actions on the
unique principal bundle over S3 with gauge group SO(3) in a non-equivalent way.

Remark 3. The theory of equivariant principal bundles tries to describe
those principal bundles π : P → M with structural Lie group G such that both
P and M are left acted upon another Lie group K such that the projection
π is K-equivariant and the actions of K and G commute. This is a much more
general framework that reduces to ours when M = K/H is a homogeneous space,
where H ⊆ K is a closed Lie subgroup. Under some general assumptions and in
particular for the case Sn = SO(n+ 1)/SO(n), n ≥ 3, it can be checked that the
number of isomorphic principal bundles π : P →M with structural group G over
a left K-manifold M is finite provided that G is compact and the isotropy groups
Km are semi-simple, m ∈ M ([HH03, Corollary 8.6]). In particular, the number
of principal bundles over Sn, n ≥ 3, with structural group G compact admitting
a SO(n+ 1)-left action is finite.

Examples 4. Let R(n,G) be the set of smooth homomorphisms from SO(n)
to G modulo conjugation by elements of G. We will describe R(n,G) for some
values of n ∈ N and some Lie groups G that will allow us to study later on some
of the monopole configurations found in the literature (see [HH03] and references
therein).

(i) n = 2 and G = U(1). Given that SO(2) = U(1), the set of homomor-
phisms R(2, U(1)) is λ : U(1) → U(1) modulo conjugation. It is well
known that such a set can be labelled by Z, the set of integers. Regarding
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U(1) = {eiz : z ∈ [0, 2π)}, we can chose the homomorphisms

λm : U(1) −→ U(1)
eiz 7−→ (eiz)

m
= eizm ,

m ∈ Z,

as representatives of the equivalent classes of R(2, U(1)).
(ii) n = 4 and G = SO(3). The algebra of quaternions H is usually de-

fined abstractly as a 4-dimensional real vector space with a multiplication
(x, y) 7→ xy, x, y ∈ H, which satisfies the usual associative and distribu-
tive laws and with a distinguished basis {1, i, j,k} satisfying the following
commutation relations

i2 = j2 = k2 = −1

ij = −ji = k, jk = −kj = i, ki = −ik = j.

The modulus of a quaternion x = x01 + x1i + x2j + x3k is |x| =

(x2
0 + x2

1 + x2
2 + x2

3)
1/2

. The set of unit quaternions S3 := {x ∈ H | |x| =
1} is isomorphic to SU(2) and homeomorphic to the 3-sphere S3 ⊂ R4

([N97, Theorem 1.1.4]). Moreover, S3×S3 is the universal covering group
of SO(4) ([M07, Example 4.32]) so that

SO(4) ∼=
(
S3 × S3

)
/{(1,1), (−1,−1)}.

On the other hand, S3 = SU(2) is the universal covering group of SO(3) ∼=
S3/{±1}. The set R(4, SO(3)) contains three elements: the trivial ho-
momorphism and those induced from the projections S3×S3 → S3 given
by σ1 (x, y) = x and σ2 (x, y) = y.

(iii) n = 4 and G = SO(4). Using the identification

SO(4) ∼=
(
S3 × S3

)
/{(1,1), (−1,−1)}

as in (ii), the set R(4, SO(3)) contains five elements: the trivial ho-
momorphism, the identity Id: SO(4) → SO(4), which give rise to the
principal bundle SO(5) → SO(5)/SO(4), and three homomorphisms in-
duced by the maps σ3, σ4, δ : S3× S3 → S3× S3 given by σ3(x, y) = (x, x),
σ4 (x, y) = (y, y), and δ (x, y) = (y, x).

(iv) n = 2k ≥ 6 and G = SO(2k), k ∈ N. The set R(2k, SO(2k)) contains
three elements: the trivial homomorphism, the identity Id:
SO(2k) → SO(2k), whose associated principal bundle is SO(2k + 1) →
SO(2k + 1)/SO(2k), and the conjugation δ by the diagonal matrix
(−1, . . . ,−1, 1). Observe that δ ∈ O(2k) but δ /∈ SO(2k). �

3.2. Invariant principal connections. Let π : P → K/H be a homogeneous
principal bundle as in the previous subsection. We say that a principal connection
ω is K-invariant if (Lλ)

∗
kω = ω for any k ∈ K. One can prove that, if k, h, and g

denote the Lie algebra of K, H, and the gauge group G respectively, K-invariant
principal connections on π : Pλ → K/H are in one-to-one correspondence with
linear maps W : k→ g such that
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(i) W (ξ) = Teλ (ξ) for any ξ ∈ h,
(ii) W (Adh ξ) = Adλ(h) (W (ξ)) for any ξ ∈ k and any h ∈ H.

(see [W58], [KN69a]). From now on, we are going to refer to these linear maps
W as Wang maps. Given a Wang map W : k → g, the principal connection
ω ∈ Ω1(Pλ; g) is given by

ωpo(ξPλ) = W (ξ) (3.4)

where ξ ∈ k, o denotes the equivalent class of e ∈ K in K/H, po ∈ π−1(o) is
any arbitrary point on the fiber of o ∈ K/H, and ξPλ is the vector field induced
on Pλ by the K-action ([KN69a, Theorem 11.5]). Observe that, since ω is K-
invariant and G acts transitively on the fibers of Pλ, (3.4) and (2.2a) characterizes
ω completely.

One of the most important examples of homogeneous spaces are those called
reductive. Recall that a homogeneous space K/H is called reductive if the
Lie algebra k can be written as k = h ⊕ m and Adh (m) ⊆ m. For a reductive
homogeneous space K/H, the linear map W : k → g defined as W|h = Teλ and

W|m = 0 is called the canonical connection.

Example 5. It can be shown that the principal H-bundle K → K/H admits a
K-invariant connection if and only if K/H is reductive ([KN69a, Theorem 11.1]).
The canonical connection ω ∈ Ω1 (K, h) on K → K/H is given by the h-valued
part of the Maurer-Cartan form ωMC which is defined by ωMC(k) (ξK(k)) =
ξ ∈ k, k ∈ K. That is, ω(k)(ξK(k)) = projh(ξ). �

Principal connections can be used to induce connections on associated bundles
(see [M07, 19.8] and subsequent sections for a general approach to this subject).
The details of this mechanism and the proof of the following proposition, that
we include here for the sake of a more complete exposition, are postponed to
the Appendix A.2. The proposition claims that the principal connection of Pλ is
induced from that of K → K/H whenever K/H is reductive. Although it can
be found in the literature, its proof is frequently omitted, so we decided to prove
it ourselves explicitly.

Proposition 6. Let K/H be reductive. Then, the canonical connection on Pλ is
induced from the canonical connection of K → K/H.

3.3. Symmetric spaces. We are now going to describe invariant connections
over a particular class of homogeneous spaces: symmetric spaces. Symmetric
spaces are usually presented in the context of Riemannian geometry. Most of
the content of this subsection is extracted from [KN69b], which the reader is
encourage to check with. We will see that, over a symmetric space K/H, the
canonical connection is the unique principal connection which is K-invariant.
Since the sphere Sn is a symmetric space, it means that there will exist a unique
monopole configuration on any homogeneous principal bundle over Sn.
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Let M be a n-dimensional Riemann manifold with an affine connection ∇,
that is, a connection in the frame bundle. Let U ⊆ M be an open neighbor-
hood, x ∈ U a fixed point, and Xx ∈ TxM . Denote by exp (Xx) the value
of the geodesic γ (t) at time t = 1 which satisfies γ (0) = x, γ̇ (0) = Xx.
This value exists for Xx in a suitable small neighborhood of 0 ∈ TxM . A
diffeomorphism ϕ : M → M is called an affine transformation if it is a
diffeomorphism and Tϕ : TM → TM maps each parallel vector field along a
curve τ : (−ε, ε) → M , ε > 0, into a parallel vector field along the curve ϕ(τ).
A symmetry sx at a point x ∈ U is a diffeomorphism of U onto itself which sends
exp (Xx) into exp (−Xx). Observe that a symmetry sx is involutive: sx ◦ sx = Id.
If there exists an affine transformation sx for any x ∈ M , then M is said to be
affine locally symmetric. M is said affine symmetric if the symmetry sx
can be extended to a global affine transformation of M for any x ∈M .

The group of affine transformations of an affine symmetric manifold M is a
Lie group which acts transitively on it ([KN69b, Chapter XI, Theorem 1.4]). If
K denotes the identity component of such group, then M = K/H, where H
denotes the subgroup of those affine transformations in K leaving a point o ∈M
fixed ([H78, Chapter IV, Theorem 3.3]). Taking this remark into account, we say
that a triple (K,H, σ) is a symmetric space if K,H are Lie groups, H ⊂ K,
σ : K → K is an involutive automorphism, and Ke

σ ⊆ H ⊆ Kσ. Here Kσ denotes
the set of elements of K which are invariant by σ and Ke

σ the identity component
of Kσ. In the case of an affine symmetric manifold M , the automorphism σ is
given by σ (k) = so ◦ k ◦ s−1

o where so is a symmetry at o. On the contrary, each
symmetry sx can be recovered from σ as sx = k ◦ so ◦ k−1, x ∈M . In general, so
is defined to be the involutive diffeomorphism of K/H onto itself induced by the
automorphism σ.

Example 7. The n-dimensional sphere Sn is a symmetric space. Indeed, if

K = SO (n+ 1) and o = (1, 0, n−2)... , 0) ∈ Sn ⊂ Rn+1, then

H =

(
1 0
0 SO(n)

)
∼= SO(n)

and Sn = SO(n+ 1)/SO(n). �

In terms of the Lie algebras k and h of K and H, respectively, a symmetric
space (K,H, σ) is described as follows. To start with, we see from the involutivity
of σ that Teσ : k→ k has eigenvalues +1 and −1. Then, the Lie algebra k can be
written as h⊕m, where h is the eigenspace associated to the eigenvalue 1 and m
is the eigenspace associated to −1. Moreover,

[h, h] ⊂ h, [h,m] ⊂ m, [m,m] ⊂ h

and AdH(m) ⊂ m ([KN69b, Chapter XI, Proposition 2.1 and 2.2]). That is,
symmetric spaces are reductive.
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When the gauge group G is a subgroup of GL (n; R), homogeneous principal
bundles Pλ → K/H can be regarded as subbundles of the frame bundle. This
is the case in our examples. Then, any K-invariant principal connection on
Pλ (i.e., a Wang map W : k → g ⊂ gl (n; R)) can be consequently considered
as K-invariant affine connection (i.e., a Wang map W : k→ gl (n; R)). The next
theorem is the most important as far as characterizing invariant affine connections
on symmetric spaces is concerned.

Theorem 8 ([KN69b, Theorem 3.1 and 3.3]). Let (K,H, σ) be a symmetric
space. The canonical connection is the only affine connection on K/H which
is invariant by the symmetries sx of M , x ∈ M . Furthermore, a K-invariant
(indefinite) Riemannian metric on K/H, if there exists any, induces the canonical
connection on M .

The previous theorem is important for the following reason. We defined
monopoles as those configurations invariant by SO(n) because elements of SO(n)
are physically relevant symmetries of our base space-time Rn\{0}. However, in
more general models, there may not exist any natural action of SO(n) onto the
base manifold M , which is supposed to be a Riemann manifold according to
General Relativity. In this case, the group of symmetries sx seems to be the
natural candidate to replace SO(n) in the definition of spherical symmetry. In
other words, we should require monopoles to be invariant by the symmetries sx,
x ∈M , instead of by SO(n).

Nevertheless, we are interested so far in connections which are invariant not
by the symmetries but by the action of K. As Laquer shows in [L92], except
for very concrete cases, the canonical connection is the unique affine connection
on a symmetric space (K,H, σ) which is K-invariant. Therefore, the unique
connection available to construct monopoles.

Theorem 9 ([L92, Theorem 2.1]). Let K be a simple Lie group and (K,H, σ) a
symmetric space. The set of K-invariant affine connections on K/H consists of
just the canonical connection in all cases except for the following:

SU (n) /SO(n) n ≥ 3,
SU(2n)/SP (n) n ≥ 3,

E6/F4.
(3.5)

Each of these spaces has a one-dimensional family of invariant affine connections.

4. The algebraic setting

In this section we are going to describe algebraically the space Ωequiv (Pλ; g)K

of g-valued forms which are G-equivariant in the sense of (2.2a) and K-invariant
by the left action Lλ (3.3). The field strength Ωω will be then a multilinear
map from k to g easily expressed in terms of the corresponding Wang map. Car-
rying out such identification is quite simple. Since two arbitrary points in Pλ
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are always linked by the composition of the actions of K and G on Pλ, any
α ∈ Ωequiv (Pλ; g)K is fully characterized by its values on a fixed point p ∈ Pλ.
Suppose that p ∈ π−1(o) is p = [e, e]∼ as in the proof of Proposition 6. Since the

isomorphism (3.2) allows us to identify TpPλ with (k×g)/h̃, it seems reasonable to

express Ωequiv (Pλ; g)K as a suitable set of forms defined on k× g satisfying some
restrictions. We will particularize in Subsection 4.2 the canonical field strengths
of the homogeneous principal bundles introduced in Examples 4, which will cor-
respond to the field strengths of Dirac, Yang, and Gibbons-Townsend monopoles.
Moreover, we will also prove that they satisfy the Yang-Mills connections (Propo-
sition 11) and, therefore, give rise to monopole configurations indeed.

First of all, observe that Ωequiv (Pλ; g)K coincides with the space of g-valued
forms forms on Pλ (K ×G)-equivariant with respect to the left (K ×G)-actions

Ψ : (K ×G)× Pλ −→ Pλ
((k, g) , [k2, g2]∼) 7−→ [kk2, g2g

−1]∼
(4.1)

and
ρ : (K ×G)× g −→ g

((k, g) , ξ) 7−→ Adg ξ.
(4.2)

That is, ϕ ∈ Ωequiv (Pλ; g)K if and only if Ψ∗(k,g) (ϕ) = ρ(k,g) ◦ ϕ for any (k, g) ∈
K ×G. On the other hand, if

Ψ̃ : (K ×G)× (K ×G)/ H̃ −→ (K ×G)/ H̃(
(k, g) , (k2, g2)

)
7−→ (kk2, gg2)

(4.3)

is the natural left action of K × G on the quotient space (K ×G)/ H̃, the iso-

morphism Υ: (K ×G)/ H̃ → Pλ introduced in (3.2) is such that the following
diagram commutes

Pλ
Ψ(k,g)−→ Pλ

Υ ↑ # ↑ Υ

(K ×G)/ H̃ −→eΨ(k,g)

(K ×G)/ H̃

for any (k, g) ∈ K ×G. Therefore, ϕ ∈ Ωequiv (Pλ; g)K if and only if

Ψ̃∗(k,g) (Υ∗ϕ) = ρ(k,g) ◦Υ∗(ϕ) = Adg ◦Υ∗(ϕ).

In this situation, provided that K × G is connected, one of the consequences of

[CE48, Theorem 13.1] is that the space Ωequiv((K ×G)/ H̃; g) of g-valued forms

on (K ×G)/ H̃ which are (K × G)-invariant with respect to the actions (4.3)
and (4.2) is isomorphic to the graded differential algebra Λeh (k× g; g), the space
of g-valued chains on k× g such that

(i) vanish on h̃ = {ξ ∈ h | (ξ, Teλ(ξ)) ∈ k× g} and
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(ii) if ϕ ∈ Λn (k× g; g), z, z1, . . . , zn ∈ k × g, z = (ξ, η), zi = (ξi, ηi) with
ξ, ξi ∈ k and η, ηi ∈ g for any i = 1, . . . , n, then

[Teλ(ξ), ϕ (z1, . . . , zn)] =
n∑
i=1

ϕ (z1, . . . , [z, zi], . . . , zn) , (4.4)

where [z, zi] = ([ξ, ξi] , [Teλ(ξ), ηi]) ∈ k× g.

Let
Φ : Ωequiv((K ×G)/ H̃; g) ∼= Λeh (k× g; g)

be the isomorphism between Ωequiv((K ×G)/ H̃; g) and Λeh (k× g; g). For ex-

ample, Φ sends a principal connection ω ∈ Ω1
equiv (Pλ; g) associated to a Wang

map W : k → g to the one chain W̃ : k × g → g given by W̃ (ξ, η) = W (ξ) − η,
ξ ∈ k, η ∈ g. We define the horizontal projector HorfW : k × g → k × g
as HorfW (ξ, η) = (ξ,W (ξ)) and the vertical projector VerfW : k × g → k × g
VerfW (ξ, η) = (0, η −W (ξ)). We made the dependence on the Wang map W ex-
plicit in order to distinguish these vertical and horizontal projectors from those
associated to TPλ and ω. In this context, the exterior differential operator
d : Λn (k× g; g)→ Λn+1 (k× g; g) is defined as

dϕ (z1, . . . , zn+1) =
n+1∑
i=1

(−1)i−1[ηi, ϕ (z1, . . . , ẑi, . . . , zn+1)]

+
∑
i<j

(−1)i+j ϕ (([ξi, ξj], [ηi, ηj]) , z1, . . . , ẑi, . . . , ẑj, . . . , zn+1) ,

where zi = (ξi, ηi) with ξi ∈ k and ηi ∈ g for any i = 1, . . . , n + 1. In the same
way that we introduced the covariant derivative Dω on Ω (Pλ; g) from a principal
connection ω ∈ Ω1 (Pλ; g), we consider the exterior covariant derivative

D
fW := d ◦ HorfW which satisfies

D
fW ◦ Φ = Φ ◦Dω

([T08, Proposition 2]). In particular, the field strength Φ ◦ Ωω equals Ω
fW :=

D
fW ◦ W̃ = dW̃ + 1

2
[W̃ , W̃ ] and

Ω
fW (z1, z2) = [W (ξ1),W (ξ2)]−W ([ξ1, ξ2]),

where zi = (ξi, ηi) ∈ k× g, i = 1, 2.
The field strength Ωω is a K-invariant horizontal form, that is, it vanishes

when contracted with any vector field taking values on the vertical space. It
can also be checked that the image of horizontals forms Ωequiv (Pλ; g)Hor under Φ
are those chains in Λeh (k× g; g) which only depend on elements in the horizontal

space HorfW (k× g). Suppose that K/H is a symmetric space such that k = h⊕m,

[h, h] ⊆ h, [h,m] ⊆ m, and [m,m] ⊆ h. Observe that HorfW (ξ, η) = (ξ, Teλ (ξ)) ∈ h̃

if ξ ∈ h. Then, since the chains in Λeh (k× g; g) vanish on h̃, we can therefore
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identify Λeh (k× g; g) with the space Λh (m; g) of g-valued chains on m such that,

if ϕ ∈ Λr
h (m; g),

[Teλ(ξ), ϕ (υ1, . . . , υr)] =
n∑
i=1

ϕ (υ1, . . . , [ξ, υi], . . . , υn)

where ξ ∈ h and {υ1, . . . , υr} ⊂ m (see (4.4)).

Example 10. If K/H is reductive, then k = h ⊕ m and Adh(m) ⊆ m for any

h ∈ H. The field strength Ω
fW associated to the Wang map (canonical connection)

W(ξ) =

{
Teλ(ξ) if ξ ∈ h

0 if ξ ∈ m.

is given by Ω
fW (υ1, υ2) = −Teλ

(
projh([υ1, υ2])

)
, υ1, υ2 ∈ m. �

4.1. Yang-Mills equations on symmetric spaces. We are going to show that
the curvature associated to the canonical connection on a symmetric space sat-
isfies the Yang-Mills equations (Proposition 11). Thus, let M = K/H be a
homogeneous symmetric space, k = h⊕ m, and let Pλ be a homogeneous princi-
pal bundle given by the Lie group homomorphism λ : H → G. The left K-action
LPλ (3.3) on Pλ induces a natural K-action on Ωequiv(Pλ; g)Hor by means of the
pull-backs (LPλ)∗k, k ∈ K, and hence on Ω (M ; Ad (Pλ)) by the identification
Ω (M ; Ad (Pλ)) = Ωequiv(Pλ; g)Hor. If the Riemann metric on K/H and its associ-
ated volume form are K-invariant, so is the product 〈·, ·〉 and the Hodge operator
∗ commutes with the K-action. That is,

∗ (k · ϕ) = k · (∗ϕ)

for any k ∈ K and any ϕ ∈ Ω (K/H; Ad (Pλ)) (see [T08, Subsection 2.6]). Con-

sequently, ∗ preserves the space of K-invariant forms Ω (K/H; Ad (Pλ))
K . Since

Pλ ∼= (K ×G)/ H̃ and Φ : Ωequiv((K ×G)/ H̃; g)Hor ∼= Λh (m; g), this implies
that the Hodge operator ∗ can be carried to Λh (m; g) simply imposing that

Φ ◦ ∗ = ∗ ◦ Φ, (4.5)

where we also denote the new Hodge operator in the right hand side of (4.5)
by ∗. Additionally, the covariant codifferential δω is K-invariant as well for any
ω ∈ Ω1

equiv (Pλ; g) and, since both the Hodge operator and the covariant derivative
commute with Φ, the operator

δfW : Λh (m; g) −→ Λh (m; g)

ϕ 7−→ −(−1)n(|ϕ|+1) ∗ ◦DfW ◦ ∗ϕ,
where W̃ = Φ (ω), is such that

Φ ◦ δω = δfW ◦ Φ.
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Then, W̃ = Φ (ω) is a Yang-Mills connection if and only if

δfWΩ
fW = 0. (4.6)

In the following paragraphs, we are going to introduce some notation and carry
out a few computations that will be useful later when working out some exam-
ples. In particular, we will justify (4.6) explicitly for the canonical connection on
symmetric spaces and will explicitly exhibit the field strength of Example 10 for
the homogeneous principal bundles given in Examples 4.

Recall that being M = K/H symmetric, the Lie algebra k can be decomposed
as k = h ⊕ m such that [h, h] ⊆ h, [h,m] ⊆ m, and [m,m] ⊆ h. Let n =
dim (K/H) = dim (m). Let

{
ξ1, . . . , ξdim(h)

}
be a basis of h and {υ1, . . . , υn} be

a basis of m. The commutation relations between the elements of the basis of h
and m can be written as

[ξα, ξβ] =

dim(h)∑
γ=1

cγαβξγ, [ξα, υi] =
n∑
j=1

djαiυj, [υi, υj] =

dim(h)∑
α=1

eαijξα.

On the other hand, let
{
η1, . . . , ηdim(g)

}
be a basis of g, the Lie algebra of the

structural group of a homogeneous principal bundle π : Pλ → K/H and suppose
that

[ηa, ηb] =

dim(g)∑
c=1

rcabηc.

The dual basis associated to
{
ξ1, . . . , ξdim(h)

}
, {υ1, . . . , υn}, and

{
η1, . . . , ηdim(g)

}
will be denoted with the same greek letters with upper indices, that is,{
ξ1, . . . , ξdim(h)

}
, {υ1, . . . , υn}, and

{
η1, . . . , ηdim(g)

}
respectively. The field

strength Ω
fW associated to the canonical connection (see Example 10) can be

written as

Ω
fW
λ

(
υi, υj

)
= −Teλ

dim(h)∑
α=1

eαijξα

 = −
dim(h)∑
α=1

dim(g)∑
a=1

eαijλ
a
αηa, (4.7)

υi, υj ∈ m, where (λaα)
a=1,...,dim(g)
α=1,...,dim(h) denotes the matrix of Teλ in the basis

{ξ1, . . . , ξdim(h)} and {η1, . . . , ηdim(g)}. In (4.7) we have made the dependence

of Ω
fW
λ with the homomorphism λ explicit.

K-invariant metrics on K/H are in one-to-one correspondence with Ad(H)-
invariant scalar products on m ([KN69b, Chapter X Proposition 3.1]). Similarly,
K-invariant volume forms on K/H correspond to Ad(H)-invariant volume forms
on m. So let hm be the scalar product on m inducing our Riemann structure
on K/H and let µ be its corresponding volume element (we are not going to
differentiate between the volume element on K/H and m). The metric hm yields
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the musical isomorphism

[ : m −→ m∗

υ 7−→ hm(υ, ·),
whose inverse will be denoted by #: m∗ → m. The musical isomorphisms will
be used to lower and raise indices as it is customary in physics. For example,

if {ϕai }
a=1,...,dim(g)
i=1,...,n are the components of the g-valued one form ϕ ∈ Λ1 (m; g),

ϕ =
∑n

i=1

∑dim(g)
a=1 ϕaiυ

i ⊗ ηa, then {ϕai}a=1,...,dim(g)
i=1,...,n will be the components of

ϕ# ∈ Λ1 (m∗; g), ϕ# =
∑n

i=1

∑dim(g)
a=1 ϕaiυi ⊗ ηa. That is, ϕai =

∑n
j=1 h

ijϕaj,

where (hij)i,j=1,...,n is the inverse matrix of (hij)i,j=1,...,n, hij = hm (υi, υj). It

is worth noticing that, in principle, the elements of the dual basis {υ1, . . . , υn}
do not correspond to {hm(υ1, ·), . . . ,hm(υn, ·)}. In other words, υi needs not be
hm(υi, ·), i = 1, . . . , n. In order to solve this situation and avoid a confusing
notation, we may suppose that {υ1, . . . , υn} is an orthonormal basis with respect
to hm. Then, (hij)i,j=1,...,n equals the identity matrix.

Finally, let ϕ ∈ Λh (m; g) be expressed in the form

ϕ =

dim(g)∑
a=1

n∑
i1,...,ir

ϕai1...ir(υ
i1 ∧ ... ∧ υir)⊗ ηa.

It is shown in [T08] that

(∗ϕ)bj1...jn−r =
1

r!
|µ|1/2

n∑
i1,...,ir=1

ϕbi1...irεi1...irj1...jn−r

where |µ| = det(µ) 6= 0, ε is the completely antisymmetric Levi-Civita symbol,
and the indices i1, . . . , ir have been raised with #. Moreover, if W is the Wang
map associated to the principal connection ω ∈ Ω1

equiv (Pλ; g) then, for any ϕ ∈
Λh (m; g), (

δfWϕ) (ζ1, . . . , ζr) = −
n∑
i=1

[
(W |m)# (υi), ϕ (υi, ζ1, . . . , ζr)

]
, (4.8)

ζ1, . . . , ζr ∈ m ([T08, Example 2.13]).

Proposition 11. The canonical connection on a symmetric space is a Yang-Mills
connection.

Proof. The canonical connection satisfies W|m = 0. We see from (4.8) that

δfW = 0. Consequently δfWΩ
fW = 0 and ω = Φ−1(W̃) is Yang-Mills. �

4.2. Examples: invariant field strengths on the sphere. We want to com-
pute in this subsection the curvature associated to the canonical connection for
the principal bundles described in Examples 4. Recall that they were principal
bundles over the sphere Sn for some values of n ∈ N and several gauge groups G.
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These curvatures will be useful later on in order to calculate the charge of the
monopole for some of the classical examples found in the literature (Section 6).

Let k = so(n+ 1) = h⊕m, where h = so(n) are the (n+ 1)× (n+ 1) matrices
of the form (

0 0
0 B

)
, B skew-symmetric of degree n,

and m is the subspace of all matrices of the form(
0 −υ>
υ 0

)
, (4.9)

where υ is a (column) vector in Rn. Let {ξα,β}α>β, α, β ∈ {1, . . . , n}, be the basis

of so(n) such that ξα,β is the matrix whose entries are 1 in the position (α, β),
−1 in the position (β, α), and 0 elsewhere. Observe that, for the sake of a clearer
notation, we label the basis of h with two indices instead of a single one. Let

{υ1, . . . , υn} be the canonical basis of Rn, υi = (0, i−1)... , 1, 0, . . . , 0), which is also
a basis of m using the correspondence given by (4.9). Then,

[υi, υj] = υiυj − υjυi = ξj,i, i < j,

Therefore, [υi, υj] =
∑

α,β e
αβ
ijξα,β implies eαβij = 1 if α = j and β = i and 0

otherwise. In order to be coherent with our notation, we set ξi,j = −ξj,i whenever
i > j. Thus

Ω
fW
λ (υi, υj) = −

dim(g)∑
a=1

λajiηa. (4.10)

Let us particularize the field strength (4.10) for those gauge groups G given in
Examples 4.

Examples 12.

(i) n = 2 and G = U(1). Here g = h = u(1) are both isomorphic to iR, so
dim (g) = dim(h) = 1. On the other hand, m = R2. Let λm : U(1)→ U(1)
given by λm(eiz) = eizm. Then Teλm : iR → iR equals multiplying by m

and Ω
fW
λm

(υ1, υ2) = −im ∈ iR ∼= u(1).
(ii) n = 4 and G = SO(3). As we have already seen, the set R (4, SO(3)) con-

tains three elements. The trivial homomorphism λtrivial : SO(4)→ SO(3)
sends any h ∈ SO(4) to e = Id ∈ SO(3), Teλtrivial = 0, and consequently

the corresponding fields strength Ω
fW
λtrivial

= 0 vanishes identically.
Let λl : SO(4) → SO(3), l = 1, 2, be the homomorphism induced by

σl : S
3 × S3 → S3 respectively such that σ1 (x, y) = x and σ2 (x, y) =

y. One can prove that so(4) = so(3)(1) × so(3)(2), where so(3)(l) is the
subalgebra spanned by {Al, Bl, C l}, l = 1, 2, such that Al = −ξ2,1 +

(−1)l ξ4,3, Bl = −ξ3,2 + (−1)l ξ4,1, and C l = −ξ3,1 + (−1)l+1 ξ4,2 (see [I81,
Section 3]. The different sign in our expressions is due to a different choice
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of the basis {ξα,β}α>β of so(4)). Our initial basis can be written in terms
of {Al, Bl, C l}, l = 1, 2, as

ξ2,1 = −1

2

(
A1 + A2

)
, ξ3,1 = −1

2

(
C1 + C2

)
,

ξ3,2 = −1

2

(
B1 +B2

)
, ξ4,1 = −1

2

(
B1 −B2

)
,

ξ4,2 =
1

2

(
C1 − C2

)
, ξ4,3 = −1

2

(
A1 − A2

)
. (4.11)

Both {A1, B1, C1} and {A2, B2, C2} can be regarded as basis of so(3).

The field strengths Ω
fW
λl

: R4 × R4 → so (3) satisfy

Ω
fW
λl

(υ1, υ2) =
1

2
Al, Ω

fW
λl

(υ1, υ3) =
1

2
C l,

Ω
fW
λl

(υ1, υ4) =
(−1)l+1

2
Bl, Ω

fW
λl

(υ2, υ3) =
1

2
Bl,

Ω
fW
λl

(υ2, υ4) =
(−1)l

2
C l, Ω

fW
λl

(υ3, υ4) =
(−1)l+1

2
Al,

l = 1, 2.
(iii) n = 4 and G = SO(4). In this example, R (4, SO(4)) contains 5 ele-

ments. The trivial homomorphism has associated a zero field strength.
The identity λId : SO(4)→ SO(4) has tangent map TeλId : so(4)→ so(4)

such that TeλId = Id|so(4). Thus, Ω
fW
λId

(υi, υj) = −ξji, υi, υj ∈ R4, i < j.

Let λi : SO(4) → SO(4), i = 3, 4, be the homomorphism induced by
σi : S

3 × S3 → S3 × S3 respectively such that σ3 (x, y) = (x, x) and
σ4 (x, y) = (y, y). Let {A1, B1, C1, A2, B2, C2} be the basis of so(4) intro-
duced in (ii). We are going to consider so(4) as so(3) × so(3) and both
{A1, B1, C1} and {A2, B2, C2} indistinguishably as bases of so(3). Then,
using (4.11),

Ω
fW
λi

(υ1, υ2) =
1

2
(Ai, Ai), Ω

fW
λi

(υ1, υ3) =
1

2
(Ci, Ci),

Ω
fW
λi

(υ1, υ4) =
(−1)i+1

2
(Bi, Bi), Ω

fW
λi

(υ2, υ3) =
1

2
(Bi, Bi),

Ω
fW
λi

(υ2, υ4) =
(−1)i

2
(Ci, Ci), Ω

fW
λi

(υ3, υ4) =
(−1)i+1

2
(Ai, Ai),
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i = 1, 2. Finally, let λδ : SO(4) → SO(4) be the homomorphism induced
by δ : S3 × S3 → S3 × S3, δ (x, y) = (y, x). In this case,

Ω
fW
λδ

(υ1, υ2) =
1

2
(A2, A1), Ω

fW
λδ

(υ1, υ3) =
1

2
(C2, C1),

Ω
fW
λδ

(υ1, υ4) =
1

2
(−B2, B1), Ω

fW
λδ

(υ2, υ3) =
1

2
(B2, B1),

Ω
fW
λδ

(υ2, υ4) =
1

2
(C2,−C1), Ω

fW
λδ

(υ3, υ4) =
1

2
(−A2, A1).

(iv) n = 2k ≥ 6 and G = SO(2k), k ∈ N. As in the item (ii), R (2k, SO(2k))
contains three elements. The trivial homomorphism and the identity
λId : SO(2k) → SO(2k) are similar to (iii). The other element in
R (2k, SO(2k)) is the conjugation δ : SO(2k) → SO(2k) by the diago-
nal matrix with entries (−1, . . . ,−1, 1). The tangent map Teδ : so(2k)→
so(2k) acts on the basis {ξα,β}α>β, α, β ∈ {1, . . . , 2k}, as follows

Teδ (ξα,β) =

{
ξα,β if α 6= 2k

−ξα,β if α = 2k.

Thus, Ω
fW
δ (υi, υj) = −ξj,i if i < j and j 6= 2k and Ω

fW
δ (υi, υ2k) = ξ2k,i. �

5. The Chern-Weil homomorphism. Characteristic classes

This section aims at recalling the concept of characteristic class and how the
Chern-Weil homomorphism works. Roughly speaking, given a principal bundle
π : P → M , the Chern-Weil homomorphism associates an even differential form
on M to the curvature Ωω. In order to do that, a symmetric Ad-invariant poly-
nomial on g is required so that the dependence of Ωω on the gauge indices can be
removed. The most remarkable point is that the differential form on M defines
a de Rham cohomology class which is independent of the principal connection
ω ∈ Ω1 (P ; g) under consideration. When its degree matches the dimension of M ,
the integral of such form over M defines a topological quantity that is interpreted
as the charge of the configuration described by π : P →M .

Let G be a Lie group with Lie algebra g. Let Sk (g∗) be the set of maps

f : g × k). . . × g → R (or C) which are multilinear and symmetric. That is,
f
(
ησ(1), . . . , ησ(k)

)
= f (η1, . . . , ηk) for any permutation σ ∈ Sk of k elements.

Let S (g∗)G = ⊕k≥0S
k (g∗)G be the symmetric algebra of multilinear functions on

g which are Ad-invariant. Explicitly, f ∈ Sk (g∗)G if f ∈ Sk (g∗) and

f (Adg(η1), . . . ,Adg(ηk)) = f (η1, . . . , ηk)

for any g ∈ G, any η1, . . . , ηk ∈ g. For later convenience, we remark that the alge-
bra S (g∗)G is isomorphic to the algebra P (g∗)G = ⊕k≥0P

k (g∗)G of Ad-invariant
homogeneous polynomials on g ([N00, Section 6.2]). This isomorphism works
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through the polarization formula. Indeed, if f ∈ P k (g∗)G is an homogeneous

polynomial of degree k, we define Sym(f) ∈ Sk (g∗)G as

Sym(f) (η1, . . . , ηk) =
1

k!

k−1∑
i=0

(−1)i
∑
jr 6=js

f
(
ηj1 + ...+ ηjk−i

)
. (5.1)

For example, if k = 3, then

Sym(f) (η1, η2, η3) =
1

6
[f (η + η2 + η3)− f (η1 + η2)− f (η1 + η3)− f (η2 + η3)

+f (η1) + f (η2) + f (η3)] .

Let π : P →M be a principal fiber bundle with structural Lie group G. Let ω ∈
Ω1
equiv (P ; g) be a principal connection and let Ωω ∈ Ω2

equiv (P ; g)Hor its curvature.

If f ∈ Sk (g∗)G, then the 2k-form

f̄ (Ωω) (p) (X1, . . . , X2k)

=
1

2k

∑
σ∈S2k

(−1)|σ| f
(
Ωω(p)(Xσ(1), Xσ(2)), . . . ,Ω

ω(p)(Xσ(2k−1), Xσ(2k))
)

is G-invariant and horizontal. Therefore, there exists a uniquely defined 2k-form
cw (f, P, ω) ∈ Ω2k (M) such that

π∗(cw (f, P, ω)) = f̄ (Ωω) .

The form cw (f, P, ω) is called the Chern-Weil form of f . What is more
important, cw (f, P, ω) is closed, so there is a well defined de Rham cohomology
class [cw (f, P, ω)] ∈ H2k (M) called the characteristic class of the invariant
polynomial f ([B81, Theorem 10.4.3], [M07, Theorem 20.3]), which is independent
of the particular choice of ω ∈ Ω1

equiv(P ; g) ([B81, Theorem 10.4.11]). That is,
it only depends on the fiber bundle structure of P . It is worth noticing that
the proof of this fact uses that the polynomial f is symmetric. For example,
the characteristic classes of a trivial principal bundle all vanish. In addition, the
mapping

CwP : S (g∗)G −→ H∗ (M)
f 7−→ [cw (f, P, ω)]

is a homomorphism of commutative algebras, known as the Chern-Weil ho-
momorphism. If two principal bundles P and P ′ over M are isomorphic, they
give rise to the same Chern-Weil homomorphism ([B81, Theorem 10.4.8]).

We are going to assume from now on that our Lie group G is contained in
GL (m,R) for some m ∈ N. Roughly speaking, G may be thought as a classical
matrix Lie group. For such groups, the adjoint action of G on g has a simple
expression. That is,

Adg(ξ) = gξg−1, g ∈ G, ξ ∈ g,
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where gξg−1 is a product of matrices. For a matrix A ∈ gl(m,R), the charac-
teristic coefficient cmk (A) are implicitly given by the equation

det

(
t Id +

i

2π
A

)
=

m∑
k=0

tm−kcmk (A), t ∈ R.

The characteristic coefficients are homogeneous polynomials of degree k which are
Ad-invariant. Furthermore, they satisfy the recursive formula ([M07,
Lemma 20.9])

cmk (A) =
1

k

k−1∑
j=0

(−1)k−j−1

(
i

2π

)k−j
cmj (A) trace(Ak−j), A ∈ gl(m,R). (5.2)

For example, it is easy to show from (5.2) that

cm0 (A) = 1, c1 (A) =
i

2π
traceA, cm2 (A) = − 1

8π2

[
(traceA)2 − trace

(
A2
)]

cm3 (A) = − i

48π3

[
(traceA)3 − 3 trace

(
A2
)

traceA+ 2 trace
(
A3
)]
.

The k-th Chern class is defined as

ck (P ) := CwP (Sym(cmk )) ∈ H2k(M).

Among other characteristic classes, we choose the Chern classes because, despite
the presence of the imaginary unit i ∈ C in their definition, they are actually real
cohomology classes provided that G is a subgroup of the unitary group U (m)
as in our examples ([M07, 20.13]). If we write Ωω as a matrix valued two form(
(Ωω)ij

)
i,j=1,...,m

, then

π∗ (cw (Sym(cmk ), P, ω))

=
(−1)k

(2πi)k k!

∑
i1<...<ik

∑
σ∈Sk

(−1)|σ| (Ωω)i1σ(i1) ∧ ... ∧ (Ωω)ikσ(ik) (5.3)

([KN69b, page 309]).

Example 13. The characteristic coefficients are usually algebraically indepen-
dent and generate the algebra of polynomial functions on g invariant by AdG, at
least for some of the classical matrix groups such as U (m) ([KN69b,
Chapter XII]). However, we are going to deal in this example with G = SO(m)
whose Lie algebra g is the algebra of skew-symmetric matrices or order m ∈ N.
The characteristic coefficients cmk are then equal to zero if k is odd, as it can be
inductively checked from (5.2). Moreover, if m = 2q+1 is odd, then {cm2 , . . . , cm2q}
are indeed algebraically independent and generate P (so(m)∗)SO(m) ([KN69b,
Chapter XII Theorem 2.7]). If m = 2q is even, however, there exists a poly-
nomial function Pf (unique up to a sign) such that cm2q = (−1)q (2π)−2q Pf2

and the functions {cm2 , . . . , cm2(q−1),Pf} are algebraically independent and generate
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P (so(m)∗)SO(m). The polynomial Pf is called the Pfaffian and, up to a factor,
equals the square root of the determinant of a matrix. If the matrix A ∈ so(m)
is written as A = (Aij)i,j=1,...,2q, then

Pf (A) =
1

2qq!

∑
η∈S2q

(−1)|η|A
η(1)
η(2) · · ·A

η(2q−1)
η(2q) .

The Euler class χ (P ) is defined as 1
πq
CwP (Pf). If the curvature Ωω ∈

Ω2
equiv (P ; g)Hor of some principal connection ω ∈ Ω1

equiv (P ; g) on π : P → M

is written as a matrix valued two form
(
(Ωω)ij

)
i,j=1,...,2q

, then

π∗ (cw (Sym(Pf), P, ω))

=
1

2qπqq!

∑
η∈S2q

(−1)|η| (Ωω)
η(1)
η(2) ∧ · · · ∧ (Ωω)

η(2q−1)
η(2q) (5.4)

([KN69b, Chapter XII Theorem 5.1]). �

Finally, we are going to introduce the charge of a monopole. So let π : Pλ → Sn
be a homogeneous principal bundle over the n-dimensional sphere. The sphere
equals the symmetric space SO(n + 1)/SO(n). It is a Riemann manifold with
the Riemannian structure inherited from Rn+1. We know by Theorem 9 that
the canonical connection is the unique which is invariant by SO(n + 1). Let

ω ∈ Ω1
equiv (P ; g) denote the canonical connection and Ωω ∈ Ω2

equiv (P ; g)Hor its
curvature, which is SO(n + 1)-invariant by the left translations Lλ (Eq. (3.3)).
Then cw (Sym(f), Pλ,ω) ∈ Ω2k (Sn), f ∈ P k(g∗)G, is also invariant by the natural
left SO(n+ 1)-action we have on Sn. Suppose that n = 2q is even. In that case,
cw(Sym(f), Pλ,ω), f ∈ P q(g∗)G, is proportional to the volume element µ of Sn
induced from the standard metric, i.e.,

cw(Sym(f), Pλ,ω) = dµ

for some function d ∈ C∞(Sn). Since µ is also SO(n + 1) invariant, so is
d ∈ C∞(Sn). But the only functions on Sn which are invariant by the spe-
cial orthogonal group are the constants, so d ∈ R. Regarding Sn as an imbedded
submanifold of Rn+1, we may consider d as a function of the radius. It is worth
observing that, once f ∈ P q(g∗)G is given, d can be easily computed from the
expression of Ωω given in (4.10) (see examples in Section 6). The quantity

Q :=

∫
Sn
cw (Sym(f), Pλ,ω) = d vol(Sn) (5.5)

will be called the charge of the monopole. Up to a factor, it can be interpreted
as the flow of the field strength Ωω trough the surface of the sphere Sn. However,
in order to match the order of Ωω with the dimension of Sn we need some charac-
teristic class cw (Sym(f), Pλ,ω), for example the Chern class (of suitable order).
It is worth noticing that the charge of the monopole does not depend on the fact
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that we have worked with the canonical connection ω because, as we already
said, the Chern-Weil homomorphism does not depend on ω. In other words, it
is a topological invariant. Obviously, the charge depends strongly on the choice
of the invariant polynomial f ∈ P q(g∗)G or, equivalently, on the characteristic
class cw (Sym(f), Pλ,ω) and, for some f ∈ P q(g∗)G, it could be zero even for
non-trivial bundles. As we will discuss in the examples, we will define the charge
integrating on Sn either the Chern class cq (P ), n = 2q, or the Euler class χ (P )
in order to label all the non-isomorphic principal bundles over Sn with a different
value of their charge. These two classes are, up to a constant factor, essentially
the unique characteristic classes we can use to define the charge in most classical
matrix Lie groups.

6. Examples

6.1. The Dirac monopole. The first one in introducing the concept of mono-
pole was Dirac in the context of electromagnetic field theory [D31]. Dirac showed
that there exist static singular solutions of the Maxwell equations on R3\{0} with
a pointwise magnetic source placed at the origin 0 ∈ R3. In order to be gauge
invariant, the magnetic charge needed to be an integer in appropriate units. Since
there is no evidence of the existence of such magnetic charge (despite the efforts
carried out to find it since then), Dirac monopoles might have seemed useless at
first sight. Nevertheless, and more importantly, the fact that the magnetic charge
can only take discrete values implies in turn that the electric charge needs do so,
as we experimentally observe. In other words, both the magnetic and the electric
charge are quantized. Thus the relevance of such magnetic monopoles.

A free electromagnetic field is a Yang-Mills theory with gauge group U (1). In
particular, Dirac’s monopoles are described as principal bundles over S2 (that is,
principal bundles over R3\{0}) with structural group U (1). Since we require the
potential vector field, and its corresponding field strength, to be SO (3)-invariant,
such principal bundles π : Pλm → S2 are in one-to-one correspondence with the
homomorphisms λm : U (1) → U (1), m ∈ Z, introduced in Examples 4 (i).
The SO (3)-invariant field strength Ωω is built from the canonical connection
and computed at o ∈ SO (3) /U(1) ∼= S2 in Subsection 4.2 (i). Recall that

Ω
fW
λm

(υ1, υ2) = −im, where {υ1, υ2} is the canonical basis of R2 = ToS2. The
charge associated to these configurations is given by integrating the first Chern
class [ i

2π
trace Ωω] ∈ H2 (S2) over S2. As we already pointed out, i

2π
trace Ωω = dµ

for some constant d ∈ R and where µ is the volume 2-form of S2. The constant
d can be calculated as follows,

d =
i

2π
trace (Ωω(o) (υ1, υ2)) =

i

2π
trace

(
Ω

fW
λm (υ1, υ2)

)
=
m

2π
,

and the charge

Qm :=
i

2π

∫
S2

trace Ωω =
m

2π

∫
S2

µ = 2m.



28 PABLO DÍAZ AND JOAN-ANDREU LÁZARO-CAMÍ

6.2. The Yang monopole. Yang monopoles are non-trivial solutions of Yang-
Mills theories on R4\{0} (equivalently on S4) with gauge group G = SU(2).
Unlike the general approach throughout this paper, where we considered the
sphere as a quotient of orthogonal groups, we are now going to regard S4 as a
quotient of spin groups, i.e., S4 = Spin(5)/Spin(4). That is, we are going to
describe principal bundles π : P → S4 with gauge group SU(2) and a left Spin(5)
action projecting onto the Spin(5) action on Spin(5)/Spin(4), which obviously
coincides with the standard SO(5) action on S4. In his paper [Y78], Yang de-
scribes monopole configurations on S4 which are invariant by the standard action
of SO(5). In our opinion, his description is imprecise and he should have talked
about Spin(5) invariant monopoles. Indeed, as the next proposition shows, there
does not exist any non-trivial principal bundle over S4 with gauge group SU(2)
supporting a SO(5) left action. However, since Yang worked with potentials and
field strengths on S4 using local sections, he did not realize that his SO(5) action
actually came from a Spin(5) action on the whole bundle.

Proposition 14. The unique homomorphism of Lie groups λ : SO(4) → SU(2)
from SO(4) to SU(2) is the trivial homomorphism, λ(h) = e ∈ SU(2) for any
h ∈ SO(4).

Proof. As we saw in Examples 4 (ii), Spin(4) = S3 × S3 and SO(4) =
(S3 × S3) /{(1, 1) , (−1,−1)}, where S3 is the quaternionic sphere. Let τ :
Spin(4) → SO(4) be the covering homomorphism. On the other hand, we al-
ready argued that SU(2) = S3. Recall that, modulo conjugation, the unique
homomorphisms between Spin(4) and SU(2) are the trivial one and the pro-
jections σl : S

3 × S3 → S3, l = 1, 2, such that σ1 (x, y) = x and σ2 (x, y) = y,
(x, y) ∈ S3 × S3.

Suppose that there exists a homomorphism λ : SO(4)→ SU(2) different from
the trivial one. Then, λ◦ τ : Spin(4)→ SU(2) is conjugated to σ1 or σ2. Assume
that it is conjugated to σ1. Therefore, there exists some g ∈ SU(2) such that

λ1 = g (λ ◦ τ) g−1 = gλg−1 ◦ τ.
Replacing λ with gλg−1 if necessary, we may suppose that σ1 = λ ◦ τ , where λ
is different from the trivial homomorphism. But this is clearly a contradiction,
since τ((x, y)) = τ((−x,−y)) ∈ SO(4) and σ1((x, y)) 6= σ1((−x,−y)). �

In conclusion, we have two non-trivial homogeneous principal bundles
πσl : Pσl → S4 associated to the homomorphisms σl : Spin(4) = S3 × S3 →
SU(2) = S3, l = 1, 2. It is worth noting that πσ1 : Pσ1 → S4 was already identified
in [ACO83, Subsection 4.3] as the principal bundle behind the BPST instanton.

We want to compute the charge Q (Eq. (5.5)) of πσl : Pσl → S4, l = 1, 2, by
means of the second Chern class. According to [N00], two principal bundles over
S4 and gauge group SU(2) are isomorphic if and only if they have the same Chern
number. Therefore, the charge provided by the second Chern class seems a good
topological invariant to differentiate the two non-trivial monopole configurations.
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The field strengths associated to the Spin(5)-invariant canonical connections

of πσl : Pσl → S4, l = 1, 2, are given in Subsection 4.2 (ii). Indeed, Ω
fW
λl

, l =
1, 2, in Subsection 4.2 (ii) are the curvatures associated to the homomorphisms
λl : SO(4) → SO(3) which, in turn, are induced from σl : Spin(4) → SU(2).
Since in order to compute de curvatures of the canonical connections we only
need the tangent maps Teλl : so(4) → so(3) and the Lie algebras spin(4) and

su(2) coincide with so(4) and so(3) respectively, Ω
fW
λl

: R4 × R4 → su(2) are the
Spin(5)-invariant curvatures evaluated at p = [e, e]∼ ∈ Pσl . However, observe
that these field strengths take values in two subalgebras of so(4), those generated
by the matrices {Al, Bl, C l}, l = 1, 2, which are isomorphic to su(2). We need to
implement these isomorphisms explicitly since, in order to compute the second
Chern class using (5.3), su(2) must be regarded as Lie algebra of complex matrices
contained in u(m) for some m ∈ N. The easiest solution is to establish the
correspondence

Al 7→ i

2
σ1 =

„
0 i/2
i/2 0

«
, Bl 7→ i

2
σ2 =

„
0 1/2
−1/2 0

«
, Cl 7→ − i

2
σ3 =

„
−i/2 0

0 i/2

«
,

l = 1, 2, where {σ1, σ2, σ3} are the Pauli matrices.
The second Chern classes cw (S(c2

2), Pσl , ω), l = 1, 2, are proportional to the
canonical volume element µ of S4, cw (S(c2

2), Pσl , ω) = dµ. The constant of
proportionality d can be obtained as

d = cw
(
S(c2

2), Pσl , ω
)

(υ1, υ2, υ3, υ4) ,

where {υ1, υ2, υ3, υ4} is the canonical orthonormal basis of R4 ∼= ToS4. Identifying
R4 = m ⊂ so(4) with the horizontal space Horp at p = [e, e]∼ ∈ Pσl , d can be

computed inserting the explicit expressions for Ω
fW
λl

in (5.3). We prefer, however,

giving directly the charge Q = d vol (S4), which equals −1
8

for the homogeneous

bundle πσ1 : Pσ1 → S4 and 1
8

for πσ2 : Pσ2 → S4. These results are in complete
agreement with [Y78] and we therefore omit explicit computations. If Yang gave
the Chern number −1 and 1 respectively to these bundles was because, in his
definition of the second Chern class, he chose a coefficient 8 times greater than
ours. Since two principal SU(2)-bundles over S4 are isomorphic if and only if
they have the same Chern number ([N00]), the two principal bundles with non-
vanishing charge we obtained are isomorphic to Yang’s.

6.3. Gibbons and Townsend monopoles. In his paper [GT06], Gibbons and
Townsend study monopole configurations over the sphere S2q, with gauge group
SO(2q), q ≥ 2. However, they only deal with the principal bundle SO(2q+ 1)→
SO(2q+1)/SO(2q), which corresponds to the homogeneous principal bundle PλId

given by the identity homomorphism λId : SO(2q)→ SO(2q) ([GT06, Section 4]),
and exhibit the corresponding SO(2q + 1)-invariant (canonical) connection. In
addition, they define the charge of the monopole as the integral over S2q of the
2q-form

trace
(

Ωω ∧ q)... ∧ Ωω
)
, (6.1)
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where Ωω is the field strength associated to the canonical principal connection.
Up to a constant factor, this characteristic class coincides with the Chern class for
the case k = 2. In our opinion, some authors choose (6.1) to define the charge (see
for instance [M08]) because it is a straightforward generalization of the integrand
trace (Ωω ∧ Ωω) used by Yang to compute the charge of his monopole. In [Y78],
Yang points out that he deliberately chooses the second Chern class. Neverthe-
less, it is not clear to which AdSO(2q)-invariant polynomial f ∈ P (so(2q)∗)SO(2q),
if any, corresponds the 2q-form (6.1). Moreover, it is claimed in [GT06], but no
proof is provided, that the field strength Ωω can be written in a suitable basis of
so(2q) such that ∫

S2q

trace
(

Ωω ∧ q)... ∧ Ωω
)
6= 0. (6.2)

In our opinion, this result is not correct. The argument against (6.2) works as

follows: since trace(Ωω ∧ q)... ∧ Ωω) is proportional to the natural volume element
µ of S2q, we only need to compute the constant of proportionality d in order
to value (6.2). Furthermore, this computation can be carried out at any point
m ∈ S2q of the sphere. If {υ1, . . . , υ2q} is an orthonormal basis of TmS2q ∼= R2q,
then

d = trace
(

Ωω ∧ q)... ∧ Ωω
)

(υ1, . . . , υ2q) .

Let o ∈ S2q. Since the charge is a topological invariant, we can compute it
using any field strength on SO(2q + 1) → SO(2q + 1)/SO(2q). According to

Subsection 4.2 (iv), the field strength at o is given by Ω
fW
λId

(υi, υj) = −ξj,i =
ξi,j ∈ so(2q). The matrix ξj,i has entries

(ξj,i)
α
β = (−1)U(i−j) (−1)U(β−α) δαj δiβ, (6.3)

where U is the Heaviside step function, U(x) = 1 if x > 0 and U(x) = 0 if x ≤ 0.
Therefore

trace
(

Ωω ∧ q)... ∧ Ωω
)

(υ1, . . . , υ2q)

=
1

2q
trace

( ∑
σ∈S2q

(−1)|σ|Ω
fW
λId

(
υσ(1), υσ(2)

)
· · ·ΩfW

λId

(
υσ(2q−1), υσ(2q)

))
=

(−1)q

2q
trace

( ∑
σ∈S2q

(−1)|σ| ξσ(2),σ(1) · · · ξσ(2q),σ(2q−1)

)
but ξσ(2),σ(1) · · · ξσ(2q),σ(2q−1) = 0 for any σ ∈ S2q because the matrix product ξj,iξr,s

is zero if the indices (j, i) are different from (r, s). Thus, trace
(

Ωω ∧ q). . . ∧ Ωω
)
=0.

The Chern class is not useful to define the monopole charge either, since it also
vanishes. The details are given in Subsection A.3 in the Appendix for the sake of
a clearer exposition. Things are different as far as the Euler class is concerned.
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Indeed, we also prove in Subsection A.3 that

Q =

∫
S2q

cw (Sym(Pf), PλId
,ω) = 2,

which is obviously the Euler-Poincaré characteristic of the sphere S2q. Since
SO(2q+1)→ S2q can be regarded as the orthogonal frame bundle, this equality is
simply a restatement of one of the possible versions of the Gauss-Bonet Theorem
(see [D78, page 112]).

If q ≥ 3, then, up to isomorphism, there only exists another principal bundle
structure over S2q, π : Pδ → S2q, that given by the homomorphism δ : SO(2q)→
SO(2q) introduced in Subsection 4.2 (iv). In order to obtain the Euler class
χ (Pδ), one can repeat the same computations carried out in Subsection A.3 in

the Appendix just replacing Ω
fW
λId

with Ω
fW
δ . If we do so, it is not difficult to realize

that a −1 appears in each term of (A.9) and, therefore,
∫

S2q χ (Pδ) = −2. In other
words, PλId

and Pδ have the same charge with opposite sign. The details are left
to the reader.

Appendix A

A.1. Proof of Proposition 1. Before proving Proposition 1, we need an auxil-
iary lemma:

Lemma 15. Let α ∈ Ωk (S2n) and f : R2n+1\{0} → S2n as in Equation (2.1). If
r ∈ C∞ (R2n+1\{0}) is the radius function, r (x) = ‖x‖, then

∗f ∗(α) = r2(n−k)f ∗ (∗α) ∧ dr. (A.1)

Proof. Let y ∈ R2n+1\{0} be an arbitrary point and z = y/ ‖y‖ ∈ S2n. We
can take global Euclidean coordinates (x1, . . . , x2n+1) on R2n+1\{0} such that

y = (0, 2n). . ., 0, r(y)). Then z = (0, 2n)... , 0, 1) ∈ S2n ⊂ R2n+1\{0}. That is, z can be
regarded as the north pole of the sphere S2n. The tangent space Ty(R2n+1\{0})
can be decomposed as the direct sum

Ty(R2n+1\{0}) = TySr(y) ⊕Wy

where TySr(y) is the tangent space to the sphere Sr(y) of radius r(y) at y and Wy

is its orthogonal complement, in the radial direction. The first 2n coordinates
(x1, . . . , x2n+1) we have on R2n+1\{0} can be used around z on S2n by means of
the local diffeomorphism

(
x1, . . . , x2n

)
7−→

(
x1, . . . , x2n,

√
1−

∑2n

i=1
(xi)2

)
.

Observe that the vector fields
{

∂
∂x1 , . . . ,

∂
∂x2n

}
form an orthonormal basis at z ∈

S2n and that, as a vector space, TySr(y) is isomorphic to TzS2n. In this context,
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it is easy to see that

Tyf =
1

r(y)
Id ◦ proj|TySr(y) ,

where proj|TySr(y) : Ty(R2n+1\{0})→ TySr(y) denotes the projection onto TySr(y)

and the isomorphism TySr(y)
∼= TzS2n has been used. Consequently, if α is locally

written as
∑

i1<...<ik
αi1...ikdx

i1 ∧ ... ∧ dxik around z, it is immediate to see that

f ∗ (α) (y) =
1

rk(y)

∑
i1<...<ik

αi1...ik (z)
(
dxi1 ∧ ... ∧ dxik

)
(y).

On the other hand,

(∗α)(z) =
1
k!

∑
j1<...<j2n−k

∑
i1<...<ik

αi1...ik (z) ε1...2ni1...ikj1...j2n−k

(
dxj1 ∧ ... ∧ dxj2n−k

)
(z),

f∗ (∗α) (y) =
1

k!r2n−k(y)

∑
j1<...<j2n−k

∑
i1<...<ik

αi1...ik (z) ε1...2ni1...ikj1...j2n−k

(
dxj1 ∧ ... ∧ dxj2n−k

)
(y),

and ∗ (f ∗α) (y) equals

1
k!rk(y)

∑
j1<...<j2n+1−k

∑
i1<...<ik

αi1...ik (z) ε1...2n+1
i1...ikj1...j2n+1−k

(
dxj1 ∧ ... ∧ dxj2n+1−k

)
(y). (A.2)

In these equations, ε1...2n
i1...ikj1...j2n−k

denotes the totally antisymmetric symbol and

αi1...ik (z) = αi1...ik (z) because, in the coordinates we chose, the matrix of the
Euclidean metric is diagonal on both y ∈ R2n+1\{0} and z ∈ S2n. Now, in each
non-zero term on the right hand side of (A.2), the differential dx2n+1 appears. We
can move it to the last right position just taking into account a possible additional

(−1)|σ| for a suitable permutation σ. This (−1)|σ|, however, cancels with the same

(−1)|σ| that comes from moving the index jl = 2n+1 in ε1...2n+1
i1...ikj1...j2n+1−k

to the last

right position. In this case, ε1...2n+1
i1...ikj1...jl

= ε1...2n
i1...ikj1...j2n−k

. Therefore, (A.2) equals

1
k!rk(y)

 ∑
j1<...<j2n−k

∑
i1<...<ik

αi1...ik (z) ε1...2ni1...ikj1...j2n−k

(
dxj1 ∧ ... ∧ dxj2n−k

)
(y)

∧dx2n+1(y)

= r2(n−k)(y) (f∗ (∗α) (y)) ∧ dx2n+1(y).

Finally, observe that dr coincides with dx2n+1 at y, dr (y) = dx2n+1(y), so

∗f ∗(α)(y) = r2(n−k)(y) (f ∗ (∗α) (y)) ∧ dr(y).

Since the point y ∈ R2n+1\{0} we chose was completely arbitrary, we conclude
that (A.1) holds globally. �

Proof of Proposition 1. Let ϕ ∈ Ωk
equiv (P ; g)Hor and let F ∗ : f ∗ (P ) → P be the

natural bundle homomorphism from the pull-back of π : P → S2n by f (see 2.1).



MONOPOLES IN ARBITRARY DIMENSION 33

F ∗ (ϕ) can be naturally seen as a form in Ωk
equiv (f ∗(P ); g)Hor. It is not difficult

to realize then from Lemma 15 that

∗F ∗ (ϕ) = π∗
(
r2(n−k)

)
F ∗ (∗ϕ) ∧̄ π∗(dr),

where π : f ∗ (P )→ R2n+1\{0} and the product ∧̄ of two forms β ∈ Ωr (f ∗(P ); g)
and α ∈ Ωq (f ∗(P )) must be understood through the product of an element of
the vector space g by a real number; that is,

β ∧̄ α (Y1, . . . , Yr+q) =
1
r!q!

∑
σ∈Sr+q

(−1)|σ|α
(
Yσ(1), . . . , Yσ(r)

)︸ ︷︷ ︸
∈R

β
(
Yσ(r+1), . . . , Yσ(r+q)

)︸ ︷︷ ︸
∈g

,

for any {Y1, . . . , Yr+q} ⊂ X (f ∗(P )).
Let now ω ∈ Ω1

equiv (P ; g) be a principal connection and F ∗ (ω) ∈
Ω1
equiv (f ∗ (P ) ; g) the corresponding principal connection on π : f ∗ (P ) →

R2n+1\{0}. Observe that

TyF (Hory) = TyF (ker (F ∗(ω)(y))) = kerω(F (y)) = HorF (y) ⊂ TF (y)P

therefore, as far as their field strengths is concerned ([M07, 17.5]),

ΩF ∗(ω) = DF ∗(ω)(F ∗(ω)) = d ◦ F ∗(ω)|Hory

= F ∗(d ◦ ω)|Hory
= F ∗

(
d ◦ ω|HorF (y)

)
= F ∗ (Ωω) .

Then,

−δF ∗(ω)ΩF ∗(ω) = ∗ ◦DF ∗(ω) ◦ ∗
(
ΩF ∗(ω)

)
= ∗ ◦DF ∗(ω) ◦ ∗ (F ∗ (Ωω))

= ∗ ◦DF ∗(ω)
(
π∗
(
r2(n−2)

)
F ∗ (∗Ωω) ∧̄ π∗(dr)

)
= ∗ ◦ d

(
π∗
(
r2(n−2)

)
F ∗ (∗Ωω) ∧̄ π∗(dr)

)∣∣
Hor

= ∗
(
π∗
(
r2(n−2)

)
F ∗ (d ◦ ∗(Ωω)|Hor) ∧̄ π

∗(dr)
)

where in the last line we have used that π∗(dr) was already a horizontal form.
Thus,

δF
∗(ω)ΩF ∗(ω) = − ∗

(
π∗
(
r2(n−2)

)
F ∗ (Dω ◦ ∗(Ωω)) ∧̄ π∗(dr)

)
Now, if α ∈ Ωk

equiv (P ; g)Hor, then

∗ ◦ ∗ (α) = (−1)k(m−k) α, (A.3)

where m = 2n+1 or m = 2n if the base manifold is R2n+1\{0} or S2n respectively.
On the other hand, by Lemma 15,

∗ (F ∗ (∗ ◦Dω ◦ ∗(Ωω))) = π∗
(
r2(n−1)

)
F ∗ (∗ ◦ ∗ ◦Dω ◦ ∗(Ωω))π∗ (dr)

= (−1)2n−1 π∗
(
r2(n−1)

)
F ∗ (Dω ◦ ∗(Ωω)) ∧̄ π∗ (dr) .

(A.4)

Taking the Hodge operator in both sides of (A.4) and using (A.3),

(F ∗ (∗ ◦Dω ◦ ∗(Ωω))) = − ∗
(
π∗
(
r2(n−1)

)
F ∗ (Dω ◦ ∗(Ωω)) ∧̄ π∗ (dr)

)
,
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so

δF
∗(ω)ΩF ∗(ω) = π∗

(
r2(n−2)

r2(n−1)

)
F ∗ (∗ ◦Dω ◦ ∗(Ωω)) = − 1

π∗ (r2)
F ∗ (δωΩω) . �

A.2. Proof of Proposition 6. Sometimes, principal connections are more con-
veniently described by means of a one form Φ ∈ Ω1 (P ;V P ) with values on the
vertical bundle V P = ∪p∈P Verp,

Φp (X) = TeRp ◦ ωp(X).

In this expression X ∈ X(P ), p ∈ P , e ∈ G denotes the unit element, and
Rp : G → P is the right action Rp(g) := R(g, p) for any g ∈ G. The principal
connection Φ satisfies that TRg◦Φ = Φ◦TRg or, equivalently, Φ = TRg−1◦Φ◦TRg

for any g ∈ G.
In the particular case of homogeneous principal bundles π : Pλ → K/H, prin-

cipal connections Φλ ∈ Ω1 (Pλ;V Pλ) can be built from principal connections
Φ ∈ Ω1 (K;V K) on K → K/H. In order to show how this construction works,
we are going to explicitly describe TPλ. First of all, it can be proved that
Tπ : TK → T (K/H) is again a principal bundle with structural group TH with
right action,

TR : TK × TH −→ TK
((k,Xk) , (h,Xh)) 7−→ (kh, ThLk(Xh) + TkRh(Xk)) ,

(A.5)

where Xh ∈ ThH and Xk ∈ TkK. In addition, if inv : H → H, inv(h) := h−1

denotes the inverse map of the Lie group H, TH acts on TG by the right action

TG× TH → TK
((g,Xg) , (h,Xh)) 7→

(
λ(h)−1g, TgLλ(h)−1(Xg) + Tλ(h)−1Rg ◦ Th−1λ ◦ Th inv(Xh)

)
,

(A.6)
so that the tangent space TPλ equals the associated bundle TK ×TH TG ([M07,
Theorem 18.18]). That is, TPλ is the orbit space of TK × TG under the TH-
action TΨλ. Using the fact that TPλ = TK ×TH TG, the connection Φλ induced
from Φ is defined by the following commutative diagram:

TK × TG Φ×Id−→ TK × TG
Tq ↓ ↓ Tq

TK ×TH TG −→
Φλ

TK ×TH TG = T (K ×H G) ,
(A.7)

where q : K × G → K ×H G sends each element to its corresponding equivalent
class in K ×H G and Tq is its tangent map.

Proof of Proposition 6. Take p = [e, e]∼ ∈ Pλ on the fiber π−1 (o) and let ξ ∈ k.
Since the K-action on Pλ is simply the left action Lλ introduced in (3.3), the
infinitesimal generator ξPλ at p corresponds to the equivalent class [ξ, 0]∼p in
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TK ×TH TG. Observe that [ξ, 0]∼p denotes the orbit of ((e, ξ), (e, 0)) ∈ TK ×TG
under the action of TH. By (A.5) and (A.6), [ξ, 0]∼p is equivalent to

[Xh + TeRh(ξ), Th−1λ ◦ Th inv(Xh)]
∼
(h,λ(h)−1)

for any Xh ∈ ThH, h ∈ H. Taking h = e ∈ H, we have

[ξ, 0]∼p = [η + ξ,−Teλ(η)]∼p . (A.8)

In (A.8), we have written η ∈ h = TeH instead of Xe and have used Te inv = − Id.
On the other hand, Φ ∈ Ω1 (K;V K) coincides with the projection projh : k→ h

from k to h at e ∈ K. Therefore, (A.7) implies

(Φλ) ([e, e]∼) (ξPλ) = (Φλ) ([e, e]∼)
(
[ξ, 0]∼(e,e)

)
= [projh(ξ), 0]∼(e,e).

By (A.8) with η = − projh(ξ), [projh(ξ), 0]∼(e,e) is equivalent to[
0, Teλ

(
projh(ξ)

)]∼
(e,e)

.

Now, for any η ∈ g, Te(Rλ)p(η) ∈ TPλ equals [0, η]∼p in TK ×TH TG. Hence, the

principal connection ωp = (Te(Rλ)p)
−1 ◦ (Φλ)p satisfies

ω (p) (ξPλ) = (Te(Rλ)p)
−1
(
[projh(ξ), 0]∼(e,e)

)
= (Te(Rλ)p)

−1
([

0, Teλ
(
projh(ξ)

)]∼
(e,e)

)
= Teλ

(
projh(ξ)

)
= W (ξ)

if W : k→ g is the canonical connection. �

A.3. Characteristic classes of Gibbons-Townsend monopoles. According
to what we said in Subsection 6.3, we are going to explicitly show that the q-th
Chern class of the principal bundle SO(2q + 1) → S2q = SO(2q + 1)/SO(2q) is
zero. If q is odd, then the characteristic coefficient c2q

q is zero and, consequently,
so is the corresponding q-th Chern class. If q is even then, by (5.3),

(−1)q (2πi)q q!π∗
(
cw
(
Sym(c2qq ), P,ω

))
(υ1, . . . , υ2q)

=
∑

i1<...<iq

∑
η∈Sq

(−1)|η| (Ωω)i1η(i1) ∧ ... ∧ (Ωω)iqη(iq) (υ1, . . . , υ2q)

=
1
2q

∑
i1<...<iq

∑
η∈Sq

(−1)|η|
∑
σ∈S2q

(−1)|σ|
(

ΩfW
λId

(
υσ(1), υσ(2)

))i1
η(i1)
· · ·
(

ΩfW
λId

(
υσ(2q−1), υσ(2q)

))iq
η(iq)

=
1
2q

∑
i1<...<iq

∑
η∈Sq

(−1)|η|
∑
σ∈S2q

(−1)|σ|
(
ξσ(1),σ(2)

)i1
η(i1)
· · ·
(
ξσ(2q−1),σ(2q)

)iq
η(iq)

.

Using (6.3),
(
ξσ(1),σ(2)

)i1
η(i1)
· · ·
(
ξσ(2q−1),σ(2q)

)iq
η(iq)

equals∏
r∈{1,2,...,q}

(−1)U(σ(2r)−σ(2r−1)) (−1)U(η(ir)−ir) δirσ(2r−1)δσ(2r)η(ir).



36 PABLO DÍAZ AND JOAN-ANDREU LÁZARO-CAMÍ

But δirσ(2r−1)δσ(2r)η(ir) must be zero for some r ∈ {1, 2, . . . , q} for any σ ∈ S2q

because {σ(2r − 1), σ(2r)} cover all the indices in {1, 2, ...., 2q} as r ranges from
1 to q but {ir, η(ir)} only q of them. Thus,

π∗
(
cw
(
Sym(c2q

q ), P,ω
))

(υ1, . . . , υ2q) = 0

and the Chern class vanishes.
The same argument applied to the Euler class (5.4) shows that

22qπqq! cw (Sym(Pf), PλId ,ω) (υ1, . . . , υ2q)

=

0@ X
η∈S2q

(−1)|η| (Ωω)
η(1)

η(2) ∧ · · · ∧ (Ωω)
η(2q−1)

η(2q)

1A (υ1, . . . , υ2q)

=
1

2q

X
η∈S2q

(−1)|η|
X
σ∈S2q

(−1)|σ|
“

Ω
fW
λId

`
υσ(1), υσ(2)

´”η(1)
η(2)
· · ·
“

Ω
fW
λId

`
υσ(2q−1), υσ(2q)

´”η(2q−1)

η(2q)

=
1

2q

X
η∈S2q

(−1)|η|
X
σ∈S2q

(−1)|σ|
`
ξσ(1),σ(2)

´η(1)
η(2)
· · ·
`
ξσ(2q−1),σ(2q)

´η(2q−1)

η(2q)
. (A.9)

Using (6.3), (A.9) equals

1

2q

X
η∈S2q

(−1)|η|
X
σ∈S2q

(−1)|σ|
Y

i∈{1,3,...,2q−1}
(−1)U(σ(i+1)−σ(i)) (−1)U(η(i+1)−η(i)) δ

η(i)
σ(i)

δσ(i+1)η(i+1)

=
1

2q

X
η∈S2q

(−1)|η| (−1)|η| =
(2q)!

2q
.

Since vol (S2q) = 22q+1πqq!
(2q)!

, we conclude that the charge Q of the monopole is

Q =

∫
S2q

cw (Sym(Pf), PλId
,ω) =

1

22qπqq!
(2q)! vol

(
S2q
)

= 2
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