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Abstract. We analyse the Heston stochastic volatility model
under an inversion of spot. The result is that under the appropri-
ate measure changes the resulting process is again a Heston type
process whose parameters can be explicitly determined from those
of the original process. This behaviour can be interpreted as some
measure of sanity of the Heston model but does not seem to be a
general feature of stochastic volatility processes.

This note is concerned with an observation related to the inversion
of spot in the Heston model. Although not immediately of interest in
equity or rates modelling, the inverse of spot is a very natural process
in foreign exchange modelling where it is simply the exchange rate for
the reverse currency pair. Therefore a sanity measure for a model is
given by how well it fares under a spot inversion. This test is easily
passed by the log-normal Black-Scholes model but it is less clear for
general stochastic volatility dynamics; for example it is not obvious
how a stochastic volatility model with log-normal volatility behaves
with respect to spot inversion. In this note we will show that the
Heston displays a somewhat remarkable symmetry with respect to spot
inversion.
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1. The Heston model

1.1. The Heston dynamics. The Heston model ([H]) is a stochastic
volatility model in which the instantaneous variance follows a mean
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reverting square root process

dSt
St

= µdt+
√
VtdW

spot
t

dVt = κ(θ − Vt)dt+
√
VtdW

vol
t .

Where dW spot
t and dW vol

t are two jointly Brownian motions with con-
stant correlation ρ and µ, κ, θ and ω are constants.

The spot process is understood to be the number of units of term
currency worth one unit of base currency. For example, for EURUSD
it is the U.S. Dollar (term) worth of one Euro (base). Spot is there-
fore quoted in the term currency. If we use the term rolling cash ac-
count as numéraire then the drift becomes the interest rate differential
(rterm−rbase). Since we will need to keep track of the numéraire we will
add a superscript to indicate the measure for our Brownian motions.

dSt
St

= (rterm − rbase) dt+
√
VtdW

spot, term
t

dVt = κ(θ − Vt)dt+
√
VtdW

vol, term
t .

(1)

1.2. Pricing of vanillas in the Heston model. Thanks to the work
of Steven Heston ([H]) we know how to price vanilla options in the
model described above. The basic idea is to find the characteristic
function of spot analytically and then retrieve the price of an option
using the fact that the Fourier transform is an isometry. If we denote
the discount factors to delivery date T by Dfterm and Dfbase and the
forward by FT = S0 ·Dfbase/Dfterm; then following the notation of [JK]
the price in term currency of a base currency call / term currency put
struck at K in size Notionalbase is

(2) Dfterm ·Notionalbase ·
[

1

2
(FT −K) +

1

π

∫ ∞
0

(FT · f1 −K · f2)du

]
where f1 and f2 are defined by

f1 := <
(

e−iu lnKφ(u− i)
iuFT

)
and f2 := <

(
e−iu lnKφ(u)

iu

)
and φ is the characteristic function of log-spot to expiry

φ(u) = E
(
eiu ln(ST )

)
which in the Heston model is given by

φ(u) = eC(T,u)+D(T,u)V0+iu ln(FT )
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where

C(T, u) =
κθ

ω2

(
(κ− ρωui+ d(u))T − 2 ln

(
c(u)ed(u)T − 1

c(u)− 1

))

D(T, u) =
κ− ρωui+ d(u)

ω2

(
ed(u)T − 1

c(u)ed(u)T − 1

)
and

c(u) =
κ− ρωui+ d(u)

κ− ρωui− d(u)
d(u) =

√
(ρωui− κ)2 + iuω2 + ω2u2 .

2. Inversion of the Heston model

2.1. Heuristic inversion of the spot process. In this section we
shall study the dynamics for inverse spot in a Heston model. When
changing numéraire to the foreign numéraire there is a degree of am-
biguity as to what to do with the volatility Brownian driver. We will
heuristically make a choice which surprisingly gives rise to a Heston
model, then in the next section we prove that this choice prices vanil-
las consistently with the original model and so is the Heston model
that matches the market.

To invert the spot process we use the Ito formula

dS−1
t

S−1
t

= (rbase − rterm + Vt)dt−
√
VtdW

spot, term
t .

With this Brownian motion it is false that tradables are martingales
since for example the expectation of (inverse) spot is not the (inverse)
forward (this is called Siegel’s paradox). To remedy this we need to
change the measure, it is easy to see that the appropriate change is

(3) dW spot, base
t = −dW spot, term

t +
√
Vtdt.

Then (appropriately discounted) inverse spot becomes a martingale

dS−1
t

S−1
t

= (rbase − rterm)dt+
√
VtdW

spot, base
t .

In the Black Scholes framework (ie. Vt deterministic) this is the end of
the story regarding spot inversions. However in Heston the Brownian
process that drives the variance process is correlated with the spot
process

dW vol,term
t = ρdW spot, term

t + ρdW
term

t

where as usual ρ =
√

1− ρ2 and W
term

t is a Brownian motion inde-

pendent of W spot, term
t . This means that the measure change in (3) will

affect the drift of the instantaneous variance process by an amount
proportional to the correlation. If we somehow arbitrarily assume that
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that is the only change of measure required and leave dW t components
to be the same by defining (this is the heuristic part of the argument)

dW
base

t := dW
term

t

then we can write down the change of measure on the Brownian driving
volatility

dW vol, term
t = ρdW spot, term

t + ρdW
term

t

= ρ
(
−dW spot, base

t +
√
Vtdt

)
+ ρdW

base

t

= ρ
√
Vtdt+ dW vol, base

t

where dW vol, base
t is defined by the equation above. Then we have that

inverse spot follows the following stochastic volatility process

dS−1
t

S−1
t

= (rbase − rterm)dt+
√
VtdW

spot, base
t

dVt = κn(θn − Vt)dt+ ω
√
VtdW

vol,base
t

where W spot, base
t and W vol,base

t are jointly normal with correlation ρn
and

ρn = −ρ
κn = κ− ρω
θn = θκn/κ.

(4)

It would be rather optimistic to expect this change of parameters to
price options consistently with the Heston model (1); we will show this
to be indeed the case in the next section.

2.2. Pricing in the reverse currency. This section contains the
main result of this note which is that the price of an option in the
Heston model (1) is the same as in the Heston model for the reciprocal
currency pair with the parameters modified as in (4).

Take a base call/term put struck at K in notional Nbase, according
to (2) the price of such an option is

(5) Dfterm ·Nbase ·
(

1

2
(FT −K) +

1

π

∫ ∞
0

(FT · f1 −K · f2)du

)
.

By put-call parity the price of an equivalent base put/term call op-
tion is obtained by simply reversing the sign in front of 1/π.

The transaction above is viewed by the “inverse” investor as a term
put / base call struck at 1/K in notional Nterm = Nbase ·K, the pric-
ing formula (2) (adapted for put options) states the price of such an
option is
(6)

Dfbase · S0 ·Nterm ·
(

1

2
(F−1

T −K
−1)− 1

π

∫ ∞
0

(F−1
T · f

n
1 −K−1 · fn2 )du

)
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where we have added a spot conversion to yield the price in term cur-
rency.

The main result of this note is

Theorem 1. The price in (5) is equal to (6) provided the parameters
for the reverse spot process in (6) are chosen to be the ones in (4).

In the proof we will freely add the subscript “n” to indicate we are
using the parameters in (4) with the reverse spot process. The Heston
formulæ above use the characteristic function of log-spot, the following
lemma clarifies the connection between the characteristic function for
spot and reverse spot.

Lemma 1. We have φn(u) = F−1
T φ(−u− i)

Proof. As explained in section 1.2 the characteristic function φ is de-
fined in terms of the functions C(T, u) and D(T, u) which are in turn
described in terms of the functions d(u) and c(u) defined therein. To
connect the functions we simply observe

dn(u)2 = (ρnωui− κn)2 + iuω2 + ω2u2

= (−ρωui− κ+ ρω)2 + ω2u(u+ i)

= (ρω(−u− i)i− κ+ ρω)2 + ω2 + ω2u2

= d(−u− i)2.(7)

This implies dn(u) = ±d(−u−i). Assume for the moment that dn(u) =
d(−u− i) then

cn(u) =
κn − ρnωui+ dn(u)

κn − ρnωui− dn(u)

=
κ− ρω + ρωui+ d(−u− i)
κ− ρω + ρωui− d(−u− i)

=
κ− ρω(−u− i)i+ d(−u− i)
κ− ρω(−u− i)i− d(−u− i)

= c(−u− i)

from this it follows that

Cn(T, u) = C(T,−u− i)

and

Dn(T, u) = D(T,−u− i)
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which yields the characteristic function for reverse spot

φn(u) = eCn(T,u)+Dn(T,u)V0+iu ln(F−1
T )

= eC(T,−u−i)+Dn(T,−u−i)V0−iu ln(FT )

= eC(T,−u−i)+Dn(T,−u−i)V0+i(−u−i) ln(FT )F−1
T

= F−1
T φ(−u− i)

as claimed.
If above we had assumed that dn(u) = −d(−u − i) then it is easy

to see that cn(u) = 1/c(−u − i). From this we can derive Cn(T, u) =
C(T,−u− i) and Dn(T, u) = D(T,−u− i) again from which the result
follows. �

Proof of Theorem. In order to verify the agreement of (5) and (6):

Dfterm ·Nbase ·
(

1

2
(FT −K) +

1

π

∫ ∞
0

(FT · f1 −K · f2) du

)
=

= Dfbase · S0 ·Nterm ·(
1

2

(
F−1
T −K

−1
)
− 1

π

∫ ∞
0

(
F−1
T · f

n
1 −K−1 · fn2

)
du

)
we divide by the discounted notional which yields

1

2
(FT −K) +

1

π

∫ ∞
0

(FT · f1 −K · f2) du =

= FT ·K ·
(

1

2

(
F−1
T −K

−1
)
− 1

π

∫ ∞
0

(
F−1
T · f

n
1 −K−1 · fn2

)
du

)
that is, we need to show the equality

FT −K =
1

π

∫ ∞
0

(FT · f1 −K · f2) du− 1

π

∫ ∞
0

(K · fn1 − FT · fn2 ) du.

To prove this we expand the functions under the integral

1

π

∫ ∞
0

(
FT · <

(
e−ui lnKφ(u− i)

iuFT

)
−K · <

(
e−ui lnKφ(u)

iu

))
du

− 1

π

∫ ∞
0

(
K · <

(
e−ui lnK

−1
φn(u− i)

iuF−1
T

)

− FT · <

(
e−ui lnK

−1
φn(u)

iu

))
du
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=
1

π

∫ ∞
0

(
FT · <

(
e−ui lnKφ(u− i)

iuFT

)

−K · <
(

e−ui lnKφ(u)

iu

))
du

− 1

π

∫ ∞
0

(
K · <

(
eui lnKF−1

T φ(−u+ i− i)
iuF−1

T

)

− FT · <
(

eui lnKF−1
T φ(−u− i)
iu

))
du

=
1

π

∫ ∞
0

(
FT · <

(
e−ui lnKφ(u− i)

iuFT

)

−K · <
(

e−ui lnKφ(u)

iu

))
du

− 1

π

∫ ∞
0

(
K · <

(
eui lnKφ(−u+ i− i)

iu

)

− FT · <
(

eui lnKφ(−u− i)
iuFT

))
du.

By the Cauchy residue theorem this is equal to

<
(
FT · Resu=0

e−iu lnKφ(u− i)
iuFT

−K · Resu=0
e−iu lnKφ(u)

iu

)
= <

(
FT ·

φ(−i)
iFT

−K · φ(0)

iu

)
= FT −K.

This proves the theorem. �

3. Application to Variance Swaps

A variance swap is a contract that pays out a linear function of the
realised historical variance of the returns of an asset in a specified set
of dates. An example of a fairly standard deal is a one year USDJPY
variance swap paying USD100k per volatility point where USDJPY is
taken every business day at 4pm London time from a given Reuters
fixing page. A deal like this is quoted by giving a fair variance level in
a similar fashion to how forwards and futures are dealt.

Obviously the volatility exposure of a USDJPY variance swap paying
a rebate in USD is different from that paying an equivalent amount of
JPY. The reason for this is that USDJPY spot is negatively correlated
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with its volatility. A variance swap paying in JPY is more valuable
since a high realised variance scenario is likely to occur on JPY gaining
value against USD. Inexperienced dealers can be arbitraged in this way.

In mathematical modelling the variance is replaced by the continu-
ously sampled variance which is also called quadratic variation, in the
Heston model this is the stochastic variable

1

T

∫ T

0

Vtdt

where T is the expiration date of the contract expressed in years. The
fair level for a variance swap paying in term currency is the expectation
of the annualised accrued variance which in the Heston model is simply

Eterm

(
1

T

∫ T

0

Vtdt

)
= θ + (V0 − θ)

1− e−κT

κT

which is a number between the starting level of variance V0 and its
mean reversion level θ.

For a variance swap paying in base currency we just need to invert
the Heston process and apply this formula, the level is therefore

Ebase

(
1

T

∫ T

0

Vtdt

)
= θ

κ

κ− ρω
+

(
V0 − θ

κ

κ− ρω

)
1− e−(κ−ρω)T

(κ− ρω)T

which will be a number between the starting level V0 and the modified
mean reversion θκ/(κ− ρω). These calculations are in agreement with
the observations above regarding USDJPY since in this case the cor-
relation ρ is negative which depresses the value of the variance swap
level when pricing in base currency.
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