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Abstract. We explore the relationship between polynomial functors
and trees. In the first part we characterise trees as certain polyno-
mial functors and obtain a completely formal but at the same time
conceptual and explicit construction of two categories of rooted trees,
whose main properties we describe in terms of some factorisation sys-
tems. The second category is the category Ω of Moerdijk and Weiss.
Although the constructions are motivated and explained in terms of
polynomial functors, they all amount to elementary manipulations
with finite sets. Included in Part 1 is also an explicit construction
of the free monad on a polynomial endofunctor, given in terms of
trees. In the second part we describe polynomial endofunctors and
monads as structures built from trees, characterising the images of
several nerve functors from polynomial endofunctors and monads into
presheaves on categories of trees. Polynomial endofunctors and mon-
ads over a base are characterised by a sheaf condition on categories of
decorated trees. In the absolute case, one further condition is needed,
a projectivity condition, which serves also to characterise polynomial
endofunctors and monads among (coloured) collections and operads.

0. Introduction and preliminaries

0.0. Introduction

While linear orders and the category ∆ of nonempty finite ordinals con-
stitute the combinatorial foundation for category theory, the theories of
operads and multicategories are based on trees. Where ∆ is very well un-
derstood and admits good formal descriptions, trees are often treated in an
ad hoc manner, and arguments about them are often expressed in more or
less heuristic terms based on drawings.

Having solid combinatorial foundations is crucial for developing homo-
topical and higher-dimensional versions of the theories. Recently, Moerdijk
and Weiss [16], [17] have undertaken the project of developing a homotopy
theory for operads by mimicking the simplicial approach to homotopical
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category theory. Their work is the main motivation and inspiration for the
present article (although no homotopy theory is developed here).

This paper analyses the relationship between polynomial functors, poly-
nomial monads and trees, keeping the analogy with graphs, categories and
linear orders as close as possible. In both cases, the interplay between alge-
bra, combinatorics and homotopy theory follows the same pattern, whose
general theory has been worked out by Weber [20]. Categories are first
defined algebraically: they are algebras for a nice monad on the category
of graphs. There is a canonical way to distill the combinatorics of such
a monad, which in this case yields the category ∆. Finally categories are
characterised among presheaves on ∆. In close analogy, polynomial monads
are algebras for a nice monad on the category of polynomial endofunctors.
From this monad a category of trees arises naturally. Finally polynomial
monads are characterised among presheaves on this category of trees.

One single observation accounts for the close relationship between poly-
nomial endofunctors and trees, namely that they are represented by dia-
grams of the same shape, as we now proceed to explain. Although this
observation is both natural and fruitful, it seems not to have been made
before.

Trees are usually defined and manipulated in either of two ways:

• ‘Topological/static characterisation’: trees are graphs E
-- V

with certain topological properties and structure (a base point).
• ‘Recursive characterisation’: a tree is either a trivial tree or a col-

lection of smaller trees.

In this work, a different viewpoint is taken, specifically designed for the
use of trees in operad theory and related topics:

• ‘Operational characterisation’: trees are certain many-in/one-out
structures, i.e. built from building blocks like

out

in

Accordingly a tree should have a set of edges A, and a set of vertices (or
nodes) N , which we think of as operations; these should have inputs and
output (source and target). So the structure is something like

N

in

A A.

out

-
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The fork represents a ‘multi-valued map’, because a node may have several
input edges. A standard way to encode multi-valued maps is in terms
of correspondences or spans; hence we arrive at this shape of diagram to
represent a tree:

(1) A s� M
p- N t- A.

To be explicit, M is the set of input edges (i.e. pairs (b, e) where b is a node
and e is an input edge of b). In order to be trees, such diagrams should
satisfy certain axioms, which turn out to be quite simple.

Although this is clearly also a static graph-like definition, its operational
aspect comes to the fore with the observation that this shape of diagram is
precisely what defines polynomial endofunctors [11], vindicating the inter-
pretation of N as a set of operations. The polynomial endofunctor repre-
sented by a diagram (1) is

Set/A s∗- Set/M p∗- Set/N t!- Set/A.

Among all polynomial endofunctors we characterise those that correspond
to trees, and since the needed conditions have a clear intuitive content and
are convenient to work with, we will simply take this as the definition of
tree (1.0.3).

If in (1) the map p is the identity, the diagram is just that of a directed
(non-reflexive) graph, and the associated polynomial functor becomes linear.
Imposing the tree axioms in this case yields linear trees, i.e. finite linear
orders.

The theory of polynomial functors is relatively new and has hitherto
mostly been exploited from the viewpoint of type theory and computer sci-
ence (some references can be found in [5] or [11]). The point that polynomial
functors are an excellent tool for making explicit and analysing the combi-
natorics underlying operad theory was first made in the paper [12], where
polynomial functors were used to extract the first purely combinatorial char-
acterisation of opetopes. Opetopes can be seen as higher-dimensional ana-
logues of trees. The present paper goes to a more fundamental level, sub-
stantiating that already the usual notion of tree is of polynomial nature
and benefits from this explicitation. The crucial feature of polynomial end-
ofunctors and polynomial monads compared to operads, is that they can
be represented by diagrams of sets like (1), and most constructions with
polynomial functors can be performed in terms of elementary operations on
those representing sets. As a result, all operations on trees can be carried
out completely formally (e.g., grafting is given in terms of pushouts of finite
sets), without ever having seen a tree in nature — although of course the
arguments are easier to follow with drawings of trees in mind.
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The recursive aspect of trees is also prominent in the present approach,
remembering that polynomial endofunctors provide categorical semantics
for inductive data types (W -types), the latter appearing as initial Lambek
algebras for the former [15]. In fact, a recursive characterisation of trees
(1.1.21) follows quite easily from the definition, although we shall not at-
tempt to explain it in this introduction. While in type theory trees (of a
certain branching profile P) appear as initial algebras for some polynomial
functor P (expressing the branching profile), in this work trees are them-
selves certain polynomial functors. In a precise sense they are absolute trees,
i.e. not relative to any preassigned branching profile.

The paper naturally divides into two parts: the first part concerns the
categories of trees. Most arguments in this part are quite elementary, and
some of the initial manœuvres may appear pedantic. They are deliberately
included in order to emphasise the workability of the new tree formalism
— the reader is challenged to provide easier arguments in other formalisms
of trees. The second part uses the tree formalism to prove theorems about
polynomial functors and polynomial monads and to clarify the relationship
with operads. This part is of a more technical nature and requires some
more category theory.

We proceed to give an overview of each of the two parts of the paper.

0.0.1. Overview of Part 1: trees in terms of polynomial endo-

functors. After recalling the relevant notions from the theory of polynomial
functors, we define a tree to be a diagram of sets of shape (1) satisfying four
simple conditions (1.0.3). The category TEmb is the full subcategory of
PolyEnd consisting of the trees. The symbol TEmb stands for ‘tree em-
beddings’, as it turns out maps between trees are always injective (1.1.3) and
correspond to a notion of subtree. Root-preserving embeddings and ideal
embeddings are characterised in terms of pullback conditions, and every tree
embedding factors as root-preserving followed by ideal embedding (1.1.15).
These two classes of maps allow pushouts along each other in the category
TEmb — this is grafting of trees. This leads to a recursive characterisation
of trees (1.1.21), as well as the useful result that every tree is the iterated
pushout of its one-node subtrees over its inner edges (1.1.24).

For a polynomial endofunctor P, a P-tree is a tree with a map to P. This
amounts to structuring the set of input edges of each node. For example,
if M is the free-monoid monad (0.1.8), then M-trees are precisely planar
trees. It is shown, using the recursive characterisation of trees, that the set
of isomorphism classes of P-trees, denoted tr(P), is the least fixpoint (initial
Lambek algebra) for the polynomial endofunctor 1 + P (Theorem 1.2.5).
This leads to the following explicit construction of the free monad on P: if
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P is given by the diagram A←M → N → A, then the free monad on P is
given by

A← tr′(P)→ tr(P)→ A

where tr′(P) denotes the set of isomorphism classes of P-trees with a marked
leaf (1.2.8). The monad structure is given by grafting P-trees. We are
particularly interested in free monad on trees. Since maps between trees
are embeddings, the free monad on a tree T = (A ← M → N → A) is
given by

A← sub′(T)→ sub(T)→ A

(where sub(T) (resp. sub′(T)) denotes the set of subtrees of T (resp. subtrees
with a marked leaf).

The category Tree is defined to be the category whose objects are trees
and whose arrows are maps between their free monads (1.3.1). This means
that edges are mapped to edges and subtrees are mapped to subtrees. (It is
shown that any map in PolyEnd between free monads on trees is a monad
map (1.3.2).) In other words, Tree is the Kleisli category of TEmb with
respect to the free-monad monad on PolyEnd.

This category Tree is equivalent to the category Ω of Moerdijk and
Weiss [16], whose presheaves are called dendroidal sets. Its construction
in terms of polynomial functors reveals important properties analogous to
properties of ∆. In fact, ∆ is equivalent to the full subcategory in Tree

consisting of the linear trees. (The word ‘linear’ matches also the meaning
of the word for polynomial functors, namely those given by matrix multi-
plication (see [11]).)

The main intrinsic features of the category Tree can be expressed in
terms of three factorisation systems: Tree is shown to have has surjective/
injective factorisation, generic/free factorisation, as well as root-preserving/
ideal-embedding factorisation. The relation between these factorisation sys-
tems is summarised in this figure:

surjective injective

generic free

root preserving ideal

The generic/free factorisation is the most interesting one, cf. the second
part of the paper. The root-preserving/ideal-embedding factorisation is
inherited from TEmb. Every surjection is generic, and the generic maps are
precisely the boundary-preserving maps, and in particular root-preserving.
Every ideal embedding is free, and every free map is injective. Hence the the
three factorisation systems are compatible, and provide a four-component
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factorisation system, as suggested by the above figure: every arrow factors
essentially uniquely as a surjection followed by a generic injection, followed
by a free root-preserving map followed by an ideal embedding.

Explicit descriptions are derived for each of the four classes of maps:
the surjections consist in deleting unary nodes, the generic injections are
node refinements (and of course the free maps are the tree embeddings).
The ideal embeddings are by definition those corresponding to subtrees
containing all descendants — this is the notion of subtree most relevant to
computer science and linguistics.

The subcategory of generic tree maps is opposite to the category of trees
studied by Leinster [13, §7.3]. On Leinster’s side of the duality, tree maps
can be described in terms of set maps between the sets of nodes. On our
side of the duality, tree maps are described in terms of set maps between
the sets of edges.

The category of generic injections is roughly the opposite of the category
of trees studied by Ginzburg and Kapranov [7]; the difference is that they
exclude all trees with nullary nodes. In fact, most of the time they also
exclude trees with unary nodes, and call the remaining trees reduced.

0.0.2. Overview of Part 2: polynomial endofunctors in terms of

trees. In the second part we describe polynomial endofunctors and monads
as structures built from trees. Let tEmb and tree denote chosen skeleta of
TEmb and Tree, respectively. Since tEmb is a subcategory in PolyEnd,
there is a natural nerve functor PolyEnd → PrSh(tEmb), and similarly
there is a nerve functor PolyMnd → PrSh(tree). These nerve functors
are fully faithful, and we characterise their images. A main tool for these
results is the theory of monads with arities due to Weber [20], which is
reviewed in Section 2.0. Nerves of polynomial functors constitute an inter-
esting application of Weber’s theory, of a somewhat different flavour than
the previously known examples, the new twist being that PolyEnd is not
a presheaf category.

A key observation is that although PolyEnd itself is not a presheaf cat-
egory, every slice of it is a presheaf category. This result relies on a notion
of element of a polynomial endofunctor, introduced in Section 2.1: the el-
ements of a polynomial endofunctor are the maps into it from elementary
trees, i.e. trees with at most one node. The elementary trees, forming the
subcategory elTr, play the role of representables: we show rather easily
that the slice category PolyEnd/P is naturally equivalent to the presheaf
category PrSh(el(P)) (cf. 2.1.3), and that each polynomial endofunctor P

is the colimit of a diagram of shape el(P) (cf. 2.1.7).
In Section 2.2 we come to the notions of generic morphism and generic

factorisation, key notions in Weber’s theory. We show that every element
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of a polynomial monad factors as generic followed by free, and the object
appearing in the middle of the factorisation is a tree (2.2.4). This is a main
ingredient in the proof that the free-monad monad on PolyEnd is a lo-
cal right adjoint (2.2.6). We then show that trees provide arities for the
free-monad monad on PolyEnd (cf. 2.2.10). With these facts established,
Weber’s general nerve theorem (2.0.5) implies the following characterisa-
tion (2.2.12): a presheaf on tree is a polynomial monad if and only if its
restriction to tEmb is a polynomial endofunctor.

What is here called the special nerve theorem (2.0.3), first proved by
Leinster [14] and subsumed in the theory of Weber [20], concerns the case
of a parametric right adjoint cartesian monad on a presheaf category; it
characterises nerves in terms of the Segal condition. The Segal condition is
about requiring certain canonical cocones to be sent to limit cones, and can
also be formulated as a sheaf condition for a Grothendieck topology defined
in terms of those canonical cocones. The Segal condition makes sense also in
the present case (the Grothendieck topology is introduced in Section 2.3). It
is shown that the nerve of a polynomial endofunctor is always a sheaf (2.3.3),
and we have an equivalence of categories Sh(tEmb) ≃ PrSh(elTr). How-
ever, the Segal condition is not enough to characterise nerves of polynomial
monads. The special nerve theorem does apply to slices, though, (they are
presheaf categories): for a fixed polynomial monad P, monads over P are
characterised (2.3.5) as presheaves on tree/P satisfying the Segal condition.

In the absolute case, one more condition is needed for a nerve theorem:
it amounts to characterising the polynomial endofunctors among the pre-
sheaves on elTr. Presheaves on elTr are precisely (coloured) collections.
The category Coll(I) of I-coloured collections has a monoidal structure for
which the monoids are the I-coloured operads. The nerve functor from poly-
nomial endofunctors to collections is monoidal, and therefore PolyMnd em-
beds into the category of operads. We show that a collection is (isomorphic
to) the nerve of a polynomial endofunctor if and only if it is (isomorphic to)
the symmetrisation of a nonsymmetric collection (2.4.5). (More precisely,
the category of polynomial endofunctors is the Kleisli category for the sym-
metrisation monad for nonsymmetric collections). Another characterisation
is obtained: the polynomial endofunctors are the projective objects in Coll

with respect to colour-preserving termwise surjections (2.4.8).
The final section contains a big diagram relating the various objects in-

volved: polynomial endofunctors and monads (as well as their planar ver-
sions), collections and operads (as well as the nonsymmetric versions), and
the adjunctions and nerve functors relating them. Polynomial monads are
characterised as operads whose underlying collection is projective (in the
sense just described).
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A note about generality. In this paper, for simplicity, we only consider
finite trees, and correspondingly we always assume our polynomial functors
to be finitary. This is the natural level of generality from the viewpoint
of operad theory, and for the sake of giving a formal construction of the
category of trees of Moerdijk and Weiss, which was the original motivation
for this work. It is mostly straightforward to generalise the results and
constructions to wellfounded trees (in the category of sets) and arbitrary
polynomial functors — the proofs go through almost verbatim. I believe
large parts of the theory will also generalise to an arbitrary locally cartesian
closed category E . Many proofs can be reinterpreted in the internal language
of E , but there are also some that cannot (e.g. involving complements),
and new viewpoints may be required. This general case, perhaps more
interesting from the viewpoint of type theory, is left to another occasion.
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0.1. Polynomial functors

0.1.1. Notation. Throughout we denote by 0 the empty set and by 1 the
singleton. We use the symbols + and

∑
for disjoint union of sets (or of

categories).
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We recall some facts about polynomial functors. For further details and
many other aspects of this fascinating topic, the reader is referred to the
manuscript in preparation Notes on Polynomial Functors [11].

0.1.2. Polynomial functors. A diagram of sets and set maps like this

(2)

E
p- B

I

s

�

J

t-

gives rise to a polynomial functor P : Set/I → Set/J defined by

Set/I s∗- Set/E
p∗- Set/B t!- Set/J.

Here lowerstar and lowershriek denote, respectively, the right adjoint and
the left adjoint of the pullback functor upperstar. In explicit terms, the
functor is given by

Set/I −→ Set/J

[f : X → I] 7−→
∑

b∈B

∏

e∈Eb

Xs(e)(3)

where Eb := p−1(b) and Xi := f−1(i), and where the last set is considered
to be over J via t!.

In this paper we shall only consider polynomial functors for which the
map p has finite fibres (equivalently, the functor preserves sequential colim-
its.) Such polynomial functors are called finitary. From now on, ‘polynomial
functor’ means ‘finitary polynomial functor’.

0.1.3. Categories of polynomial functors. (Cf. [6].) There is a cate-
gory Poly(I, J) whose objects are the polynomial functors from Set/I to
Set/J , and whose arrows are the cartesian natural transformations (i.e. nat-
ural transformations with cartesian naturality squares). A cartesian natural
transformation u : P′ ⇒ P between polynomial functors corresponds pre-
cisely to a commutative diagram

(4)

E′ p′- B′

I

s′

�

J

t′-

E
?

p
-

s

�

B
? t

-

whose middle square is cartesian. In other words, giving u amounts to
giving a J-map u : B′ → B together with an I-bijection E′

b′
∼→ Eu(b′) for

each b′ ∈ B′.
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The composition of two polynomial functors is again polynomial [6];
this is a consequence of distributivity and the Beck-Chevalley conditions.
Clearly the identity functor of Set/I is polynomial for each I. It follows that
the categories Poly(I, J) form the hom categories of a 2-category Poly ,
which we see as a sub-2-category of Cat: the objects are the slice cate-
gories Set/I, the arrows are the polynomial functors, and the 2-cells are
the cartesian natural transformations. Since everything sits inside Cat, as-
sociativity of the compositions as well as the interchange law for composition
of 2-cells are automatic.

From now on we shall only be concerned with the case J = I so that we
can compose P with itself. Throughout we use sans serif typeface for poly-
nomial endofunctors, writing P = (P 0, P 1, P 2) for the functor represented
by

P 0 s� P 2 p- P 1 t- P 0.

We shall use the letters s, p, t for the three arrows in any diagram represent-
ing a polynomial endofunctor.

0.1.4. Polynomial monads. A polynomial monad is a monad in the 2-
category Poly , i.e. a polynomial endofunctor P : Set/I → Set/I with
monoid structure in the monoidal category (PolyEnd(I), ◦, Id). More ex-
plicitly still, there is specified a composition law µ : P ◦ P ⇒ P with unit
η : Id ⇒ P, satisfying the usual associativity and unit conditions, and µ
and η are cartesian natural transformations. Let PolyMnd(I) denote the
category of polynomial monads on Set/I. The arrows are cartesian natural
transformations respecting the monad structure.

0.1.5. Proposition. (cf. [5], [6].) The forgetful functor PolyMnd(I) →

PolyEnd(I) has a left adjoint, denoted P 7→ P. The monad P is the free
monad on P.

An explicit construction of P is given in 1.2.7.

0.1.6. Variable endpoints. It is necessary to consider also 2-cells between
polynomial functors with different endpoints. Let PolyEnd denote the
category whose objects are polynomial functors P = (P 0 ← P 2 → P 1 →
P 0) and whose morphisms are diagrams

(5)

Q0 � Q2 - Q1 - Q0

P 0

α0

?
� P 2

α2

?
- P 1

α1

?
- P 0.

α0

?

This category is fibred over Set by returning the endpoint [6].
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A morphism α of polynomial functors is called injective, resp. surjective,
if each of the three components, α0, α1, α2 is injective, resp. surjective.

Let PolyMnd denote the category whose objects are polynomial monads
and whose morphisms are diagrams like the previous one, required to respect
the monad structure. All we need to know about this is:

0.1.7. Proposition. (Cf. [6].) The forgetful functor PolyMnd→PolyEnd

has a left adjoint P 7→ P, the free-monad functor. In other words, for each
polynomial endofunctor P and each polynomial monad M, there is a bijection

PolyEnd(P,M)↔ PolyMnd(P,M),

natural in P and M.

This adjunction restricts to the adjunction of 0.1.5 in each fibre. It is not
a fibred adjunction, though.

0.1.8. Examples. The free-monoid monad

M : Set −→ Set

X 7−→
∑

n∈N

Xn

is polynomial: it is represented by the diagram

1 � N
′ - N - 1,

where N′ → N is such that the fibre over n has cardinality n, like for example
N′ := {(i, n) ∈ N×N | i < n} with the second projection. The slice category
PolyMnd/M of polynomial monads over M is equivalent to the category
of small multicategories (also called nonsymmetric coloured operads), and
the fibre PolyMnd(1)/M corresponds to nonsymmetric operads.

The identity functor Id : Set → Set is clearly polynomial. The slice
category PolyMnd/Id is equivalent to the category of small categories,
and the fibre PolyMnd(1)/Id is equivalent to the category of monoids.

More generally, polynomial endofunctors over a polynomial monad T

correspond to T-graphs, and polynomial monads over T correspond to small
T-multicategories. All these results can be found in Leinster’s book [13,
§4.2], modulo the observation that any endofunctor with a cartesian natural
transformation to a polynomial one is again polynomial, cf. [11].
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1. Trees in terms of polynomial endofunctors

1.0. Trees

We shall define trees to be certain polynomial endofunctors. To motivate
this definition, let us first informally explain what trees are supposed to be,
and then show how to associate a polynomial endofunctor to a tree.

1.0.1. Trees. Our trees are non-planar finite rooted trees with boundary.
Each node has a finite number of incoming edges and precisely one outgoing
edge, always drawn below the node. The following drawings should suffice
to exemplify trees, but beware that the planar aspect inherent in a drawing
should be disregarded:

Note that certain edges (the leaves) do not start in a node and that one edge
(the root edge) does not end in a node. The leaves and the root together
form the boundary of the tree.

We shall give a formal definition of tree in a moment (1.0.3).

1.0.2. Polynomial functors from trees. Given a tree, define a polynomial
functor

T 0 s� T 2 p- T 1 t- T 0,

by letting T 0 be the set of edges, T 1 the set of nodes, and T 2 the set of
nodes with a marked input edge, i.e. the set of pairs (b, e) where b is a node
and e is an incoming edge of b. The maps are the obvious ones: s returns
the marked edge of the node (i.e. (b, e) 7→ e), the map p forgets the mark
(i.e. (b, e) 7→ b), and t returns the output edge of the node.

For example, the first three trees in the drawing above correspond to the
following polynomial functors:

1← 0→ 0→ 1 1← 0→ 1→ 1 2← 1→ 1→ 2.

The polynomial functors that arise from this construction are charac-
terised by four simple conditions which are convenient to work with. We
shall take this characterisation as our definition of tree:

1.0.3. Definition of tree. We define a finite rooted tree with boundary to
be a polynomial endofunctor T = (T 0, T 1, T 2)

T 0 s� T 2 p- T 1 t- T 0
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satisfying the following four conditions:
(1) all the involved sets are finite.
(2) t is injective
(3) s is injective with singleton complement (called the root and de-

noted 1).
With T 0 = 1 + T 2, define the walk-to-the-root function σ : T 0 → T 0 by
1 7→ 1 and e 7→ t(p(e)) for e ∈ T 2.

(4) ∀x ∈ T 0 : ∃k ∈ N : σk(x) = 1.
The elements of T 0 are called edges. The elements of T 1 are called nodes.

For b ∈ T 1, the edge t(b) is called the output edge of the node. That t is
injective is just to say that each edge is the output edge of at most one node.
For b ∈ T 1, the elements of the fibre (T 2)b := p−1(b) are called input edges
of b. Hence the whole set T 2 =

∑
b∈T 1(T 2)b can be thought of as the set of

nodes-with-a-marked-input-edge, i.e. pairs (b, e) where b is a node and e is
an input edge of b. The map s returns the marked edge. Condition (3) says
that every edge is the input edge of a unique node, except the root edge.
Condition (4) says that if you walk towards the root, in a finite number of
steps you arrive there.

The edges not in the image of t are called leaves. The root and the leaves
together form the boundary of the tree.

From now on we just say tree for ‘finite rooted tree with boundary’.

Let us briefly describe how to draw such a tree, i.e. give the converse
of the construction in 1.0.2. Given (T 0, T 1, T 2) we define a finite, oriented
graph with boundary, i.e. edges are allowed to have loose ends: take the
vertex set to be T 1 and the edge set to be T 0. The edges x ∈ T 0 which
are not in the image of t are the input edges of the graph in the sense that
they do not start in a vertex. For each other edge x, we let it start in b if
and only if t(b) = x. (Precisely one such b exists by axiom (2).) Clearly
every b occurs like this. Now we have decided where each edge starts. Let
us decide where they end: the root edge 1 is defined to be the output edge
of the graph, in the sense that it does not end in a vertex. For each other
edge e 6= 1 (which we think of as e ∈ T 2), we let it end in p(e). Note that
the fibre of p over a vertex b consists of precisely the edges ending in b.
Now we have described how all the edges and vertices are connected, and
hence we have described a finite, oriented graph with boundary. Condition
(4) implies that the graph is connected: every e 6= 1 has a ‘next edge’ σ(e)
distinct from itself, and in a finite number of steps comes down to the root
edge. There can be no loops because there is precisely one edge coming
out of each vertex, and linear cycles are excluded by connectedness and
existence of a root. In conclusion, the graph we have drawn is a tree.
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1.0.4. The trivial tree. The nodeless tree

1 � 0 - 0 - 1,

(consisting solely of one edge) is called the trivial tree, and is denoted ppp .

1.0.5. One-node trees. For each finite set E we have a one-node tree,

E + 1 s� E
p- 1 t- E + 1,

where s and t are the sum inclusions.

1.0.6. Elementary trees. An elementary tree is one with at most one
node. That is, either a trivial tree or a one-node tree. These will play a
fundamental role in the theory. We shall see in a moment that every tree
is obtained by gluing together one-node trees along trivial trees in a spe-
cific way (grafting trees), while polynomial endofunctors are more general
colimits of elementary trees.

1.0.7. Terminology. We define a partial order (called the tree order) on
the edge set T 0 by declaring x ≤ y when ∃k ∈ N : σk(x) = y. In this
case x is called a descendant of y, and y is called an ancestor of x. In the
particular case where σ(x) = y and x 6= y, we say that x is a child of y.
If σ(x) = σ(y) and x 6= y we say that x and y are siblings. We define the
distance from x to y to be min{k ∈ N | σk(x) = y}, whenever this set is
nonempty. Note that the order induced on any ‘upset’ is a linear order:
if e ≤ x and e ≤ y then x ≤ y or y ≤ x. The poset T 0 has a maximal
element, namely the root; hence it has binary joins: the join of two edges
is their nearest common ancestor. Every leaf is a minimal element for the
tree order, but there may be other minimal elements. (Note that a partial
order is induced on T 2 ⊂ T 0, and also on T 1 (via t).)

1.1. The category TEmb

1.1.1. The category of trees and tree embeddings. Define the category
TEmb to be the full subcategory of PolyEnd consisting of the trees. Hence
a map of trees φ : S→ T is a diagram

(6)

S0 � S2 - S1 - S0

T 0

φ0

?
� T 2

φ2

?
- T 1

φ1

?
- T 0

φ0

?

The cartesian condition amounts to ‘arity preservation’: the set of input
edges of b ∈ S1 maps bijectively onto the set of input edges of φ1(b). Root
and leaves are not in general preserved.
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1.1.2. Lemma. Morphisms in TEmb preserve the childhood relation. That
is, for a morphism φ : S→ T, if x is a child edge of y in S then φ0(x) is a
child edge of φ0(y) in T. More generally, morphisms preserve distance.

Proof. To say that x is a child of y means that x is not the root and
t(p(x)) = y. The property of not being the root is preserved by any map
(cf. commutativity of the left-hand square in the diagram), so φ0(x) is not
the root either. Now apply φ and use that it commutes with p and t,
cf. (6). �

1.1.3. Proposition. Every morphism in TEmb is injective.

Proof. Let φ : S → T in TEmb. Let r ∈ T 0 denote the image of the
root edge. Let x, y be edges in S and suppose φ0(x) = φ0(y). Since φ0

preserves distance we have d(x, 1) = d(φ0(x), r) = d(φ0(y), r) = d(y, 1).
Since x and y have the same distance to the root, it makes sense to put
k := min{n ∈ N | σn(x) = σn(y)}, and z := σk(x) = σk(y) (nearest common
ancestor). If k > 0, then the edges σk−1(x) and σk−1(y) are both children
of z, and by childhood preservation, we have φ(σk−1(x)) = φ(σk−1(y)). But
φ induces a bijection between the fibre (S2)z and the fibre (T 2)φ0(z), so we

conclude that already σk−1(x) = σk−1(y), contradicting the minimality of
k. Hence k = 0, which is to say that already x = y. Hence we have shown
that φ0 is injective. Since t is always injective, it follows that also φ1 and
φ2 are injective. �

The proposition shows that the category TEmb is largely concerned with
the combinatorics of subtrees, which we now pursue. It must be noted,
though, that the category contains nontrivial automorphisms. In particular
it is easy to see that

1.1.4. Lemma. The assignment of a one-node tree to every finite set as in
1.0.5 defines a fully faithful functor from the groupoid of finite sets and bijec-
tions into TEmb. (The essential image consists of the trees with precisely
one node.) �

1.1.5. Subtrees. A subtree of a tree T is an isomorphism class of arrows
S→ T in TEmb; more concretely it is an arrow S→ T for which each of the
three set maps are subset inclusions. Translating into classical viewpoints
on trees, subtree means connected subgraph with the property that if a
node is in the subgraph then all its incident edges are in the subgraph too.

Here are two examples:
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a
b

⊂
a

b

e

⊃ e

1.1.6. Edges. For each edge x of T there is a subtree ppp→ T given by

1 � 0 - 0 - 1

T 0

pxq ?
� T 2

?
- T 1

?
- T 0.

pxq?

The subtree consists solely of the edge x. The edge is the root edge iff the
left-hand square is a pullback, and the edge is a leaf iff the right-hand square
is a pullback.

1.1.7. One-node subtrees. For each node b in T there is a subtree inclusion

(T 2)b + 1 �(T 2)b - {b}- (T 2)b + 1

T 0
?

� T 2
?

- T 1
?

- T 0
?

The vertical maps at the ends are the sum of s | (T 2)b and the map sending
1 to t(b). The subtree defined is the local one-node subtree at b: the node
itself with all its incident edges.

1.1.8. Proposition. Let R and S be nontrivial subtrees in T, and suppose
that R1 ⊂ S1. Then R ⊂ S. In particular, a nontrivial subtree is determined
by its nodes.

Proof. We need to provide the dotted arrows in the diagram

R0 � R2 - R1 - R0

S0 �

-

S2 -

-

S1 -

-

S0

-

T 0
?

�

�

T 2
?

-

�

T 1
?

-

�

T 0
?�

The arrow R1 → S1 is the assumed inclusion of nodes. For each node b in
R we have a bijection between the fibre (R2)b and the fibre (S2)b. These
bijections assemble into a map R2 → S2 and a cartesian square. Since
R0 = R2 + {r} where r is the root edge of R, to specify the arrow R0 → S0
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it remains to observe that r maps into S0: indeed, there is a b ∈ R1 with
t(b) = r. Hence φ0(r) = φ0(t(b)) = t(φ1(b)) ∈ S0. �

1.1.9. Ideal subtrees. An ideal subtree is a subtree containing all the
descendant nodes of its edges, and hence also all the descendant edges.
(Hence it is a ‘down-set’ for the tree order (both with respect to nodes and
with respect to edges), and just by being a subtree it is also closed under
binary join.)

Each edge z of a tree T determines an ideal subtree denoted Dz :

Dz : D0 � D2 - D1 - D0

T 0
?

∩

� T 2
?

∩

- T 1
?

∩

- T 0
?

∩

where

D0 := {x ∈ T 0 | x ≤ z},

D1 := {b ∈ T 1 | t(b) ∈ D0},

D2 := {e ∈ T 2 | t(p(e)) ∈ D0} = D0 r {z}.

It is easy to check that this is a tree; it looks like this:

z

Dz

Note also that we have x ∈ Dz ⇔ x ≤ z.

1.1.10. Lemma. The following are equivalent for a tree embedding φ : S→T:
(1)The image subtree is an ideal subtree.
(2)The right-hand square is cartesian (like in the above diagram).
(3)The image of each leaf is again a leaf.

Proof. (1) ⇒ (2): clearly every ideal subtree S ⊂ T is equal to Dz for z the
root of S. Hence the embedding has cartesian right-hand square.

(2) ⇒ (3): a leaf in S is characterised (1.1.6) as an edge for which the
right-hand square is cartesian; composing with φ gives then again a cartesian
right-hand square, so the edge is again a leaf in T.

(3) ⇒ (1): let x be an edge in S, having a child node b in T (that is,
p(b) = x). This means x is not a leaf in T, and hence by assumption, not a
leaf in S either. So b is also in S. �
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1.1.11. Pruning. Using complements, it is not difficult to see that an edge
z ∈ T 0 defines also another subtree which has the original root, but where
all descendants of z have been pruned. In other words, the ideal subtree Dz

is thrown away (except for the edge z itself). Formally, with the notation
of the ideal subtree: put C1 := T 1 rD1 and C2 := T 2 rD2. Then clearly
we have a cartesian square

C2 - C1

T 2
?

∩

- T 1.

?

∩

Now simply put C0 := C2 + {1} (the original root). It remains to see that
the map t : T 1 → T 0 restricts to C1 → C0, but this follows from the fact
that if t(b) is not in D0, then it must be in either C2 or 1. Using simple set
theory, one readily checks that this is a tree again.

In any poset, we say that two elements e and e′ are incomparable if neither
e ≤ e′ nor e′ ≤ e. If two subtrees have incomparable roots then they are
disjoint. Indeed, suppose the subtrees S and S′ of T have an edge x in
common. Then the totally ordered set of ancestors of x in T will contain
both the root of S and the root of S′, hence they are comparable. Clearly
siblings are incomparable. In particular, if two subtrees have sibling roots,
then they are disjoint.

1.1.12. Lemma. Let x and y be edges of a tree T. Then the following are
equivalent:

(1) The ideal subtrees Dx and Dy are disjoint.
(2) x and y are incomparable (i.e. neither x ≤ y nor y ≤ x).
(3) There exists a subtree in which x and y are leaves.

Proof. If x ≤ y then clearly Dx ⊂ Dy. On the other hand if Dx and Dy

have an edge e in common, then e ≤ x and e ≤ y, and hence x ≤ y or
y ≤ x. Concerning condition (3): if x and y are leaves of a subtree, in
particular they are both minimal, and in particular they are incomparable.
Conversely, if they are incomparable, then we already know that the ideal
subtrees they generate are disjoint, so we can prune at x and y to get a
subtree in which x and y are leaves. �

1.1.13. Root-preserving embeddings. An arrow S → T in TEmb is
called root preserving if the root is mapped to the root. In other words, S

viewed as a subtree of T contains the root edge of T:



POLYNOMIAL FUNCTORS AND TREES 19

T

S

The root preserving subtrees are those that are up-sets in the tree order. It
is easy to check that S → T is root-preserving if and only if the left-hand
square is a pullback.

1.1.14. Lemma. If a tree embedding is both root preserving and ideal, then
it is invertible (i.e. its image is the whole tree).

Proof. Indeed, if it is root preserving then its image contains 1, and because
it is ideal its image contains all other edges, as they are descendants of the
root. �

1.1.15. Proposition. Every arrow φ : S→ T in TEmb factors uniquely as
a root-preserving map followed by an ideal embedding.

Proof. Put r := φ0(root), and consider the ideal subtree Dr ⊂ T. Since the
map preserves childhood relation, it is clear that all edges in S map into Dr,
and this map is root preserving by construction. �

1.1.16. Remark. One can equally well factor every map the other way
around: first an ideal embedding and then a root-preserving embedding.
We will not have any use of that factorisation, though.

1.1.17. Lemma. A subtree is determined by its boundary.

Proof. Let S ⊂ T and S′ ⊂ T be subtrees with common boundary. Suppose
b is a node of S which is not in S′. Since b is in S, for some k we have
σk(t(b)) = root(S) = root(S′). In this chain of nodes and edges, there is
a node b which is in S but not in S′, and such that t(b) is an edge in S′.
This means t(b) is a leaf in S′ and hence a leaf in S, but this in turn implies
that b is not in S, in contradiction with the initial assumption. So the two
subtrees contain the same nodes. If they do contain nodes at all then they
are equal by Lemma 1.1.8. If both subtrees are trivial, then they must
coincide because their roots coincide. �

1.1.18. Pushouts in PolyEnd. A polynomial functor P is a diagram in
Set of shape

· ← · → · → ·

While pointwise sums are also sums in PolyEnd, pointwise pushouts are not
in general pushouts in PolyEnd, because of the condition on arrows that
the middle square be cartesian. Only pushouts over polynomial functors of
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shape ? ← 0 → 0 →? can be computed pointwise. In particular we can
take pushouts over the trivial tree ppp : 1← 0→ 0→ 1. The pushout of the
morphisms S← ppp → T is the polynomial endofunctor given by

(7)

S2 + T 2 - S1 + T 1

S0 + T 0

�

S0 + T 0

-

S0 +1 T
0

�

S0 +1 T
0,

-

where S0 +1 T
0 denotes the amalgamated sum over the singleton.

1.1.19. Proposition. Given a diagram of trees and tree embeddings

S � r
ppp

l - T

such that r is the root edge in S, and l is a leaf in T, then the pushout in
PolyEnd is again a tree, called the grafting of S onto the leaf of T, and
denoted S + ppp T.

Proof. We check that the polynomial endofunctor (7) is a tree by inspection
of the four axioms. It is obvious the involved sets are finite. The calculation
S0 +1 T

0 = (S2 + {r}) +{r} T
0 = S2 +T 0 = S2 + T 2 + 1 (where 1 denotes

the root of the bottom tree T) shows that Axiom (3) holds and that 1 is also
the root of the new tree. Now we check that the right-hand leg is injective.
To say that l is a leaf of T means it is not in the image of t : T 1 → T 0. So
we can write S1 + T 1 = S1 +{l} ({l}+ T 1), and the map we want to prove

injective is just the inclusion S1 + T 1 = S1 +{l} ({l}+ T 1) →֒ S1 +{l} T
0.

Finally, we check the walk-to-the-root axiom: for x ∈ S0, in a finite number
of steps we arrive at r = e = l, and from here in another finite number of
steps down to the root of T 0. �

1.1.20. Remark. More generally, the pushout of a root-preserving embed-
ding along an ideal embedding is again a tree, and the two resulting maps
are again root-preserving and ideal, respectively, as in this diagram

·
root pres.- ·

·

ideal

?
root pres.

- ·

ideal

?

We will not need or prove this result here.

The following expresses the recursive characterisation of trees.
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1.1.21. Proposition. A tree T is either a nodeless tree, or it has a node
b ∈ T 1 with t(b) = 1; in this case for each e ∈ (T 2)b consider the ideal
subtree De corresponding to e. Then the original tree T is the grafting of all
the De onto the input edges of b.

Proof. The grafting exists by Proposition 1.1.19, and is a subtree in T by
the universal property of the pushout. Clearly every node in T is either b
or a node in one of the ideal subtrees, therefore the grafting is the whole
tree, by Lemma 1.1.8. �

1.1.22. Corollary. An automorphism of a tree amounts to permutation of
siblings whose generated ideal subtrees are isomorphic.

Proof. Use the recursive characterisation of trees. By childhood preserva-
tion, an automorphism must send an edge e to a sibling e′. For the same
reason it must map De isomorphically onto De′ . �

1.1.23. Inner edges. An inner edge of a tree

T 0 s� T 2 p- T 1 t- T 0

is one that is simultaneously in the image of s and t. In other words, the set
of inner edges is naturally identified with T 1×T 0 T 2 considered as a subset
of T 0; its elements are pairs (b, e) such that t(b) = s(e).

1.1.24. Corollary. Every nontrivial tree T is the grafting (indexed by the
set of inner edges T 1 ×T 0 T 2) of its one-node subtrees. �

The elements of a tree T are its nodes and edges. i.e. its elementary
subtrees. These form a poset ordered by inclusion, and we denote this
category el(T). There is an obvious functor el(T) → TEmb. This functor
has a colimit which is just T. Indeed, each edge is included in at most two
one-node subtrees of T, and always as root in one and as leaf in the other;
the colimit is obtained from these pushouts. The general notion of elements
of a polynomial endofunctor will be introduced in Section 2.1.

1.2. P-trees and free monads

The trees studied so far are in a precise sense abstract trees, whereas
many trees found in the literature are structured trees, amounting to a
morphism to a fixed polynomial functor. The structure most commonly
found is planarity: a planar structure on a tree T is a linear ordering of the
input edges of each node, i.e. a linear ordering on each fibre of T 2 → T 1.
This amounts to giving a morphism T → M, where M is the free-monoid
monad (0.1.8).
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1.2.1. P-trees. Let P be a fixed polynomial endofunctor P 0 ← P 2 →
P 1 → P 0. By definition, the category of P-trees is the comma category
TEmb/P whose objects are trees T with a morphism T→ P in PolyEnd.
Explicitly, a P-tree is a tree T 0 ← T 2 → T 1 → T 0 together with a diagram

T 0 � T 2 - T 1 - T 0

P 0
?

� P 2
?

- P 1
?

- P 0.

?

Unfolding further the definition, we see that a P-tree is a tree whose edges
are decorated in P 0, whose nodes are decorated in P 1, and with the ad-
ditional structure of a bijection for each node n ∈ T 1 (with decoration
b ∈ P 1) between the set of input edges of n and the fibre (P 2)b, subject to
the compatibility condition that such an edge e ∈ (P 2)b has decoration s(e),
and the output edge of n has decoration t(b). Note that the P 0-decoration
of the edges is completely specified by the node decoration together with
the compatibility requirement, except for the case of a nodeless tree. (The
notion of P-tree for a polynomial endofunctor P is closely related to the
notion of TS-tree of Baez and Dolan [1, Proof of Thm. 14], but they neglect
to decorate the edge in the nodeless tree.)

If P is the identity monad, a P-tree is just a linear tree. If P is the
free-monoid monad, a P-tree is precisely a planar tree, as mentioned. If
P is the free-nonsymmetric-operad monad on Set/N, the P-trees are the
3-dimensional opetopes, and so on: opetopes in arbitrary dimension are
P-trees for a suitable P, cf. [1], [13, §7.1], [12].

1.2.2. Remark. It is important to note that P-trees are something gen-
uinely different from just trees, in the sense that TEmb is not equivalent
to TEmb/P for any P. It is true of course that every tree admits a pla-
nar structure, i.e. a decoration by the free-monoid monad M (0.1.8): the
possible diagrams

T 0 � T 2 - T 1 - T 0

I
?
� N

′
?

- N

?
- 1

?

have to send a node b ∈ T 1 to its arity n (the number of input edges), and
then there are n! different choices for mapping the fibre to the n-element
set n, the fibre over n.

The crucial property of P-trees is that they are rigid:

1.2.3. Proposition. P-trees have no nontrivial automorphisms.
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Proof. Every automorphism of a tree consists in permuting siblings. Now
in a P-tree, the set of siblings (some set (T 2)b) is in specified bijection with
(P 2)φ1(b), so no permutations are possible. �

The basic results about trees, notably grafting (1.1.19) and the recursive
characterisation (1.1.21), have obvious analogues for P-trees. We shall not
repeat those results.

1.2.4. The set of P-trees. Let P be a polynomial endofunctor. Denote by
tr(P) the set of isomorphism classes of P-trees, i.e. isomorphism classes of
diagrams

T 0 � T 2 - T 1 - T 0

P 0
?

� P 2
?

- P 1
?

- P 0
?

where the first row is a tree. Note that tr(P) is naturally a set over P 0 by
returning the decoration of the root edge.

1.2.5. Theorem. If P is a polynomial endofunctor then tr(P) is a least
fixpoint (i.e. initial Lambek algebra) for the endofunctor

1 + P : Set/P 0 −→ Set/P 0

X 7−→ P 0 + P(X).

Proof. The proof uses the recursive characterisation of P-trees analogous to
1.1.21. For short, put W := tr(P). We have

P(W ) =

{
(b, f) | b ∈ P 1,

(P 2)b
f-W

P 0

�

-

}

This set is in natural bijection with the set of P-trees with a root node dec-
orated by b ∈ P 1. Indeed, given (b, f) ∈ P(W ), we first consider the unique
one-node P-tree whose node is decorated by b. (This is well-defined: since
(P 2)b is finite, the one-node tree is given as in 1.0.5, and the decorations
are completely determined by the requirement that the node is decorated
by b.) Now for each e ∈ (P 2)b we can graft the P-tree f(e) onto the leaf e of
that one-node P-tree as in 1.1.19. The result is a P-tree D with root node
decorated by b. Conversely, given a P-tree D with root node decorated by
b, define f : (P 2)b →W by sending e to the ideal sub-P-tree De.

Now, W is the sum of two sets: the nodeless P-trees (these are in bijection
with P 0) and the P-trees with a root node. Hence we have (1+P)(W ) ∼→W ,
saying that W is a fixpoint.

Finally, we must show that W is a least fixpoint. Suppose V ⊂W is also
a fixpoint. Let Wn ⊂ W denote the set of P-trees with at most n nodes.
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Clearly W0 ⊂ V . But if Wn ⊂ V then also Wn+1 ⊂ V because each tree
with n + 1 nodes arises from some (b, f) where b decorates the root node
and f : (P 2)b →Wn. �

1.2.6. Historical remarks: well-founded trees. Theorem 1.2.5 has a
long history: it is a classical observation (due to Lambek) that the elements
of an initial algebra for an endofunctor P are tree-like structures, and that
the branching profile of such trees depends on P. A very general version
of the theorem is due to Moerdijk and Palmgren [15] providing categorical
semantics for the notion of W -types (wellfounded trees) in Martin-Löf type
theory. Briefly, under the Seely correspondence between (extensional) type
theory and locally cartesian closed categories E , the Sigma and Pi types
correspond to dependent sums and products (as in (3)). The W type con-
structor associates to a given combination P of Sigma and Pi types a new
inductive type WP. Under the correspondence, P is a polynomial endofunc-
tor on E (i.e. with P 0 terminal), and WP is its initial algebra.

The new feature of Theorem 1.2.5 (and the treatment leading to it) is to
have trees and endofunctors on a common footing. This makes everything
more transparent. Such a common footing was not possible in [15] because
they only considered polynomial endofunctors P with P 0 terminal. Trees
cannot be captured by such, since it is essential to be able to distinguish the
edges in a tree. The case of arbitrary polynomial functors was considered
by Gambino and Hyland [5], corresponding to dependent type theory.

1.2.7. Construction of free monads. Let tr′(P) denote the set of (isomor-
phism classes of) P-trees with a marked input leaf, i.e. the set of diagrams

1 � 0 - 0 - 1

T 0
?

� T 2
?

- T 1
?

- T 0
?

P 0
?

� P 2
?

- P 1
?

- P 0
?

modulo isomorphism. (The cartesianness of the upper right-hand square
says the edge is a leaf.) The set tr′(P) is naturally an object of Set/P 0,
the structure map tr′(P)→ P 0 returning the decoration of the marked leaf.
There is also the natural projection to tr(P) given by forgetting the mark.
We get altogether a polynomial functor

P 0 ← tr′(P)→ tr(P)→ P 0

which we denote by P. Its value on a set X → P 0 is the set of P-trees with
leaves decorated in X . More precisely, for a P-tree S, denote by LS the set
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of leaves of S, then

P(X) =

{
(S, f) | S ∈ tr(P),

LS

f-X

P 0

�

-

}
.

The polynomial functor P is naturally a monad: the multiplication map
P P(X)→ P(X) sends a P-tree T with leaves decorated by other P-trees to
the P-tree obtained by grafting the other P-trees onto the leaves of T. Note
that the compatibility condition on the decorations states that the root
edges of the decorating trees are precisely the leaves of the bottom tree,
so the grafting makes sense. The unit for the multiplication is the map
P 0 → P(P 0) sending an edge x to the trivial P-tree decorated by x ∈ P 0.

The construction P 7→ P is clearly functorial. If α : Q→ P is a morphism
of polynomial endofunctors, it is clear that α1 : tr(Q)→ tr(P) sends trivial
trees to trivial trees, and it is also clear it is compatible with grafting. Hence
α is a monad map.

1.2.8. Proposition. Let P be a polynomial endofunctor. The monad P given
by

P 0 ← tr′(P)→ tr(P)→ P 0

is the free monad on P.

Proof. Given X → P 0, put WX : = P(X), the set of P-trees with leaves
decorated in X . In other words,

WX = P(X) =

{
(S, f) | S ∈ tr(P),

LS

f-X

P 0

�

-

}
,

where LS denotes the set of leaves of a tree S. It follows from the argument
of Lemma 1.2.5 that WX is a least fixpoint for the endofunctor X+P, i.e. an
initial object in (X+P)-alg ≃ X↓P -alg . Via the inclusion P ⊂ X + P it
also becomes a P-algebra. The construction X 7→ WX is clearly functorial
and defines a functor

F : Set/P 0 −→ P-alg

X 7−→ WX .

To say that WX is the initial in (X+P)-alg ≃ X↓P -alg is equivalent to
saying that F is left adjoint to the forgetful functor U : P-alg → Set/P 0,
and therefore (e.g. by Barr-Wells [2, Theorem 4, p.311]), the generated
monad X 7→WX is the free monad on P. �



26 JOACHIM KOCK

1.2.9. The free monad on a tree. We are particularly interested in the
case where the polynomial endofunctor is itself a tree T. In this case we
write sub(T) instead of tr(T), as we know that all maps between trees are
injective. We restate this special case for emphasis:

1.2.10. Corollary. Let T be a tree. The monad T given by

T 0 ← sub′(T)→ sub(T)→ T 0

is the free monad on T.

1.3. The category Tree

1.3.1. The category Tree. We define a larger category of trees Tree as
the full subcategory of PolyMnd consisting of the free monads T, where
T is a tree. This means taking the objects from TEmb and the morphisms
from PolyMnd. More precisely the category Tree is given by the Gabriel
factorisation (identity-on-objects/fully-faithful) of TEmb → PolyMnd:

(8)

Tree
f.f.- PolyMnd

TEmb

i.o.

6

- PolyEnd

free
6
⊣ forgetful

?

The category Tree is equivalent to the category Ω introduced by Moerdijk
and Weiss [16], whose presheaves are called dendroidal sets. The category
Tree is also described as the Kleisli category of the free-forgetful adjunc-
tion restricted to TEmb. The arrows in the category Tree are by definition
monad maps S→ T. By adjunction these correspond to maps of endofunc-
tors S → T, and many properties of the category Tree can be extracted
in this viewpoint, without ever giving an explicit description of the monad
maps. However, remarkably, the following result holds:

1.3.2. Proposition. All maps of endofunctors S→ T are monad maps. In
other words, the forgetful functor Tree→ PolyEnd is full.

This means that the maps in Tree have this surprisingly easy description:
they are just commutative diagrams

(9)

S0 � sub′(S) - sub(S) - S0

T 0
?

� sub′(T)
?

- sub(T)
?

- T 0.

?

Proof of the Proposition. Since the monad structure is defined in terms of
unit trees and grafting, the assertion follows from the following two lemmas
which are of independent interest. �
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1.3.3. Lemma. Any map of polynomial endofunctors S → T maps trivial
subtrees to trivial subtrees.

Proof. If z is the root edge of a trivial subtree in S, then that trivial tree
must map to a subtree of T with root φ(z), by commutativity of the right-
hand square in (9). On the other hand, z is also the unique leaf of that
trivial tree, and by commutativity of the left-hand square in (9), the unique
leaf of the image tree must be φ(z). Hence the image tree has the property
that its root is equal to its unique leaf, hence it is trivial. �

1.3.4. Proposition. Every morphism φ : S→ T respects grafting. In other
words, if a subtree R ∈ sub(S) is a grafting R = A + ppp B then the image
subtree φ1(R) ∈ sub(T) is given by φ1(R) = φ1(A) +φ1( ppp ) φ

1(B).

Proof. The root of A is ppp which is also a certain leaf of B. Hence the root of
the image tree φ1(A) is equal to φ1( ppp ) which is also a leaf of φ1(B). Hence
the grafting exists in T. It has root φ0(root(B)) as required, and set of
leaves φ0(leaves(A) + leaves(B) r { ppp }). So it has the same boundary as the
image of R, so by Lemma 1.1.17 they agree. �

1.3.5. Lemma. A map of polynomial endofunctors S → T is completely
determined by its value on the edge set.

Proof. Let R ⊂ S be an element of sub(S). The root of φ1(R) must be the
image of the root of R, by commutativity of the right-hand square of the
representing diagram. Similarly, the set LR of leaves of R is in bijection
with the set of leaves of the image tree φ1(R), by the cartesian condition
on the middle square, but the latter set is also the image set φ(LR), by
commutativity of the left-hand square. Hence the set of leaves of φ1(R) are
fixed, so altogether the boundary of φ1(R) is completely determined, and
we conclude by Lemma 1.1.17. �

1.3.6. Corollary. If S is nontrivial, every map S→ T is determined by its
value on one-node subtrees. More precisely, the map is the grafting of maps
on those one-node trees, indexed by the inner edges of S.

Proof. The first statement follows because the images of the nodes deter-
mine the images of their output and input edges, hence all edges have their
image determined by the images of the nodes. For the more precise state-
ment, note that the tree S is the grafting of its one-node trees indexed by its
inner edges (cf. 1.1.24). The inner edges map to edges again, and since graft-

ing is preserved, the whole map φ : S→ T is the grafting of the restrictions
of φ to the one-node subtrees (indexed by the inner edges of S). �

1.3.7. Proposition. Let φ be an arrow in Tree. Then φ0 preserves the tree
order:

x ≤ y ⇒ φ0(x) ≤ φ0(y).
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Furthermore, if x and y are incomparable, then φ0(x) and φ0(y) are incom-
parable.

Proof. Suppose x ≤ y. Let S denote the minimal subtree with y as root edge
and x as a leaf. Having x as marked leaf makes S an element in sub′(T).
By construction, s(S) = x and t(p(S)) = y. Now apply φ and use the fact
that φ commutes with each of the structure maps. Hence φ1(S) has φ0(y)
as root and φ0(x) as marked leaf, and in particular φ0(x) ≤ φ0(y). For the
second assertion, if x and y are incomparable, then by Lemma 1.1.12 there
is a subtree in which x and y are leaves. Then φ0(x) and φ0(y) are leaves
of the image subtree, and in particular incomparable. �

Note that φ0 is not distance preserving, though, and that it is not necessarily
injective. When it is injective it also reflects the tree order.

1.3.8. Lemma. If φ : S → T is a map of trees, then φ1 : sub(S) → sub(T)
is inclusion preserving.

Proof. The statement is that if Q ⊂ R are elements in sub(S) then we
have φ1(Q) ⊂ φ1(R) in sub(T). One way to see this is to observe that Q is
determined by a subset of the nodes in R, cf. 1.1.8, and R is obtained from Q

by grafting those complementary one-node trees onto Q. By preservation of
grafting (1.3.4), φ1(R) is therefore obtained from φ1(Q) by grafting certain
subtrees onto it, and in particular φ1(Q) ⊂ φ1(R). �

We have now gathered some basic knowledge of what general maps in
Tree look like, and we already had a firm grip on the maps in TEmb. The
following proposition summarises various characterisations of the maps in
TEmb from the viewpoint of Tree, that is, it characterises the free maps:

1.3.9. Proposition. The following are equivalent for a map φ : S→ T.

(1) φ is free (i.e. of the form α : S→ T).
(2) φ0 is distance preserving.
(3) The image of a one-node subtree is a one-node subtree.
(4) For every subtree R ⊂ S, the image subtree φ1(R) ⊂ T is isomorphic

to R.
(5) φ is injective, and if R ∈ sub(T) is hit by φ1 then all the subtrees of

R are hit too.
(6) φ is injective, and if R ∈ sub(T) is hit by φ1 then all edges of R are

hit by φ0.
(7) φ is injective, and all edges in φ1(S) are hit by φ0.

Proof. Straightforward verifications — omitted. �

1.3.10. Corollary. In Tree, every isomorphism is free. �
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Another way to formulate Lemma 1.3.8 is that a map S→ T restricts to
any subtree R ⊂ S to give a map R→ φ(R). This is in fact a key observation,
featured in the next proposition.

1.3.11. Boundary preserving maps. A map φ : S→ T is called boundary
preserving if it takes the maximal subtree to the maximal subtree. Equiva-
lently, it takes leaves to leaves (bijectively) and root to root. It is clear that
the composite of two boundary-preserving maps is boundary preserving,
and that every isomorphism is boundary preserving.

1.3.12. Lemma. Every surjection in Tree is boundary preserving.

Proof. If φ1 : sub(S) → sub(T) is surjective, in particular the maximal
subtree T ∈ sub(T) is hit, and since φ1 is inclusion preserving by 1.3.8,
T ∈ sub(T) must be hit by S ∈ sub(S). �

1.3.13. Proposition. Every map of trees φ : S → T factors essentially
uniquely (i.e. uniquely up to unique isomorphism) as a boundary-preserving
map followed by a free map. More precisely, the classes of boundary-pre-
serving maps and free maps form an orthogonal factorisation system.

We shall see in 2.2.9 that the boundary-preserving maps are precisely the
generic maps in the sense of Weber [20] (defined in 2.2.1 below). Generic
maps are characterised by a universal property. The proposition states
that Tree has generic factorisations, an important property for a Kleisli
category.

Proof. The first statement will be a special case of Proposition 2.2.7, but
here is the main argument: let M := φ1(S) ∈ sub(T) denote the image of the
maximal subtree in S, and let α : M→ T be the inclusion — this is an map
in TEmb. Now α : M→ T is the second factor in the wanted factorisation.
Since φ1 is inclusion preserving by Lemma 1.3.8, we get also a map S→ M

which is boundary preserving by construction. It is easy to see that this
factorisation is unique (up to a unique isomorphism). Finally, since both
classes of maps contain the isomorphisms and are closed under composition,
we have an orthogonal factorisation system. �

1.3.14. Remark. There is a strong analogy between this boundary-pres-
erving/free factorisation system in Tree and the root-preserving/ideal fac-
torisation system in TEmb: in both cases the left-hand component is char-
acterised in terms of a certain max-preservation, while the right-hand com-
ponent is characterised in terms of stability with respect to smaller elements,
or equivalently in terms of preservation of certain minimal elements. Com-
pare Lemma 1.1.10 with Proposition 1.3.9. We shall not pursue the analogy
further.
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We shall now describe the boundary-preserving maps in explicit terms.
The main point of the analysis is Proposition 1.3.4 which says that any
map out of a nontrivial tree is the grafting of its restriction to the one-node
subtrees (also via Corollary 1.1.24). This is also just the content of the
adjunction: to give a map S→ T is equivalent to giving S→ T, so we just
have to say where each node goes.

1.3.15. Boundary-preserving maps out of a one-node tree. Let E

denote a one-node tree with n leaves, and suppose φ : E → R is boundary
preserving. By the cartesian condition, R necessarily has n leaves, and for
any such R there are precisely n! boundary-preserving maps from E to R.

There are three cases to consider, depending on the number of nodes in
R: If R has at least two nodes, then it has an inner edge, and since the
map is boundary preserving this inner edge is not hit by φ0, so φ is not
surjective. Since in R the root is different from any leaf, φ0 and hence φ is
injective. Here is a picture of such a node refinement:

E

-

R

If R has precisely one node, clearly the map is an isomorphism. (This is
not worth a picture.)

Finally there is a special case which occurs only for n = 1: then the
tree R may be the trivial tree. In this case the two edges of E are both
sent to the unique edge of R, and the node is sent to the maximal subtree
(also trivial) by the boundary-preservation assumption. In this case, φ is
clearly surjective (and not injective). Here is a picture of such a unary-node
deletion:

E

-

R

1.3.16. Boundary-preserving maps, general case. Consider now a gen-
eral boundary-preserving map S→ T, and assume S is nontrivial. We know
the map is the grafting of its restrictions to the one-node subtrees of S. Let
E be a one-node subtree of S. We can factor the composite E→ S→ T into
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boundary-preserving followed by free:

E - S

R

b.pres.
?

free
- T.

?

The subtree R ∈ sub(T) is the image of the subtree E ∈ sub(S). The
map E → R is either a node refinement or an unary-node deletion or an
isomorphism. The original map S → T is the grafting of all the maps
E→ R for E running over the set of nodes in S. Here is a picture:

S

E2

E1

E3

E4

-

T

R2

R1

R3

R4

In conclusion, every boundary-preserving map S → T is the grafting of
node refinement, unary-node deletions, and isomorphisms, indexed over the
set of nodes in S. It is clear that we can realise the grafting by refining (or
deleting) the nodes one by one in any order, and in particular we can first
do all the unary-node deletions (this amounts to a surjection), then all the
node refinements (this amounts to an injection).

Since surjections are boundary-preserving (1.3.12), and since node refine-
ments are not surjective we find:

1.3.17. Lemma. Every map in Tree factors essentially uniquely as a sur-
jection followed by an injection. The surjections are generated by the unary-
node deletions. �

Combining the two factorisation systems we get a double factorisation
system:

1.3.18. Proposition. Every morphism in Tree factors essentially uniquely
as a surjection (a sequence of node deletions), followed by a boundary-
preserving injection (a sequence of node refinements), followed by a free
map (essentially a subtree inclusion). �

1.3.19. Description of boundary-preserving injections into a given

tree. To finish this first part of the paper, we show how to break the
boundary-preserving injections into primitive maps. We already observed
that we can refine one node at the time, but these are not the primitive
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maps. In order to characterise the primitive boundary-preserving injections,
we change the viewpoint, looking at maps into a given tree instead of out
of it:

Fix a tree T, and suppose it has an inner edge x = t(b) = s(e). We
construct a new tree T/x by contracting the edge x, and exhibit a canonical

boundary-preserving injection φx : T/x→ T:

(10)

T 0 r {x} � T 2 r {x} - T 1/(b = p(e)) - T 0 r {x}

T 0
?

� sub′(T)
?

- sub(T)
?

- T 0
?

The maps are all obvious, except possibly T 1/(b = p(e)) → sub(T): this
map sends the node b = p(e) to the two-node subtree containing b and p(e),
and sends all other nodes to their corresponding one-node subtree. It is
clear that φX is boundary preserving and injective. The tree T/x has one
inner edge less than T. We can now repeat the process for any subset of the
inner edges in T, and for each subset we get a different boundary-preserving
injection into T.

Conversely, every boundary-preserving injection S → T arises in this
way. Indeed, we already know that these boundary-preserving injections
are glued together from node refinements. The inner edges of the image
trees form precisely the subset of edges we need to contract in order to
recover the tree S.

In conclusion, we have derived explicit descriptions for each of the four
classes of maps. The surjections can be described more explicitly as deletion
of unary nodes, and each surjection can be broken into a composite of maps
deleting just one node. The boundary-preserving injections are described
as node refinements, and each boundary-preserving injection can be broken
into a sequence of ‘primitive’ refinements adding just one new node. The
free maps are the ‘arity-preserving’ tree embeddings, which also can be given
add-one-node wise. The new node is added either at a leaf (in which case
the map is root preserving), or at the root (in which case the map is an
ideal embedding).

1.3.20. Linear trees. A linear tree is one in which every node has precisely
one input edge. The full subcategory of Tree consisting of the linear trees
is equivalent to the simplex category ∆. The factorisation systems restrict
to ∆, recovering the well-known fact that every map in ∆ factors uniquely
as a surjection followed by a top-and-bottom-preserving injection, followed
by distance-preserving injection.
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The primitive maps correspond to degeneracy and face maps in ∆, which
motivates the terminology employed by Moerdijk and Weiss [16]. They call
the unary-node deletions degeneracy maps. The primitive node refinements
they call inner face maps, and the primitive tree embeddings outer face
maps. The inner face maps play a crucial role in their theory, to express
horn-filling conditions for dendroidal sets [17].

2. Polynomial endofunctors in terms of trees

Since we are now going to consider presheaves, for size reasons we choose
a skeleton for each of the categories TEmb ⊂ Tree, and denote them with
a lowercase initial:

tEmb ⊂ tree.

Clearly these are small categories.
The embedding i0 : tEmb → PolyEnd induces a nerve functor

N0 : PolyEnd −→ PrSh(tEmb)

P 7−→ HomPolyEnd(i0(−),P).

Similarly, i : tree → PolyMnd induces a nerve functor

N : PolyMnd −→ PrSh(tree)

P 7−→ HomPolyMnd(i(−),P)

The goal of this second part is to characterise the image of these nerve
functors.

2.0. Background on nerve theorems

We shall first recall the classical nerve theorem for categories, then review
Weber’s general framework for nerve theorems.

2.0.1. The nerve theorem for categories, after Berger [3]. It is clas-
sical that a simplicial set X : ∆op → Set is (isomorphic to) the nerve of a
small category if and only if the ‘Segal condition’ holds: for each n ≥ 1,
the natural map Xn → X1 ×X0 · · · ×X0 X1 is an isomorphism. In the view-
point of Berger and Weber, the starting point is the free-category monad
on Grph = PrSh(0 ⇉ 1), the category of directed (non-reflexive) graphs.
The free category on a graph A has as objects the vertices of A and as
arrows the finite paths in A, i.e. graph maps from the finite, nonempty,
linear graphs [n] = {0 → 1 → · · · → n} into A. Let ∆0 ⊂ Grph denote
the full subcategory consisting of those linear graphs; note that all maps in
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∆0 are injective. Equipped with the jointly-surjective topology, there is an
equivalence of categories

(11) Sh(∆0) ≃Grph

(the topology is in fact determined by this equivalence).
Now ∆ appears as the Kleisli category over ∆0 with respect to the free-

category monad, and we have the diagram

∆
i - Cat

∆0

j
6

i0
- Grph

free
6
⊣ forgetful

?

as in (8). The category ∆ has generic-free factorisation; the generic maps
are the endpoint-preserving maps. (The free maps can be characterised as
distance preserving.) The embeddings i0 and i are dense, hence induce fully
faithful nerve functors

Cat
N- PrSh(∆)

Grph
?

N0

- PrSh(∆0).

j∗
?

The classical nerve theorem can now be broken into two steps. The first
says that X : ∆op → Set is in the essential image of N if and only if j∗X is
in the essential image of N0. The second step concerns presheaves on ∆0,
and can be phrased in several equivalent ways: X : ∆op

0 → Set is a graph if
and only if it is a sheaf (this is essentially a reformulation of the equivalence
(11)). The sheaf condition amounts to the condition that certain cocones
are sent to limit cones: each [n] ∈ ∆0 has a canonical expression as a colimit
of copies of the two representables [0] and [1], and the condition amounts
to saying that these cocones are sent to limit cones. This is just the usual
Segal condition.

Berger [3] explained the nerve theorem for categories along these lines
as a baby case of a similar theorem characterising strict ω-categories as
presheaves on Joyal’s cell category Θ satisfying a Segal condition. Lein-
ster [14] proved a more general nerve theorem (cf. 2.0.3), and Weber [20]
fitted everything into a natural (and more general) framework whose main
notions we now recall.
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2.0.2. Local right adjoints and generic factorisation. A functor
F : D → C is called a local right adjoint if every slice

D/X
FX−→ C /FX

[Y → X ] 7−→ [FY → FX ]

is a right adjoint. (If D has a terminal object, the notion of local right
adjoint coincides with Street’s notion of parametric right adjoint [18].) This
condition is equivalent to the following: every map in C of the form a : A→
FX factors essentially uniquely as

A
a - FX

FM

Ff

-

g -

where g : A→ FM is generic. We shall define generic in a moment (2.2.1).
Suppose now that C = PrSh(C) and that F is a local right adjoint carte-

sian monad on C . In this case the local adjointness condition is equivalent
to having generic factorisations just for maps of the form C → F1, where
C ∈ C is a representable object in C . Choose one such factorisation for
each representable. Let Θ0 denote the full subcategory of C consisting of
the objects M appearing in these factorisations. Let Θ denote the Kleisli
category of F restricted to Θ0, i.e. the full subcategory of F -Alg given by
the FM for M ∈ Θ0 . We have a diagram

(12)

Θ
i - F -Alg

Θ0

j

6

i0
- C .

free
6
⊣ forgetful

?

2.0.3. Special nerve theorem. (Cf. Leinster [14] and Weber [20].) The
nerve functor N : F -Alg → PrSh(Θ) induced by i is fully faithful, and
its essential image consists of those presheaves on Θ satisfying the Segal
condition, namely that the canonical cocones are sent to limit cones in Set.

2.0.4. Monads with arities. The conditions needed in order to get a nerve
theorem have been further abstracted by Weber [20]. A monad with arities
on a category C (not required to be a presheaf category or even to have a
terminal object) consists of a monad F (not required to be cartesian) and a
full subcategory i0 : Θ0 ⊂ C required to be dense and small, such that the
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following condition is satisfied: the left Kan extension

Θ0
i0 - C

id
⇒

C

id�i0

-

is preserved by the composite

C
T- C

N0- PrSh(Θ0)

(cf. the proof of Proposition 2.2.10 below). As above, denote by Θ the Kleisli
category of F restricted to Θ0, refer to Diagram (12), and let N : F -Alg →
PrSh(Θ) and N0 : C → PrSh(Θ0) be the nerve functors induced by i and
i0 respectively.

2.0.5. General nerve theorem. (Cf. Weber [20, Thm. 4.10].) If (F,Θ0) is
a monad with arities, then N is fully faithful, and X : Θop → Set is in the
essential image of N if and only if its restriction to Θ0 is in the essential
image of N0.

The remainder of this article is concerned with establishing a nerve theo-
rem for polynomial endofunctors and polynomial monads. In this case, the
Segal condition is not enough to characterise the nerves, the reason being
that PolyEnd is not a presheaf category: specifically it lacks a terminal
object.

2.1. Elements of a polynomial endofunctor

Although PolyEnd is not a presheaf category, we shall see in a moment
that all its slices are presheaf categories. The crucial construction is that of
a category of elements of a polynomial endofunctor.

Recall that for an object F of a presheaf category PrSh(C), the category
of elements is the comma category C/F , via the Yoneda embedding. Among
the important properties of this construction is the fact that the composite
functor

C/F - C
y- PrSh(C)

has colimit F ; it is called the canonical diagram for F . Second, there is a
canonical equivalence of categories

PrSh(C)/F ≃ PrSh(C/F ).

We shall introduce the category of elements of a polynomial endofunctor
P, and establish the analogues of these two properties.
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2.1.1. The category of elements of a polynomial endofunctor. To
a given polynomial endofunctor P, represented by I ← E → B → I, we
associate a small category el(P), the category of elements of P. Since Poly

is not a presheaf category, this notion is not the standard notion of category
of elements. However, the terminology will be justified by Proposition 2.1.4
below. We first associate a bipartite graph to P: its vertex set is I + B
and every edge will go from an element in I to an element in B. The set
of edges is B + E. An edge b ∈ B has source t(b) and target b. An edge
e ∈ E has source s(e) and target p(e). Now define el(P) to be the category
generated by that bipartite graph; since the graph is bipartite, there are no
composable arrows, so this step just amounts to adding an identity arrow
for each object. It is clear that this construction is functorial, so we have
defined a functor

el : PolyEnd → Cat,

easily seen to be faithful.

2.1.2. Examples. Let P be the identity functor (represented by 1 ← 1 →
1 → 1). Then el(P) is a category with two objects and two parallel arrows
(in addition to the identity arrows): 0

-- 1. That is, the category whose
presheaves are the graphs.

Let P be the free-monoid endofunctor M (represented by 1 ← N
′ →

N → 1, cf. 0.1.8). Then el(M) has object set 1 + N = { ppp , 0, 1, 2, . . . }, and
its arrows all go from ppp to somewhere else. The set of arrows is N + N′

(plus the identity arrows): for each n ∈ N there is an arrow ppp→ n, and
for each {i < n} ∈ N′ there is another arrow ppp→ n. This is the category
whose presheaves are the nonsymmetric coloured collections (2.4.4) (called
multigraphs in [20], Example 2.14).

2.1.3. Proposition. There is an equivalence of categories

PolyEnd/P ≃ PrSh(el(P)).

Proof. To a given polynomial endofunctor Q over P:

Q A � M - N - A

P

?
I
?
�

s
E
?

p
- B

?

t
- I

?

assign the presheaf Q̃ : el(P)op → Set whose value on the object i is Ai,
whose value on the object b is Nb, whose value on the arrow t(b)→ b is the
restriction Nb → At(b), and whose value on the arrow e : s(e)→ p(e) is the
composite Np(e) ≃Me → As(e).
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Conversely, given a presheafX : el(P)op → Set, we have in particular sets
X(i) or X(b) for each of the objects i or b of I + B. Define a polynomial
functor over P by

∐
i∈I

X(i) � ∐
e∈E

X(p(e)) - ∐
b∈B

X(b) - ∐
i∈I

X(i)

I
?
� E

?
- B

?
- I.

?

For each b ∈ B there is an arrow b : t(b) → b in el(P) and hence a map
X(b)→ X(t(b)), the sum of these maps constitute the endpoint component
of the map. For each e ∈ E there is an arrow e : s(e) → p(e) in el(P)
and hence a map X(p(e))→ X(s(e)); the sum of these maps constitute the
left-hand map of the polynomial functor. The map in the middle is obvious.

It is easy to see that these assignments are functorial, and that the two
constructions are inverse to each other. �

2.1.4. Proposition. Let Q be a polynomial endofunctor over P, and let

Q̃ : el(P)op → Set denote the corresponding presheaf via Proposition 2.1.3.
Then there is a natural isomorphism between el(Q) and the category of ele-

ments of Q̃.

Proof. (We work just with the graphs, omitting the verification needed for
identity arrows.) Let Q→ P be given by

A � M - N - A

I
?
�

s
E
?

p
- B

?

t
- I.

?

The elements of the presheaf Q̃ : el(P)op → Set are pairs (u, x) where u ∈

obj(el(P)) = I +B and x ∈ Q̃(u). In other words, an element of Q̃ is either

a pair (i, a), with i ∈ I and a ∈ Q̃(i) = Ai, or a pair (b, n), with b ∈ B and

n ∈ Q̃(b) = Nb. In conclusion the object set is A+N , as desired.
An arrow from element (u, x) to element (v, y) is a pair (f, y) where

f : u→ v belongs to arr(el(P)) = B + E, and y ∈ Q̃(v). In other words, an

arrow is either a pair (b, n) where b : t(b)→ b in el(P) and n ∈ Q̃(b) = Nb, or

it is a pair (e,m) where e : s(e)→ p(e) in el(P) and m ∈ Q̃(p(e)) = Np(e) ≃

Me. In conclusion, the set of arrows of the category of elements of Q̃ is
N +M , and it is clear from the construction that their sources and targets
are as required. �

2.1.5. Elementary trees. Let ElTr denote the full subcategory of TEmb

consisting of the elementary trees, i.e. trees with at most one node. Let elTr
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denote a fixed skeleton of ElTr: we fix one trivial tree ppp and one one-node
tree n for each n ∈ N. There are n + 1 arrows from ppp to n, one for each
leaf and one for the root edge, and in addition to these arrows, each object
n has n! endomorphisms, all invertible. Henceforth we use the symbol n to
denote an arbitrary object of elTr, possibly the trivial tree.

For each polynomial endofunctor P, there is a canonical equivalence of
categories

(13) el(P) ≃ ElTr/P :

to each element i ∈ I corresponds the trivial P-tree

{i} � 0 - 0 - {i}

I
?
� E

?
- B

?
- I,

?

and to each element b ∈ B corresponds the one-node P-tree

Eb + {t(b)} � Eb - {b}- Eb + {t(b)}

I
?
� E

?
- B

?
- I.

?

In particular, each element of P can be viewed as a morphism n → P

(in analogy with the situation for presheaves), and we can think of ElTr as
the category of representables. (We shall come back to the relation between
PolyEnd and the presheaf category PrSh(elTr) in Section 2.4.)

The equivalences we have established fit into this diagram (commutative
up to isomorphism):

el(P)
y - PrSh(el(P))

elTr/P

≃
?

- PolyEnd/P,

≃
?

so locally elTr → PolyEnd is the Yoneda embedding of the representables.

2.1.6. The canonical diagram for P. The composite functor

DP : el(P) - PolyEnd/P - PolyEnd

is called the canonical diagram for P, in view of the following result:

2.1.7. Proposition. The colimit of DP is P.

Proof. For Q over P we have

colim
(
el(Q)→ PolyEnd/P

)
= Q
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since PolyEnd/P is a presheaf category by 2.1.3, and since the notion of
elements is the usual one in this case by 2.1.4. The result now follows since
the forgetful functor PolyEnd/P → PolyEnd preserves colimits. (It is a
basic fact that PolyEnd has binary products, cf. [11], so P × − is right
adjoint to the forgetful functor in question.) �

2.2. Generic factorisation, and trees as arities

The main results of this section are that the free-monad monad on
PolyEnd is a local right adjoint, or equivalently that it has generic fac-
torisations, and that trees are arities for the free-monad monad. We first
show that elements of free monads have generic factorisation and that the
resulting middle objects are precisely the trees. This is an explicit verifica-
tion relying on our good handle on trees and free monads. The second step
is to establish local right adjointness from the first result using the density
of elementary trees. Finally we find that for trees the notions of generic
and boundary-preserving coincide, as claimed in Section 1.3. From this it
follows readily that trees satisfy Weber’s axioms for arities.

2.2.1. Generic maps. The notion of generic map was introduced by We-
ber [19] generalising the notion of generic element of [8]. The following
special case of the notion is the most useful. Let F be a monad on a cate-
gory C . An arrow g : A→ FB in C is called generic (with respect to F ) if
for every diagram

A - FC

FB

g
?

F (b)
- FD

F (c)
?

there is a unique arrow u : B → C such that

C

B
b
-

u
-

D

c
?

and

A - FC

FB

g
? F (u)

-

The endofunctor F is said to admit generic factorisations if every
A → FD admits a factorisation into a generic map followed by one in
the image of F . Such a factorisation is then necessarily unique up to unique
isomorphism. The maps of the form A → FD correspond by adjunction
to F -algebra maps FA → FD, which we shall also call generic. All the
involved maps can then be seen as living in the Kleisli category of F . From
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this perspective, generic factorisations amount to having an orthogonal fac-
torisation system generic/free in the Kleisli category. (To be correct, the
right hand class of the factorisation system should be saturated with the
isomorphisms. In our case all isomorphisms will already be free.)

2.2.2. Lemma. If g : S → T is a boundary-preserving map between trees,
then g is generic in PolyEnd (with respect to the free-monad monad
P 7→ P).

Proof. Given a square

S
σ- Q

T

g
?

τ
- P

q
?

let R → Q denote the Q-tree σ1(S). It image under q1 is just R → Q→ P.
Going the other way around the square, the maximal subtree S is first
mapped to T ∈ sub(T) (by boundary preservation), and then to the P-
tree τ : T→ P. Since the diagram commutes, R and T represent the same
P-tree, and since P-trees have no nontrivial automorphisms, there is a unique
isomorphism T ∼→ R, and hence a unique diagonal filler d : T → Q for the
square. �

We shall see in a moment that the converse of the lemma is true as well.

2.2.3. Generic factorisation of elements of free monads. The key
point towards getting all generic factorisations is the following easy result:

2.2.4. Lemma. Every element s : n → P of a free monad P factors essen-
tially uniquely as

n
g- T

f- P,

where the middle object T is a tree, g is boundary preserving (hence generic),
and f is free.

Proof. If n is the trivial tree, the map s : n→ P singles out a single element
x ∈ P 0, and s is the free map

1 � 0 - 0 - 1

P 0

pxq ?
� P 2

?
- P 1

?
- P 0.

pxq?

Hence we can take T = n, and g is just the identity.
If n is a one-node tree, the unique element in n1 maps to some element

in (P )1 = tr(P ), i.e. a P-tree f : T → P. The cartesian condition on maps
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ensures there is a bijection between the input edges of the unique node in
n and the leaves of T, hence a unique map n → T making the triangle
commute — clearly this map is boundary preserving. �

2.2.5. The spine. Fix a polynomial endofunctor P, and assume a choice
of a generic factorisation for every element of P, as in Lemma 2.2.4. These
factorisations fit together to define a functor

EP : el(P)→ PolyEnd/P

(sometimes called the spine relative to P) sending an element of P to the
tree appearing in the factorisation. Up to isomorphism, every P-tree T→ P

arises like this: just precompose T → P with a boundary-preserving map
from the one-node tree with the same number of leaves as T. (Note that if
n is unary, its node may be mapped to a trivial P-tree. Hence the functor
EP is not injective on objects, not even on isomorphism classes of objects.)

2.2.6. Proposition. The monad P 7→ P is a local right adjoint. That is,
for each P, the natural functor

PolyEnd/P −→ PolyEnd/P

[Q→ P] 7−→ [Q→ P](14)

has a left adjoint.

Proof. The asserted left adjoint will be the left Kan extension of EP along
the Yoneda embedding y : el(P)→ PrSh(el(P)) ≃ PolyEnd/P:

el(P)
y - PolyEnd/P

PolyEnd/P

lany EP�
EP -

The functor lany EP sends a polynomial endofunctor F → P to the colimit
of the functor

el(F) - el(P) EP- PolyEnd/P.

Using the identification PolyEnd/P ≃ PrSh(el(P)), it is a general fact
that lany(EP) has a right adjoint

res : PolyEnd/P −→ PrSh(el(P))

[q : Q→ P] 7−→
[
[s : n→ P] 7→ HomPolyEnd/P(EP(s), q)

]
.

So to establish the claim we must show that res is isomorphic to (14).

Fix q : Q → P. The monad q : Q → P corresponds (under the equivalence
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of 2.1.3) to the presheaf

el(P)op −→ Set

[s : n→ P] 7−→ HomPolyEnd/P(s, q).

But the required bijection,

HomPolyEnd/P(EP(s), q) ≃ HomPolyEnd/P(s, q)

is precisely the factorisation property established in Lemma 2.2.4: in a
diagram

n - Q

T

generic
?

EP(s)

-

-

P,

q
?

giving the top arrow s→ q (i.e. a map n→ Q over P) is equivalent to giving
the diagonal filler EP(s)→ q (i.e. a map T→ Q over P). �

2.2.7. Proposition. Let T be a tree and P an arbitrary polynomial endo-
functor. Every monad map h : T→ P factors essentially uniquely as

T
h - P

M

f

-

g -

where M is a tree, g : T → M is boundary preserving (hence generic), and

f : M→ P is free.

Proof. Consider the map h1 : sub(T) → tr(P) and let f : M → P be the
image of T ∈ sub(T). If T is the trivial tree, h is already free, and M = T.
Otherwise we construct g : T → M by grafting: each one-node subtree S ∈
sub(T) is mapped by h1 to some P-tree R := h1(S), and there is a unique
boundary-preserving tree map S→ R. The map g is the grafting of all these
maps (indexed by the inner edges of T): since h as a monad map preserves
grafting, the grafting of the P-trees R is precisely M. Uniqueness of the
factorisation follows from Lemma 2.2.2. �

2.2.8. Corollary. If T is a tree and g : T→ R is generic in PolyEnd (with
respect to the free-monad monad P 7→ P), then R is a tree and g is boundary
preserving.

Proof. Factor g as boundary preserving followed by free: T → M → R,
where T is a tree. Since boundary-preserving maps between trees are
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generic, and by uniqueness of generic factorisations, we have M ≃ R, hence
g is boundary preserving. �

2.2.9. Corollary. In the category Tree, the generic maps are precisely the
boundary-preserving maps. �

2.2.10. Proposition. The subcategory tEmb ⊂ PolyEnd provides arities
for the free-monad monad F : PolyEnd→ PolyEnd.

Proof. We have already shown that the free-monad monad is a local right
adjoint, and that the subcategory tEmb ⊂ PolyEnd is (small and dense
and) closed under generic factorisation. It remains to establish that the left
Kan extension

tEmb
i0- PolyEnd

id
⇒

PolyEnd

id�i0

-

is preserved by the composite

PolyEnd
F- PolyEnd

N0- PrSh(tEmb).

We will show it is a pointwise extension, i.e. that for each P ∈ PolyEnd,
the left Kan extension

tEmb/P - 1

λ
⇒

tEmb
?

- PolyEnd

pPq

?

is preserved by N0 ◦ F .
The claim is that (for fixed X ∈ PrSh(tEmb)) each natural transfor-

mation

tEmb/P - 1

φ
⇒

tEmb
?

- PolyEnd
F
- PolyEnd

N0

- PrSh(tEmb)

pXq

-

factors uniquely as

tEmb/P - 1

λ
⇒ ⇒

ψ

tEmb
?

- PolyEnd

pPq

?

F
- PolyEnd

N0

- PrSh(tEmb).

pXq

-
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The component of φ at a P-tree a : A → P is a map of presheaves
φa : A→ X , i.e. for each (abstract) tree T a natural map

φa,T : PolyEnd(T,A)→ X(T).

To specify ψ we need for each tree T a natural map

ψT : PolyEnd(T,P)→ X(T).

Finally, the component of N0 ◦ F ◦ λ at a P-tree a : A→ P and an abstract
tree T is

PolyEnd(T,A) −→ PolyEnd(T,P)

z 7−→ a ◦ z.

Now the key point is that every f ∈ PolyEnd(T,P) is in the image of this
map for a suitable a: factor f into generic followed by free:

T
f - P

M

m

-

g -

then

f = (N0 ◦ F ◦ λ)m,T(g).

So if ψ is going to give φ after pasting with λ we are forced to define

ψT(f) := φm,T(g) ∈ X(T).

It is a routine calculation to verify that this assignment is natural in T. It
relies on two facts: first, that generic-free factorisation is functorial: given
T′ → T over P there is induced a unique M′ → M between the factorisations,
and second, that φ is natural in M. �

2.2.11. Remark. The above arguments are analogous to those of We-
ber [20], Prop.4.22, and they serve in fact to prove the following general
result: let F be a monad on an arbitrary category C , and let i0 : Θ0 → C

be fully faithful and dense (with Θ0 small). If the morphism i0↓Fi0↓F −→
i0↓F of categories fibred over Θ0 has connected fibres and admits a section
(over Θ0) then Θ0 provides F with arities.

With Proposition 2.2.10 we are in position to apply Weber’s general nerve
theorem (2.0.5) directly, establishing this:

2.2.12. Theorem. The nerve functor N : PolyMnd→ PrSh(tree) is fully
faithful. A presheaf X : treeop → Set is isomorphic to the nerve of a
polynomial monad if and only if its restriction j∗X : tEmbop → Set is
isomorphic to the nerve of a polynomial endofunctor. �
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2.3. Sheaf conditions and nerve theorem for slices

Since we have now characterised polynomial monads in terms of their
underlying endofunctors, we should now proceed to characterise polynomial
endofunctors among all presheaves on tEmb.

Since every object in PolyEnd is a colimit of elementary trees (in a
canonical way), the embedding elTr → PolyEnd is dense, and therefore
also tEmb→ PolyEnd is dense. This means that the nerve functor

N0 : PolyEnd −→ PrSh(tEmb)

P 7−→ HomPolyEnd(−,P)

is fully faithful.

2.3.1. Grothendieck topology on TEmb. There is a Grothendieck topol-
ogy on TEmb (and on tEmb): a family of tree embeddings {Sλ → T}λ∈Λ

is declared covering if it is jointly surjective on nodes, and also on edges.
This topology has a more conceptual characterisation: the inclusion functor
elTr → tEmb induces a geometric morphism

PrSh(elTr)→ PrSh(tEmb)

which turns out to be a left exact localisation, hence defines a Grothendieck
topology on tEmb — which is the one just described — inducing an equiv-
alence

PrSh(elTr) ∼→ Sh(tEmb).

2.3.2. Reduced covers and generic injections. A covering family on a
tree T is called reduced if each node of T is only in one member of the family
and if no member can be removed without spoiling the covering property.
Another characterisation of reduced covers is: each outer edge of T is hit
exactly once, and each inner edge is hit either once or twice. The reduced
coverings form a poset with F ≤ G if the cover F is a refinement of G. If T

is a nontrivial tree, there are isomorphisms of posets

RedCov(T)op ≃P(T 1 ×T 0 T 2) ≃ GenInj(T).

Here RedCov is the poset of reduced covers, the middle poset is the power-
set of the set of inner edges in T, and GenInj denotes the poset of isomor-
phism classes of generic injections into T. The left-hand correspondence is:
for a subset J of inner edges, the reduced cover is given by cutting the tree
at the inner edges in J . In other words, the inner edges in J are those inner
edges hit twice by the cover. For the right-hand correspondence, the inner
edges in J correspond to the inner edges that are hit by a generic injection.
In the correspondence between reduced covers and generic injections, the



POLYNOMIAL FUNCTORS AND TREES 47

covering condition corresponds to the generic condition (boundary preser-
vation), while the reducedness of the cover corresponds to injectivity of the
generic map.

2.3.3. Proposition. If P is a polynomial endofunctor, then N0P is a sheaf.

Proof. This follows directly from the fact that the pushouts of 1.1.19 are
also pushouts in the category PolyEnd. (Given T = S + ppp R, then

PolyEnd(T,P) - PolyEnd(S,P)×PolyEnd( ppp ,P) PolyEnd(R,P)

is an isomorphism by the pushout property.) �

With this result, we have factored the nerve functor N0 as

PolyEnd
N0 - PrSh(tEmb)

PrSh(elTr)

-

≃ Sh(tEmb)

-

and reduced the question to that of characterising polynomial endofunctors
among presheaves on elTr. Before dealing with this (in the next section),
a remark is due on the sliced case.

2.3.4. Nerve theorem for slices. There is a pushout theorem for TEmb/P
and PolyEnd/P in analogy with 1.1.19, and there is induced a Grothendieck
topology on TEmb/P giving an equivalence of categories

PrSh(elTr/P) ≃ Sh(tEmb/P).

Let now P be a polynomial monad. Then composition of functors makes
PolyEnd/P a 2-category; its monads are naturally identified with monads
over P. In fact, PolyEnd/P is the category of P-collections, and its monads
are the P-operads, in the sense of Leinster [13, §4.2]. Again, the forgetful
functor PolyMnd/P → PolyEnd/P has a left adjoint which can be de-
scribed in terms of maps from P-trees in analogy with 1.2.8. This yields the
free P-monad monad which is in fact cartesian. (For fixed set of objects, this
is proved in Leinster’s book [13, §C.1].) Furthermore, this monad is a local
right adjoint, as it follows from the arguments in 2.2.6. (Since PolyEnd/P
is a presheaf category the notion of local right adjoint is equivalent to the
notion of familially representable, and the result can also be extracted from
[13, §C.3].)

We have seen that every element n→ P factors through a tree, and that
all P-trees arise like this. The following result is now a direct application of
the special nerve theorem (2.0.3).
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2.3.5. Theorem. For a presheaf X : (tree/P)op → Set, the following are
equivalent:

(1) X is in the essential image of N (i.e. X is isomorphic to the nerve
of a polynomial monad over P).

(2) j∗X is in the essential image of N0 (i.e. j∗X is isomorphic to the
nerve of a polynomial endofunctor over P).

(3) j∗X is a sheaf on tEmb/P ≃ tr(P).
(4) X takes the canonical cocones to limit cones, i.e. satisfies the Segal

condition.

The key point to note is that we have an equivalence of categories

PolyEnd/P ≃ Sh(tr(P)).

2.3.6. Examples. If P is the identity monad, we recover the classical nerve
theorem for categories. For P = M (the free-monoid monad), tree/M is
the category of planar trees, polynomial monads over M are nonsymmetric
operads, and the theorem says that such are characterised among presheaves
on tree/M by the Segal condition.

2.4. Polynomial endofunctors and collections

2.4.1. Collections. The category PrSh(elTr) is the category of (coloured,
symmetric) collections, which we denote by Coll. To be explicit, a col-
lection C consists of a set C( ppp ) of colours and for each n ∈ N a set C(n)
of n-ary operations. The structure maps are first of all n + 1 projections
C(n)→ C( ppp ), and for each n ∈ N the symmetric group Sn acts on C(n) by
permuting the first n projections. The inverse image in C(n) of the elements
(i1, . . . , in; i) ∈ C( ppp )n+1 is denoted C(i1, . . . , in; i) and is interpreted as the
set of n-ary operations with input colours i1, . . . , in and output colour i.

Since elTr is dense in PolyEnd, the nerve functor

R0 : PolyEnd −→ PrSh(elTr) = Coll

P 7−→ Hom(−,P)

is fully faithful. We proceed to characterise its image, and start by looking
at the slices:

2.4.2. Proposition. The nerve functor R0 : PolyEnd → PrSh(elTr) is a
local equivalence. That is, for every polynomial endofunctor P, the sliced
functor

PolyEnd/P −→ PrSh(elTr)/R0P

[Q→ P] 7−→ [R0Q→ R0P]

is an equivalence.
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Proof. We use the equivalence PolyEnd/P≃PrSh(el(P))≃PrSh(elTr/P)
of Proposition 2.1.3 (with equation (13)). Under this equivalence the
sliced nerve functor has the following description: it sends a presheaf

Q̃ : (elTr/P)op → Set to

X : elTrop −→ Set

n 7−→
∑

s : n→P

Q̃(s)

(This presheaf has a natural map to R0P = [n 7→ Hom(n,P)] by returning
the running index of the sum.)

In the other direction, given a presheaf X : elTrop → Set with a map
α : X ⇒ R0P, define

Q̃ : (elTr/P)op −→ Set

[s : n→ P] 7−→ X(n)s

where X(n)s denotes the fibre of αn : X(n)→ Hom(n,P) over s.
It is easy to see that these two functors are inverse to each other, estab-

lishing the asserted equivalence. �

2.4.3. The nerve and its slices. For each polynomial endofunctor P we
have a diagram

PolyEnd
R0- PrSh(elTr)

PolyEnd/P

6⊣
?

∼- PrSh(elTr)/R0P.

6⊣
?

The left adjoints are just forgetting the structure map to P and R0P, respec-
tively, and clearly the square with the left adjoints commutes. The right
adjoints are multiplication with P and multiplication with R0P, respectively.
The square with the right adjoints commutes because R0, as every nerve
functor, commutes with limits, and in particular with products.

The right adjoint on presheaves has another conceptual description, via
the equivalence PrSh(elTr)/R0P ≃ PrSh(elTr/P): in terms of the latter
it is just precomposition with the forgetful functor elTr/P→ elTr.

2.4.4. Nonsymmetric collections. The above diagram is most interesting
when P is the free-monoid monad M: in this case we have

PrSh(elTr)/R0M ≃ PrSh(el(M)),

and the latter is the category of nonsymmetric collections, denoted
NonSymColl, and the left adjoint is then the symmetrisation functor,
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denoted S. The category el(M) is equivalent to the category of planar ele-
mentary trees. Nonsymmetric collections are described just as collections,
except that there are no symmetries.

The diagram now reads:

PolyEnd
R0 - PrSh(elTr) = Coll

PolyEnd/M

L
6
⊣

?
∼- PrSh(elTr)/R0M≃ NonSymColl.

S

6
⊣

?

Note that L is surjective on objects. Indeed, every polynomial endofunctor
admits a map to M. It follows that R0 and S have the same essential image.
Since R0 is fully faithful we get:

2.4.5. Theorem. The category PolyEnd, as a subcategory of Coll, is nat-
urally identified with the Kleisli category for the symmetrisation monad S
on NonSymColl. �

2.4.6. Remark. The symmetrisation monad S on PrSh(elTr/M) is a local
right adjoint, since it is the composite of a forgetful functor from a slice
category and a true right adjoint. It is endowed with arities by the repre-
sentables themselves, and elTr appears as the Kleisli category of elTr/M
with respect to S. The generic/free factorisation on elTr is quite degener-
ate: every arrow in elTr already is either a generic map (an automorphism
of some n) or it is free (an inclusion ppp→ n).

Slightly more interesting is the corresponding generic/free factorisation
system on Tree, the Kleisli category on the category Tree/M, still with
respect to S. To see it most clearly, let ptree denote a skeleton of Tree/M,
the category of planar trees. Let tree′ denote the full subcategory of Tree

with one object for each object in ptree (i.e. the category of planar trees and
not-necessarily planar maps). This is just the Kleisli category of S restricted
to ptree. Now in tree′, the generics are the isomorphisms and the free maps
are the planar maps, and every arrow factors as an isomorphism followed
by a planar map (in analogy with the skeleton of the category of finite
sets consisting of the sets {0, . . . , n − 1} which happen to have a natural
order: every arrow in this category factors as an isomorphism followed by
an order-reserving map).

2.4.7. Polynomial endofunctors as projective collections. There is
another characterisation of PolyEnd as a subcategory of Coll, suggested
to me by André Joyal: it is the subcategory of projective objects with
respect to a certain class of surjections. For the sake of having some word
for it, say that an arrow in Coll is an isochrome surjection if it is termwise
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surjective and bijective on colours. Call a collection P isochrome projective
if every isochrome surjection Z → P admits a section.

2.4.8. Theorem. A collection P is isomorphic to the nerve of a polynomial
endofunctor if and only if it is isochrome projective.

Theorem 2.4.8 will be broken into a chain of biimplications (Theorem
2.4.10) each of which is rather easy to establish, once the correct viewpoint
has been set up.

2.4.9. Collections with a fixed set of colours. We denote by Coll(I)
the category of collections with colour set I and colour preserving mor-
phisms. This category is again (equivalent to) a presheaf category. Namely,
let MonEnd(I) be the full subcategory of PolyEnd(I) consisting of the
monomial endofunctors (with endpoints I), i.e. those I ← E → B → I for
which B is singleton. Clearly MonEnd(I) is a groupoid. Write n for a
fixed n-element set, and denote by monEnd(I) ⊂ MonEnd(I) the small
subgroupoid consisting of the objects

I ← n→ 1→ I

(n ∈ N). It is a disjoint union:

monEnd(I) =
∑

n∈N

monEnd(I)n

where monEnd(I)n is the subgroupoid of monomials of degree n. Now we
have

Coll(I) ≃ PrSh(monEnd(I)).

(This viewpoint on Coll(I) was also used in the appendix of Berger-Moer-
dijk [4], except that they did not formulate it in terms of monomial functors.)
An object I ← n → 1 → I amounts to an (n + 1)-tuple (i1, . . . , in; i) of
elements in I, and the value on it of a presheaf C is the set C(i1, . . . , in; i);
the arrows in monEnd(I) provide the colour-preserving symmetries. More
formally, given a presheaf F : monEnd(I)op → Set, define a presheaf with
colour set I by

elTrop −→ Set

n 7−→
∑

Q∈monEnd(I)n

F (Q),

and conversely, given a presheaf C : elTrop → Set with C( ppp ) = I, define a
presheaf on monEnd(I) by sending an object (i1, . . . , in; i) to the inverse
image of this (n+ 1)-tuple under the structure map C(n)→ I.
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Since monEnd(I) is a full subcategory of PolyEnd(I) we have a nerve
functor

R0(I) : PolyEnd(I) −→ PrSh(monEnd(I))

P 7−→ HomPolyEnd(I)(−,P),

and this nerve functor is compatible with the global nerve R0 : PolyEnd →
Coll. Precisely, the diagram

PolyEnd
R0 - PrSh(elTr)= Coll

PolyEnd(I)
∪

6

R0(I)

- PrSh(monEnd(I))≃ Coll(I)
∪

6

commutes up to a natural isomorphism, as is easy to check.

2.4.10. Theorem. For any collection P with set of colours I, the following
are equivalent.

(1) P is isochrome projective (i.e. every isochrome surjection onto P in
Coll admits a section).

(2) P is projective in Coll(I) (i.e. every surjection onto P in Coll(I)
admits a section).

(3) P is a sum of representables in Coll(I) ≃ PrSh(monEnd(I)).
(4) P is in the essential image of the nerve functor R0(I):PolyEnd(I)→

Coll(I).
(5) P is in the essential image of the nerve functor R0 : PolyEnd →

Coll.

Proof. (1) ⇔ (2): for the sake of defining isochrome projectivity, requir-
ing bijectivity on colours is equivalent to requiring identity on colours —
clearly the section required to exist will then automatically be the identity
on colours too.

(2)⇔ (3): It is true in any category of presheaves on a groupoid that an
object is projective (with respect to termwise surjections) if and only if it
is a sum of representables.

(3) ⇔ (4): The R0(I)-nerve of a polynomial functor I ← E → B → I
is the sum of the representables I ← Eb → {b} → I (indexed by b ∈
B). Conversely any sum of representables defines a polynomial endofunctor
(with endpoints I). Phrased more elegantly: polynomial endofunctors are
precisely the sums of monomial endofunctors.

(4) ⇔ (5): This follows from the fact that the nerve functors are com-
patible. �
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2.5. Polynomial monads and operads

In this final section we characterise the image of the nerve functor for
polynomial monads, explain the relation with operads, and sum up the
relation between the various nerve functors.

Combining Proposition 2.2.12 and Proposition 2.4.8, we already have:

2.5.1. Proposition. A presheaf X : treeop → Set is isomorphic to the
nerve of a polynomial monad if and only if j∗X : tEmbop → Set is an
isochrome projective collection.

We now finally come to operads, and aim to fit everything into this
diagram:

N : PolyMnd
R - Opd

W - PrSh(tree)

N0 : PolyEnd

6⊣
?

R0 - Coll

6⊣
?

W0- PrSh(tEmb)

6⊣ j∗
?

Npl
0 :PolyEnd/M

6⊣
?

≃

Rpl
0

- NonSymColl

6
⊣

?

Wpl
0

- PrSh(tEmb/M)

6⊣ k∗
?

The middle row and the bottom row were explained in the previous section.

2.5.2. Operads. For fixed set of colours I, the category Coll(I) has a
monoidal structure given by the substitutional tensor product (cf. [10], see
also the Appendix of [4]). The monoids in Coll(I) are the I-coloured
operads, forming a category Opd(I) and fitting into a free-forgetful ad-
junction Opd(I)

-� Coll(I). Morphisms between operads of different
colours can be defined in terms of base-change (just like for collections):
if α : I → J is a map of sets there is an obvious change-of-colours functor
α∗ : Opd(J)→ Opd(I), and a morphism from an I-coloured operad X to
a J-coloured operad Y is defined to be a pair (α, φ) where α : I → J is a
map of sets and φ : X → α∗Y is a morphism of I-coloured operads. With
this extra structure the free-forgetful adjunctions assemble into a single ad-
junction

Opd
-� Coll.

The functor R0 : PolyEnd → Coll is monoidal (for each I) and com-
mutes with base-change, hence induces the functor

R : PolyMnd → Opd.

2.5.3. The nerve functor for operads. The nerve functor W : Opd →
PrSh(tree) is now defined in the obvious way from the embedding



54 JOACHIM KOCK

tree ⊂ PolyMnd ⊂ Opd. It is the nerve functor for operads introduced by
Moerdijk and Weiss. The image of W is characterised in the following the-
orem, due to Moerdijk-Weiss and Weber:

2.5.4. Theorem. For a presheaf X : treeop → Set, the following are equiv-
alent.

(1) X is isomorphic to the nerve of an operad (i.e. X is in the essential
image of W ).

(2) Every inner horn of X has a unique filler.
(3) j∗X is isomorphic to the nerve of a collection (i.e. j∗X is in the

essential image of W0).
(4) k∗j∗X is isomorphic to the nerve of a nonsymmetric collection

(i.e. k∗j∗X is in the essential image of W pl
0 ).

(5) X satisfies the Segal condition (i.e. takes canonical cocones to limit
cocones.)

Proof. The equivalence of (1) and (2) is due to Moerdijk and Weiss [17]
(their Proposition 5.3 together with Theorem 6.1). We shall not need the
horn-filling condition here, and mention the result only because it was the
first nerve theorem for operads. The equivalence of (1), (4) and (5) are due
to Weber [20] (combining his Examples 2.14, 4.19, and 4.27). Condition (3)
and the category tEmb, central to the present paper, are not considered by
Moerdijk and Weiss, nor by Weber. The equivalence between (4) and (3)
follows from the fact that the symmetrisation functor is a local right adjoint
on a presheaf category (cf. 2.4.6). �

For emphasis, we state the characterisation of the essential image of R,
that is, characterise polynomial monads among operads:

2.5.5. Proposition. An operad is isomorphic to a polynomial monad if and
only if its underlying collection is isochrome projective. �
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