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Abstract. We consider the problem of approximation of matrix
functions of class Lp on the unit circle by matrix functions ana-

lytic in the unit disk in the norm of Lp, 2 ≤ p < ∞. For an
m × n matrix function Φ in Lp, we consider the Hankel operator

HΦ : Hq(Cn) → H2
−(Cm), 1/p + 1/q = 1/2. It turns out that the

space of m× n matrix functions in Lp splits into two subclasses: the
set of respectable matrix functions and the set of weird matrix func-

tions. If Φ is respectable, then its distance to the set of analytic matrix

functions is equal to the norm of HΦ. For weird matrix functions, to
obtain the distance formula, we consider Hankel operators defined

on spaces of matrix functions. We also describe the set of p-badly

approximable matrix functions in terms of special factorizations and
give a parametrization formula for all best analytic approximants in

the norm of Lp. Finally, we introduce the notion of p-superoptimal

approximation and prove the uniqueness of a p-superoptimal approx-
imant for rational matrix functions.

1. Introduction

The classical problem of analytic approximation of functions on the unit
circle T is for a given function ϕ ∈ L∞, to find a best H∞ approximant to
ϕ, i.e., to find a bounded analytic function ψ in the unit disk D such that

‖ϕ− ψ‖L∞(T) = distL∞(ϕ,H∞).

A standard compactness argument shows that such a best approximant
always exists, though it is not necessarily unique in general. However, under
certain mild assumptions the best approximation is indeed unique. For
example, this happens if ϕ is continuous which was proved for the first time
in [Kha]. We refer the reader to [Pe1] for a comprehensive study of the
problem of best uniform approximation by analytic functions.

The second author is partially supported by NSF grant DMS 0501067, the third author
is partially supported by NSF grant DMS 0700995.
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It turns out that this approximation problem is closely related to Hankel
operators on the Hardy classH2. For a function ϕ ∈ L∞ the Hankel operator

Hϕ : H2 → H2
−

def= L2 	H2

is defined by
Hϕf = P−ϕf, f ∈ H2,

where P− is the orthogonal projection from L2 onto H2
−. It was proved by

Nehari (see [Pe1], Ch. 1, § 1) that

‖Hϕ‖ = distL∞(ϕ,H∞).

Moreover, it turns out that the Hankel operators provide a powerful tool to
constructively study the problem of best uniform analytic approximation,
see Chapters 1, 5, and 7 of [Pe1]. The problem of uniform approximation by
analytic functions is also called the Nehari problem.

The Nehari problem is very important in applications in control theory
(see [F] and [Pe1]) and is also a useful tool in identification, see [Pa] and
[BLPT]. Moreover, for the needs of control theory it is important to consider
not only the scalar case, but also the case of matrix-valued functions.

Let Φ be a bounded function with values in the space Mm,n of m × n
matrices (notationally, Φ ∈ L∞(Mm,n)). The problem of best analytic
approximation is to find a bounded analytic matrix function Q of size m×n
such that

‖Φ−Q‖L∞(Mm,n) = distL∞
(
Φ, H∞(Mm,n)

)
,

where H∞(Mm,n) is the space of bounded analytic m× n matrix functions
and for a matrix function Ψ ∈ L∞(Mm,n) we use the notation

‖Ψ‖L∞
def= ess sup

z∈T
‖Ψ(ζ)‖Mm,n

,

where for a matrix A in Mm,n we denote by ‖A‖Mm,n
the operator norm of

A as an operator from Cn to Cm.
As in the scalar case, the following distance formula holds:

distL∞
(
Φ, H∞(Mm,n)

)
= ‖HΦ‖, Φ ∈ L∞(Mm,n),

where the Hankel operator HΦ : H2(Cn)→ H2
−(Cm) def= L2(Cm)	H2(Cm)

is defined by
HΦf = P−Φf, f ∈ H2(Cn),

and P− is the orthogonal projection onto H2
−(Cm) (see, e.g., [Pe1], Ch. 2).

However, unlike the scalar case, even if Φ is a polynomial matrix function,
generically Φ has infinitely many best approximants. To choose among all
best approximants the “very best approximant”, it is natural to consider
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the notion of superoptimal approximation. We refer the reader to § 2 of this
paper for the definition of superoptimal approximation.

In this paper we are going to consider the problem of analytic approxi-
mation in the Lp norm, 2 ≤ p <∞.

Let ϕ be a scalar function in Lp. The problem of best analytic approxi-
mation is to find a function ψ in the Hardy class Hp such that

‖ϕ− ψ‖Lp = distLp(ϕ,Hp).

If 1 < p < ∞, then the space Lp is uniformly convex which implies that
every function ϕ ∈ Lp has a unique best analytic approximant ψ in the Lp.
The function ψ is said to be the p-best analytic approximant to ϕ.

In [BS] Hankel operators have been used to study the problem of best
analytic and meromorphic approximation in Lp for 2 ≤ p <∞ (see also [Pr]
for a dual approach). For ϕ ∈ Lp the Hankel operator

Hϕ : Hq → H2
−

is defined by
Hϕf = P−ϕf, f ∈ Hq,

where the exponent q satisfies the equality
1
p

+
1
q

=
1
2
.(1.1)

Throughout this paper we always assume that 2 ≤ p < ∞ and q satisfies
(1.1). In the proofs of the results we assume that 2 < p < ∞, it is an
elementary exercise to adjust the proofs for p = 2.

As in the case of uniform analytic approximation, the following formula
holds

‖Hϕ‖Hq→H2
−

= distLp(ϕ,Hp)

In § 2 of this paper we discuss in more detail the problem of best analytic
approximation by scalar analytic functions in Lp.

In this paper we deal with the problem of approximation in Lp by analytic
matrix functions: given a function Φ in Lp(Mm,n) (i.e., all entries of Φ
belong to Lp), we search for a best analytic approximant Q ∈ Hp(Mm,n),
i.e.,

‖Φ−Q‖Lp = distLp

(
Φ, Hp(Mm,n)

)
,

where for a matrix function Ψ ∈ Lp(Mm,n),

‖Ψ‖Lp
def= ‖Ψ‖Lp(Mm,n) =

(∫
T
‖Ψ(ζ)‖pMm,n

dm(ζ)
)1/p

.

If we consider the Hankel operator

HΦ : Hq(Cn)→ H2
−(Cm)
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defined by
HΦf = P−Φf, f ∈ Hq(Cn),

it is easy to verify that

‖HΦ‖ ≤ distLp

(
Φ, Hp(Mm,n)

)
(see Lemma 4.3). It will be shown in § 4 that if Φ has a p-best analytic
approximant Q such that for ζ in a subset of T of positive measure, the
space of maximizing vectors of (Φ−Q)(ζ) is one-dimensional, then

‖HΦ‖ = distLp

(
Φ, Hp(Mm,n)

)
.(1.2)

Clearly, generically for an m × n matrix A, the maximizing vectors of A
span a one-dimensional subspace.

This makes it plausible that for a dense subset of matrix functions Φ in
Lp(Mm,n) the distance formula (1.2) holds which would imply that (1.2)
holds for all matrix functions Φ in Lp(Mm,n).

Surprisingly, this is false!
In § 3 of this paper we obtain certain factorization theorems for analytic

matrix functions that will be used to study Hankel operators. The main
tool used in § 3 is Sarason’s factorization theorem [Sa].

In § 4 we study the class of matrix functions Φ ∈ L∞(Mm,n), for which the
distance formula (1.2) holds. Such matrix functions are called respectable.
We obtain several characterizations of the class of respectable matrix func-
tions.

The main result of § 5 is a construction of a 2× 2 matrix function Φ, for
which (1.2) is false. Such matrix functions are called weird.

Thus the space Lp(Mm,n) splits in two subsets: the set of respectable
matrix functions and the set of weird matrix functions. To compute the
distance from a respectable matrix function Φ to the set of analytic ma-
trix functions, we can use the distance formula (1.2). However, to compute
distLp

(
Φ, Hp(Mm,n)

)
for weird matrix functions Φ, we have to search for

another formula. Note that in a sense both the set of respectable ma-
trix functions and the set of weird matrix functions are massive subsets of
Lp(Mm,n); see the discussion at the end of § 5.

It turns out, however, that the distance distLp

(
Φ, Hp(Mm,n)

)
from Φ to

the set of analytic matrix functions can be obtained for all matrix functions
in Lp as the norm of a Hankel operator if we consider Hankel operators
acting on spaces of matrix functions rather than vector functions. Indeed,
If we consider the Hankel operator HΦ defined on the space Hq(Sn

2 ) of n×n
matrix functions with the norm

‖F‖Lq(Sn
2 ) =

(∫
T
‖F (ζ)‖qSn

2
dm(ζ)

)1/q

,



ANALYTIC APPROXIMATION OF MATRIX FUNCTIONS IN Lp 5

Then the norm of the Hankel operator

HΦ : Hq(Sn
2 )→ H2

−(Sn
2 )

is equal to distLp

(
Φ, Hp(Mm,n)

)
. Here for an n × k matrix A the norm

‖A‖Sn,k
2

is the Hilbert–Schmidt norm of A and ‖A‖Sn
2

def= ‖A‖Sn,n
2

. This
will be proved in § 6. We also consider in § 6 Hankel operators acting on
spaces of n× k matrix functions and we introduce in § 6 the class of n× n
matrix functions in Lp of order k, 1 ≤ k ≤ n.

In § 7 we obtain a description of the set of p-badly approximable matrix
functions. A matrix function Φ ∈ Lp(Mm,n) is called p-badly approximable if

‖Φ‖Lp = distLp

(
Φ, Hp(Mm,n)

)
.

To obtain such a description, we use special factorizations that involve bal-
anced matrix functions (see [Pe1], Ch. 14, § 1).

We also obtain in § 7 a parametrization formula for all p-best approxi-
mants.

In the last section we define the notion of p-superoptimal approximation
and prove for rational matrix functions the uniqueness of a p-superoptimal
approximant.

In § 2 we collect necessary information. In § 2.1 we present results on
analytic approximation in Lp of scalar functions. In § 2.2 we define the no-
tion of superoptimal approximation and state some uniqueness results and
properties of superoptimal approximants. Finally, in § 2.3 we define the no-
tion of balanced matrix functions and state factorization formulas for badly
approximable matrix function.

Note that it suffices to study the problem of analytic approximation only
for square matrix functions. Indeed, if a matrix function Φ is not square,
we can add to Φ zero columns or zero rows to make it square. For the sake
of simplicity, beginning § 6, we state all the results only for square matrix
functions.

Notation and terminology. Throughout the paper we are going to use
the following notation and terminology:

if X and Y are normed spaces and T : X → Y is a bounded linear
operator, a vector x ∈ X is called a maximizing vector of T if

x 6= 0 and ‖Tx‖Y = ‖T‖ · ‖x‖X ;

if both X and Y are Hilbert spaces and T is a bounded linear operator
from X to Y , then, by definition, the space of maximizing vectors of T is

{x ∈ X : ‖Tx‖Y = ‖T‖ · ‖x‖X}
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(it is well known that the space of maximizing vectors is a closed subspace
of X that consists of the maximizing vectors and the zero vector);

Mm,n is the space of m× n matrices;

Mn
def= Mn,n;

if X is a normed space of functions on T, then X(Mm,n) means the space
of m × n matrix functions whose entries belong to X. If this does not
lead to a confusion, we say that Φ ∈ X for an m × n matrix function Φ if
Φ ∈ X(Mm,n);

if X = Ls, 1 ≤ s ≤ ∞, and Φ ∈ X(Mm,n), then

‖Φ‖X
def= ‖Φ‖X(Mm,n)

def= ‖ρ‖X , where ρ(ζ) def= ‖Φ(ζ)‖Mm,n
, ζ ∈ T;

for 1 ≤ p ≤ ∞, the space Hp(Mm,n) is the subspace of Lp(Mm,n) that
consists of matrix functions with entries in Hp. By definition,

Hp
0 (Mm,n) = {F ∈ Lp(Mm,n) : F (0) = 0} ;

for an operator A on Hilbert space (or for a matrix A), the singular values
sj(A) are defined by

sj(A) = inf{‖A−K‖ : rankK ≤ j};

the Schatten–von Neumann class Sr, 1 ≤ r < ∞, consists of operators
A on Hilbert space with finite norm

‖A‖Sr =

∑
j≥0

srj(A)

1/r

;(1.3)

for r ∈ [1,∞), we denote by Sm,n
r the space of m×n matrices A equipped

with the Schatten–von Neumann norm (1.3);

Sn
r

def= Sn,n
r ;

if X = Ls, 1 ≤ s ≤ ∞, then X(Sm,n
r ) is the space of m × n matrix

functions with entries in X equipped with the norm

‖Φ‖X(Sm,n
r )

def= ‖ρ‖X , where ρ(ζ) def= ‖Φ(ζ)‖Sm,n
r

, ζ ∈ T.
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2. Preliminaries

2.1. Analytic approximation by scalar functions in Lp, 2 ≤ p <∞.
The problem of analytic approximation in Lp was studied by many math-
ematicians, see, e.g., [Sh] and [Ka]. As we have already mentioned in the
introduction, in [BS] to study the problem of best analytic approximation
in Lp, Hankel operators from Hq to H2

− were used, where the exponent
q satisfies (1.1) (see also [Pr] in which a similar approach is used). The
approach of [BS] and [Pr] is based on the analog of Nehari’s theorem:

‖Hϕ‖Hq→H2
−

= distLp(ϕ,Hp), ϕ ∈ Lp.(2.1)

Moreover, it can be shown that if ϕ ∈ L2, then the Hankel operator Hϕ

defined on the set of analytic polynomials by the formula

Hϕf = P−ϕf
extends to a bounded operator from Hq to H2

− if and only if P−ϕ ∈ Lp.
This can be proved in exactly the same way as in the case of classical Hankel
operators from H2 to H2

− (see, e.g., [Pe1], Ch. 1, § 1). In particular, this
implies that all bounded Hankel operators from Hq to H2

− are compact,
since the trigonometric polynomials are dense in Lp and Hϕ has finite rank
if ϕ is a trigonometric polynomial.

A scalar function ϕ ∈ Lp is called p-badly approximable if

‖ϕ− ψ‖Lp ≥ ‖ϕ‖Lp

for any ψ ∈ Hp.
The following result describes the class of all p-badly approximable func-

tions.

Theorem 2.1. Let ϕ be a nonzero function in Lp. Then ϕ is p-badly
approximable if and only if there exists an inner function ϑ and an outer
function h in H2 such that

ϕ = z̄ϑ̄
h̄

h2/q
= z̄ϑ̄

h̄

h
p−2

p

.(2.2)

Proof. Suppose that ϕ is p-badly approximable. Let f ∈ Hq be a
maximizing vector of Hϕ. Such a vector exists, since Hϕ is compact. We
have

‖Hϕf‖L2 = ‖P−ϕf‖L2 ≤ ‖ϕf‖L2

≤ ‖ϕ‖Lp‖f‖Lq = ‖Hϕ‖ · ‖f‖Lq = ‖Hϕf‖L2 ,

since f is a maximizing vector. Thus all inequalities in the above chain
are equalities. The fact that the first inequality turns into equality means
that ϕf ∈ H2

−. The second inequality turns into equality if and only if
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|ϕ|p = c|f |q for some c > 0. We can multiply f by a constant after which c
becomes equal to 1. Let h be an outer function in H2 such that |h| = |f |q/2.
Then f admits a factorization f = ϑ1h

2/q, where ϑ1 is an inner function.
Put g = z̄Hϕf ∈ H2. We have |g|2 = |ϕf |2 = |h|2. Let g = ϑ2h, where

ϑ2 is an inner function. Then

ϕ =
z̄ḡ

f
= z̄ϑ̄1ϑ̄2

h̄

h2/q
.

It remains to put ϑ = ϑ1ϑ2.
Suppose now that ϕ is of the form (2.2). Put f = h2/q. We have

‖Hϕ‖ · ‖f‖Lq ≥ ‖Hϕf‖L2 = ‖h‖L2 = ‖ϕ‖Lp‖f‖Lq ≥ ‖Hϕ‖ · ‖f‖Lq .

Thus ‖ϕ‖Lp = ‖Hϕ‖, and so ϕ is p-badly approximable. �

Remark. Note that in the case p =∞ the situation is slightly different.
A bounded Hankel operators from H2 to H2

− is not necessarily compact
and does not necessarily have a maximizing vector. A badly approximable
function ϕ has the form

ϕ = cz̄ϑ̄
h̄

h
,

where c ∈ C, ϑ is an inner function, and h is an outer function in H2, if
and only if the Hankel operator Hϕ : H2 → H2

− has a maximizing vector,
see [Pe1], Ch. 1, § 1.

In the case p = 2, Theorem 2.1 means that the 2-badly approximable
functions are precisely the functions in H2

− and a function f ∈ H∞ is a
maximizing vector of the Hankel operator Hϕ : H∞ → H2

− with a 2-badly
approximable symbol ϕ if and only if f = cϑ, where c is a nonzero complex
number and ϑ is an inner divisor of z̄ϕ̄.

Corollary 2.2. Let ω be a nonnegative function in Lp. The following
are equivalent:

(i) there exists a p-badly approximable function ϕ ∈ Lp such that |ϕ| = ω;
(ii) logω ∈ L1.

Proof. The implication (i)⇒(ii) is an immediate consequence of Theo-
rem 2.1 and the fact that the logarithm of the modulus of any outer function
is in L1.

Conversely, suppose that logω ∈ L1. Let h be an outer function such that
|h| = ωp/2. Clearly, h ∈ H2. Let ϕ = z̄ h̄

h2/q . By Theorem 2.1, ϕ is badly
approximable. We have

|ϕ| = |h|1−2/q = |h|2/p = ω. �
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Corollary 2.3. Let ω be a nonnegative function in Lp such that
logω ∈ L1 and let h be an outer function such that |h| = ωp/2. Then
the set of p-badly approximable functions with modulus ω coincides with{

z̄ϑ̄
h̄

h2/q
: ϑ is an inner function

}
.

Proof. The result follows immediately from Theorem 2.1. �

2.2. Superoptimal approximation. As we have already mentioned in the
introduction, even for polynomial matrix functions Φ there can be many best

analytic approximants in the L∞ norm. For instance, if Φ =
(
z̄ 0
0 0

)
and

F =
(

0 0
0 f

)
, where f is a scalar function in the unit ball of H∞, then F

is a best approximant to Φ.
To introduce the notion of superoptimal approximation, recall the notion

of singular values of matrices. For a matrix A the jth singular value of A
is defined by

sj(A) def= inf{‖A−K‖ : rankK ≤ j}, j ≥ 0.

Clearly, s0(A) = ‖A‖.
Definition. Given a matrix function Φ ∈ L∞(Mm,n) we define induc-

tively the sets Ωj , 0 ≤ j ≤ min{m,n} − 1, by

Ω0 =

{
Q ∈ H∞(Mm,n) : Q minimizes t0

def= ess sup
ζ∈T
‖Φ(ζ)−Q(ζ)‖

}
;

Ωj =

{
Q ∈ Ωj−1 : Q minimizes tj

def= ess sup
ζ∈T

sj
(
Φ(ζ)−Q(ζ)

)}
, j > 0.

Functions in
⋂
k≥0

Ωk = Ωmin{m,n}−1 are called superoptimal approximants

to Φ by bounded analytic matrix functions. The numbers tj = tj(Φ) are
called the superoptimal singular values of Φ. Note that the matrix functions
in Ω0 are just the best approximants by analytic matrix functions.

In other words, a superoptimal approximant minimizes the essential
suprema of the singular values of (Φ−Q)(ζ) lexicographically.

It was proved in [PY] that if Φ ∈ (H∞ + C)(Mm,n) (i.e., each entry of
Φ is a sum of a a continuous function and an H∞ function), then Φ has a
unique superoptimal approximant. Moreover, if Q is the unique superopti-
mal approximant to Φ, then

sj
(
(Φ−Q)(ζ)

)
= tj , ζ ∈ T.
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Later in [PT1] the same results were obtained under a less restrictive as-
sumption on Φ. We refer the reader to [Pe1], Ch. 14 for a detailed presen-
tation of the theory of superoptimal approximation.

2.3. Balanced matrix functions and factorizations of badly approx-
imable matrix functions. A matrix function Φ in L∞(Mm,n) is called
badly approximable if

‖Φ‖L∞ ≤ ‖Φ−Q‖L∞
for any Q ∈ H∞(Mm,n).

A matrix function Φ is called very badly approximable if the zero matrix
function is a superoptimal approximant to Φ.

In [PY] and [AP] the set of badly approximable matrix functions of class
(H∞ + C)(Mm,n) was described in terms of certain special factorizations
(see also [PT2] in which a geometric description of very badly approximable
matrix functions was obtained). Such factorizations involve certain spe-
cial unitary-valued matrix functions (balanced matrix functions), see [Pe1],
Ch. 14, § 1. To define balanced matrix functions, we have to introduce
several notions.

A matrix function Θ ∈ H∞(Mn,k) is called inner if on the unit circle
Θ∗Θ = Ik, where Ik is the matrix function identically equal to the identity
matrix Ik.

A matrix function F ∈ H2(Mm,n) is called outer if the set

{Ff : f is a polynomial in H2(Cn)}

is dense in H2(Cm).
Finally, a matrix function F ∈ H2(Mm,n) is called co-outer if the trans-

posed function F t is outer.
It is well known (see, e.g., [N] or [SF]) that if Ψ is a matrix function of

class H2, then Φ admits an inner-outer factorization

Φ = ΘF,

where Θ is an inner matrix function and F is an outer matrix function.
Let k < n and let Υ be an n×k inner and co-outer matrix function. It is

well known (see [Pe1], Ch. 14, § 1 and [H], Ch. 9) that there exists an inner
and co-outer matrix function Θ of size n × (n − k) such that the matrix
function

V =
(
Υ Θ

)
(2.3)

takes unitary values or, in other words, is unitary-valued. Matrix functions
of the form (2.3) are called balanced matrix functions. If we want to specify
that the analytic part of V has k columns, we say that V is a k-balanced
matrix function. In the case k = 1, k-balanced matrix functions are also
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called thematic matrix functions. If k = n by a k-balanced matrix function,
we mean a matrix function of the form τIn, where τ is a complex number
of modulus 1.

Balanced matrix functions have many interesting properties, see [Pe1],
Ch. 14, § 1. They have been used to obtain a description of badly approx-
imable matrix functions, to parametrize the set of best analytic approxi-
mants, to characterize very badly approximable matrix functions, to prove
the uniqueness of superoptimal approximants, and to construct the super-
optimal approximant (see [PY], [PT1], [AP], and [Pe1], Ch. 14).

In particular, it was shown in [PY] (see also [Pe1], Ch. 14, § 2) that if Φ
is a matrix function in L∞(Mm,n) such that the Hankel operator
HΦ : H2(Cn) → H2

−(Cm) has a maximizing vector, then Φ is badly ap-
proximable if and only if Φ admits a factorization

Φ = ‖HΦ‖W ∗
(
z̄ϑ̄h̄/h 0

0 Φ#

)
V ∗,

where V and W t are thematic matrix functions, ϑ is a scalar inner function,
h is a scalar outer function in H2, and Φ# is a matrix function of size
(m− 1)× (n− 1) such that ‖Φ#(ζ)‖Mm−1,n−1 ≤ 1 almost everywhere on T.

Another characterization of badly approximable functions was obtained
in [AP] (see also [Pe1], Ch. 14, § 15). Let Φ ∈ (H∞+C)(Mm,n) and let k be
the number of superoptimal singular values tj(Φ) equal to t0(Φ) (in other
words, k is the multiplicity of the superoptimal singular value t0(Φ)). Then
Φ is badly approximable if and only if

Φ = ‖HΦ‖W∗
(
U 0

0 Φ#

)
V∗,

where U is a k×k very badly approximable unitary-valued function of class
H∞+C, V andW are k-balanced matrix functions, and Φ# is a matrix func-
tion in (H∞+C)(Mm−k,n−k) such that ‖Φ#(ζ)‖Mm−k,n−k

≤ 1 almost every-
where on T and ‖HΦ#‖ < 1. Actually, the condition Φ ∈ (H∞ +C)(Mm,n)
can be relaxed (see [AP] and [Pe1], Ch. 14, § 15).

3. Factorization of analytic matrix functions

In this section we obtain several factorization theorems for analytic ma-
trix functions that will be used to study Hankel operators.

We are going to use the following result by D. Sarason that is an analog
of Riesz factorization:

Sarason’s Theorem [Sa]. Let H be a separable Hilbert space and let
Ψ be an analytic integrable B(H)-valued function on T. Then there exist
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analytic square integrable functions Q and R such that

Ψ = QR, R∗R =
(
Ψ∗Ψ

)1/2
, and Q∗Q = RR∗ a.e. on T.(3.1)

The following theorem can be deduced easily from Sarason’s theorem.
Recall that 2 ≤ p <∞ and q satisfies (1.1); as usual, p′ is the dual exponent:
1/p+ 1/p′ = 1.

Theorem 3.1. Let Ψ ∈ Hp′(Mn). Then there exist matrix functions
F ∈ Hq(Mn) and G ∈ H2(Mn) such that

Ψ = FG and ‖Ψ‖Lp′ (S1) = ‖F‖Lq(S2)‖G‖L2(S2).

Proof of Theorem 3.1. Clearly, we may assume that Ψ is a nonzero
function. Suppose that Q and R satisfy the requirements of Sarason’s the-
orem. Let h be a scalar outer function such that

|h(ζ)| = ‖Ψ(ζ)‖1/2−p
′/2

Sn
1

, ζ ∈ T.(3.2)

Put
F = hQ and G =

1
h
R.

By Sarason’s Theorem,

‖F‖qLq(Sn
2 ) =

∫
T
|h(ζ)|q‖Q(ζ)‖qSn

2
dm(ζ)

=
∫

T
‖Ψ(ζ)‖(1/2−p

′/2)q+q/2
Sn

1
dm(ζ)

=
∫

T
‖Ψ(ζ)‖p

′

Sn
1
dm(ζ).

Similarly,

‖G‖2L2(Sn
2 ) =

∫
T
|h(ζ)|−2‖R(ζ)‖2Sn

2
dm(ζ)

=
∫

T
‖Ψ(ζ)‖p

′−1+1
Sn

1
dm(ζ)

=
∫

T
‖Ψ(ζ)‖p

′

Sn
1
dm(ζ).

It follows that

‖F‖Lq(Sn
2 )‖G‖L2(Sn

2 ) = ‖Ψ‖p
′/q+p′/2

Lp′ (Sn
1 )

= ‖Ψ‖Lp′ (Sn
1 ). �

We need a version of Theorem 3.1 in the case Ψ(ζ) has rank k for ζ ∈ T.
The following result can be deduced from Sarason’s theorem.
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Theorem 3.2. Let 1 ≤ k ≤ n and let Ψ be a function in H1(Mn) such
that

rank Ψ(ζ) = k on a subset of T of positive measure(3.3)

Then there exist matrix functions F ∈ H2(Mn,k) and G ∈ H2(Mk,n) such
that

Ψ = FG and ‖Ψ(ζ)‖Sn
1

= ‖F(ζ)‖Sn,k
2
‖G(ζ)‖Sk,n

2
, ζ ∈ T.(3.4)

Proof. Clearly, each minor of Ψ belongs to the Hardy class Hs for
some s > 0. It follows now from the uniqueness theorem for Hardy classes
that condition (3.3) is equivalent to the fact that rank Ψ(ζ) = k almost
everywhere on T.

Let Q and R be n × n matrix functions satisfying the requirements of
Sarason’s theorem. Then

‖Ψ(ζ)‖Sn
1

= ‖Q(ζ)‖Sn
2
‖R(ζ)‖Sn

2
.(3.5)

We need the following elementary lemma whose proof is given here for
completeness.

Lemma 3.3. If A and B are operators on Hilbert space, rankAB = k,
and ‖AB‖S1 = ‖A‖S2‖B‖S2 , then rankA = rankB = k.

Let us first complete the proof of Theorem 3.2.
By Lemma 3.3, (3.5) implies that

rankQ(ζ) = k and rankR(ζ) = k for almost all ζ ∈ T.(3.6)

Consider the inner-outer factorization of R:

R = ΥG,

where Υ is an inner matrix function and G is an outer matrix function. It
follows from (3.6) that Υ has size n×k and G has size k×n. We can define
now the function F by F = QΥ. Since Υ takes isometric values almost
everywhere on T, it follows that

‖F(ζ)‖Sn,k
2

= ‖Q(ζ)‖Sn
2

and ‖G(ζ)‖Sk,n
2

= ‖R(ζ)‖Sn
2
,

and so (3.4) holds. �

Proof of Lemma 3.3. Clearly, if rankA < k or rankB < k, then
rankAB < k. Suppose now that the conclusion of the lemma is false.
Without loss of generality we may assume that rankA > k. Let P be
the orthogonal projection onto RangeAB. Then AB = PAB. Clearly,
‖A‖2S2

= ‖PA‖2S2
+ ‖(I − P )A‖2S2

. Since rankP = k and rankA > k, it
follows that ‖PA‖S2 < ‖A‖S2 . Thus
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‖AB‖S1 = ‖PAB‖S1 ≤ ‖PA‖S2‖B‖S2 < ‖A‖S2‖B‖S2 = ‖AB‖S1

and we get a contradiction. �
We need the following consequence of Theorem 3.2.

Theorem 3.4. Let Ψ ∈ Hp′(Mn) such that

rank Ψ(ζ) = k, ζ ∈ T.
Then there exist matrix functions F ∈ Hq(Mn,k) and G ∈ H2(Mk,n) such
that

Ψ = FG and ‖Ψ‖Lp′ (Sn
1 ) = ‖F‖Lq(Sn,k

2 )‖G‖L2(Sk,n
2 ).

Proof. As in the proof of Theorem 3.1, we put

F = hF , G =
1
h
G,

where F and G are matrix functions satisfying the requirements of Theo-
rem 3.2 and h is a scalar outer function satisfying (3.2). The fact that F
and G satisfy the conclusions of the theorem is exactly the same as in the
proof of Theorem 3.2. �

The case of matrix functions of rank 1 is of special interest. We treat
this case separately, without using Sarason’s theorem.

Lemma 3.5. Let Ψ ∈ H1(Mm,n) such that

rank Ψ(ζ) = 1 on a subset of T of positive measure(3.7)

Then there exist vector functions u ∈ H2(Cm), and v ∈ H2(Cn), such that

Ψ(ζ) = u(ζ)vt(ζ), ζ ∈ T.(3.8)

and

‖u(ζ)‖Cm = ‖v(ζ)‖Cn = ‖Ψ(ζ)‖1/2Mm,n
.(3.9)

Proof. Condition (3.7) means that each 2 × 2 minor of Ψ vanishes on
a set of positive measure. Since Ψ ∈ H1(Mm,n), it follows that all 2 × 2
minors of Ψ are identically equal to zero. Thus condition (3.7) implies that
rank Ψ(ζ) = 1 almost everywhere on T.

Let h be an outer function such that

|h(ζ)|2 = ‖Ψ(ζ)‖L1(Mm,n), ζ ∈ T,

and let G = h−1Ψ. Clearly, G ∈ H2(Mm,n). Consider the columns of G.
Let L be the invariant subspace of multiplication by z on H2(Cm) spanned
by the columns of G. By the Beurling–Lax theorem (see [N]), there ex-
ists an inner function Υ of size m × k such that L = ΥH2(Ck). Since
rankG(ζ) = 1 almost everywhere, it follows that k = 1. Then there exist
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functions v1, v2, · · · , vn such that the columns of the matrix function G are
v1Υ, v2Υ, · · · , vnΥ. Let

v =


v1

v2

...
vn

 .

Clearly, v ∈ H2(Cn) and G = Υvt. It remains to put u = hΥ and observe
that u ∈ H2(Cm) and both (3.8) and (3.9) hold. �

Theorem 3.6. Let Ψ be a rank one matrix function in Hp′(Mm,n). Then
there exist column functions f ∈ Hq(Cm) and g ∈ H2(Cn) such that

Ψ = fgt and ‖Ψ‖Lp′ (Mm,n) = ‖f‖Lq(Cm)‖g‖L2(Cn).(3.10)

Proof. Let u and v be the column functions satisfying (3.8) and (3.9).
Let h be a scalar outer function satisfying (3.2). Put

f = hu and g =
1
h
v.

It is easy to verify that f ∈ Hq(Cm), g ∈ H2(Cn), and the equalities in
(3.10) hold. �

4. Respectable matrix functions

The main result of this section is Theorem 4.4, which gives us sev-
eral characterizations of the set of matrix functions Φ ∈ Lp(Mm,n), for
which distLp

(
Φ, Hp(Mm,n)

)
is equal to the norm of the Hankel operator

HΦ : Hq(Cn)→ H2
−(Cm). The description of this class of matrix functions

(such matrix functions will be called respectable) makes it very natural to
hope that all matrix functions in Lp(Mm,n) are respectable. However, it
will be shown in § 5 that this is not true.

Definition. A matrix function Φ ∈ Lp(Mm,n) \ Hp(Mm,n) is called
regularly approximable if there exists a best approximant Q ∈ Hp(Mm,n)
such that the space of maximizing vectors of (Φ−Q)(ζ) is one-dimensional
on a subset of T of positive measure.

It follows from the Hahn–Banach theorem that for Φ ∈ Lp(Mm,n),

distLp

(
Φ, Hp(Mm,n)

)
= sup

∣∣∣∣∫
T

trace
(
Φ(ζ)Ψ(ζ)

)
dm(ζ)

∣∣∣∣
where the supremum is taken over all Ψ ∈ Hp′

0 (Mn,m) (i.e., Ψ ∈ Hp′(Mn,m)
and Ψ(0) = 0) such that ‖Ψ‖Lp′ (Sn,m

1 ) ≤ 1.
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Since the space Lp(Mm,n) is reflexive, it follows that for a matrix function
Φ ∈ Lp(Mm,n) \Hp(Mm,n) there exists a matrix function Ψ ∈ Hp′

0 (Mn,m)
such that

‖Ψ‖Lp′ (Sn,m
1 ) = 1 and

∫
T

trace
(
Φ(ζ)Ψ(ζ)

)
dm(ζ) = distLp

(
Φ, Hp(Mm,n)

)
.

(4.1)

Such a function Ψ is called a dual extremal function of Φ.
Recall that for a matrix function Φ ∈ Lp(Mm,n), we consider the Hankel

operator HΦ : Hq(Cn)→ H2
−(Cm) defined by

HΦf = P−Φf, f ∈ Hq(Cn),

where 1/p+ 1/q = 1/2.
As we have mentioned in § 2, for Hankel operators with scalar symbols,

formula (2.1) holds. Thus it is easy to see that the norm of the Hankel
operator HΦ : Hq(Cn) → H2

−(Cm) is equivalent to the distance in Lp from
Φ to Hp(Mm,n). Since in the case of scalar symbols all bounded Hankel
operators from Hq to H2

− are compact, we can obtain the following result.

Lemma 4.1. For an arbitrary matrix function Φ in Lp(Mm,n), the Han-
kel operator HΦ : Hq(Cn)→ H2

−(Cm) is compact.

Corollary 4.2. Let Φ ∈ Lp(Mm,n). Then HΦ has a maximizing vector
in Hq(Cn).

The following lemma gives us an upper estimate for the norm of HΦ.

Lemma 4.3. Let Φ ∈ Lp(Mm,n). Then

‖HΦ‖ ≤ distLp

(
Φ, Hp(Mm,n)

)
.

Proof. Since HΦ−Q = HΦ for an arbitrary Q in Hp(Mm,n), it suffices
to prove the inequality

‖HΦ‖ ≤ ‖Φ‖Lp(Mm,n), Φ ∈ Lp(Mm,n).

Suppose that f ∈ Hq(Cn) and g ∈ H2
−(Cm). We have by Hölder’s inequal-

ity,

|(HΦf, g)| = |(Φf, g)| ≤
∫

T
|Φfg∗| dm

≤
(∫

T
‖Φ(ζ)‖pMm,n

dm(ζ)
)1/p(∫

T
‖f(ζ)‖qCn

)1/q(∫
T
‖g(ζ)‖2Cm

)1/2
= ‖Φ‖Lp(Mm,n)‖f‖Lq(Cn)‖g‖L2(Cn). �

The following theorem gives us several characterizations of the class of
matrix functions Φ, for which ‖HΦ‖ = distLp

(
Φ, Hp(Mm,n)

)
.
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Theorem 4.4. Let Φ ∈ Lp(Mm,n)\Hp(Mm,n). The following are equiv-
alent:

(i) ‖HΦ‖ = distLp

(
Φ, Hp(Mm,n)

)
;

(ii) Φ belongs to the closure of the set of regularly approximable functions
in Lp;

(iii) Φ has a dual extremal function Ψ such that rank Ψ(ζ) = 1 on a set
of positive measure;

(iv) Φ has a dual extremal function Ψ such that rank Ψ(ζ) = 1, ζ ∈ T;
(v) if Q is a best approximant to Φ, then Φ−Q admits a factorization

Φ−Q = W ∗

(
z̄ϑ̄h̄/h2/q 0

0 Φ#

)
V ∗,(4.2)

where V and W t are thematic matrix functions, ϑ is a scalar inner function,
h is a scalar outer function in H2, and Φ# is an (m− 1)× (n− 1) matrix
function such that ‖Φ#(ζ)‖Mm−1,n−1 ≤ |h(ζ)|2/p, ζ ∈ T.

Note that in (4.2) the outer function h must satisfy the equality

|h(ζ)|2/p = ‖(Φ−Q)(ζ)‖Mm,n , ζ ∈ T.

Remark. Since the set of matrices, for which the space of maximiz-
ing vectors is one-dimensional is dense in the space of matrices, this sug-
gests a hope that the set of regularly approximable m × n matrix func-
tions is dense in Lp(Mm,n). If this were true, then the distance formula
‖HΦ‖ = distLp

(
Φ, Hp(Mm,n)

)
would hold for an arbitrary matrix func-

tions in Lp(Mm,n). Surprisingly, we will show in § 5 that this is not the
case.

Definition. Matrix functions Φ ∈ Lp(Mm,n) \Hp(Mm,n) satisfying one
of the conditions (i)–(v) in the statement of Theorem 4.4 are called re-
spectable matrix functions. If a matrix function Φ ∈ Lp(Mm,n) \Hp(Mm,n)
is not respectable, it is called a weird function.

It follows immediately from Theorem 4.4 that the set of respectable func-
tions is closed in Lp, while the set of weird functions is open.

Proof of Theorem 4.4. We start with the proof of the implication
(iv)⇒(i). Let Ψ be a dual extremal function such that rank Ψ(ζ) = 1,
ζ ∈ T. Then Ψ satisfies (4.1).

Since ‖HΦ‖ is always less than or equal to distLp(Φ, Hp(Mm,n)
)
, we have

to show that

‖HΦ‖ ≥ distLp(Φ, Hp(Mm,n)
)
.
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By Theorem 3.6, there exist functions f ∈ H2(Cn) and g ∈ H2
0 (Cm) such

that
Ψ = fgt and 1 = ‖Ψ‖Lp′ (Mm,n) = ‖f‖Lq(Cm)‖g‖L2(Cn).

Without loss of generality we may assume that ‖f‖Lq(Cn) = ‖g‖L2(Cm) = 1.
We have

‖HΦ‖ ≥ |(HΦf, g
∗)| =

∣∣∣∣∫
T

trace
(
(HΦf)gt

)
dm

∣∣∣∣
=
∣∣∣∣∫

T
trace(Φfgt) dm

∣∣∣∣ =
∫

T
trace

(
ΦΨ
)
dm

= distLp

(
Φ, Hp(Mm,n)

)
.

Next, let us show that (i)⇒(v). Let f ∈ Hq(Cn) be a maximizing vector
of HΦ and let Q ∈ Hp(Mm,n) be a best approximant to Φ. We have

‖HΦf‖L2(Cm) = ‖HΦ−Qf‖L2(Cm) = ‖P−(Φ−Q)f‖L2(Cm)

≤ ‖(Φ−Q)f‖L2(Cm) ≤ ‖(Φ−Q)‖Lp(Mm,n)‖f‖Hq(Cn)

= ‖HΦ‖ · ‖f‖Hq(Cn) = ‖HΦf‖L2(Cm).

Hence, both inequalities are equalities. The fact that the first inequality
turns into equality means that (Φ − Q)f ∈ H2

−(Cm). The fact that the
second inequality turns into equality means that f(ζ) is a maximizing vector
of (Φ−Q)(ζ) for almost all ζ ∈ T and∫

T

(
‖(Φ−Q)(ζ)‖Mm,n

‖f(ζ)‖Cn

)2

dm(ζ) =

(∫
T
‖(Φ−Q)(ζ)‖pMm,n

dm(ζ)
)2/p(∫

T
‖f(ζ)‖qCndm(ζ)

)2/q

,

i.e., the corresponding Hölder inequality turns into equality, which implies
that ‖(Φ−Q)(ζ)‖Mm,n

= c‖f(ζ)‖q/pCn for some constant c. Since

‖(HΦf)(ζ)‖Cm = ‖(Φ−Q)(ζ)‖Mm,n
‖f(ζ)‖Cn ,

it follows that ‖(HΦf)(ζ)‖Cm = c‖f(ζ)‖q/2Cn . Multiplying the maximizing
vector f by a suitable constant, one can always make the constant c equal
to 1, and so we may assume that

‖(HΦf)(ζ)‖Cm = ‖f(ζ)‖q/2Cn .

Let h be a scalar outer function such that

|h(ζ)| = ‖(HΦf)(ζ)‖Cm , ζ ∈ T,
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and so
‖(Φ−Q)(ζ)‖Mm,n = |h(ζ)|2/p, ζ ∈ T.

Put g = z̄HΦf ∈ H2(Cm). Then

‖g(ζ)‖Cm = |h(ζ)| and ‖f(ζ)‖Cn = |h(ζ)|2/q, ζ ∈ T.

The vector function f admits a factorization f = ϑ1h
2/qv, where ϑ1 is a

scalar inner function and v is an n × 1 inner and co-outer function, while
the vector function g admits a factorization g = ϑ2hw, where ϑ2 is a scalar
inner function and w is an m× 1 inner and co-outer function.

Let now

V =
(

v Θ
)

and W t =
(

w Ξ
)

(4.3)

be thematic matrix functions (see § 2.3).
Consider the matrix function W (Φ − Q)V . Its upper left entry is equal

to

ξ = wt(Φ−Q)v = ϑ̄2h
−1gt(Φ−Q)ϑ̄1h

−2/qf = ϑ̄1ϑ̄2h
−2/q−1gtHΦf

= z̄ϑ̄h−2/q−1gtḡ = z̄ϑ̄h−2/q−1|h|2 = z̄ϑ̄
h̄

h2/q
= z̄ϑ̄

h̄

h
p−2

p

,

where ϑ = ϑ1ϑ2.
We have |ξ(ζ)| = ‖(Φ − Q)(ζ)‖Mm,n

. Since both V and W are unitary-
valued, it is easy to see that Φ−Q has the form (4.2).

To prove the implication (v)⇒(ii), we need the following lemma.

Lemma 4.5. Suppose that Φ is a matrix function that admits a factor-
ization

Φ = W ∗

(
z̄ϑ̄h̄/h2/q 0

0 Φ#

)
V ∗,(4.4)

where ϑ, h, Φ#, V , and W are as in the statement of Theorem 4.4. Then
Φ is p-badly approximable.

Proof. As we have already observed, for an arbitrary matrix function Φ
in Lp(Mm,n) the following inequalities hold:

‖HΦ‖ ≤ distLp

(
Φ, Hp(Mm,n)

)
≤ ‖Φ‖Hp(Mm,n).

It suffices to prove that if Φ is as in (4.4), then ‖HΦ‖ ≥ ‖Φ‖Hp(Mm,n).
Consider the matrix functions V and W :

V =
(
v Θ

)
and W t =

(
w Ξ

)
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Let f = h2/qv. It is easy to verify that

HΦf = Φf = z̄h̄ϑ̄w and ‖HΦf‖L2(Cm) = ‖Φ‖Lp(Mm,n)‖f‖Lq(Cn)

which implies that ‖HΦ‖ ≥ ‖Φ‖Lp(Mm,n). �

(v)⇒(ii). Let R = Φ−Q. For ε > 0 we consider the function Rε defined
by

Rε = W ∗

(
(1 + ε)z̄ϑ̄h̄/h2/q 0

0 Φ#

)
V ∗.

By Lemma 4.5, R and Rε are p-badly approximable matrix functions. We
define the function Φε by Φε = Rε +Q.

Since Q ∈ Hp(Mm,n) and Rε is p-badly approximable, it follows that Q
is a p-best approximant to Φε. Clearly, for ζ ∈ T, the space of maximizing
vectors of Rε(ζ) is one-dimensional, and so Φε is a regularly approximable
matrix function. The result follows from the obvious fact that

‖Φε − Φ‖Lp → 0 as ε→∞.

To show that (iii)⇒(iv), we observe that (iii) implies that each 2×2 minor
of Ψ vanishes on a set of positive measure. By the uniqueness theorem for
the Hardy classes, it follows that all 2 × 2 minors of Ψ are zero almost
everywhere on T which proves (iv).

Let us prove now that (ii)⇒(i). Clearly, it suffices to show that if Φ is
regularly approximable, then ‖HΦ‖ = distLp

(
Φ, Hp(Mm,n)

)
. Let Q be a

matrix function in Hp(Mm,n) such that the space of maximizing vectors of
(Φ−Q)(ζ) is one-dimensional on a subset of T of positive measure. Let Ψ
be a dual extremal function of Φ. It follows easily from (4.1) that

trace
(
(Φ−Q)(ζ)Ψ(ζ)

)
= ‖(Φ−Q)(ζ)‖Mm,n‖Ψ(ζ)‖Sn,m

1
, ζ ∈ T.(4.5)

We need the following elementary lemma.

Lemma 4.6. Let A ∈Mm,n and B ∈Mn,m be matrices satisfying

| trace(AB)| = ‖A‖Mm,n
‖B‖Sn,m

1
.

Assume that the space of maximizing vectors A is one-dimensional. Then B
has rank 1.

Proof. Without loss of generality we may assume that m = n. By
considering the polar decomposition of B, we may assume that B is positive,
i.e., (Bx, x) ≥ 0 for every vector x. Let e1, · · · , en be an orthonormal basis
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of eigenvectors of B and let Bej = λjej . We have

| trace(AB)| = | trace(BA)| =

∣∣∣∣∣∣
n∑
j=1

(BAej , ej)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

(Aej , Bej)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
j=1

λj(Aej , ej)

∣∣∣∣∣∣ ≤
n∑
j=1

λj‖Aej‖ ≤ ‖A‖
n∑
j=1

λj .

On the other hand,

‖A‖ · ‖B‖Sn
1

= ‖A‖ ·
n∑
j=1

(Bej , ej) = ‖A‖
n∑
j=1

λj .

It follows that if ‖Aej‖ < ‖A‖, then λj = 0. By the hypotheses there can
be only one j, for which ‖Aej‖ = ‖A‖, which proves the result. �

It follows from (4.5) and from Lemma 4.6 that Φ satisfies (iii). Since we
have already proved that (iii)⇒(iv) and (iv)⇒(i), it follows that Φ satis-
fies (i).

The fact that (iv)⇒(iii) is obvious. It remains to prove that (v)⇒(iv).
Suppose that Φ−Q is factorized as in (4.2). Without loss of generality we
may assume that ‖Φ−Q‖Lp = 1 Define the matrix function Ψ by

Ψ = zϑh1+2/q
(
v 0

)(wt

0

)
,

where v and w are as in (4.3).
Clearly, rank Ψ(ζ) = 1, ζ ∈ T. We have

‖Ψ‖p
′

Lp′ (Sn,m
1 )

=
∫

T
|h(ζ)|p

′(1+2/q) dm = ‖h‖2L2 = 1

and∫
T

trace
(
(Φ−Q)Ψ

)
dm=

∫
T
zϑh1+2/q trace

((
wt

0

)
(Φ−Q)

(
v 0

))
dm

=
∫

T
trace

(
|h|2 0

0 0

)
dm=‖h‖2L2 =‖Φ−Q‖Lp = 1.

This completes the proof. �

Remark. Note that in the case of analytic matrix approximation in
the L∞ norm it is not true that for an arbitrary matrix function Φ ∈
L∞(Mm,n) there exists a dual extremal function in H1

0 (Sn,m
1 ). Moreover,
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it was shown in [Pe2] that a dual extremal function exists if and only if the
Hankel operator HΦ : H2(Cn)→ H2

−(Cm) has a maximizing vector.
However, in the case p = ∞, if a dual extremal function exists, then

there exists a dual extremal function Ψ such that rank Ψ(ζ) = 1 almost
everywhere on T, see [Pe2].

5. Weird matrix functions

The main result of this section is a construction of a weird matrix function
of size 2× 2.

Lemma 5.1. There exists a bounded 2× 2 matrix function B such that
B∗ = B, traceB(ζ) = 1, ζ ∈ T, the eigenvalues of B(ζ), ζ ∈ T, are positive
and separated away from zero and there is no constant self-adjoint matrix
C such that

rankC = 1 and traceB(ζ)C = 1, ζ ∈ T.

Proof. Let α be a real bounded scalar functions, β a complex scalar
bounded function such that the functions α, β, β̄, and 1 are linearly inde-
pendent, and the function α(1 − α) − |β|2 is positive and separated away
from zero. Put

B =

(
α β

β̄ 1− α

)
.

Clearly, B∗ = B, the eigenvalues of B(ζ), ζ ∈ T, are positive and separated
away from zero, and traceB(ζ) = 1, ζ ∈ T. Suppose that C is a self-adjoint
constant matrix such that rankC = 1, and traceB(ζ)C = 1, ζ ∈ T. Then
C has the form

C =

(
a b

b̄ a−1|b|2

)
,

where a is a nonzero real number and b is a complex number. We have

traceB(ζ)C = aα(ζ) + bβ̄(ζ) + b̄β(ζ) + a−1|b|2(1− α(ζ)) = 1, ζ ∈ T.

Thus
(a− a−1|b|2)α(ζ) + bβ̄(ζ) + b̄β(ζ) + a−1|b|2 − 1 = 0.

Since the functions α, β, β̄, and 1 are linearly independent, this equality is
impossible. �

Consider the Wiener–Masani factorization of B (see [WM]):

B = Ψ∗Ψ,(5.1)

where Ψ is an invertible bounded analytic function in D. Put

A = ΨΨ∗
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and consider the Wiener–Masani factorization of A2:

A2 = QQ∗.

Let U be the matrix function defined by

U = z̄Q−1A.(5.2)

Then U is a unitary-valued function on T:

U∗U = A(Q∗)−1Q−1A = I.

Clearly,
AU−1 = zQ ∈ H∞0 (M2,2).

Let us show that U is p-badly approximable.

Lemma 5.2. Let A be a self-adjoint 2× 2 matrix function such that

traceA(ζ) = 1, ζ ∈ T,

and the eigenvalues of A(ζ) are positive and separated away from zero. Sup-
pose that U is a unitary-valued matrix function on T such that AU−1 ∈
H∞0 (M2,2). Then U is a p-badly approximable matrix function.

Proof. Let F ∈ Hp(M2,2). For ζ ∈ T, we have∣∣trace
(
(U − F )AU∗)(ζ)

)∣∣ ≤ ‖(U − F )AU∗)(ζ)‖S1
≤ ‖(U − F )(ζ)‖M2,2 .

Thus by Hölder’s inequality,

‖U − F‖Lp(M2,2) =
(∫

T
‖U − F‖p dm

)1/p

≥
(∫

T

∣∣trace
(
(U − F )AU∗

)∣∣p dm)1/p

≥
∫

T

∣∣trace
(
(U − F )AU∗

)∣∣ dm
≥
∣∣∣∣∫

T
trace

(
(U − F )AU∗

)
dm

∣∣∣∣
=
∣∣∣∣∫

T
trace (UAU∗) dm−

∫
T

trace (FAU∗) dm
∣∣∣∣

=
∣∣∣∣∫

T
trace (UAU∗) dm

∣∣∣∣ =
∣∣∣∣∫

T
traceAdm

∣∣∣∣ = 1.
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Note that ∫
T

trace (FAU∗) dm = 0,

since FAU∗ ∈ Hp
0 (M2,2). Thus U is p-badly approximable. �

To prove that the matrix function U defined by (5.2) is weird, we need
the following lemma.

Lemma 5.3. Let A be a bounded positive definite matrix function on T
whose inverse is also bounded and let A = ΨΨ∗, where Ψ is an invertible
matrix function in H∞. A matrix function F in H∞ satisfies the equation

(5.3) AF ∗ = FA

if and only if

(5.4) F = ΨCΨ−1.

where C is a constant self-adjoint matrix.

Proof. Put
C = Ψ−1FΨ.

Then C is an H∞ matrix function and (5.4) holds. By (5.3), we have

AF ∗ = A(Ψ∗)−1C∗Ψ∗ = FA = ΨCΨ−1A.

Since A = ΨΨ∗, we obtain

ΨΨ∗(Ψ∗)−1C∗Ψ∗ = ΨCΨ−1ΨΨ∗

which implies C = C∗. Since C is an H∞ matrix function, it must be
constant.

Clearly, if C is a constant self-adjoint matrix and F is defined by (5.4),
then F satisfies equation (5.3). �

Theorem 5.4. The matrix function U defined by (5.2) is a weird p-badly
approximable function.

Proof. Assume that U is respectable. By Lemma 5.2, U is p-badly
approximable. Then ‖HU‖ = ‖U‖Lp(M2,2) = 1.

Let f ∈ Hq(C2) be a maximizing vector of HU of norm 1. We have

1 = ‖HUf‖L2(C2) = ‖P−Uf‖L2(C2)

≤ ‖Uf‖L2(C2) = ‖f‖L2(C2) ≤ ‖f‖Lq(C2) = 1.

Thus all inequalities in this chain of inequalities are equalities. The equality
‖f‖L2(C2) = ‖f‖Lq(C2) means that ‖f(ζ)‖C2 = 1, ζ ∈ T, while the equality
‖P−Uf‖L2(C2) = ‖Uf‖L2(C2) means that Uf ∈ H2

−(C2), and so Uff∗ ∈
H∞− (M2,2) or, in other words, ff∗U−1 ∈ H∞0 (M2,2). Put

F = ff∗A−1.
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Then F satisfies (5.3). Hence, by Lemma 5.3, F has the form F = ΨCΨ−1,
where C is a constant self-adjoint matrix. Since F has rank one on T, it
follows that rankC = 1. Clearly,

ff∗ = FA = ΨCΨ−1ΨΨ∗ = ΨCΨ∗.

Let B = Ψ∗Ψ be the matrix function obtained in Lemma 5.1. By (5.1), we
have

traceBC = trace Ψ∗ΨC = trace ΨCΨ∗ = trace ff∗ = 1.

This contradicts Lemma 5.1. �

Remark. The results of Sections 4 and 5 show that the class Lp(Mm,n)
splits into two subsets. The first subset consists of respectable matrix
functions and for respectable matrix functions Φ the distance
distLp

(
Φ, Hp(Mm,n)

)
can be computed by formula (1.2). The second sub-

set consists of weird matrix functions and for weird matrix functions Φ we
have to find another formula to compute the distance distLp

(
Φ, Hp(Mm,n)

)
.

Such a formula will be obtained in the next section.
Let us explain that in a sense both the set of respectable matrix functions

and the set of weird matrix functions are massive subsets of Lp(Mm,n). First
of all, the set of weird matrix functions is open and nonempty, as we have
just seen.

Secondly, if Φ ∈ Lp(Mm,n) and Q is an arbitrary function in H∞(Mm,n),
then Φ is respectable if and only if Φ − Q is. Thus to characterize the
set of respectable matrix functions, we can restrict ourselves to the case of
p-badly approximable respectable matrix functions. It is easy to see that
the set of respectable badly approximable matrix functions has nonempty
interior in the set of p-badly approximable matrix functions. Indeed, it is
easy to verify that the p badly approximable matrix function

Φ =
(
z̄ 0
0 0

)
(5.5)

belongs to the interior of the set of respectable p-badly approximable func-
tions.

However, we do not know whether the set of respectable matrix functions
has nonempty interior in the space Lp(Mm,n). In particular, we do not
know whether the matrix function Φ defined in (5.5) belongs to the interior
of the set of respectable matrix functions has nonempty interior in the space
Lp(Mm,n).
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6. Hankel operators on spaces of matrix-valued functions

We have already mentioned in the introduction that the problem of ana-
lytic approximation of matrix functions can be reduced to the case of square
matrix functions and beginning this section we assume that Φ ∈ Lp(Mn).

For Φ ∈ Lp(Mn), we consider the Hankel operator HΦ defined on the
space Hq(Sn

2 ) to the space H2
−(Sn

2 ) defined by

HΦF = P−ΦF,

where P− is an orthogonal projection from the space L2(Sn
2 ) onto the sub-

space H2
−(Sn

2 ) def= L2(Sn
2 )	H2(Sn

2 ).

Theorem 6.1. Let Φ ∈ Lp(Mn). Then

‖HΦ‖Hq(Sn
2 )→H2

−(Sn
2 ) = distLp

(
Φ, Hp(Mn)

)
.

Proof. Suppose that Φ ∈ Lp(Mn). Then for F ∈ Hq(Sn
2 ) and Q ∈

Hp(Mn), we have

‖HΦF‖L2(Sn
2 ) = ‖P−

(
(Φ−Q)F

)
‖L2(Sn

2 ) ≤ ‖(Φ−Q)F‖L2(Sn
2 )

≤ ‖Φ−Q‖Lp(Mn)‖F‖Hq(Sn
2 )

by Hölder’s inequality. Thus ‖HΦ‖ ≤ distLp

(
Φ, Hp(Mn)

)
.

To prove the opposite inequality, we are going to use Theorem 3.1 that has
been deduced from Sarason’s theorem. Let Ψ be a dual extremal function
of Φ, i.e., Ψ belongs to Hp′

0 (Mn) and satisfies (4.1). By Theorem 3.1, there
exist matrix functions F ∈ Hq(Mn) and G ∈ H2

0 (Mn) such that

Ψ = FG and ‖F‖Lq(Sn
2 )‖G‖L2(Sn

2 ) = 1.

Without loss of generality we may assume that ‖F‖Lq(Sn
2 ) = 1 and

‖G‖L2(Sn
2 ) = 1. We have

‖HΦ‖ ≥ |(HΦF,G
∗)L2(Sn

2 )| =
∣∣∣∣∫

T
trace

(
(HΦF )G

)
dm

∣∣∣∣
=
∣∣∣∣∫

T
trace(ΦFG) dm

∣∣∣∣ =
∫

T
trace

(
ΦΨ
)
dm

= distLp

(
Φ, Hp(Mm,n)

)
by (4.1). �

It follows immediately from Theorem 6.1 that

‖HΦ‖Hq(Cn)→H2
−(Cn) ≤ ‖HΦ‖Hq(Sn

2 )→H2
−(Sn

2 ).

Note that this inequality can also be obtained easily from the definitions of
HΦ and HΦ.
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Theorem 6.2. Let Φ ∈ Lp(Mn) and let Q be a best approximant to Φ
in Hp(Mn). Then the following assertions hold:

(i) if F ∈ Hq(Mn) is a maximizing vector of HΦ, then (Φ − Q)F ∈
H2
−(Sn

2 );
(ii) the function

ζ 7→ ‖(Φ−Q)(ζ)‖Mn
(6.1)

does not depend on the choice of a best approximant Q;
(iii) if HΦ has a maximizing vector F such that rankF (ζ) = n on a

subset of T of positive measure, then Φ has a unique best approximant in
Hp(Mn);

(iv) if F1 and F2 are maximizing vectors of HΦ, then

‖F1(ζ)‖Sn
2

= c‖F2(ζ))‖Sn
2

for some positive constant c;
(v) if Q is a best approximant to Φ in Hp(Mn) and F is a maximizing

vector of HΦ, then the matrix
1

‖(Φ−Q)(ζ)‖Mn

(Φ−Q)(ζ), ζ ∈ T,

is isometric on the range of F (ζ).

Proof. Let us fix a maximizing vector F of HΦ. We have by Hölder’s
inequality,

‖HΦF‖L2(Sn
2 ) = ‖P−

(
(Φ−Q)F

)
‖L2(Sn

2 ) ≤ ‖(Φ−Q)F‖L2(Sn
2 )(6.2)

≤ ‖Φ−Q‖Lp(Mn)‖F‖Hq(Sn
2 )

= ‖HΦ‖Hq(Sn
2 )→H2

−(Sn
2 )‖F‖Hq(Sn

2 ).

Since ‖HΦF‖L2(Sn
2 ) = ‖HΦ‖ · ‖F‖Hq(Sn

2 ), it follows that both inequalities
in (6.2) are equalities.

The fact that the first inequality in (6.2) turns into equality means that
(Φ−Q)F ∈ H2

−(Sn
2 ), i.e.,

(6.3) (Φ−Q)F = HΦF

which proves (i).
To prove (iii), we observe that since F ∈ Hq(Sn

2 ), it follows that if
rankF (ζ) = n on a set of positive measure, then rankF (ζ) = n, ζ ∈ T,
almost everywhere on T. Hence,

Φ−Q = (HΦF )F−1,

and so Q is uniquely determined by Φ.
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The fact that the second inequality in (6.2) turns into equality means
that there exists c > 0 such that

‖(Φ−Q)(ζ)‖pMn
= c‖F (ζ)‖qSn

2
, ζ ∈ T,(6.4)

and

‖(Φ−Q)(ζ)F (ζ)‖Sn
2

= ‖(Φ−Q)(ζ)‖Mn‖F (ζ)‖Sn
2
, ζ ∈ T.(6.5)

Clearly, (iv) follows immediately from (6.4).
If we normalize the maximizing vector F by the condition

‖F‖qLq(S2) = ‖HΦ‖p,(6.6)

then integrating (6.4), we obtain

‖HΦ‖p = ‖Φ−Q‖pLp(Mn) = c‖F‖qLq(S2).

Hence, under condition (6.6),

‖(Φ−Q)(ζ)‖pMn
= ‖F (ζ)‖qSn

2
, ζ ∈ T,(6.7)

and so the function (6.1) is uniquely determined by Φ. This proves (ii).
It remains to observe that (v) follows from (6.5) and from the fact that

for n× n matrices A and B the equality

‖AB‖Sn
2

= ‖A‖ · ‖B‖Sn
2

holds if and only if the restriction of A to the range of B is a multiple of an
isometry. �

Definition. For a function Φ ∈ Lp(Mn), the function (6.1) is called the
distance function of Φ. We denote the distance function of Φ by dΦ:

dΦ(ζ) = ‖(Φ−Q)(ζ)‖Mn
, ζ ∈ T,(6.8)

where Q is an arbitrary best approximant to Φ.

The following result describes the set of all nonzero distance functions of
matrix functions in Lp(Mn).

Theorem 6.3. Let d ≥ 0 be a nonzero function in Lp. Then d is the
distance function of a matrix function Φ ∈ Lp(Mn) if and only if log d ∈ L1.

Proof. If Φ ∈ Lp(Mn) \ Hp(Mn) and Q is a p-best approximant to Φ
and d(ζ) = ‖(Φ − Q)(ζ)‖Mn

, the fact that log d ∈ L1 follows immediately
from (6.4).
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The converse follows from Corollary 2.2 by considering matrix functions
of the form 

ϕ 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 . �

Theorem 6.4. Φ ∈ Lp(Mn)\Hp(Mn). Then Φ is respectable if and only
if there exists a maximizing vector F of HΦ such that

rankF (ζ) = 1, ζ ∈ T.(6.9)

Proof. Suppose that Φ is respectable. Consider the Hankel operator

HΦ : Hq(Cn)→ H2
−(Cn).

Let f ∈ Hq(Cn) be a maximizing vector of HΦ. Define the matrix function
F ∈ Hq(Mn) by

F =
(
f 0 · · · 0

)
.

It is obvious that rankF (ζ) = 1 for ζ ∈ T. Clearly,

‖F (ζ)‖S2 = ‖f(ζ)‖Cn and ‖(HΦF )(ζ)‖Sn
2

= ‖(HΦf)(ζ)‖Cn ,

and so F is a maximizing vector of HΦ.
To prove the converse, we may assume that ‖HΦ‖ = 1. Suppose that F

is a maximizing vector of HΦ of norm 1 that satisfies (6.9). Let Q be a
best approximant to Φ in Hp(Mn). By Theorem 6.2, we have (Φ−Q)F ∈
H2
−(Mn). Put

G =
1

‖HΦ‖

(
(Φ−Q)F

)∗
and Ψ = FG ∈ Hp′

0 (Mn).

Clearly,
rank Ψ(ζ) = 1, ζ ∈ T, and ‖Ψ‖Lp′ (Sn

1 ) ≤ 1.

Let us show that Ψ is a dual extremal function of Φ. Assuming that (6.6)
holds, we have by (6.7),∫

T
trace(ΦΨ) dm =

∫
T

trace
(
(Φ−Q)FG

)
dm

=
∫

T
trace

(
P−
(
(Φ−Q)F

)
G
)
dm

=
∫

T
trace

(
(HΦF )G

)
dm = (HΦF,G

∗)L2(Sn
2 )

=
1

‖HΦ‖
∥∥HΦF

∥∥2

L2(Sn
2 )

= ‖HΦ‖ = 1.
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Thus Ψ is a dual extremal function of rank 1, and so by Theorem 4.4, Φ is
respectable. �

Note that the computation, in fact, shows that ‖Ψ‖Lp′ (Sn
1 ) = 1.

Corollary 6.5. Let Φ be a weird function in Lp(M2) \ Hp(M2). Then
Φ has a unique best approximant in Hp(M2).

Proof. By Theorem 6.2, if Φ has more than one best approximant, then
each maximizing vector F of HΦ has rank 1 almost everywhere on T. By
Theorem 6.4, the function Φ is respectable. �

We consider now for a function Φ ∈ Lp(Mn), the family of Hankel oper-
ators H{k}Φ : Hq

(
Sn,k

2

)
→ H2

−
(
Sn,k

2

)
, 1 ≤ k ≤ n, defined by

H
{k}
Φ F = P−ΦF, F ∈ Hq(Sn,k

2 ).

Clearly, H{1}Φ = HΦ and H
{n}
Φ = HΦ.

Theorem 6.6. Let Φ ∈ Lp(Mn) \ Hp(Mn) and let 1 ≤ k ≤ n. The
following are equivalent:

(i) there exists a maximizing vector F of HΦ such that

rankF (ζ) ≤ k, ζ ∈ T;(6.10)

(ii) the following distance formula holds:∥∥∥H{k}Φ

∥∥∥ = distLp

(
Φ, Hp(Mn)

)
.

Note that a standard argument with analyticity properties of minors
shows that rankF (ζ) is constant for almost all ζ in T.

Proof of Theorem 6.6. Suppose that (ii) holds. Let G ∈ Hq(Sn,k
2 )

be a maximizing vector of H(k)
Φ (observe that H(k) is compact). Consider

the matrix function F ∈ Hq(Sn
2 ) obtained from G by adding n − k zero

columns. Clearly.

‖HΦF‖L2(Sn
2 ) =

∥∥∥H{k}Φ G
∥∥∥
L2(Sn,k

2 )
= distLp

(
Φ, Hp(Mn)

)
‖F‖Lq(Sn

2 ).

Thus F is a maximizing vector of HΦ that satisfies (6.10).
Suppose now that F is a maximizing vector of HΦ such that

rankF (ζ) = k, ζ ∈ T.

Without loss of generality we may assume that ‖F‖Lq(Sn
2 ) = 1. As in the

proof of Theorem 6.4, consider a best approximant Q to Φ in Hp(Mn) and
define the matrix functions G and Ψ as in that proof. Then

rank Ψ(ζ) = k, ζ ∈ T, and ‖Ψ‖Lp′ (Mn) = 1.
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The fact that Ψ is a dual extremal function of Φ can be verified as in the
proof of Theorem 6.4.

By Theorem 3.4, Ψ admits a factorization Ψ = F[G[, where F[ ∈
Hq(Mn,k), G[ ∈ H2

0 (Mk,n) and ‖Ψ‖Lp′ (Sn
1 ) = ‖F[‖Lq(Sn,k

2 )‖G[‖L2(Sk,n
2 ).

We claim that ‖HΦ‖ =
∥∥∥H{k}Φ

∥∥∥ and F[ is a maximizing vector of H{k}Φ .
This can be proved in the same way as in the proof of Theorem 6.1. In-
deed, without loss of generality we may assume that ‖F[‖Lq(Sn,k

2 ) = 1 and
‖G[‖L2(Sk,n

2 ) = 1. Then

‖HΦ‖ ≥
∥∥∥H{k}Φ

∥∥∥ ≥ ∣∣∣∣(H{k}Φ F[, G
∗
[

)
L2(Sn

2 )

∣∣∣∣ =
∣∣∣∣∫

T
trace

((
H
{k}
Φ F[

)
G[

)
dm

∣∣∣∣
=
∣∣∣∣∫

T
trace

(
P−(ΦF[), G[

)
dm

∣∣∣∣ =
∣∣∣∣∫

T
trace(ΦF[G[) dm

∣∣∣∣
=
∫

T
trace

(
ΦΨ
)
dm = distLp

(
Φ, Hp(Mn)

)
= ‖HΦ‖

by (4.1) and Theorem 6.1. �

Definition. A matrix function Φ ∈ Lp(Mn) is said to have order k if k
is the smallest number such that

distLp

(
Φ, Hp(Mn)

)
=
∥∥∥H{k}Φ

∥∥∥ .
Clearly, a matrix function Φ is respectable if and only if it has order 1.
The reasoning given in the proof of Theorem 6.6 allows us to obtain the

following formulae for the order of a matrix function in Lp.

Theorem 6.7. Let Φ be a matrix function in Lp(Mn). Then the follow-
ing assertion hold:

(i) the order of Φ is the minimal number k, for which there exists a
maximizing vector F of HΦ that satisfies (6.10).

(ii) the order of Φ is the minimal number k such that Φ has a dual
extremal function Ψ satisfying

rank Ψ(ζ) ≤ k, ζ ∈ T.

Proof. It is easy to see that the proof of Theorem 6.7 is contained in
the proof of Theorem 6.6. �

In §7 we obtain one more formula for the order of Φ, see Theorem 7.2.
We can obtain now an analog of Theorem 6.2 for the Hankel opera-

tors H{k}Φ .
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Theorem 6.8. Let Φ be a matrix function in Lp(Mn) such that

distLp

(
Φ, Hp(Mn)

)
=
∥∥∥H{k}Φ

∥∥∥ .
Then the following assertions hold:

(i) if F ∈ Hq(Mn,k) is a maximizing vector of H{k}Φ , then (Φ − Q)F ∈
H2
−(Sn,k

2 );
(ii) if F1 and F2 are maximizing vectors of H(k)

Φ , then

‖F1(ζ)‖Sn
2

= c‖F2(ζ))‖Sn
2

for some positive constant c;
(iii) if Q is a best approximant to Φ in Hp(Mn) and F is a maximizing

vector of H{k}Φ , then the matrix

1
‖(Φ−Q)(ζ)‖

(Φ−Q)(ζ), ζ ∈ T,

is isometric on the range of F (ζ).

Theorem 6.8 can be proved in the same way as Theorem 6.2.

Remark. Note that in the case p = ∞ and k = 1, (ii) is very far from
being true. Indeed, we can take two different scalar outer functions h1 and
h2 in H2 and consider the matrix function Φ defined by

Φ =

z̄ h̄1
h1

0

0 z̄ h̄2
h2

 .

It is easy to see that Φ is badly approximable, ‖HΦ‖H2(C2)→H2
−(C2) = 1, and

the vector functions

f1 =
(
h1

0

)
and f2 =

(
0
h1

)
are maximizing vectors of HΦ, though the functions

ζ 7→ ‖f1(ζ)‖C2 = |h1(ζ)| and ζ 7→ ‖f2(ζ)‖C2 = |h2(ζ)|

do not have to be proportional.

7. p-badly approximable functions

In this section we characterize the set of all badly approximable functions
in terms of certain special factorizations. Such factorizations allow us in this
section to obtain a parametrization of all p-best approximants to a given
matrix function in Lp(Mn) in the case when such a best approximant is not
unique.
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To describe the set of p-badly approximable matrix functions, we prove
the following result that can be considered as an analog of the corresponding
result for analytic approximation in the L∞ norm, see [Pe1], Ch. 14, § 15.

Theorem 7.1. Let Φ ∈ Lp(Mn) and let Q be a best approximant to Φ
in Hp(Mn). Then Φ−Q admits the following factorization

Φ−Q =W∗
(

∆ 0
0 Φ#

)
V∗,(7.1)

where V and Wt are k-balanced matrix functions for some k ≤ n, ∆ is a
k × k p-badly approximable matrix function such that the matrix function
d−1

Φ ∆ is unitary-valued, and Φ# is a matrix function such that

‖Φ#(ζ)‖Mn−k
≤ ‖∆(ζ)‖Mk

, ζ ∈ T.

Proof. Clearly, without loss of generality we may assume that Q = 0,
i.e., Φ is a p-badly approximable matrix function.

Suppose that HΦ has a maximizing vector of rank k. In the proof of
Theorem 6.6 we have shown that

∥∥∥H{k}Φ

∥∥∥ = distLp

(
Φ, Hp(Mn)

)
and there

exists a maximizing vector F ∈ Hq(Mn,k) of H{k}Φ such that rankF (ζ) = k,
ζ ∈ T. Consider the inner-outer factorization of F t:

F t = Ot
1F

t
co.

Then
F = FcoO1

It is easy to see that O1 is an inner matrix function of size k×k and Fco is a
co-outer matrix function of size n× k. It follows easily from (i) of Theorem
6.8 that Fco is a maximizing vector of H{k}Φ . Without loss of generality we
may thus assume that F is co-outer.

Let G be the function in H2(Mn,k) defined by

G(ζ) = ζ
(
H
{k}
Φ F

)
(ζ).

By (i) and (iii) of Theorem 6.8, we know that G = z̄ΦF has rank k on T.
Similarly, we can consider the inner-outer factorization of Gt and obtain

a factorization
G = GcoO2,

where O2 is an inner matrix function of size k × k and Gco is a co-outer
matrix function.

Consider now the inner-outer factorization of F

F = ΥFo.
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Since rankF (ζ) = k almost everywhere on T, it is easy to see that Υ has
size n× k. Similarly, we can consider the inner-outer factorization of Gco:

Gco = ΩGo

and Ω has size n× k.
We can consider now balanced completions V and W of Υ and Ω:

V =
(

Υ Θ
)

and Wt =
(

Ω Ξ
)
,(7.2)

where Θ and Ξ are inner and co-outer matrix functions such that the matrix
functions V and W defined by (7.2) are unitary-valued (see § 2).

Let
A =WΦV.

By Theorem 6.8, H{k}Φ F = ΦF , and so

ΦF =W∗AV∗F =W∗A
(

Υ∗

Θt

)
ΥFo =W∗A

(
Fo

0

)
= z̄G = z̄GcoO2.

Thus

A

(
Fo

0

)
=WΦF = z̄

(
Ωt

Ξ∗

)
ΩGoO2 =

(
z̄GoO2

0

)
.

Clearly, ‖A(ζ)‖Mn
= ‖Φ(ζ)‖Mn

, ζ ∈ T, and by Theorem 6.2 (see (6.5)),(
Fo(ζ)

0

)
is a maximizing vector of A(ζ) for almost all ζ ∈ T. Let

A =
(
A11 A12

A21 A22

)
,

where A11 has size k × k.
By Theorem 6.8, the matrices ‖A(ζ)‖−1A11(ζ) take unitary values almost

everywhere on T. It is easy to verify (see e.g., [Pe1], Lemma 15.5 of Ch. 14)
that A21 = 0, A12 = 0, and ‖A22(ζ)‖ ≤ ‖A11(ζ)‖, ζ ∈ T.

Clearly, ‖A(ζ)‖ = dΦ(ζ). Put ∆ = A11. Then (dΦ)−1∆ is a unitary-
valued matrix function and

Φ =W∗
(

∆ 0
0 Φ#

)
V∗,

where Φ#
def= A22. Obviously, ‖Φ#(ζ)‖ ≤ dΦ(ζ), ζ ∈ T.

It is easy to see that H∆Fo = z̄GoO2, and so ‖H∆‖ = ‖HΦ‖, which
implies that ∆ is a p-badly approximable matrix function. �

Remark 1. Note that the matrix function ∆ is determined by the choice
of a maximizing vector and it does not depend on the choice of a p-best
approximant Q. It is also clear that the k-balanced matrix functions V and
W do not depend on the choice of Q either.
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Remark 2. Clearly, we can always take k to be the order of Φ. However,
the choice of k is not always unique. For example, if ϕ ∈ Lp is a scalar p-
badly approximable function and f ∈ Hq is a maximizing vector of Hϕ, then

it is easy to see that Φ =
(
ϕ 0
0 ϕ

)
is a respectable p-badly approximable

matrix function and the matrix function F =
(
f 0
0 f

)
is a maximizing

vector of HΦ = H
{2}
Φ . Thus the matrix function Φ admits factorizations of

the form 7.1 with k = 1 and k = 2.

Definition. We say that a matrix function Φ ∈ Lp(Mn) has gender k if
k is the maximal number such that HΦ has a maximizing vector of rank k.
Clearly, in Theorem 7.1 we can take k to be the gender of Φ.

Factorizations of the form (7.1) allow us to obtain one more formula for
the order of matrix functions in Lp.

Theorem 7.2. Let Φ be a matrix function in Lp(Mn) and let Q is a
p-best approximant to Φ. Then the order of Φ is the minimal number k
such that Φ − Q admits a factorization as in (7.1) with k-balanced matrix
functions V and Wt.

Proof. The proof of Theorem 7.1 shows that if k is the order of Φ,
then Φ−Q admits a factorization of the form (7.1) with k-balanced matrix
functions V and Wt.

Suppose now that (7.1) holds with k-balanced matrix functions V and
Wt. Suppose that V and W are given by (7.2).

Let G ∈ Hq(Sk
2) be a maximizing vector of H∆. Consider the matrix

function F ∈ Hq(Sn,k
2 ) defined by

F = ΥG.

We have

(Φ−Q)F =W∗
(

∆ 0
0 Φ#

)(
Υ∗

Θt

)
ΥG

=W∗
(

∆ 0
0 Φ#

)(
G
0

)
=
(
Ω Ξ

)(∆G
0

)
.

Since G is a maximizing vector of H∆ and ∆ is a p-badly approximable
matrix function, it follows from Theorem 6.2 that ∆G = H∆G, and so

(Φ−Q)F = ΩH∆G.

It is easy to see that F is a maximizng vector of H{k}Φ and ‖HΦ‖ =
∥∥H{k}Φ

∥∥.
This proves the result. �
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Remark. If Φ−Q admits a factorization as in (7.1) with k-balanced V
and W, where k is the order of Φ, and Λ is a dual extremal function of ∆,
then a dual extremal function Ψ of Φ satisfying the condition

rank Ψ(ζ) = k, ζ ∈ T,

can be obtained by the following explicit formula:

Ψ = ΥΛΩt.

Indeed, we may assume without loss of generality that Φ is p-badly ap-
proximable and Q = 0. We have

‖Ψ‖Lp′ (Sn
1 ) = ‖Λ‖Lp′ (Sk

1 ) = 1.

Clearly,

trace
(
Φ(ζ)Ψ(ζ)

)
) = trace

(
Ωt(ζ)Φ(ζ)Υ(ζ)Λ(ζ)

)
= trace

((
Ik 0

)(∆(ζ) 0
0 Φ#(ζ)

)(
Ik
0

)
Λ(ζ)

)
= trace

(
∆(ζ)Λ(ζ)

)
.

Thus ∫
T

trace(Φ(ζ)Ψ(ζ)) dm(ζ) =
∫

T
trace

(
∆(ζ)Λ(ζ)

)
dm(ζ)

= ‖∆‖Lp(Mk) = ‖Φ‖Lp(Mn). �

Let us now describe all p-badly approximable matrix functions. Note
that similar results hold in the case p =∞ under certain restrictions on the
function, see [Pe1], Ch. 14, § 15.

Theorem 7.3. Let Φ be matrix function in Lp(Mn). Then Φ is p-badly
approximable if and only if there exists k ≤ n such that Φ admits a factor-
ization

Φ =W∗
(

∆ 0
0 Φ#

)
V∗,(7.3)

where V and Wt are k-balanced matrix functions, ∆ is a k × k p-badly
approximable matrix function such that the matrix function d−1

Φ ∆ is unitary-
valued, and Φ# is a matrix function such that ‖Φ#(ζ)‖Mn−k

≤ ‖∆(ζ)‖Mk

for almost all ζ ∈ T.

Proof. The fact that p-badly approximable matrix functions Φ admit
factorizations of the form (7.3) follows immediately from Theorem 7.1.
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Suppose now that Φ is given by (7.3). Consider the Hankel operator
H∆ : Hq(Sk

2)→ H2
−(Sk

2). Let F ∈ Hq(Sk
2) be a maximizing vector of H∆.

Since ∆ is p badly approximable, it follows from Theorems 6.1 and 6.2 that

H∆F = ∆F and ‖H∆F‖L2(Sk
2 ) = ‖Φ‖Lp(Mn)‖F‖Lq(Sk

2 ).

Consider the matrix function F = ΥF , where Υ is as in (7.2). We have

ΦF =W∗
(

∆ 0
0 Φ#

)(
Υ∗

Θt

)
ΥF

=W∗
(

∆ 0
0 Φ#

)(
F
0

)

=
(

Ω Ξ
)( ∆F

0

)
= Ω∆F ∈ H2

−(Sn,k
2 ).

Thus∥∥∥H{k}Φ F
∥∥∥
L2(Sn,k

2 )
= ‖∆F‖L2(Sk

2 ) = ‖H∆F‖L2(Sk
2 )

= ‖Φ‖Lp(Mn)‖F‖L2(Sk
2 ) = ‖Φ‖Lp(Mn)‖F‖L2(Sn,k

2 ).

It follows that
∥∥∥H{k}Φ

∥∥∥ = ‖Φ‖Lp(Mn), and so Φ is p-badly approximable. �

The next result allows us to parametrize all best approximants in the case
when there are more than one best approximant. A similar result also holds
in the case of approximation in the norm of L∞ under certain restrictions
on Φ, see [Pe1], Ch. 14, § 15.

Theorem 7.4. Let Φ and Q be as in Theorem 7.1 and let Φ−Q be fac-
torizred as in (7.1). A matrix function R ∈ Hp(Mn) is a p-best approximant
to Φ if and only if there exists a matrix function R# ∈ Hp(Mn−k) such that

Φ−R =W∗
(

∆ 0
0 Φ# −R#

)
V∗,(7.4)

and

‖(Φ# −R#)(ζ)‖Mn−k
≤ ‖∆(ζ)‖Mk

, ζ ∈ T.(7.5)

We need the following lemma.

Lemma 7.5. Let V and Wt be k-balanced matrix functions of size n×n.
Then

WHp(Mn)V
⋂(

0 0
0 Lp(Mn−k)

)
=
(

0 0
0 Hp(Mn−k)

)
.
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For p = ∞ this is Theorem 1.8 of Ch. 14 of [Pe1]. The proof given in
[Pe1] also works in our case.

Proof of Theorem 7.4. Suppose that R is a best approximant to Φ.
Then by Theorem 7.1, Φ−R admits a factorization

Φ−R =W∗
(

∆ 0
0 Φ[

)
V∗,

where ∆, V, and W are as in (7.1) and Φ[ is a matrix function such that
‖Φ[(ζ)‖Mn−k

≤ ‖∆(ζ)‖Mk
, ζ ∈ T. Then

R−Q =W∗
(

0 0
0 Φ# − Φ[

)
V∗.

By Lemma 7.5, R#
def= Φ# − Φ[ ∈ Hp(Mn−k).

Conversely, suppose that R# is a matrix function in Hp(Mn−k) such that
(7.5) holds. Then by Lemma 7.5, there exists R ∈ Hp(Mn) such that

R−Q =W∗
(

0 0
0 R#

)
V∗.

Then (7.4) holds. It follows easily from Theorem 7.3 that R is a p-best
analytic approximant to Φ. �

Theorem 7.4 says that to describe all p best approximants, we should de-
scribe all functions R# ∈ Hp(Mn−k) such that (7.5) holds. By Theorem 6.3
there exists a scalar outer function κ in Hp such that |κ(ζ)| = ‖∆(ζ)‖Mk

=
dΦ(ζ), ζ ∈ T. Clearly, a matrix function R# in Hp(Mn−k) satisfies (7.5) if
and only if the matrix function κ−1R# satisfies the inequality

‖κ−1Φ# − κ−1R#‖L∞ ≤ 1.

In other words, this reduces the problem of the description of all p-best ap-
proximants to the problem of describing all matrix functions Q in
H∞(Mn−k.n−k) such that

‖κ−1Φ# −Q‖L∞ ≤ 1.(7.6)

Note that the problem to describe all H∞ matrix function Q satisfying
(7.6) is the classical Nehari problem and in the case of nonuniqueness there is
formula parametrizing all solutions. It was obtained by Adamyan, Arov, and
Krein in [AAK1] and [AAK2] under certain assumptions and by Kheifets
[Khe] in the most general case; see also Ch. 5 of [Pe1].
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8. p-superoptimal approximation

In this section we introduce the notion of p-superoptimal approximation
and prove that if Φ is a rational matrix function then Φ has a unique p-
superoptimal approximant.

Definition. Let Φ ∈ Lp(Mn) \ Hp(Mn). For a function Q ∈ Hp(Mn),
we define the numbers τj(Φ, Q), 0 ≤ j ≤ n− 1, by

τj(Φ, Q) = ess sup
ζ∈T

sj
(
(Φ−Q)(ζ)

)
dΦ(ζ)

.

A function Q ∈ Hp(Mn) is called a p-superoptimal approximant to Φ if it
minimizes lexicographically the sequence τj(Φ, Q), 0 ≤ j ≤ n− 1.

If Q is a p-superoptimal approximant to Φ, we put

τj(Φ) def= τj(Φ, Q), 0 ≤ j ≤ n− 1.

Clearly, if Q is a best analytic approximant to Φ in Lp(Mm,n), then
τ0(Φ, Q) = 1. It is also clear that if F is a p-superoptimal approximant,
then F is a best analytic approximant in Lp(Mm,n).

It is easy to see that if Φ has gender k, then

τj(Φ) = 1 for j = 0, · · · , k − 1.

In this section we are going to work with rational matrix functions. When
we say that a matrix function defined on the unit circle T is rational, we
mean that it is a restriction of a rational matrix function to the unit circle.
It is easy to see that if A is a rational matrix function, then its adjoint A∗

is also a rational matrix function.
Suppose now that Φ is a rational matrix function of size n × n with no

poles in T and k is the gender of Φ. As in the proof of Theorem 7.1, we
consider a co-outer maximizing vector F of the Hankel operator H{k}Φ , the

matrix function G defined by G = z̄H
{k}
Φ F , the factorizations

G = GcoO, F = ΥFo, and Gco = ΩGo,

where O is an inner matrix function of size k × k, Υ and Ω are inner and
co-outer matrix functions of size n × k, Gco is a co-outer matrix functions
of size n × k, and Fo and Go are outer matrix functions of size k × k. We
also assume that the k-balanced matrix functions V and Wt are given by
(7.2), Q is a p-best approximant to Φ and Φ − Q is factorized as in (7.3).
Finally, we assume that F is normalized so that (6.7) holds.

Lemma 8.1. Let Φ be a rational matrix function in Lp(Mn). Then the
matrix functions O, F , G, V, and W are also rational.
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Proof. If Φ is rational, it is easy to see that H{k}Φ A is rational for an
arbitrary function A ∈ Hq(Sn,k

2 ). In particular, this is true for the function
H
{k}
Φ F , and so G is rational.
Let us show that O is rational. It is well known (see e.g., [Pe1], Ch. 2,

§ 5) that a square inner function U is rational if and only if the subspace

KU
def= H2(Ck)	 UH2(Ck) = UH2

−(Ck)
⋂
H2(Ck)

is finite-dimensional. Since G is rational, the Hankel operator

HG : H2(Ck)→ H2
−(Ck)

has finite rank (see e.g., [Pe1], Ch. 2, §,5). It is easy to see that for f ∈ KOt ,

HGf = Gf.

Since rankG(ζ) = k almost everywhere on T, it follows that multiplication
byG has trivial kernel. ThusKOt is finite-dimensional, and soOt is rational.
Thus O is rational, and so Gco = GO∗ is also rational.

To prove that the matrix function Go is rational, we observe that

G∗coGco = G∗oGo,

and so G∗oGo is a rational matrix function. The rationality of Go follows
now from the following well-known fact (see [Y]): if Q be a matrix outer
function of class H2(Mk), then Q is rational if and only if Q∗Q is rational.

We have Ω = GcoG
−1
o , and so Ω is rational. By Lemma 12.1 of Ch. 14

of [Pe1], the matrix function Ξ is rational, and so W is rational.
Let us show that V is a rational matrix function. Since Φ is rational, it

follows that

P−Φ = P−(Φ−Q) = P−W∗
(

∆ 0
0 Φ#

)
V∗

is a rational matrix function. Thus

P−ΩtW∗
(

∆ 0
0 Φ#

)
V∗ = P−ΩtP−W∗

(
∆ 0
0 Φ#

)
V∗

is rational. We have

ΩtW∗
(

∆ 0
0 Φ#

)
V∗ =

(
Ik 0

)(∆ 0
0 Φ#

)
V∗ = ∆Υ∗,

and so P−∆Υ∗ is a rational matrix function.
Let h be a scalar outer function such that

|h(ζ)| = ‖G(ζ)‖Sn,k
2

, ζ ∈ T.

Then h ∈ H2. It follows from (6.5) and (6.7) that

‖∆(ζ)‖Mk
= |h(ζ)|2/p and ‖F (ζ)‖Sn,k

2
= |h(ζ)|2/q.(8.1)



ANALYTIC APPROXIMATION OF MATRIX FUNCTIONS IN Lp 41

Since G is rational, the function |h|2 is rational. It follows from the result
from [Y] quoted above that the function h is also rational.

Let us show that Fo is a maximizing vector of H∆ and H{k}Φ F = Ω∆Fo.
Since F = ΥFo is a maximizing vector of H{k}Φ , we have by Theorem 6.8,

H
{k}
Φ F = (Φ−Q)F =W∗

(
∆ 0
0 Φ#

)
V∗ΥFo

=
(
Ω Ξ

)(∆ 0
0 Φ#

)(
Υ∗

Θt

)
ΥFo = Ω∆Fo ∈ H2

−(Sn,k
2 ).

Since the matrix function Ω is co-outer, it follows from Lemma 1.4 of Ch. 14
of [Pe1] that ∆Fo ∈ H2

−(Sk
2). It is easy to see from (8.1) that Fo is a

maximizing vector of H∆ and H
{k}
Φ F = Ω∆Fo. Thus

∆Fo = z̄GoO.
Consider now the inner-outer factorization of the matrix function GoO:

GoO = OGo.

Clearly, both O and Go are rational matrix functions. Then ∆Fo = z̄OGo,
and so

∆ = z̄OGoF
−1
o

Put
U = zh−2/pOt∆ = Go(h2/pFo)−1.

It is easy to see that U is unitary-valued. Put

Q = h2/pFo and Q# = Gt
o.

Since U is unitary-valued, it is easy to verify that

Q∗Q = Q#Q∗#.
Clearly, Q is outer. Since Q#Q∗# is rational, it follows from the result of
[Y] quoted above that Q = h2/pFo is rational and U is rational.

We have ∆ = z̄h2/pOU , and so

P−∆Υ∗ = P−z̄h2/pOUΥ∗ = P−z̄h2/pOQ∗#Q−1Υ∗

= P−h2/p
(
P−z̄OQ∗#Q−1Υ∗

)
is a rational matrix function. Put

R
def= P−z̄OQ∗#Q−1Υ∗.

Let us show that R is rational. We have

P−hR = P−h2/qh2/pR = P−h2/qP−h2/pR,
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and since P−h2/pR is rational and h2/q ∈ H∞, it follows that P−hR is ra-
tional. Since h is rational and R = P−R, it is easy to see that R is rational.

Finally, since the matrix functions z̄OQ∗#Q−1 and P−z̄OQ∗#Q−1Υ∗ are
rational, it is easy to verify that Υ∗ is rational. Again, it follows from
Lemma 12.1 of Ch. 14 of [Pe1] that V is rational. �

To prove the next theorem, we introduce the notation Λα, 0 < α < 1, for
the class of Hölder functions of order α: a function ϕ on T is said to belong
to the Hölder class Λα if

sup
ζ 6=τ

|ϕ(ζ)− ϕ(τ)|
|ζ − τ |α

<∞.

In the following theorem we keep all the notation as above.

Theorem 8.2. If Φ is a rational matrix function, then ∆ ∈ Λ2/p(Mk)
and h−2/pΦ# ∈ (H∞ + C)(Mn−k).

Proof. We have
∆ = z̄h2/pOU,

where OU is a rational function. If h has no zeros on T, then ∆ is infinitely
differentiable. If h has zeros on T, then, obviously, h2/p ∈ Λ2/p, which
implies that ∆ ∈ Λ2/p(Mk).

Next, since

W(Φ−Q)V =
(

∆ 0
0 Φ#

)
,

it follows that Φ# is a sum of a rational matrix function and an Hp matrix
function. Thus there exists a finite Blaschke product B such that Φ# =
BΦ♥, where Φ♥ ∈ Hp(Mn−k). We also know that ‖Φ♥(ζ)‖Mn−k

≤ |h(ζ)|2/p.
Since h is outer, it follows that h−2/pΦ♥ ∈ H∞(Mn−k). Thus

h−2/pΦ# = Bh−2/pΦ♥ ∈ (H∞ + C)(Mn−k). �

Theorem 8.3. Let Φ be an n× n rational matrix function. Then Φ has
a unique p-superoptimal approximant Q. Moreover,

sj
(
(Φ−Q)(ζ)

)
dΦ(ζ)

= τj(Φ), 0 ≤ j ≤ n− 1(8.2)

almost everywhere on T.

Proof. Let R be a best analytic approximant to Φ in Lp(Mn). By
Theorem 7.1, Φ−R admits a factorization of the form

Φ−R =W∗
(

∆ 0
0 Φ#

)
V∗,
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where V andWt are k-balanced matrix function, k is the gender of Φ, ∆ is a
p-badly approximable k × k matrix function function such that the matrix
function d−1

Φ ∆ is unitary-valued, and Φ# is a matrix function such that

‖Φ#(ζ)‖Mn−k
≤ ‖∆(ζ)‖Mk

, ζ ∈ T.
It follows from Theorem 7.4 that a matrix function Q ∈ Hp(Mn) is a

p-superoptimal approximant to Φ if and only if

Φ−Q =W∗
(

∆ 0
0 Φ# −Q#

)
V∗,

where Q# ∈ Hp(Mn−k) is a matrix function such that h−2/pQ# is a su-
peroptimal approximant of h−2/pΦ# in L∞. Here h the scalar outer func-
tion as in the proof of Lemma 8.1, i.e., |h2/p| = dΦ. By Theorem 8.2,
h−2/pΦ# ∈ H∞ +C, and by Theorem 3.3 of Chapter 14 of [Pe1], h−2/pΦ#

has a unique superoptimal approximant in the L∞ norm.
Formula (8.2) is an immediate consequence of Theorem 3.4 of Chapter

14 of [Pe1]. �
The following example shows that there are matrix functions in Lp, for

which there are different p-superoptimal approximants.

Example. Let ϕ be a scalar L∞ function such that

‖ϕ‖L∞ = distL∞(ϕ,H∞) = 1,

and such that there is a nonzero best approximant f ∈ H∞ in the norm of
L∞. It is well known that such functions ϕ exist (see, e.g., [Pe1], Ch. 1,
§ 1). Consider the matrix function Φ ∈ L∞(M2) defined by

Φ =
(
z̄ 0
0 ϕ

)
.

It is easy to see that both the zero function and the function
(

0 0
0 f

)
are

p-superoptimal approximants for any p ∈ (2,∞).
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