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Abstract. In this paper, we study formal deformations of Poisson

structures, especially for three families of Poisson varieties in dimen-
sions two and three. For these families of Poisson structures, using an

explicit basis of the second Poisson cohomology space, we solve the

deformation equations at each step and obtain a large family of formal
deformations for each Poisson structure which we consider. With the

help of an explicit formula, we show that this family contains, mod-

ulo equivalence, all possible formal deformations. We show moreover
that, when the Poisson structure is generic, all members of the family

are non-equivalent.
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1. Introduction

Poisson structures first have been introduced in the realm of classical me-
chanics, by D. Poisson. Indeed, he discovered in 1809 the natural symplectic
structure on R2r. This structure permits one to write Hamilton’s equations
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in a more natural way, with positions and momenta playing symmetric
roles. This symplectic structure is, in a sense, the most simple example of
a Poisson structure and it takes the following form:

{F,G} =
r∑
i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
,(1)

for smooth functions F,G on R2r. In 1839, C. Jacobi showed that this
bracket satisfies the now called Jacobi identity:

(2) {{F,G} , H}+ {{G,H} , F}+ {{H,F} , G} = 0,

thereby explaining Poisson’s theorem: the bracket of two constants of mo-
tion is a constant of motion. In general, one defines a Poisson structure
on an associative commutative algebra (A, ·), over a field F, as being a Lie
algebra structure on A, {· , ·} : A × A → A, which is a biderivation of A,
i.e., satisfies the derivation property in each of its arguments:

(3) {F ·G,H} = F · {G,H}+G · {F,H} , for all F,G,H ∈ A.
A smooth manifold M is said to be a Poisson manifold if its algebra of
smooth functions C∞(M) is equipped with a Poisson structure.

Poisson structures are also inherent in quantum mechanics, since it was
observed by P. Dirac that, up to a factor 2iπ/h, the commutator of ob-
servables, appearing in the work of W. Heisenberg, is the analogue of the
Poisson bracket (1) of classical mechanics. They also play an important
role in the theory of deformation quantization, which is linked to quantum
mechanics, as shown in [2]. Translated in a mathematical language, this
theory is the study of deformations of associative, commutative algebras.
In 1997, M. Kontsevich proved that, given a Poisson manifold (M, {· , ·}),
the equivalence classes of formal deformations of the Poisson structure {· , ·}
correspond to the equivalence classes of formal deformations of the associa-
tive product of C∞(M). This result underlies the importance of formal
deformations of Poisson structures, which is the subject of the present pa-
per.

Let (A, {· , ·}) be a Poisson algebra over F. A formal deformation of {· , ·}
(see [29] and [13]) is a map π∗ : A[[ν]]×A[[ν]]→ A[[ν]] which extends {· , ·}:

π∗ = {· , ·}+ π1ν + π2ν
2 + · · ·+ πnν

n + · · · ,
where each map πi : A×A → A is a skew-symmetric biderivation of A, and
which makes (A[[ν]], π∗) into a Poisson algebra over the ring F[[ν]], where
the associative product on A[[ν]] is the one inherited from the initial one
on A. To simplify the notation and to emphasize the fact that the Poisson
structure {· , ·} is the first term of π∗, we also denote it by π0. Notice that,
similarly to the associative product, each skew-symmetric biderivation of A
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(like the πi) can be seen as a map A[[ν]] × A[[ν]] → A[[ν]], by considering
its extension by F[[ν]]-bilinearity. In particular, such an extension of π0 is a
formal deformation of π0 = {· , ·}, but we stress that our goal is to consider
all formal deformations of π0 and not only the one obtained in this way.
If one works modulo νn+1, then one speaks of an n-th order deformation.
Deformations are always studied up to equivalence, two formal deformations
π∗ and π′∗ being equivalent if there exists a morphism Φ: (A[[ν]], π∗) →
(A[[ν]], π′∗) of Poisson algebras over F[[ν]] which is the identity modulo ν.

Studying deformations of a Poisson structure {· , ·} means studying the
following questions:

(Q1) Rigidity: Do there exist non-trivial formal deformations of {· , ·}?
(Q2) Extendibility: Given an n-th order deformation of {· , ·}, does it

extend to an (n+ 1)-th order deformation?
(Q3) Formula: Is it possible to obtain an explicit formula for all formal

/ n-th order deformations of {· , ·} (up to equivalence)?
(Q4) Properties: Which properties of the Poisson bracket {· , ·} are stable

under deformation?

In general, the deformation theory of a structure (an associative or a Lie
product, for example) is governed by an associated cohomology, which pro-
vides some tools to give an answer to the questions (Q1) — (Q4). In the
particular Poisson case, the cohomology which plays this role is Poisson
cohomology (introduced in [19], see also [16] for an algebraic approach).
For a Poisson algebra (A, π0 = {· , ·}), the Poisson complex (which will
be explained in Paragraph 2.1) is defined on the space X•(A) of all skew-
symmetric multiderivations of A (in particular, π0 ∈ X2(A)). For k ∈ N,
the k-th Poisson cohomology space is then denoted by Hk(A, π0).

As we will see in Paragraph 2.1, the third Poisson cohomology space
H3(A, π0) appears naturally in the construction of formal deformations
of π0: a map of the form π∗ =

∑
n∈N πnν

n : A[[ν]] × A[[ν]] → A[[ν]] is
a formal deformation of π0 if and only if each πn (n ∈ N∗) is a skew-
symmetric biderivation of A which satisfies a certain cohomological equa-
tion in H3(A, π0). That is why one refers to H3(A, π0) as being the set of
obstructions to deformations of π0. The second Poisson cohomology space
H2(A, π0) plays also a fundamental role in this study. Indeed, if πn ∈ X2(A)
is a solution of the equation mentionned above, then π′n = πn +P , where P
is any 2-cocycle, is also a solution, but if in particular P is a 2-coboundary,
then the corresponding π′n gives rise to a (n-th order) deformation, equiv-
alent to the one obtained with πn. Hence, the choice at each step of the
construction of π∗ is a choice in H2(A, π0). The difficulty for constructing
a formal deformation of π0 can now be explained as follows: even if, at one
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step, one finds a solution for the cohomological equation mentionned above,
the choice (in H2(A, π0)), which one has to make at this step, changes the
cohomological equations (in H3(A, π0)) which one will have to solve at each
of the following steps. Now, depending on the choices that have been done
previously, the cohomological equation at one step can even be solvable
or not! This explains why, in general, it is difficult, even with a precise
knowledge of the corresponding cohomology, to answer the above questions
(Q1) — (Q4).

In the first part of this paper (Section 2), we prove a proposition which
gives, for a class of Poisson structures, a system of representatives for all
formal deformations, modulo equivalence. We formulate it here for the case
of formal deformations, even if it is equally valid for the case of n-th order
deformations.

Proposition 1.1. Let (A, π0) be a Poisson algebra. Denote by (ϑk ∈
X2(A))k∈K, a set of 2-cocycles, whose cohomology classes form a basis of
H2(A, π0). Define S, the set of all a = (akn ∈ F) k∈K

n∈N∗
, such that, for every

n0 ∈ N∗, the sequence (akn0
)k∈K has a finite support.

Suppose that, to each a = (akn) k∈K
n∈N∗

, element of S, is associated a se-

quence
(
Ψa
n ∈ X2(A)

)
n∈N∗ of skew-symmetric biderivations of A, satisfy-

ing:
• The skew-symmetric biderivation Ψa

1 of A is zero: Ψa
1 = 0;

• For all n ∈ N∗, Ψa
n only depends on the akm, with k ∈ K and

1 ≤ m ≤ n− 1;
• The skew-symmetric biderivation of A[[ν]], defined by

πa
∗ := π0 +

∑
n∈N∗

(
Ψa
n +

∑
k∈K

akn ϑk

)
νn,

is a formal deformation of π0.
Then,

(a) For every formal deformation π∗ of π0, there exists an element
a = (akn) k∈K

n∈N∗
of S, such that π∗ is equivalent to πa

∗ ;

(b) If, in addition, the first Poisson cohomology space H1(A, π0) is zero,
then the element a ∈ S, whose existence is mentionned in (a), is
unique.

We stress that not only the space H3(A, π0) (implicitly in the existence
of the family (πa

∗ )a∈S) and the space H2(A, π0) (explicitly in the writing of
the family (πa

∗ )a∈S) are involved in this proposition, but also H1(A, π0).
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The hypotheses in the previous proposition are strong, but in a second
part of this paper (Section 3), we will show that they are satisfied for several
large families of Poisson structures in low dimensions. We will do that, for
each family, by using an explicit basis of H2(A, π0) and by constructing
an explicit formula for suitable Ψa

n, which means solving the cohomological
equations in H3(A, π0), that govern the extendibility of deformations.

We first consider a big family of Poisson structures that equip A :=
F[x, y, z], the algebra of regular (polynomial) functions on the affine space
of dimension three, F3. Indeed, to each polynomial ϕ ∈ A, one can associate
a Poisson structure {· , ·}ϕ on A, defined by the brackets:

(4) {x, y}ϕ =
∂ϕ

∂z
, {y, z}ϕ =

∂ϕ

∂x
, {z, x}ϕ =

∂ϕ

∂y
.

Notice that this Poisson structure appears for example as the transverse
Poisson structure to a subregular nilpotent orbit of a Lie algebra (see [4]).

In [26], we have already obtained explicit bases for the Poisson cohomol-
ogy spaces H1(A, {· , ·}ϕ) and H2(A, {· , ·}ϕ), in case the polynomial ϕ is
(weight) homogeneous with an isolated singularity, i.e., when the surface
Fϕ : {ϕ = 0} (the singular locus of ϕ) is given by a (weight) homogeneous
equation and admits an isolated singularity (at the origin). In Section 3, we
will use these results to show that, after a change of basis of H2(A, {· , ·}ϕ),
we are able to exhibit a family of skew-symmetric biderivations Ψa

n of A
which satisfy the conditions of Proposition 1.1. Since we obtain in fact an
explicit formula for every Ψa

n, the proposition 1.1 permits us to write an ex-
plicit formula for all formal deformations of {· , ·}ϕ, up to equivalence. More
precisely, we have the following proposition (see Proposition 3.3), given here
in a formal context although it is also valid for n-th order deformations.

Proposition 1.2. Let ϕ ∈ A = F[x, y, z] be a weight homogeneous polyno-
mial with an isolated singularity. Consider the Poisson algebra (A, {· , ·}ϕ),
where {· , ·}ϕ is the Poisson bracket given by (4).

(a) There exist skew-symmetric biderivations Ψa
n of A (for which we

have explicit formulas), satisfying the hypoheses of Proposition 1.1,
for (A, {· , ·}ϕ).

(b) The Poisson algebra (A, {· , ·}ϕ) satisfies the particular conditions
of item (b) of Proposition 1.1, unless the (weighted) degree of ϕ
equals the sum of the weights of the variables x, y, z.

At that point, we have obtained a clear answer to the question (Q1) and
(Q3) above (questions of rigidity and formula). Because Proposition 1.1 is
also true for n-th order deformations, we also have an answer to the question
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(Q2) of extendibility, which is the following: Every n-th order deformation
of {· , ·}ϕ extends to a (n+ 1)-th order deformation (Corollary 3.5).

Finally, using the explicit formula mentionned above (for all formal de-
formations of the bracket {· , ·}ϕ), we will also give a partial answer to the
question (Q4) of the properties stable under deformation, with the following
result: The formal deformations of {· , ·}ϕ all admit formal Casimirs, for
which we also have an explicit writing (Corollary 3.8).

The polynomial ϕ ∈ F[x, y, z] is a Casimir for the Poisson structure
{· , ·}ϕ, so that this Poisson structure restricts to a Poisson structure {· , ·}Aϕ,
on the quotient algebra Aϕ := F[x,y,z]

〈ϕ〉 , which is the algebra of regular
functions on the surface Fϕ : {ϕ = 0} ⊂ F3. The deformations of the
Poisson structure {· , ·}Aϕ are studied in Paragraph 3.5. In fact, under the
previous hypotheses on ϕ, the cohomological equations mentionned above
are in this case trivial and this fact, together with an explicit basis of the
second Poisson cohomology space (obtained in [26]), permit us to give an
explicit formula for all formal deformations of {· , ·}Aϕ , up to equivalence
(see Proposition 3.9).

Acknowledgments: I wish to take this opportunity to thank P. Vanhaecke
for drawing my attention to these questions about deformations and for
useful discussions about this subject. I also would like to thank B. Fresse,
C. Laurent-Gengoux, M. Penkava, R. Yu and N. T. Zung for valuable con-
versations which contributed to this paper. The hospitality of the University
of Antwerp and of the CRM (Centre de Recerca Matematicà, Barcelona) is
also greatly acknowledged.

2. Conditions for a system of representatives for all formal
deformations

In this part, we want to show Proposition 1.1, anounced in the introduc-
tion. To do that, we will need several intermediate results, which will be
proved in an elementary way, in the sense that our proofs will only need
the properties of the Schouten bracket and the definition of the Poisson
cohomology, that are recalled in the first paragraph 2.1.

2.1. Preliminaries. In this paper, F is an arbitrary field of characteris-
tic zero. We recall that a Poisson structure {· , ·} (which is also denoted
by π0) on an associative commutative algebra (A, ·) is a skew-symmetric
biderivation of A, i.e., a map {· , ·} : ∧2 A → A satisfying the derivation
property:

(5) {FG,H} = F {G,H}+G {F,H} , for all F,G,H ∈ A,
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(where FG stands for F ·G), which is also a Lie structure on A, i.e., which
satisfies the Jacobi identity.

We denote by Fν the ring of all formal power series in an indeterminate
ν and with coefficients in F, i.e., Fν := F[[ν]]. We will also consider the
Fν-vector space Aν := A[[ν]] of all formal power series in ν, with coefficients
in A. The associative commutative product “·”, defined on A, is naturally
extended to an associative, commutative product onAν , still denoted by “·”.
In the following, any map defined on A or on ∧•A is possibly seen as a map
on Aν or ∧•Aν (the exterior algebra of the Fν-vector space Aν), which
means that we consider its natural extension by Fν-linearity. We point out
that an Fν-k-linear map ψ : (Aν)k → Aν can be written as: ψ = ψ0 +ψ1ν+
· · · + ψnν

n + · · · , where each ψi is a k-linear map Ak → A. This permits
us to write a natural isomorphism of Fν-vector spaces Hom((Aν)k,Aν) '
Hom(Ak,A)[[ν]].

A formal deformation of a Poisson structure π0 on A is a Poisson struc-
ture on the Fν-algebra Aν , that extends the initial Poisson structure. In
other words, it is given by a map π∗ : Aν ×Aν → Aν satisfying the Jacobi
identity and of the form :

π∗ = π0 + π1ν + · · ·+ πnν
n + · · · ,

where the πi are skew-symmetric biderivations of A. If one works modulo
νn+1 (for n ∈ N), i.e., if one replaces the Fν-algebraAν with the Fν/〈νn+1〉-
algebra Aν/〈νn+1〉 in the previous definition, one then speaks of n-th order
deformation of π0.

In order to have some tools to study formal (or n-th order) deformations
of Poisson structures, we recall the notion of Poisson cohomology. The
Poisson complex is defined as follows: the space of all Poisson cochains is
X•(A) :=

⊕
k∈N Xk(A), where X0(A) is A and, for all k ∈ N∗, Xk(A)

denotes the space of all skew-symmetric k-derivations of A, i.e., the skew-
symmetric k-linear maps Ak → A that satisfy the derivation property
(5) in each of their arguments. Then, the Poisson coboundary operator
δkπ0

: Xk(A)→ Xk+1(A) is given by the formula

δkπ0
:= − [·, π0]S ,

where [· , ·]S : Xp(A)×Xq(A)→ Xp+q−1(A) is the so-called Schouten bracket
(see [18]). The Schouten bracket is a graded Lie bracket that generalizes the
commutator of derivations and that is a graded biderivation with respect
to the wedge product of multiderivations. It is defined, for P ∈ Xp(A),
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Q ∈ Xq(A) and F1, . . . , Fp+q−1 ∈ A, by:
(6)

[P,Q]S [F1, . . . , Fp+q−1]

=
∑

σ∈Sq,p−1

ε(σ)P
[
Q[Fσ(1), . . . , Fσ(q)], Fσ(q+1), . . . , Fσ(q+p−1)

]
− (−1)(p−1)(q−1)

∑
σ∈Sp,q−1

ε(σ)Q
[
P [Fσ(1), . . . , Fσ(p)], Fσ(p+1), . . . , Fσ(p+q−1)

]
,

where, for k, ` ∈ N, Sk,` denotes the set of all permutations σ of the set
{1, . . . , k + `}, satisfying σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + `),
while ε(σ) denotes the signature of such a permutation σ. Notice that,
similarly to the case of multilinear maps, it is easy to verify that, for all
k ∈ N, the Fν-vector space Xk(Aν) of all skew-symmetric k-derivations of
the associative algebra (Aν , ·) is isomorphic to Xk(A)[[ν]]. Indeed, every
ψ ∈ Xk(Aν) can be written as ψ = ψ0 +ψ1ν+ · · ·+ψnν

n + · · · , where each
ψi is an element of Xk(A). In the following, the Schouten bracket will often
be considered as a map, defined on X•(Aν)×X•(Aν), with the meaning that
it is simply extended by Fν-bilinearity and still denoted by [· , ·]S . The map
[· , ·]S then obtained is in fact a graded Lie algebra structure on X•(Aν),
that could also be defined by a formula analogous to (6).

It is then easy and useful to see that, given a skew-symmetric bideriva-
tion π ∈ X2(A), the Jacobi identity for π is equivalent to the equation
[π, π]S = 0. Then, because of the graded Jacobi identity satisfied by
[· , ·]S and the fact that [π0, π0]S = 0, the operator δπ0 is a coboundary
operator, leading to the Poisson cohomology spaces associated to (A, π0)
and defined by Hk(A, π0) := Ker δkπ0

/
Im δk−1

π0
, for k ∈ N∗. Elements of

Zk(A, π0) := Ker δkπ0
⊆ Xk(A) are the (Poisson) k-cocycles, while elements

of Bk(A, π0) := Im δk−1
π0
⊆ Xk(A) are the (Poisson) k-coboundaries.

Moreover, given a map π∗ = π0 +π1ν+ · · ·+πnν
n + · · · : Aν ×Aν → Aν

where for all i ∈ N, πi ∈ X2(A) is a skew-symmetric biderivation of A, we
have that π∗ is a formal deformation of π0, if and only if, [π∗, π∗]S = 0, i.e.,
if and only if, for all n ∈ N,

δ2π0
(πn+1) =

1
2

∑
i+j=n+1
i,j≥1

[πi, πj ]S .(7)

Similarly, an n-th order deformation π(n) = π0+π1ν+· · ·+πnνn will extend
to an (n + 1)-th order deformation π(n+1) = π(n) + πn+1ν

n+1, if and only
if, there exists πn+1 ∈ X2(A), solution of the previous equation (7).

2.2. Equivalent formal deformations. In this paragraph, for an arbi-
trary Poisson algebra (A, π0), we write a formula, involving only the
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Schouten bracket [· , ·]S , for the elements of the equivalence class of a given
formal deformation of π0.

First, we recall the notion of equivalence for deformations of π0. Two
formal deformations π∗ and π′∗ of π0 are said to be equivalent if there exists
an Fν-linear map Φ: (Aν , π∗) → (Aν , π′∗) that is a Poisson morphism and
which is such that Φ is the identity modulo ν. In this case, we write π∗ ∼ π′∗
and we call Φ an equivalence morphism from π∗ to π′∗. In other words, an
Fν-linear map Φ: Aν → Aν is an equivalence morphism from π∗ to π′∗, if
and only if, it is a morphism of associative algebras, equal to the identity
modulo ν and which satisfies

Φ(π∗[F,G]) = π′∗[Φ(F ),Φ(G)],

for all F,G ∈ A (and therefore, for all F,G ∈ Aν). Notice that, of course,
if Φ is an equivalence morphism from π∗ to π′∗, then Φ−1 is an equivalence
morphism from π′∗ to π∗. Similarly, one defines the notion of equivalence
for n-th order deformations, by replacing Fν with Fν/〈νn+1〉 and Aν with
Aν/〈νn+1〉 in the previous definition.

Now, it is straightforward to show that the exponential map gives a bijec-
tion between the space X1

0(Aν) := {ξ =
∑
k≥1 ξkν

k | ξk ∈ X1(A), k ∈ N∗}
and the space of all automorphisms of Aν that are equal to the identity
modulo ν. This permits us to write an equivalence morphism Φ between
two formal deformations of π0 as the image of an element of X1

0(Aν), by
the exponential map. This implies that the equivalence classes of formal
deformations of π0 can be defined as the equivalence classes of the action,
defined as follows, of X1

0(Aν) on the formal deformations of π0. For a for-
mal deformation π∗ of π0 and for ξ ∈ X1

0(Aν), we define the action ξ · π∗,
mentionned above, by:

(8) ξ · π∗[F,G] := eξ
(
π∗
[
e−ξ(F ), e−ξ(G)

])
,

for all F,G ∈ A. It is then possible to show the following equality:

ξ · π∗ = eadξ(π∗),

where adξ := [ξ, ·]S . This equality involves two notions of exponential:

(a) eξ :=
∑
k∈N

1
k!ξ

k : Aν → Aν ,

(b) eadξ :=
∑
k∈N

1
k! (adξ)k : X•(Aν)→ X•(Aν),

for ξ = ξ1ν + ξ2ν
2 + · · · + ξnν

n + · · · ∈ X1
0(Aν), with ξi ∈ X1(A), for

all i ∈ N∗, and where adξ is the graded derivation (of degree 0) of the
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associative algebra (X•(Aν),∧), adξ = [ξ, ·]S . In fact, we have

eξ
(
π∗
[
e−ξ(F ), e−ξ(G)

])
=

π∗[F,G] +
∑
k∈N∗

∑
r,s,t∈N
r+s+t=k

(−1)s+t
1
r!

1
s!

1
t!
ξr
(
π∗[ξs(F ), ξt(G)]

)
=

π∗[F,G] +
∑
k∈N∗

1
k!

(adξ)k(π∗)[F,G] = eadξ(π∗)[F,G],

where the second equality is easily proved by induction on k ∈ N∗. Notice
that this action of X1

0(Aν) can be extended on the space X•(Aν) of all
skew-symmetric multiderivations of Aν and then, for any Q ∈ X•(Aν), the
formula ξ ·Q = eadξ(Q) still holds.

This result can be seen as an analog of the well-known formula that links
the adjoint representation Ad of a Lie group G on its Lie algebra g and the
adjoint action ad of G on g: Adeξ = eadξ , for all ξ ∈ g.

Finally, we have obtained the following:

Lemma 2.1. Let (A, π0) be a Poisson algebra. Let π∗ be a formal defor-
mation of π0. The formal deformations of π0 that are equivalent to π∗ are
precisely the maps π′∗ of the form

π′∗ = eadξ(π∗)(
= π∗ +

∑
k∈N∗

1
k!
[
ξ, [ξ, . . . , [ξ, π∗]S . . . ]S

]
S︸ ︷︷ ︸

k brackets

)

with ξ ∈ X1
0(Aν) (i.e., ξ =

∑
k≥1 ξkν

k, with ξk ∈ X1(A), for all k ∈ N∗).

Notice that there is an analogous result if one considers rather the formal
deformations of an associative commutative or a Lie product, but then,
the ξk do not have to be derivations of A and the Schouten bracket has
to be replaced by the corresponding graded Lie algebra structure on the
cochains of the Hochschild (Gerstenhaber bracket) or Chevalley-Eilenberg
cohomology (Nijenhuis-Richardson bracket).

2.3. Deformations of Poisson structures in a good case. In this para-
graph, we prove a proposition which gives, for a certain class of Poisson
structures, all formal deformations up to equivalence. The hypotheses in-
volved in this proposition are strong, but we will be able to apply this
result to big families of Poisson algebras that we will consider in Section 3
of this paper.



FORMAL DEFORMATIONS OF POISSON STRUCTURES IN LOW DIMENSIONS 11

Proposition 2.2. Let (A, π0) be a Poisson algebra. Suppose that (ϑk ∈
X2(A))k∈K is a set of 2-cocycles, whose cohomology classes form an F-basis
of H2(A, π0) and define S, the set of all a = (akn ∈ F) k∈K

n∈N∗
, such that, for

every n0 ∈ N∗, the sequence (akn0
)k∈K has a finite support.

Suppose that we have a family (πa
∗ )a∈S of formal deformations of the

Poisson structure π0, indexed by the elements a = (akn) k∈K
n∈N∗

of S, and of
the form:

(9) πa
∗ = π0 +

∑
n∈N∗

(
Ψa
n +

∑
k∈K

akn ϑk

)
νn,

where, for all n ∈ N∗, Ψa
n ∈ X2(A) is a skew-symmetric biderivation of A,

depending only on the akm, where k ∈ K and 1 ≤ m < n; and Ψa
1 = 0. Then,

we have the following:
(a) For any formal deformation π∗ of π0, there exists an element a =

(akn) k∈K
n∈N∗

of S, such that π∗ is equivalent to πa
∗ ;

(b) For any m-th order deformation π(m) of π0 (m ∈ N∗), there exists
an element a = (akn) k∈K

n∈N∗
of S, such that π(m) is equivalent to πa

∗

modulo νm+1, i.e., in Aν/〈νm+1〉.

Proof. Let π∗ = π0 +
∑
k∈N∗

πkν
k be an arbitrary formal deformation of π0.

According to the lemma 2.1, the existence of an element a of S, such that
π∗ ∼ πa

∗ , is equivalent to the existence of an element ξ =
∑
k∈N∗ ξkν

k ∈
X1

0(Aν) such that
π∗ = eadξ(πa

∗ ).
In order to simplify the notation, for every a ∈ S and every ξ ∈ X1

0(Aν), we
write πa,ξ

∗ := eadξ(πa
∗ ) and πa,ξ

∗ = π0+
∑
i∈N∗ π

a,ξ
i νi, πa

∗ = π0+
∑
i∈N∗ π

a
i ν

i,
with πa,ξ

i , πa
i ∈ X2(A), for every i ∈ N∗.

We will then show that, for every N ∈ N∗, there exist ak1 , a
k
2 , . . . , a

k
N ∈ F,

for k ∈ K (such that, for every 1 ≤ i ≤ N , only a finite number of aki are
non-zero) and ξ1, . . . , ξN ∈ X1(A) such that

(10) π∗ = π
a(N),ξ(N)
∗ = e

adξ(N) (πa(N)
∗ ) mod νN+1,

where a(N) := (ak1 , a
k
2 , . . . , a

k
N , 0, 0, . . . )k∈K = (bkn) k∈K

n∈N∗
∈ S with bkn = akn,

for 1 ≤ n ≤ N and bkn = 0 as soon as n > N and ξ(N) := ξ1ν+ · · ·+ ξNν
N ∈

X1
0(Aν). We will do that by induction on N ∈ N∗. Notice that, in order to

prove the second point of the proposition, with m-th order deformations of
π0, we just have to use the same proof, but only for 1 ≤ N ≤ m.

First of all, suppose that N = 1. We know, according to (7), that
δ2π0

(π1) = 0, so that, by definition of the ϑk, there exist ak1 ∈ F, for all
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k ∈ K (with only a finite number of non-zero ak1), and ξ1 ∈ X1(A) such
that:

π1 =
∑
k∈K

ak1ϑk − δ1π0
(ξ1).

Denoting by a(1) := (ak1 , 0, 0, . . . )k∈K ∈ S, and ξ(1) := ξ1ν ∈ X1
0(Aν), we

have:
π
a(1)
∗ = π0 +

∑
k∈K

ak1ϑkν mod ν2,

hence the following equalities in Aν/〈ν2〉:

π
a(1),ξ(1)
∗ = e

adξ(1) (πa(1)
∗ ) mod ν2

= π0 +
∑
k∈K

ak1ϑkν + [ξ1, π0]S ν mod ν2

= π0 + π1ν mod ν2,

which achieves the case N = 1. Suppose now N ≥ 1 and assume the
existence of elements akn ∈ F, for k ∈ K and 1 ≤ n ≤ N (with, for every
1 ≤ n0 ≤ N , only a finite number of non-zero akn0

) and the existence of
ξ1, . . . , ξN ∈ X1(A), satisfying:

(11) π∗ = π
a(N),ξ(N)
∗ mod νN+1,

where a(N) := (ak1 , a
k
2 , . . . , a

k
N , 0, 0 . . . )k∈K ∈ S and ξ(N) := ξ1ν + · · · +

ξNν
N ∈ X1

0(Aν). We want to show that this equality can be extended
to the rank N + 1, with some akN+1 ∈ F, k ∈ K and ξN+1 ∈ X1(A).

As, by induction hypothesis, we have πi = π
a(N),ξ(N)
i , for all 1 ≤ i ≤ N ,

Equation (7) implies

δ2π0
(πN+1) = δ2π0

(
π
a(N),ξ(N)

N+1

)
,

so that there exist akN+1 ∈ F, for k ∈ K (among which only a finite number
are non-zero) and ξN+1 ∈ X1(A), such that

(12) πN+1 = π
a(N),ξ(N)

N+1 +
∑
k∈K

akN+1ϑk − δ1π0
(ξN+1) .

Similarly to previously, let us denote by a(N+1) the element of S given by
a(N+1) := (ak1 , a

k
2 , . . . , a

k
N+1, 0, 0 . . . ) and ξ(N+1) := ξ1ν+ · · ·+ ξN+1ν

N+1 ∈
X1

0(Aν). By definition of the Ψb
n, for b ∈ S and of the elements a(N+1) and

a(N), the skew-symmetric biderivation Ψa(N+1)

N+1 depends only on the akm,
with k ∈ K and 1 ≤ m < N + 1, i.e., only on a(N) and Ψa(N+1)

N+1 = Ψa(N)

N+1.
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By definition of the formal deformations of the form πb
∗ , we then have:

π
a(N+1)

N+1 = Ψa(N)

N+1 +
∑
k∈K

akN+1 ϑk = π
a(N)

N+1 +
∑
k∈K

akN+1 ϑk.

Then, using the fact that πa(N+1)

` = π
a(N)

` , for all ` < N + 1, we also have:

π
a(N+1),ξ(N+1)

N+1 = π
a(N+1)

N+1

+
∑
r∈N∗

1
r!

N∑
`=0

∑
i1+···+ir+`=N+1
1≤i1,...,ir≤N+1

[
ξi1 ,

[
ξi2 , . . . ,

[
ξir , π

a(N+1)

`

]
S
. . .
]
S

]
S

= π
a(N+1)

N+1 + [ξN+1, π0]S

+
∑
r∈N∗

1
r!

N∑
`=0

∑
i1+···+ir+`=N+1

1≤i1,...,ir≤N

[
ξi1 ,

[
ξi2 , . . . ,

[
ξir , π

a(N+1)

`

]
S
. . .
]
S

]
S

= π
a(N)

N+1 +
∑
k∈K

akN+1 ϑk + [ξN+1, π0]S

+
∑
r∈N∗

1
r!

N∑
`=0

∑
i1+···+ir+`=N+1

1≤i1,...,ir≤N

[
ξi1 ,

[
ξi2 , . . . ,

[
ξir , π

a(N)

`

]
S
. . .
]
S

]
S

= π
a(N),ξ(N)

N+1 +
∑
k∈K

akN+1 ϑk + [ξN+1, π0]S = πN+1,

where, in last step, we used Equation (12). This achieves the proof. �

2.4. The case of H1(A, π0) = {0}. In this paragraph, we study equivalent
formal deformations of a Poisson structure, under the assumption that the
first cohomology space H1(A, π0) is zero. We will in fact study in Section 3
of this paper, a family of Poisson structures, for which this space is gener-
ically zero. We use the result given in this paragraph. Before giving this
result, we need the following

Lemma 2.3. Let (A, π0) be a Poisson algebra and let π∗ be a formal defor-
mation of π0. Suppose that the first Poisson cohomology space, associated
to the initial Poisson algebra, is zero:

H1(A, π0) = {0}.

Then, we have the following:
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(a) The first Poisson cohomology space, associated to the Poisson alge-
bra (Aν , π∗), is zero:

H1(Aν , π∗) = {0};

(b) For all N ∈ N∗, the first Poisson cohomology space, associated to
the Poisson algebra

(
Aν/〈νN 〉, π∗ mod νN

)
, is zero:

H1
(
Aν/〈νN 〉, π∗ mod νN

)
= {0}.

Proof. Let (A, π0) be a Poisson algebra such that H1(A, π0) = {0} and
let π∗ = π0 +

∑
i∈N∗ πiν

i be a formal deformation of π0. Suppose that
ψ ∈ X1(Aν) is a 1-cocycle for the Poisson algebra (Aν , π∗). It means that
we have

(13) [ψ, π∗]S = 0.

We write ψ =
∑
i∈N ψiν

i, with ψi ∈ X1(A) for all i ∈ N. Now, in order to
prove the first part of the lemma, we will show that for all m ∈ N∗, there
exist h0, h1, . . . , hm−1 ∈ A, satisfying

(14) ψ +
[
h0 + h1ν + · · ·+ hm−1ν

m−1, π∗
]
S

= 0 mod νm.

Indeed, denoting by H ∈ Aν the element H =
∑
i∈N hiν

i, this shows that
ψ = − [H,π∗]S = δ1π∗(H) is a 1-coboundary for the Poisson algebra (Aν , π∗)
and it permits us to conclude that H1(Aν , π∗) = {0}. Notice that in order
to prove the second part of the lemma, it suffices to do exactly the same
proof but only for 1 ≤ m < N .

By induction, we will show the equality (14), for all m ∈ N∗. First
of all, let us consider the case m = 1. In fact, (13) implies in particular
that 0 = [ψ, π∗]S mod ν = [ψ0, π0]S = −δ1π0

(ψ0). As H1(A, π0) = {0}, we
then obtain the existence of an element h0 ∈ A, such that ψ0 = δ0π0

(h0) =
− [h0, π0]S , which is exactly (14), for m = 1.

Now, suppose m ≥ 1 and that we have h0, h1, . . . , hm−1 ∈ A such that the
derivation Ψ := ψ +

[
h0 + h1ν + · · ·+ hm−1ν

m−1, π∗
]
S
∈ X1(Aν) satisfies

Ψ = 0 mod νm. We then write Ψ =
∑
i≥m Ψiν

i, with Ψi ∈ X1(A) for
all i ≥ m. As Ψ and ψ differ from a 1-coboundary of the Poisson algebra
(Aν , π∗), Equality (13) together with the fact that Ψ = 0 mod νm imply that

(15) 0 = [ψ, π∗]S mod νm+1 = [Ψ, π∗]S mod νm+1 = [Ψm, π0]S ν
m.

We then have obtained that δ1π0
(Ψm) = − [Ψm, π0]S = 0 and, since we have

H1(A, π0) = {0}, we obtain the existence of an element hm ∈ A, such that
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Ψm = δ0π0
(hm). This can be written as follows :

− [hm, π0]S = Ψm = ψm +
∑

i+j=m
0≤i≤m−1
j∈N

[hi, πj ]S ,

which is exactly ψm = −
∑

i+j=m
i,j∈N

[hi, πj ]S . Using this and (14), we obtain

ψ +
[
h0 + h1ν + · · ·+ hm−1ν

m−1 + hmν
m, π∗

]
S

= 0 mod νm+1,

which we wanted to show. �

Remark 2.4. We point out that Lemma 2.3 is also valid if the first Poisson
cohomology spaces associated to (A, π0), (Aν , π∗) or

(
Aν/〈νN 〉, π∗ mod νN

)
are replaced by the k-th Poisson cohomology spaces associated to these
Poisson algebras. The proof is clearly analogous. In fact, in the present
paper, we will only need the result as stated above. The generic Poisson
algebras which we will consider in dimension three, in Section 3, will have
indeed a first Poisson cohomology space which is zero and non-zero k-th
Poisson cohomology spaces, for k ∈ {0, 2, 3}.

Before the main result of this paragraph, let us give another lemma.

Lemma 2.5. Let (A, π0) be a Poisson algebra. Let us suppose that π∗ ∼ π′∗
are two equivalent formal deformations of π0. According to Lemma 2.1,
there exists an element ξ ∈ X1

0(Aν) such that π′∗ = eadξ(π∗). If

π∗ = π′∗mod νN for some N ∈ N∗,

then ξ mod νN is a 1-cocycle of the Poisson algebra
(
Aν/〈νN 〉, π∗ mod νN

)
,

i.e.,
[ξ, π∗]S mod νN = 0.

Proof. By hypothesis, we have the following equality :

(16) π′∗ = eadξ(π∗) = π∗ +
∑
k∈N∗

1
k!
[
ξ, [ξ, . . . , [ξ, π∗]S . . . ]S

]
S︸ ︷︷ ︸

k brackets

.

We will prove the desired result by induction on N ∈ N∗. If N = 1, then
the hypothesis becomes the trivial one π0 = π0 and ξ mod ν = 0 is trivially
a 1-cocycle of the Poisson algebra (A, π0).

Now, suppose that N ≥ 1 and suppose also that if π∗ = π′∗mod νN ,
then ξ mod νN is a 1-cocycle of the Poisson algebra

(
Aν/〈νN 〉, π∗ mod νN

)
.

Assume that π∗ = π′∗mod νN+1, then of course we have π∗ = π′∗mod νN
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and by induction hypothesis, [ξ, π∗]S mod νN = 0. This last equality and
Equation (16) lead to :

0 =
∑
k∈N∗

1
k!

k brackets︷ ︸︸ ︷[
ξ, [ξ, . . . , [ξ, π∗]S . . . ]S

]
S

mod νN+1

= [ξ, π∗]S mod νN+1,

which exactly implies that ξ mod νN+1 is a Poisson 1-cocycle of the Poisson
algebra

(
Aν/〈νN+1〉, π∗ mod νN+1

)
, hence the result. �

Now, let us give the main result of this paragraph.

Proposition 2.6. Let (A, π0) be a Poisson algebra and assume that its first
Poisson cohomology space is zero: H1(A, π0) = {0}. Let us suppose that
π∗ = π0 +

∑
i∈N∗ πiν

i and π′∗ = π0 +
∑
i∈N∗ π

′
iν
i (with πi, π′i ∈ X2(A), for

i ∈ N∗) are two equivalent formal deformations of π0. If

π∗ = π′∗mod νN for some N ∈ N∗,

then there exists ψ ∈ X1(A) such that:

πN − π′N = δ1π0
(ψ).

Proof. Let us consider (A, π0) a Poisson algebra. We suppose that π∗ and
π′∗ are two equivalent formal deformations of π0. According to Lemma 2.1,
there exists ξ =

∑
k∈N∗ ξkν

k ∈ X1
0(Aν) satisfying : π′∗ = eadξ(π∗). As-

sume that π∗ = π′∗mod νN for some N ∈ N∗. Then Lemma 2.5 implies
that ξ mod νN is a 1-cocycle of the Poisson algebra

(
Aν/〈νN 〉, π∗ mod νN

)
.

By hypothesis, H1(A, π0) = {0}, so that, according to the point (b) of
Lemma 2.3, there exists an element H ∈ Aν such that the derivation
X := ξ + [H,π∗]S ∈ X1(Aν) satisfies X = 0 mod νN . We then write
X =

∑
i≥N Xiνi, with Xi ∈ X1(A) for all i ≥ N . Now, because [ξ, π∗]S =

[X , π∗]S , we have :

π∗ − π′∗ mod νN+1 = π∗ − eadξ(π∗) mod νN+1

= π∗ − eadX (π∗) mod νN+1

= − [X , π∗]S mod νN+1

= − [XN , π0]S ν
N .

We conclude that πN − π′N = − [XN , π0]S = δ1π0
(XN ), with XN ∈ A, which

the desired result. �

Combining Proposition 2.2 and Proposition 2.6, we obtain the proposi-
tion 1.1 anounced in the introduction. In particular, we obtain the
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Proposition 2.7. Let (A, π0) be a Poisson algebra. Using the notation and
under the hypotheses of Proposition 2.2 and if, in addition, the first Poisson
cohomology space H1(A, π0) is zero, then we have the following:

(a) For any formal deformation π∗ of π0, there exists a unique element
a of S, such that π∗ is equivalent to πa

∗ ;
(b) For any m-th order deformation π(m) of π0 (m ∈ N∗), there ex-

ists a unique element a(m+1) ∈ S which is of the form a(m+1) =
(ak1 , a

k
2 , . . . , a

k
m, 0, 0, . . . )k∈K (i.e., a(m+1) = (akn) k∈K

n∈N∗
with akn = 0,

for every k ∈ K and n ≥ m + 1), such that π(m) is equivalent to
π
a(m+1)
∗ modulo νm+1, i.e., in Aν/〈νm+1〉.

Proof. The existence of the elements a and a(m+1) are given by Propo-
sition 2.2, we now study the unicity. To do this, we point out that if
a = (akn) k∈K

n∈N∗
and b = (bkn) k∈K

n∈N∗
are two elements of S, defining two dif-

ferent formal deformations πa
∗ and πb

∗ of the form (9) and N is the integer
defining by N := min{n ∈ N∗|πa

n 6= πb
n}, then Ψa

N = Ψb
N and πa

N −πb
N is an

element of
⊕

k∈K Fϑk which is a complementary of B2(A, π0) in Z2(A, π0).
According to Proposition 2.6, if πa

∗ and πb
∗ were equivalent, then πa

N − πb
N

should be a Poisson coboundary of (A, π0) (an element of B2(A, π0)), we
then conclude that πa

∗ and πb
∗ can not be equivalent. �

Remark 2.8. Notice that this result, and also the propositions 2.2 and 2.6,
could be stated in an associative or Lie context, in a very analogous way (by
replacing the Poisson cohomology by the Hochschild or Chevalley-Eilenberg
cohomology and the Schouten bracket by the appropriate graded Lie algebra
structure on the spaces of cochains).

3. Formal deformations of Poisson structures in dimension
two and three

In this section, we consider a large family of Poisson structures on the
affine space of dimension three F3 and on singular surfaces in F3. We
study their formal deformations. Using the general results obtained in Sec-
tion 2 and the Poisson cohomology of these Poisson structures, obtained
in [26], we obtain an explicit expression of all their formal deformations,
up to equivalence. For more details about these Poisson brackets and their
Poisson cohomology, see [26]. As previously, F denotes an arbitrary field of
characteristic zero.

3.1. Poisson structures on F3 associated to a polynomial. In this
paragraph, we denote by A the polynomial algebra A = F[x, y, z]. To each
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polynomial ϕ ∈ A, one associates naturally a Poisson structure {· , ·}ϕ on
A, defined by the brackets:

{x, y}ϕ =
∂ϕ

∂z
, {y, z}ϕ =

∂ϕ

∂x
, {z, x}ϕ =

∂ϕ

∂y
.(17)

It is indeed easy to show that the skew-symmetric biderivation {· , ·}ϕ, ex-
plicitly given by:

(18) {· , ·}ϕ =
∂ϕ

∂z

∂

∂x
∧ ∂

∂y
+
∂ϕ

∂x

∂

∂y
∧ ∂

∂z
+
∂ϕ

∂y

∂

∂z
∧ ∂

∂x
,

satisfies the Jacobi identity, i.e., equips the associative commutative algebra
A with a Poisson structure. In the following, we will assume that ϕ is a
weight homogeneous polynomial of (weighted) degree $(ϕ) ∈ N, i.e., that
there exists (unique) positive integers $1, $2, $3 ∈ N∗ (the weights of the
variables x, y and z), without any common divisor, such that:

(19) $1 x
∂ϕ

∂x
+$2 y

∂ϕ

∂y
+$3 z

∂ϕ

∂z
= $(ϕ)ϕ.

This equation is also called the Euler Formula. If this weight homogeneous
polynomial ϕ has a so-called isolated singularity (at the origin), then the
Poisson cohomology of the Poisson algebra (A, {· , ·}ϕ) has been explicitly
determined in [26]. Recall that a weight homogeneous polynomial ϕ ∈
F[x, y, z] is said to have an isolated singularity (at the origin) if the vector
space

(20) Asing(ϕ) := F[x, y, z]/〈∂ϕ
∂x

,
∂ϕ

∂y
,
∂ϕ

∂z
〉

is finite-dimensional. Its dimension is then denoted by µ and called the
Milnor number associated to ϕ. When F = C, this amounts, geometrically,
to saying that the surface Fϕ : {ϕ = 0} has a singular point only at the
origin. In [26], it has been shown that the singularity of ϕ intervenes in the
Poisson cohomology of (A, {· , ·}ϕ), with Asing(ϕ). In the following, we will
see that it also appears in the formal deformations of {· , ·}ϕ.

In the following, the polynomial ϕ will always be a weight homogeneous
polynomial with an isolated singularity. The corresponding weights of the
three variables ($1, $2 and $3) are then fixed and the weight homogeneity
of any polynomial in F[x, y, z] has now to be understood as associated to
these weights. We will also use the fact, that, for A = F[x, y, z], we have
natural isomorphisms

(21) X0(A) ' X3(A) ' A, X1(A) ' X2(A) ' A3,
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chosen as

X1(A) −→ A3

V 7−→ (V [x], V [y], V [z]);

X2(A) −→ A3

V 7−→ (V [y, z], V [z, x], V [x, y]);

and X3(A) −→ A : V 7−→ V [x, y, z].

The elements of A3 are viewed as vector-valued functions on A, so we de-
note them with an arrow, like ~F ∈ A3. InA3, let ·, × denote respectively the
usual inner and cross products, while ~∇, ~∇×, Div denote respectively the
gradient, the curl and the divergence operators. For example, with these
notations and the above isomorphisms, the skew-symmetric biderivation
{· , ·}ϕ is identified with the element ~∇ϕ of A3. Similarly, the so-called Eu-
ler derivation (associated to the weights of the variables), ~e$ := $1 x

∂
∂x +

$2 y
∂
∂y + $3 z

∂
∂z is viewed as the element ~e$ := ($1 x,$2 y,$3 z) ∈ A3

and, with the notations above, the Euler formula (19), for a weight homo-
geneous polynomial F ∈ A of (weighted) degree $(F ) becomes:

(22) ~∇F · ~e$ = $(F )F.

Remark 3.1. Using the identifications above, it is possible to write the
Poisson coboundary operator, associated to (A, {· , ·}ϕ), in terms of elements
in A and elements in A3. Denoting this coboundary operator by δkϕ, we
obtain:

(23)

δ0ϕ(F ) = ~∇F × ~∇ϕ, for F ∈ A ' X0(A),

δ1ϕ(~F ) = −~∇(~F · ~∇ϕ) + Div(~F )~∇ϕ, for ~F ∈ A3 ' X1(A),

δ2ϕ(~F ) = −~∇ϕ · (~∇× ~F ), for ~F ∈ A3 ' X2(A).

From [26], we know that, if ϕ is a weight homogeneous polynomial with
an isolated singularity, then the Casimirs of the Poisson algebra (A, {· , ·}ϕ)
(i.e., the elements of the center of the Poisson bracket, which are also the
elements of H0(A, {· , ·}ϕ) = Ker δ0ϕ) are exactly the polynomials in ϕ.

3.2. The second Poisson cohomology space of (A, {· , ·}ϕ). We recall
from [26] that, as ϕ ∈ F[x, y, z] is a weight homogeneous polynomial with
an isolated singularity, the second Poisson cohomology space associated to
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(A, {· , ·}ϕ) is given by:

(24)

H2(A, {· , ·}ϕ) '
µ−1⊕
j=1

$(uj)6=$(ϕ)−|$|

F[ϕ]~∇uj

⊕
µ−1⊕
j=0

$(uj)=$(ϕ)−|$|

F[ϕ]uj ~∇ϕ ⊕
µ−1⊕
j=1

$(uj)=$(ϕ)−|$|

F~∇uj ,

where |$| := $1 +$2 +$3 denotes the sum of the weights of the three vari-
ables and where the family u0 := 1, u1, . . . , uµ−1 ∈ A is composed of weight
homogeneous polynomials in A whose images in Asing(ϕ) give a basis of this
F-vector space (and u0 = 1). In order to study the formal deformations of
the Poisson bracket {· , ·}ϕ, we need another basis of H2(A, ϕ).

Lemma 3.2. If ϕ ∈ A = F[x, y, z] is a weight homogeneous polynomial with
an isolated singularity, then the second Poisson cohomology space associated
to (A, {· , ·}ϕ) is the F[ϕ]-module:

H2(A, {· , ·}ϕ) '



µ−1⊕
j=0

F[ϕ]uj ~∇ϕ ⊕
µ−1⊕
j=1

F ~∇uj , if $(ϕ) = |$|,

µ−1⊕
j=1

F[ϕ]uj ~∇ϕ ⊕
µ−1⊕
j=1

F ~∇uj , if $(ϕ) 6= |$|,

'
⊕
j∈Eϕ

F[ϕ]uj ~∇ϕ ⊕
µ−1⊕
j=1

F ~∇uj ,(25)

where we have used the above notation and where we have denoted by Eϕ,
the set

Eϕ :=

 {0, . . . , µ− 1}, if $(ϕ) = |$|,

{1, . . . , µ− 1}, if $(ϕ) 6= |$|.

Proof. Using (23), we can compute, for all i ∈ N and 0 ≤ j ≤ µ− 1,

δ1ϕ

(
ϕiuj~e$

)
=
(
$(uj)−$(ϕ) + |$|

)
ϕiuj ~∇ϕ−$(ϕ)ϕi+1~∇uj .

Now, using this equation, it is easy to verify that (24) can also be written
as (25). �
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3.3. The formal deformations of {· , ·}ϕ. In this paragraph, our purpose
is to consider the formal deformations of the Poisson bracket {· , ·}ϕ on F3,
where ϕ is a weight homogeneous polynomial with an isolated singularity.
For this work, the Poisson cohomology that appears is the one associated
to the Poisson algebra (A = F[x, y, z], {· , ·}ϕ).

We first need to obtain a formula for the Schouten bracket of two spe-
cific skew-symmetric biderivations of A. In fact, for the study of the
formal deformations of {· , ·}ϕ, we will see that one only has to consider
the skew-symmetric biderivations of the form F ~∇G ∈ A3 ' X2(A), with
F,G ∈ A. Let us compute the Schouten bracket of two such skew-symmetric
biderivations. So let F,G,H,L ∈ A. We compute the Schouten bracket[
F ~∇L,G ~∇H

]
S
∈ X3(A) ' A, which we identify (according to (21)) to its

value
[
F ~∇L,G ~∇H

]
S

[x, y, z] ∈ A and obtain:

(26)
[
F ~∇L,G ~∇H

]
S

= F ~∇L ·
(
~∇G× ~∇H

)
+G ~∇H ·

(
~∇F × ~∇L

)
.

According to this equation we have, for all l,m ∈ N and all 0 ≤ i, j ≤ µ−1,

(27)
[
ϕlui~∇ϕ,ϕmuj ~∇ϕ

]
S

= 0,
[
~∇ui, ~∇uj

]
S

= 0,

while, with the help of (26) and (23), we obtain,

(28)
[
ϕlui~∇ϕ, ~∇uj

]
S

= δ2ϕ

(
ϕlui~∇uj

)
.

The following proposition gives a formula for all formal deformations of
{· , ·}ϕ, up to equivalence.

Proposition 3.3. Let ϕ ∈ A = F[x, y, z] be a weight homogeneous polyno-
mial with an isolated singularity. Consider the Poisson algebra (A, {· , ·}ϕ)
associated to ϕ, where π0 := {· , ·}ϕ is the Poisson bracket given by

{· , ·}ϕ =
∂ϕ

∂x

∂

∂y
∧ ∂

∂z
+
∂ϕ

∂y

∂

∂z
∧ ∂

∂x
+
∂ϕ

∂z

∂

∂x
∧ ∂

∂y
.

Then we have the following:

(a) For all families of constants
(
ckl,i∈F

)
(l,i)∈N×Eϕ

k∈N∗
and

(
c̄ kr ∈F

)
1≤r≤µ−1
k∈N∗

,

such that, for every k0 ∈ N∗, the sequences (ck0l,i)(l,i)∈N×Eϕ and
(c̄ k0r )1≤r≤µ−1 have finite supports, the formula

π∗ = {· , ·}ϕ +
∑
n∈N∗

πnν
n,(29)



22 ANNE PICHEREAU

where, for all n ∈ N∗, πn is given by:

(30)

πn =
∑

(l,i)∈N×Eϕ
1≤r≤µ−1

∑
a+b=n
a,b∈N∗

cal,i c̄
b
r ϕ

l ui ~∇ur

+
∑

(m,j)∈N×Eϕ

cnm,j ϕ
m uj ~∇ϕ +

∑
1≤s≤µ−1

c̄ns ~∇us,

defines a formal deformation of {· , ·}ϕ, where the uj (0 ≤ j ≤ µ−1)
are weight homogeneous polynomials of A = F[x, y, z], whose images
in Asing(ϕ) = F[x, y, z]/〈∂ϕ∂x ,

∂ϕ
∂y ,

∂ϕ
∂z 〉 give a basis of the F-vector

space Asing(ϕ) (and u0 = 1).

(b) For any formal deformation π′∗ of {· , ·}ϕ, there exist families of
constants

(
ckl,i
)

(l,i)∈N×Eϕ
k∈N∗

and
(
c̄ kr
)

1≤r≤µ−1
k∈N∗

(verifying that, for every

k0 ∈ N∗, only a finite number of ck0l,i and c̄ k0r are non-zero), for
which π′∗ is equivalent to the formal deformation π∗ given by the
above formulas (29) and (30).

(c) Moreover, if the (weighted) degree of the polynomial ϕ is not equal
to the sum of the weights: $(ϕ) 6= |$|, then for any formal de-
formation π′∗ of {· , ·}ϕ, there exist unique families of constants(
ckl,i
)

(l,i)∈N×Eϕ
k∈N∗

and
(
c̄ kr
)

1≤r≤µ−1
k∈N∗

(with, for every k0 ∈ N∗, only a

finite number of non-zero ck0l,i and c̄ k0r ), such that π′∗ is equivalent
to the formal deformation π∗ given by the formulas (29) and (30).

This means that formulas (29) and (30) give a system of repre-
sentatives for all formal deformations of {· , ·}ϕ, modulo equivalence.

(d) Analogous results hold if we replace formal deformations by m-th
order deformations (m ∈ N∗) and impose in (c) that ckl,i = 0 and
c̄ kr = 0, as soon as k ≥ m+ 1.

Remark 3.4. In particular, the previous proposition implies that, if the
(weighted) degree of ϕ satisfies $(ϕ) 6= |$|, then the formal deformations
of {· , ·}ϕ defined by (29) and (30) and different from {· , ·}ϕ (i.e., with
some non all zero constants ckl,i ∈ F and c̄ kr ∈ F) are all non-trivial formal
deformations of {· , ·}ϕ (i.e., non equivalent to {· , ·}ϕ).

Proof. In fact, by proving the part (a) of the proposition, we will show that
the Poisson algebra (A, {· , ·}ϕ) verifies the hypotheses of Proposition 2.2,
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with:

K = (N× Eϕ) ∪ {1, . . . , µ− 1},

a = (cal,i, c̄
b
r | (l, i) ∈ N× Eϕ, 1 ≤ r ≤ µ− 1, 1 ≤ a, b ≤ n)n∈N∗ ∈ S,

ϑr,j = ϕr uj ~∇ϕ, (r, j) ∈ N× Eϕ,

ϑi = ~∇ui, 1 ≤ i ≤ µ− 1,

Ψa
n =

∑
(l,i)∈N×Eϕ
r∈{1,...,µ−1}

∑
a+b=n
a,b∈N∗

cal,i c̄
b
r ϕ

l ui ~∇ur,

which implies part (b). According to Proposition 3.2, the elements ϕr uj ~∇ϕ
and ~∇ui, for (r, j) ∈ N × Eϕ, 1 ≤ i ≤ µ − 1 give an F-basis of the second
Poisson cohomology space H2(A, {· , ·}ϕ) so that it suffices, for the parts (a)
and (b) of the proposition, to show that Equations (29) and (30) define a
formal deformation of π0 = {· , ·}ϕ. Let us consider some constants ckl,i ∈ F
and c̄ kr ∈ F, with (l, i) ∈ N × Eϕ, 1 ≤ r ≤ µ − 1 and k ∈ N∗, and
π∗ = {· , ·}ϕ +

∑
k∈N∗ πkν

k, with each πk given by:

(31)

πk =
∑

(l,i)∈N×Eϕ
r∈{1,...,µ−1}

∑
a+b=k
a,b∈N∗

cal,i c̄
b
r ϕ

l ui ~∇ur

+
∑

(m,j)∈N×Eϕ

ckm,j ϕ
m uj ~∇ϕ +

∑
s∈{1,...,µ−1}

c̄ ks ~∇us.

(Notice that, for every k0 ∈ N∗, only a finite number of ck0l,i and c̄ k0r are
non-zero.) We have to verify (see Equation (7)) that the following equation
holds, for every n ∈ N,

(32) δ2ϕ(πn+1) =
1
2

∑
i+j=n+1
i,j≥1

[πi, πj ]S .

For n = 0, it becomes δ2ϕ(π1) = 0 and, according to (31), we have

π1 =
∑

(m,j)∈N×Eϕ

c1m,j ϕ
m uj ~∇ϕ +

∑
s∈{1,...,µ−1}

c̄1s
~∇us,

which is an element of Z2(A, {· , ·}ϕ). Now, assume that n ≥ 1 and let
us prove that the skew-symmetric biderivations π1, π2, . . . , πn+1, defined
by (31), satisfy the equation (32). By using (27), one obtains that the
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element 1
2

∑
i+j=n+1
i,j≥1

[πi, πj ]S consists of six types of sums, listed here:

1/2
∑

c al,i c̄
b
r c

c
m,j c̄

d
s

[
ϕlui~∇ur, ϕmuj ~∇us

]
S
,(33)

1/2
∑

c al,i c̄
b
r c

q
m,j

[
ϕlui~∇ur, ϕmuj ~∇ϕ

]
S
,(34)

1/2
∑

c cl,i c̄
d
r c

p
m,j

[
ϕlui~∇ur, ϕmuj ~∇ϕ

]
S
,(35)

1/2
∑

c̄ qr c
a
l,i c̄

b
s

[
ϕlui~∇ur, ~∇us

]
S

(36)

1/2
∑

c cl,i c̄
d
r c̄

p
s

[
ϕlui~∇ur, ~∇us

]
S

(37)

1/2
∑

(c pl,i c̄
q
r + c ql,i c̄

p
r )

[
ϕlui~∇ϕ, ~∇ur

]
S

(38)

where the sums are taken over the a, b, c, d, p, q, r, s, l,m, i, j ∈ N satisfying:

p+ q = n+ 1; l,m ∈ N
a+ b = p; c+ d = q; i, j ∈ Eϕ
a, b, c, d, p, q ≥ 1; 1 ≤ r, s ≤ µ− 1.

One can observe that for all family of indices (a, b, c, d, p, q, r, s, l,m, i, j), sat-
isfying the conditions above, the indices (a′, b′, c′, d′, p′, q′, r′, s′, l′,m′, i′, j′),
defined by:

p′ = b+ c, a′ = c, i′ = j,
q′ = a+ d, b′ = b, j′ = i,

r′ = r, c′ = a, l′ = m,
s′ = s, d′ = d, m′ = l,

satisfy the same conditions, so that, in the first sum (33), one finds the
element

(39) c al,i c̄
b
r c

c
m,j c̄

d
s

[
ϕlui~∇ur, ϕmuj ~∇us

]
S

and the element

c a
′

l′,i′ c̄
b′

r′ c
c′

m′,j′ c̄
d′

s′

[
ϕl
′
ui′ ~∇ur′ , ϕm

′
uj′ ~∇us′

]
S
.

By definition of the primed indices, this second term is then equal to the
element c al,i c̄

b
r c

c
m,j c̄

d
s

[
ϕmuj ~∇ur, ϕlui~∇us

]
S

, whose sum with (39) is zero,

according to (26). This fact proves that the first sum (33) is equal to zero.
With analogous arguments, one finds that the sums (34), (35), (36), (37)
are also zero. We have then obtained that 1

2

∑
i+j=n+1
i,j≥1

[πi, πj ]S is just given
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by the sum (38), that is to say:

1
2

∑
i+j=n+1
i,j≥1

[πi, πj ]S

=
1
2

∑
(l,i)∈N×Eϕ
r∈{1,...,µ−1}

∑
p+q=n+1

p,q∈N∗

(c pl,i c̄
q
r + c ql,i c̄

p
r )
[
ϕlui~∇ϕ, ~∇ur

]
S

(40)

=
∑

(l,i)∈N×Eϕ
r∈{1,...,µ−1}

∑
p+q=n+1

p,q∈N∗

c pl,i c̄
q
r δ2π0

(
ϕlui~∇ur

)
,

where, for the second equality, we have used (28). Now, let us consider
δ2π0

(πn+1). According to Equation (31), for k = n+ 1, and Lemma 3.2,
(41)

πn+1 ∈
∑

(l,i)∈N×Eϕ
r∈{1,...,µ−1}

∑
p+q=n+1
p,q∈N∗

cpl,i c̄
q
r ϕ

l ui ~∇ur + Z2(A, {· , ·}ϕ).

Combining the equations (40) and (41), we obtain that (32) holds, hence
the first and second parts of the proposition. For the part (c), we use
Proposition 4.5 of [26] to obtain that, if $(ϕ) 6= |$|, then H1(A, {· , ·}ϕ)
is zero and we conclude with the help of Proposition 2.7. Part (d) follows
finally from the fact that Propositions 2.2 and 2.7 are also valid for m-th
order deformations. �

This proposition leads to the following result:

Corollary 3.5. Let ϕ ∈ F[x, y, z] be a weight homogeneous polynomial with
an isolated singularity. Then, for all m ∈ N∗, every m-th order deformation
of {· , ·}ϕ extends to a (m+ 1)-th order deformation of {· , ·}ϕ.

Proof. According to part (d) of Proposition 3.3, any m-th order deformation
π′(m) of {· , ·}ϕ is equivalent to anm-th order deformation of the form π(m) :=
{· , ·}ϕ +

∑m
n=1 πnν

n, where the πn are defined as in (30). Let us denote
by Φ: Aν/〈νm+1〉 → Aν/〈νm+1〉, the equivalence morphism from π(m) to
π′(m). Let us extend Φ to an automorphism of (Aν/〈νm+2〉, ·), in a natural
way.

According to Proposition 3.3, we have that π(m+1) :={· , ·}ϕ+
∑m+1
n=1 πnν

n,
where πm+1 is defined with an analog of the formula (30), extends π(m) as
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an (m + 1)-th order deformation. Then, the (m + 1)-th order deforma-
tion π′(m+1), defined by the formula

π′(m+1)[F,G] = Φ
(
π(m+1)[Φ−1(F ),Φ−1(G)]

)
mod νm+2

(for F,G ∈ A or F,G ∈ Aν/〈νm+2〉) extends π′(m) as an (m + 1)-th order
deformation. �

We point out that, in general, this property of extendibility of deforma-
tions is not satisfied by an arbitrary Poisson structure and the particular
family of Poisson algebras associated to weight homogeneous polynomials
with an isolated singularity (A, {· , ·}ϕ) has specific and nice properties of
deformations.

Let us now consider the particular case where $(ϕ) = |$|, for which we
have H1(A, {· , ·}ϕ) ' F[ϕ]~e$, according to Proposition 4.5 of [26]. In this
case, the part (c) of Proposition 3.3 and the uniqueness of the constants
ckl,i and c̄ kr do not hold anymore. In particular, we will see that Φ = e~e$ν ,
which is an algebra morphism Aν → Aν , equal to the identity modulo
ν, is always an equivalence morphism between two different (except in a
very particular case) formal deformations of the family given in Proposition
3.3. To see that, assume $(ϕ) = |$| and define ξ := ~e$ν as being the
element ξ = $1x ν

∂
∂x + $2y ν

∂
∂y + $3z ν

∂
∂z ∈ X1

0(Aν). Then take the
formal deformation π∗ of π0 = {· , ·}ϕ, given by two arbitrary families of

constants
(
cal,i

)
(l,i)∈N×Eϕ

a∈N∗
and

(
c̄ br
)

1≤r≤µ−1
b∈N∗

(with, for every a0, b0 ∈ N∗,

only a finite number of non-zero ca0
l,i and c̄ b0r ) and formulas (29) and (30) of

Proposition 3.3. Let us denote by π′∗ the formal deformation of π0 given by
π′∗ := eadξ(π∗). According to Lemma 2.1, the deformation π′∗ is equivalent
to π∗ and Φ = eξ is an equivalence morphism from π∗ to π′∗. Then a
direct computation (using Euler Formula (22)) shows that π′∗ is also given
by π′∗ = π0 +

∑
n∈N∗ π

′
nν

n, where, for all n ∈ N∗,

π′n =
∑

(l,i)∈N×Eϕ
s∈{1,...,µ−1}

∑
a+b=n
a,b∈N∗

c′al,i c̄
′ b
s ϕ

l ui ~∇us

+
∑

(m,j)∈N×Eϕ

c′nm,j ϕ
m uj ~∇ϕ +

∑
s∈{1,...,µ−1}

c̄′ns
~∇us,
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with, for n ∈ N∗, (l, i) ∈ N× Eϕ and 1 ≤ r ≤ µ− 1,

c′nl,i :=
∑

k+r=n
k,r∈N∗

1
r!
ckl,i(|$|(l − 1)−$(ui))r

and

c̄′ns :=
∑

k+r=n
k,r∈N∗

1
r!
c̄ ks ($(us)− |$|)r.

Moreover, π′∗ = π∗, if and only if, cnl,i = 0, for all (l, i) ∈ (N×Eϕ)−{(0, 0)}
and c̄ ks = 0, for all 1 ≤ s ≤ µ− 1 such that $(us) 6= |$|. So that, π′∗ = π∗
if and only if π∗ is of the form:

π∗ = π0+

∑
n∈N∗

 ∑
a+b=n
a,b∈N∗

µ−1∑
s=1

$(us)=|$|

ca0,0 c̄
b
s
~∇us + cn0,0 ~∇ϕ+

µ−1∑
t=1

$(ut)=|$|

c̄nt ~∇ut

 νn,

i.e., π∗ is a weight homogeneous formal deformation of π0 of (weighted)
degree equal to zero, in other words, each πn is a weight homogeneous
biderivation of weighted degree equal to zero, for all n ∈ N. (For more
information about weight homogeneous biderivations, see [18]).

3.4. Properties of the formal deformations of {· , ·}ϕ. As in Proposi-
tion 3.3, we have obtained an explicit expression for the formal deformations
of the Poisson bracket {· , ·}ϕ, we will now be able to give some properties
of these deformations, when ϕ ∈ F[x, y, z] is supposed to be weight homo-
geneous with an isolated singularity. First, we obtain the following:

Proposition 3.6. Let ϕ ∈ A = F[x, y, z] be a weight homogeneous polyno-
mial with an isolated singularity. Consider the Poisson algebra (A, {· , ·}ϕ)
associated to ϕ, where {· , ·}ϕ is the Poisson bracket given by {· , ·}ϕ =
∂ϕ
∂x

∂
∂y ∧

∂
∂z + ∂ϕ

∂y
∂
∂z ∧

∂
∂x + ∂ϕ

∂z
∂
∂x ∧

∂
∂y . Then, for every formal deforma-

tion π′∗ of {· , ·}ϕ, there exist χν , ϕν ∈ Aν , such that π′∗ is equivalent to the
formal deformation π∗ = χν ~∇ϕν .

Proof. According to Proposition 3.3, an arbitrary formal deformation π′∗ of
{· , ·}ϕ is equivalent to a formal deformation π∗, of the form:

π∗ = {· , ·}ϕ +
∑
n∈N∗

πnν
n,
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with πn given by (30) for all n ∈ N∗, where the elements ckl,i and c̄ kr (with
k ∈ N∗, (l, i) ∈ N×Eϕ and 1 ≤ r ≤ µ−1) are constants in F (and for every
a, b ∈ N∗, only a finite number of non-zero cal,i and c̄ br ). It is easy to verify
that the elements of Aν , defined by

χν := 1 +
∑
a∈N∗

 ∑
(l,i)∈N×Eϕ

cal,iϕ
lui

 νa

and

ϕν := ϕ+
∑
b∈N∗

(
µ−1∑
r=1

c̄ brur

)
νb,

satisfy the identity π∗ = χν ~∇ϕν ∈ (Aν)3 ' X2(Aν), so that π′∗ is equivalent
to a deformation of the desired form. �

Remark 3.7. It is easy to verify that, on F3, the multiplication of a Pois-
son structure {· , ·} by any polynomial χ ∈ F[x, y, z] gives another Poisson
structure χ {· , ·}. We point out that this fact is in general not true in other
dimensions. In particular, for every χ, ϕ ∈ F[x, y, z], the skew-symmetric
biderivation χ {· , ·}ϕ (identified to χ~∇ϕ ∈ A3) is a Poisson structure on F3.
In the previous proposition 3.6, we have seen that, morally, if one deforms
a Poisson structure of the family ({· , ·}ϕ ' ~∇ϕ | ϕ ∈ A), one obtains a
Poisson structure on Aν which belongs to the family (χν {· , ·}ϕν ' χν ~∇ϕν |
χν , ϕν ∈ Aν).

The following corollary gives another property verified by the formal
deformations of {· , ·}ϕ.

Corollary 3.8. Let ϕ ∈ A = F[x, y, z] be a weight homogeneous polynomial
with an isolated singularity. Consider the Poisson algebra (A, {· , ·}ϕ) asso-
ciated to ϕ. Every formal deformation of {· , ·}ϕ admits a formal Casimir.

Proof. First, let us consider a formal deformation of π0, supposed to be of
the form π∗ = χν ~∇ϕν , where χν , ϕν ∈ Aν and let us show that ϕν is then
a formal Casimir for π∗. Under the identifications X2(Aν) ' (Aν)3 and
X1(Aν) ' (Aν)3, we indeed have π∗[ϕν , ·] =

(
χν ~∇ϕν

)
× ~∇ϕν , which is

equal to zero, as, by writing χν =
∑
i∈N χiν

i and ϕν :=
∑
j∈N ϕjν

j , where
χi, ϕj ∈ A, we have:

(
χν ~∇ϕν

)
× ~∇ϕν =

∑
i∈N

∑
l∈N

χi

 ∑
j+k=l

~∇ϕj × ~∇ϕk

 νi+l
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where, for each l ∈ N, the sum
∑
j+k=l

~∇ϕj × ~∇ϕk is equal to zero, because

~∇ϕj× ~∇ϕk = −~∇ϕk× ~∇ϕj . Now, according to Proposition 3.6, any formal
deformation π′∗ of {· , ·}ϕ is equivalent to a formal deformation of the form
π∗ = χν ~∇ϕν , where χν , ϕν ∈ Aν . Then, there exists a morphism of Poisson
algebras Φ: (Aν , π∗)→ (Aν , π′∗) which is the identity modulo ν. Thus, Φ is
invertible and, for any F ∈ Aν , we have

π′∗[Φ(ϕν), F ] = Φ
(
π∗[ϕν ,Φ−1(F )]

)
= 0.

Hence the fact that Φ(ϕν) is a formal Casimir for π′∗. �

3.5. The case of singular surfaces in F3. In this last paragraph, we
study singular surfaces in F3, equipped with Poisson structures, as regular
as possible and, as in the other cases above, we give an explicit expression
for all formal deformations of these Poisson brackets, up to equivalence.

As previously, ϕ ∈ F[x, y, z] still denotes a weight homogeneous polyno-
mial with an isolated singularity and the weights of the three variables x, y, z
are still denoted by $1, $2, $3, while their sum is |$| = $1 + $2 + $3.
To such a polynomial, one can associate a surface Fϕ in F3 whose singular
locus is exactly the set {∂ϕ∂x = ∂ϕ

∂y = ∂ϕ
∂z = 0}. In fact, this singular surface

is given by the zero locus of ϕ, Fϕ : {ϕ = 0}. This affine space is equipped

with its algebra of regular functions Aϕ :=
F[x, y, z]
〈ϕ〉

.

In Remark 3.1, we pointed out that ϕ is a Casimir for the Poisson struc-
ture {· , ·}ϕ defined in (18), that is to say, is an element of the center of the
bracket {· , ·}ϕ. Hence, the Poisson bracket {· , ·}ϕ goes to the quotient alge-
bra Aϕ and it induces a bracket {· , ·}Aϕ on Aϕ that is obviously a Poisson
bracket.

In this paragraph, our purpose is to study the formal deformations of
this Poisson structure. First, as proved in Proposition 5.2 of [26], we have
X3(Aϕ) ' {0}, so that H3(Aϕ, {· , ·}Aϕ) ' {0} and, according to the equa-
tions (7) which govern the extendibility of deformations, every m-th order
deformation {· , ·}Aϕ + π1ν + · · · + πmν

m of {· , ·}Aϕ (m ∈ N∗) extends to
a (m+ 1)-th order deformation {· , ·}Aϕ + π1ν + · · ·+ πmν

m + πm+1ν
m+1,

by choosing for πm+1, any Poisson 2-cocycle of (Aϕ, {· , ·}Aϕ).

In Proposition 5.6 of [26], we have obtained that the family {℘(uj ~∇ϕ), 0 ≤
j ≤ µ − 1 | $(uj) = $(ϕ) − |$|}, where µ is the Milnor number of ϕ and
℘ : F[x, y, z]→ Aϕ is the natural projection, gives an F-basis of the second
Poisson cohomology space of (Aϕ, {· , ·}Aϕ). Since H3(Aϕ, {· , ·}Aϕ) ' {0},
a simple case of Proposition 2.2, in which the skew-symmetric biderivations
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Ψa
n can be chosen as being zero, leads to the following result (also valid for

m-th order deformations of {· , ·}Aϕ).

Proposition 3.9. Let ϕ ∈ F[x, y, z] be a weight homogeneous polynomial
with an isolated singularity. Consider the Poisson algebra (Aϕ, {· , ·}Aϕ)
and denote by K = {j ∈ {0, . . . , µ−1} | $(uj) = $(ϕ)−|$|}. We have the
following:

(1) For every family of constants
(
αnj ∈ F

)
j∈K
n∈N∗

, the formula

π∗ = {· , ·}Aϕ +
∑
n∈N∗


µ−1∑
j=0

$(uj)=$(ϕ)−|$|

αnj ℘(uj ~∇ϕ)

 νn(42)

defines a formal deformation of {· , ·}Aϕ .

(2) For any formal deformation π′∗ of {· , ·}Aϕ , there exists a family of
constants

(
αnj
)
j∈K
n∈N∗

, such that π′∗ is equivalent to the formal defor-

mation π∗ given by the above formula (42).

Remark 3.10. According to Proposition 5.5 of [26], we have

H1(Aϕ, {· , ·}Aϕ) '
µ−1⊕
j=0

$(uj)=$(ϕ)−|$|

F℘(uj~e$),

which is zero if and only if H2(Aϕ, {· , ·}Aϕ) is also zero and, according to
the previous proposition 3.9, all formal deformations of {· , ·}Aϕ are in this
case trivial (i.e., equivalent to {· , ·}Aϕ). In the previous case, considered in
Paragraph 3.3, we have considered the algebra morphism Φ = e~e$ ν , in the
case the Euler derivation ~e$ was defining a non-trivial cohomological class
in the first Poisson cohomology space. Here, the derivation ~e$ defines such
a non-trivial class, if and only if, $(ϕ) = |$|, but, in this case, according
to Proposition 3.9, all formal deformations of {· , ·}Aϕ are equivalent to a
formal deformation of the form:

π∗ = {· , ·}Aϕ +
∑
n∈N∗

αn0 ℘(~∇ϕ)νn,

where αn0 ∈ F, for all n ∈ N∗, and the algebra morphism Φ = eξ, defined
above (with ξ := ~e$ν) is an equivalence morphism from such a π∗ to

π′∗ := eadξ(π∗) = {· , ·}Aϕ ,
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because
[
~e$, ~∇ϕ

]
S

= 0. So that, if the (weighted) degree of ϕ satisfies

$(ϕ) = |$|, then the Poisson structure {· , ·}Aϕ is rigid, i.e., all its formal
deformations are equivalent to {· , ·}Aϕ itself.

Remark 3.11. The limit case where the surface in F3 is the plane F2,
equipped with its algebra of polynomial functions F[x, y] is studied in the
same way. Every Poisson structure is in this case of the form {· , ·}ψ =
ψ ∂
∂x ∧

∂
∂y , with ψ ∈ F[x, y].

In [20], one finds explicit bases for the Poisson cohomology spaces in
dimension two, for the germified case, while, in [28], one finds the dimensions
of the Poisson cohomology spaces of the Poisson variety (F[x, y], {· , ·}ψ), in
the algebraic setting.

We now suppose that the polynomial ψ ∈ F[x, y] is a weight homogeneous
polynomial of (weighted) degree $(ψ), associated to the weights of the two
variables x and y, denoted respectively by $1 and $2. The methods used
in [20] can be applied in the algebraic context and in particular permit to
obtain, when ψ ∈ F[x, y] is a weight homogeneous square-free polynomial,
the following:

(43) H2(F[x, y], {· , ·}ψ) ' F[x, y]N(ψ) {· , ·}
ψ ⊕ F[x, y]〈∂ψ

∂x
,
∂ψ

∂y

〉 ∂

∂x
∧ ∂

∂y
,

where F[x, y]N(ψ) is the F-vector space of all weight homogeneous polyno-
mials in F[x, y], of (weighted) degree equal to N(ψ) := $(ψ)−$1−$2. As
in the case of the Poisson algebra (Aϕ, {· , ·}Aϕ), this explicit basis leads to

an explicit writing of the formal / m-th order deformations of {· , ·}ψ.

4. Final Remarks

(1) We recall the result of M. Kontsevich, stated in the introduction and
saying that, for a Poisson manifold (M, {· , ·}), there is a correspon-
dence between the equivalence classes of the formal deformations
of {· , ·} and those of the associative product of F(M), which have
as a first order term the Poisson bracket {· , ·}. Considering this,
a natural extension of the results given here would be to consider
the equivalence classes of the formal deformations of the associa-
tive algebra A = F[x, y, z] which have as first order term a Poisson
bracket of the form {· , ·}ϕ, with ϕ ∈ A, and compare them to the
equivalence classes of the formal deformations of the Poisson struc-
ture {· , ·}ϕ, obtained in this paper. We hope to come back to this
in a future publication.
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(2) After obtaining these results of deformation of the Poisson struc-
tures of the form {· , ·}ϕ, ϕ ∈ F[x, y, z], B. Fresse pointed out to
me that they could come from a L∞-equivalence between two L∞-
algebras. This other point of view opens new perspectives of re-
search, which we plan to explore in the future.

(3) In their paper ([6]), P. Etingof and V. Ginzburg consider “deforma-
tions” of Poisson algebras, but with the meaning that the associative
product and the Poisson bracket are simultaneously deformed. To
do that, they use a notion of “Poisson cohomology” which is the
one defined in [7], [8], [10] and is different from the one used in [26]
and in the present paper. It would be interesting to compare the
present paper with the one of P. Etingof and V. Ginzburg.
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