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1. Introduction

One of the topics which were intensively studied in the last decade is the
stability of non-Markovian queueing systems. It is well-known that stability
is one of the hard and actual problems and requires refinement and laborious
mathematical technique especially outside the limits of Markovian queues.
Stability analysis establishes the region of predefined parameters where the
stability of the basic process holds. Various notions of stability are applied.
We mention weak and strong stability, Chen [4], global weak stability, global
pathwise stability, Dai and Vande Vate [10], and so on.

An effective and developed approach to stability analysis of a wide class
queueing systems and networks is the fluid approximation. Among many
works which treat this topic we mention Chen and Mandelbaum [6], Chen
[4], Chen and Yao [5], Dai [7], Dai [8], Dai and Weiss [11], Dai and Vande
Vate [10].

At the same time, the fluid approach is not direct in the sense that we
study originally the stability/instability of the associated fluid limit model
(and deal with deterministic fluid processes instead of original stochastic
ones) to establish the similar property of the corresponding queueing pro-
cess.

The most recent overview on stability analysis methods (with focus on
networks) is the paper [12].

Unlike the mentioned above approaches, our approach to the stability is
based on the regeneration property of the basic queueing process [1, 32].

We focus on the regenerative queues since they have numerous appli-
cations (for instance, [30, 31]). Also the regeneration of Harris recurrent
Markov chains extends an area of this approach, [1]. The notable monograph
[16] contains detailed description of stability analysis of Markov chains. For
Markovian setting, this approach has paralellism with the one described in
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this work. For instance, positive recurrence of renewal process of regenera-
tions introduced below is similar to positive Harris recurrence of a Markov
chain.

One more important feature of the approach is that we separate the
predefined assumptions on the negative drift and regeneration assumptions.
The latter guarantees the appearance of a regeneration with a positive prob-
ability regardless of the initial state in a compact set. (This assumption is
weaker than Harris recurrence for which this positive probability must be
one.) We note that negative drift typically does not allow to obtain sta-
bility directly and regeneration condition turns out to be very effective at
the intermediate steps of the analysis, Morozov [26]. Also we mention an
important role which the tightness of the stochastic processes plays in our
stability analysis.

Another advantage is that our approach to stability is unified and allows
to cover the multiserver queues where servers may be nonidentical. This
case is especially difficult to be investigated because such queues are not
monotone (unlike conventional queues). The reason of this difficulty is that
the service times depend on server number in a node.

An important property of the approach is that in many cases it is ex-
tended to arbitrary initial state of the basic queueing process.

Finally, the proposed approach to stability analysis uses completely an-
other technique based on a characterization of the renewal process of the re-
generations and the asymptotic behavior of the forward renewal time. This
work illustrates new possibilities of a unified approach to stability analysis
of regenerative queueing processes developed earlier in [25]–[29].

Now we describe our approach to stability analysis.

Throughout this work (except in Section 5.2) we deal with a renewal input
process that describes the arrival of customers to a system or queue, whose
arrival instants are denoted by (tn)n≥0. We denote by τn = tn+1 − tn > 0,
n ≥ 0 the i.i.d. interarrival times. Let τ be a generic random variable with
the distribution of the interarrival times. Assume that E τ = 1

λ ∈ (0, ∞); t0
is the arrival instant of customer 0; if t0 = 0 then the input process is zero-
delayed. Otherwise, the delay t0 ≥ 0 may have another distribution diferent
of τ , and we have a delayed input; this latest situation is only considered
in Section 5.3. Consider the forward renewal time process for the input
process, {τ(t), t ≥ 0}, defined by:

τ(t) def= min { tk − t : tk − t ≥ 0 } .(1)
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This process is tight (as proved in [26]), that is, for any fixed δ > 0, a
constant C > 0 exists such that

inf
t≥0

P
(
τ(t) ≤ C

)
≥ 1− δ .

We study the stability of some queueing systems. More specifically, in
Sections 2 and 4 a single-server GI/G/1 queue is considered, while sections 3
and 5 deal with the multiple-server GI/G/m queue with m > 1 servers,
which are assumed to be identical in Section 3. We assume that a single
queue or waiting line forms in front of the system (composed by 1 or m
servers), and that the customer at the head of the queue will be handled by
the first available server, by following a FIFS (first-in-first-served) service
discipline, which moreover is assumed to be a no-idling (or work conserving)
policy, that means that servers are never idle while there are customers
waiting to be served at the waiting line.

Except for the Section 5.1, in all the work service times {S(k)
n , n ≥ 0, k =

1, . . . , m} are assumed to be i.i.d. (S(k)
n denotes the service time for the

nth customer that is handled by server k), with S a generic random vari-
able whose distribution is that of any S

(k)
n , assumed to be > 0 w.p.1, and

with expectation ES = 1
µ ∈ (0, ∞) . In the single-server case, we drop the

superscript in S(1)
n and just write Sn. In the multi-server case with identical

servers, Sn is used to denote the service time (with the same distribution
as S) of the nth customer arriving to the system, and this notation is co-
herent with that used in the single-server case. In this context (except for
Sections 5.1 and 5.2), let we introduce the parameter

ρ
def=

ES

E τ
=
λ

µ
,

which can be interpreted as the traffic intensity through the GI/G/1 queue
introduced before (but it also has a meaning for the multi-server queue).

In both cases, GI/G/1 and GI/G/m (with m > 1) queues, as a measure
of congestion of the system we can introduce the (regenerative) queue size
process ν = {ν(t), t ≥ 0}, where ν(t) ∈ N ∪ {0} is the number of customers
in the system (at the waiting line or being served) at instant t. We denote
by ν(0−) the accumulated customers in the system at instant t = 0, and
consider the regenerative embedded sequence (νn)n≥0 defined by

νn
def= ν(t−n )

(
= lim
t→t−n

ν(t) if tn > 0
)

if n ≥ 0 .

By definition, νn is the number of customers in the system just when cus-
tomer nth arrives. The embedded process (νn)n≥0 is also regenerative, and
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its associated renewal process will be denoted by β = (βn)n≥0 (for any n > 0,
the post-βn−process (νk)k≥βn

is independent of the pre-history (νk)k<βn
,

and its distribution does not depend upon n.) The renewal process β de-
scribes the times of occurrences of “regenerations” of process (νn)n≥0, that
is, the end of a cycle and the beginning of the next one, and is defined by

βn+1
def= min { k > βn : νk = 0 } for any n ≥ 0 , β0

def= 0 .(2)

The corresponding renewal process of regenerations for the queue size
process ν is (Tn)n≥0, with

Tn+1
def= tβn+1

(
= min { tk > Tn : νk = 0 }

)
for any n ≥ 0 , T0

def= t0 .

(3)

We have that T1 = t0 +τ0 + · · ·+τβ1−1 , and then T1−T0 = τ0 + · · ·+τβ1−1 .
If the input process is zero-delayed, t0 = 0, then we have

T0 = 0 and T1 = τ0 + · · ·+ τβ1−1 .(4)

We refer to this situation as the “zero-delayed case” throughout the paper.

Jointly with the queue size process ν it is customary to consider another
measure of congestion of the system, the workload process W = {W (t), t ≥
0}, with state space (E = [0, ∞), E = B([0, ∞))) and whose paths are
continuous on the right on [0, ∞) and with limits on the left on (0, ∞).
Workload is defined in this way: for any t ≥ 0, W (t) is the amount of time
needed for the system to complete service of all customers in queue at the
waiting line or being served, at time t.

We denote by W (0−) the accumulated workload at instant t = 0, and
consider the embedded sequence (Wn)n≥0, where

Wn
def= W (t−n )

(
= lim
t→t−n

W (t) if tn > 0
)

if n ≥ 0 .

Note that with this definition Wn is the waiting time in queue of customer
n. Throughout the paper we will use a sample path relationship between
waiting times Wn and Wn+1 known as Lindley’s recursion (see Example
III.6.1 in [1]):

Wn+1 =
(
Wn −

(
τn − Sn

) )+

(5)

where x+ denotes max(x, 0) .
Workload process W is also a regenerative process with the same renewal

process of “regenerations” (Tn)n≥0, and the renewal process of “regenera-
tions” associated with the embedded sequence (Wn)n≥0 is also process β,
as for the queue size process (because ν(t) = 0⇔W (t) = 0 ).
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We will use notation E0 to denote expectation in the zero-delayed case,
in which the first regeneration cycle lengths are β1 for the discrete time
embedded processes, and T1 for the continuous time processes ν and W . As
a rule, it is implicit from the context that E = E0 but sometimes we use
this notation in an explicit form. The renewal process β is called positive
recurrent if β1 <∞ with probability 1 and moreover expectation of the first
cycle length, which is β1 in the zero-delayed case, is finite. That is, if

β1 <∞ w.p.1 and E0 β1 <∞

Analogously, the renewal processes of regenerations of ν and W , (Tn)n≥0,
is called positive recurrent if

T1 <∞ w.p.1 and E0 T1 <∞

We introduce the forward renewal time (or “unfinished time to renewal”)
for the discrete time processes:

β(n) def= min {βk − n : βk − n > 0 } for any n ≥ 0 .

And the analogous for the continuous time:

T (t) def= min {Tk − t : Tk − t > 0 } for any t ≥ 0 .

Note that β(0) = β1 and T (0) = T1 in the zero-delayed case.

We use the following dichotomy describing the asymptotic behavior of
β(n) and T (t) (see [14]):

P− lim
n→∞

β(n) =∞⇔ E0 β1 =∞,(6)

P− lim
t→∞

T (t) =∞⇔ E0 T1 =∞.(7)

(Notation P− lim means convergence in probability.) The main idea of our
approach to stability analysis is to prove that convergence in the prob-
ability sense of β(n) (or T (t)) to ∞ does not hold. Therefore, by (6)
(or (7), respectively), we obtain the finiteness of the corresponding expec-
tation E0β1 < ∞ (or E0T1 < ∞). It is sufficient to obtain one of them for
having the other, because by (4) and Wald’s identity,

E0 T1 = E τ E0 β1 =
1
λ

E0 β1 .(8)

After that, we prove the finiteness with probability 1 of β1 for having
positive recurrence of (βn)n≥0, and we can apply Corollary VI.1.5 [1] if
the distribution of the first regeneration cycle length β1 is aperiodic, to
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obtain the weak convergence of the discrete time processes to a limiting
distribution, say π for (νn)n≥0, that implies in particular

(9) lim
n→∞

P(νn ∈ A) =
E0

(β1−1∑
k=0

I(νk∈A)

)
E0 β1

(= π(A) ) for any A ⊂ N ∪ {0} ,

where I(·) denotes the indicator function. Similarly for the continuous-time
situation: once we have proved that process (Tn)n≥0 is positive recurrent,
we can apply Theorem VI.1.2 [1] if the distribution of the first regeneration
cycle length T1 is non-lattice, to obtain the weak convergence of the pro-
cesses ν and W to a limiting distribution, say π̃ for ν, that in particular
gives

lim
t→∞

P(ν(t) ∈ A) =
E0

(T1∫
0

I(ν(t)∈A)

)
E0 T1

(= π̃(A) ) for any A ⊂ N ∪ {0} .

Note that all renewal process of regenerations for the discrete-time pro-
cesses below are aperiodic, and thus positive recurrence implies the stability
in the sense of convergence to the limit distribution (9). In consequence,
our objective will be to prove positive recurrence of the renewal process
β by checking that β1 < ∞ w.p.1, and that P- lim

n→∞
β(n) 6=∞, which is

equivalent to say that constants L, ε > 0 and non-random discrete instants
(ni)i≥1 with lim

i→∞
ni =∞ exist, such that

inf
i≥1

P
(
β(ni) ≤ L

)
≥ ε .(10)

Analogously for the renewal process {T (t), t ≥ 0}: if we see that T1 < ∞
w.p.1, and that constants b, ε > 0 and a sequence of non-random instants
(zi)i≥1 with lim

i→∞
zi =∞ exist, such that

inf
i≥1

P
(
T (zi) ≤ b

)
≥ ε ,(11)

we will have proved its positive recurrence.

Throughout the work we treat different queueing models to which can
be applied our techniques to find sufficient conditions for having stability in
the sense explained before. The organization of the paper is as follows: in
Section 2 we treat the standard single-serverGI/G/1 queue, and in Section 3
the standard multi-server GI/G/m queue, with m > 1 .
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Two extensions of the standard GI/G/1 queue are considered in
Section 4: a queue with (partially) impatient customers, and the state-
dependent case, from which the impatient customers situation is a particular
case.

Finally, the extensions of the standard multi-server GI/G/m queue con-
sidered in Section 5 are three: non-identical servers, regenerative input
R/G/m, and the delayed-case. The first one only has sense in the m > 1
case, but the other two extensions are valid for m ≥ 1, that is, include the
single-server queue.

2. Stability analysis of a GI/G/1 queue

We start our stability study by considering a standard single-server
GI/G/1 queue, and using notations already introduced in Section 1. Our
main negative drift assumption is

(12) ρ

(
=
λ

µ

)
< 1 ,

which is equivalent to E(τ −S) > 0 , and implies the regeneration condition

(13) P(τ > S) > 0.

Theorem 1. Under assumption (12), the renewal processes of regenerations
β = (βn)n≥0 and (Tn)n≥0 are positive recurrent, that is,

E0 β1 <∞ , E0 T1 <∞ and(14)

β1 <∞ w.p.1 , T1 <∞ w.p.1 ,(15)

regardless of the initial state W0−).

Proof. Introduce the (non-negative) idle time for the server in the interval
[0, t]

µ(t) =
∫ t

0

I(ν(s)=0) ds for any t ≥ 0 .

Let

N(t) = #{ k = 0, 1, . . . , : tk ≤ t } = min { k ≥ 0 : tk > t } for t ≥ 0 ,

be the number of arrivals in interval [0, t] (including that of customer 0.) In
particular, N(tn) = n + 1. In the zero-delayed case, N(t) ≥ 1 for all t ≥ 0
and N(0) = 1. Denote the total workload arriving in interval [0, t] by

V (t) def=
N(t)∑
n=1

Sn−1 .(16)
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Obviously,

W (0−) + V (t) = t− µ(t) +W (t) ≥ t− µ(t) ,(17)

which implies

µ(t) ≥ t− V (t)−W (0−) = t− V (t) + o(t) as t→∞ .

Since

V (t)/N(t)→ ES =
1
µ
, N(t)/t→ 1

E τ
= λ

by the Strong Law of Large Numbers (SLLN), then

(18) lim inf
t→∞

µ(t)
t
≥ 1− lim

t→∞

V (t)
N(t)

N(t)
t

= 1− ρ ,

and by the negative drift assumption (12),

lim inf
t→∞

µ(t)
t

> 0 ,(19)

and consequently,

µ(t)→∞(20)

w.p.1. Because µ(t) ≥ 0, by Fatou’s lemma we also have

lim inf
t→∞

Eµ(t)
t

(
≥ E

(
lim inf
t→∞

µ(t)
t

) )
> 0 .(21)

Thus, by taking into account that Eµ(t) =
∫ t

0

P(ν(s) = 0) ds , we have that

lim inf
t→∞

1
t

∫ t

0

P(ν(s) = 0) ds > 0 .(22)

It is immediate then that P(ν(t) = 0) 6→ 0 as t → ∞, and this means that
a non-random sequence zi →∞ and a constant δ > 0 exist such that

(23) inf
i≥1

P(ν(zi) = 0) ≥ δ .

From the tightness property of the forward renewal time process for the
input process {τ(t), t ≥ 0} defined in (1) and from (23) we have that a
constant b > 0 exists such that

inf
i≥1

P(ν(zi) = 0, τ(zi) ≤ b) ≥
δ

2
.(24)

Thus, for any i,

P(T (zi) ≤ b) ≥ P(ν(zi) = 0, τ(zi) ≤ b) ≥
δ

2
= ε .
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Hence, we have proved (11) and then T (t) does not converge in probability
to∞, as t→∞ . Therefore E0 T1 <∞ and also E0 β1 <∞ by (8), and (14)
is proved.

Consider now first regeneration period T1 in more detail. For the zero-
delayed case, finiteness T1 < ∞ w.p.1 follows from E0 T1 < ∞. Otherwise,
by using that µ(t) → ∞ w.p.1 (see (20)), we can define a random instant
t̂ = inf(t > 0 : µ(t) > 0) which is finite w.p.1. Then (potential) initial busy
period ends not later than t̂, and a regeneration occurs not later next (after
instant t̂) arrival, that is, it occurs within interval [0, t̂+ τ(t̂ )], and thus

T1 ≤ t̂+ τ(t̂ ) <∞ .

Moreover, discrete-time 1st regeneration period is also finite since

β1 ≤ N(T1) <∞,
and with that we also have proved (15) and the proof of the theorem is
finished. �

2.1. Discrete-time approach to stability of GI/G/1 queue. Now we
present a discrete-time approach to stability for the same GI/G/1 queue
and by using it we give an alternative proof for a part of Theorem 1, the
one corresponding to (14), that is, we prove:

Under assumption (12),

E0 β1 <∞ and E0 T1 <∞(25)

regardless of the initial state W0 = x.

Remark 1. The discrete-time approach generally does not allow to prove
finiteness of the 1st regeneration periods (15), that is, that

β1 <∞ w.p.1 and T1 <∞ w.p.1

unlike continuous-time approach used above.

Proof. As the basic process in this discrete-time approach, we consider the
waiting time sequence (Wn)n≥0, which is introduced in Section 1. Define
Un = Sn − τn. Note that therefore (Un)n≥0 is a sequence of i.i.d. random
variables and denote a generic variable for sequence Un as U , with distri-
bution function FU . Then, by the Lindley’s recursion (5) we have

Wn+1 = (Wn + Sn − τn)+ = (Wn + Un)+, n ≥ 0 .

Consider increments ∆n = Wn+1 −Wn . To estimate expectation E∆n on
the event {Wn ∈ dy}, we write down
(26)

E(∆n |Wn = y) = E
(

(y + U)+ − y
)

= −y P(U ≤ −y) +
∫
z>−y

zFU (dz) .
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Since by the negative drift assumption (12) we have EU = E(S − τ) ∈
(−∞, 0), we see that

−y P(U ≤ −y)→ 0 as y →∞ ,

and ∫
z>−y

z FU (dz) ↓ EU (< 0) as y →∞ .

Thus, by (26),

lim
y→∞

E(∆n |Wn = y) = EU < 0 .(27)

Note that regardless of y,

(y + U)+ − y = (y + S − τ)+ − y ≤ y + S − y = S ,

and then, by (26) again,

E(∆n |Wn = y) ≤ ES =
1
µ
<∞ for any y .

As a consequence, it is possible by using (27) to take y0 > 0 (big enough)
such that

E ∆n =E(∆n |Wn ≤ y0) P(Wn ≤ y0) + E(∆n |Wn > y0) P(Wn > y0) ≤

≤ES P(Wn ≤ y0) +
EU

2
P(Wn > y0) .(28)

Now we want to prove P− lim
n→∞

Wn 6=∞, and for that we assume that
P− lim

n→∞
Wn =∞ and will arrive to a contradiction. Indeed, if this limit is

∞, we have that for any y0 and any ε > 0, n0 exists such that

P (Wn ≤ y0) ≤ ε for any n ≥ n0 .

Take ε < µ−λ
µ+λ (that is possible by assumption (12)). Therefore, by (28) we

conclude that

EWn+1 − EWn = E ∆n ≤
ε

µ
+

1
2

(
1
µ
− 1
λ

) (1− ε) < 0 for any n ≥ n0 ,

and this implies that for any n > n0,

EWn < EWn0 ≤ E

(
n0−1∑
i=0

Si

)
+ x =

n0

µ
+ x <∞,

which contradicts the convergence Wn to infinity in probability.
By P− lim

n→∞
Wn 6=∞ we have that constants δ > 0 and T < ∞, and a

(non-random) sequence (ni)i≥1 with ni →∞ exist, such that

inf
i≥1

P(Wni ≤ T ) ≥ δ .(29)
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By (13) we can choose δ0 > 0 and δ1 > 0 such that

P(τ > S + δ0) ≥ δ1 .

Denote L = d Tδ0 e (where, for a real number x ≥ 0, dxe denotes the minimum
positive integer strictly greater than x), and fixing for a moment any i ≥ 1,
consider the event

Ai(L) def=
L−1⋂
k=0

{τni+k > Sni+k + δ0}.

By the independence of components of the event,

P(Ai(L)) ≥ δL1 .(30)

By Lindley’s recursion (5), we have that on Ai(L),

0 ≤Wni+1 =
(
Wni

−
(
τni
− Sni

))+

≤
(
Wni

− δ0
)+

0 ≤Wni+2 =
(
Wni+1 −

(
τni+1 − Sni+1

))+

≤

≤
(
Wni+1 − δ0

)+

≤
(
Wni − 2 δ0

)+

...

0 ≤Wni+L ≤ . . . ≤
(
Wni

− Lδ0
)+

≤
(
Wni

− T
)+ (

= 0 in {Wni
≤ T}

)
.

Therefore, on the (independent) events Ai(L) ∩ {Wni
≤ T} , Wni+L = 0,

that is, when customer ni+L arrives meets an empty system and regenera-
tion occurs in interval [ni, ni+L]. In other words, the residual regeneration
time at instant ni must be not greater than L. (Recall that we use discrete-
time scale counting arrivals.) As a consequence and by using (30), for any
i ≥ 1 we have

P(β(ni) ≤ L) ≥ P(Ai(L) ∩ {Wni
≤ T}) ≥ δ δL1 > 0 for any i ≥ 1 .

With ε = δ δL1 > 0, we obtain (10). Hence P− lim
n→∞

β(n) 6=∞ and thus
E0β1 < ∞. Moreover, we also have finiteness of the expected continuous-
time regeneration period T1 by Wald’s identity (8) . With that we finish
the proof of (25) (that is (14) in Theorem 1) by following the discrete-time
approach. �
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2.2. One more approach to stability of GI/G/1 queue in continu-
ous time. In this subsection, we give an alternative proof of Theorem 1.
More precisely, in the proof of Theorem 1, E0 T1 <∞ and E0 β1 <∞ follow
from (21), and T1 <∞ and β1 <∞ w.p.1 follow from (20). In this Section,
we give an alternative proof of (20) and (21). For that, let we define b(t) as
the number of customers served in interval (0, t], and b′(t) the number of
renewals in [0, t] in the zero-delayed renewal process generated by service
times, that is,

b′(t) = min { k ≥ 1 : S0 + · · ·+ Sk−1 > t } if t > 0, b′(0) = 1 .

Note that b′(·) is a non-decreasing function. Thus, b(t) ≤ b′(t) and moreover,
b(t) ≤ N(t) + ν(0−) = N(t) + o(t) as t → ∞ . By the elementary renewal
theorem,

lim
t→∞

E b′(t)
t

=
1

ES
= µ ,(31)

and by the Strong Law of the Large Numbers (SLLN) for renewal processes,

lim
t→∞

b′(t)
t

=
1

ES
= µ .(32)

Since λ < µ by the negative drift assumption (12), and by the SLLN again,

lim sup
t→∞

b(t)
t
≤ lim
t→∞

N(t)
t

=
1

E τ
= λ < µ = lim

t→∞

b′(t)
t

.

Denote

δ(t) def=
b′(t)− b(t)

t
≥ 0,

so we have seen that

(33) lim inf
t→∞

δ(t) ≥ µ− λ > 0 .

Since δ(t) ≥ 0, it then follows from Fatou’s lemma that also

lim inf
t→∞

E δ(t) ≥ µ− λ > 0 .(34)

Denote by Ft the distribution function of µ(t), that is, Ft(x) = P(µ(t) ≤ x).
A key observation using coupling is that

(35) b′(t)− b(t) ≤ b′(t)− b′(t−µ(t)) + 1 ≤st b′(µ(t)) + 1 ≤ b′(µ(t) + 1) + 1 .

Then

E δ(t) =
1
t
E(b′(t)− b(t)) ≤ 1

t

∫ t

0

(
E b′(x) + 1

)
Ft(dx).(36)

Take any (fixed) ε > 0. By (31), t0 = t0(ε) > 0 exists such that

E b′(t)
t
≤ µ+ ε for any t ≥ t0 .(37)
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With this t0 we can split the integral in (36) for any t ≥ t0 as∫ t

0

=
∫ t0

0

+
∫ t

t0

.

Obviously, ∫ t0

0

E b′(x)Ft(dx) ≤ E b′(t0) = o(t) as t→∞ .

Moreover, using (37) we obtain∫ t

t0

E b′(x)Ft(dx) =
∫ t

t0

E b′(x)
x

xFt(dx) ≤

≤ (µ+ ε)
∫ t

t0

xFt(dx) ≤ (µ+ ε) Eµ(t) .

Then, by (34),

0 < lim inf
t→∞

E δ(t) ≤ (µ+ ε) lim inf
t→∞

Eµ(t)
t

,

and hence,

lim inf
t→∞

Eµ(t)
t

> 0 ,

that is, we have proved (21).

Now we are going to prove (20). First of all, we notice that from (33)
w.p.1,

lim inf
t→∞

δ(t)
√
t =∞ ,

and by (35),

δ(t)
√
t =

b′(t)− b(t)√
t

≤st
b′(µ(t) + 1)
µ(t) + 1

· µ(t) + 1√
t

+
1√
t
.

Therefore,

(38) lim inf
t→∞

b′(µ(t) + 1)
µ(t) + 1

· µ(t) + 1√
t

=∞.

From (32) we have that for any fixed ε > 0, t1 = t1(ε) > 0 exists such that

b′(t)
t
≤ µ+ ε for any t ≥ t1 .

Furthermore we also have that
b′(t)
t
≤ b′(t1) for any 1 ≤ t < t1 .

Therefore,
b′(t)
t
≤ µ+ ε+ b′(t1) for any t ≥ 1 .
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In particular, µ(t) + 1 ≥ 1, so we have that

b′(µ(t) + 1)
µ(t) + 1

≤ µ+ ε+ b′(t1) for any t ≥ 0 .(39)

We can define a random variable finite w.p.1:

ξ
def= µ+ ε+ b′(t1) .

It now follows from (38) that

lim inf
t→∞

ξ√
t
µ(t) =∞ ,(40)

while ξ/
√
t→ 0. Hence, limt→∞ µ(t) =∞ w.p.1, and (20) is proved. �

3. Stability analysis of a multi-server GI/G/m queue

In this Section, we consider a standard multi-server GI/G/m queue with
m > 1 identical servers fed by a single queue following a FIFS non idling
service discipline. In this setting, the negative drift assumption (see (12) for
the single-server case) takes the form:

(41) ρ

(
=
λ

µ

)
< m ,

although the regeneration condition is exactly the same that for the GI/G/1
queue (see (13)):

(42) P(τ > S) > 0 .

Regeneration condition is an extra assumption now because it cannot be
deduced from the negative drift assumption (41) for m > 1 (that is an
important difference by comparing with the single-server case m = 1, for
which (13) was implied by (12) ) .

Remark 2. We prove now a result similar to Theorem 1 but we can only
obtain the finiteness of the expectations (14) and do not finiteness of the first
regeneration period (15), because unlike the single-server case, the conver-
gence µ(t)→∞ w.p.1 generally does not imply its finiteness. Nevertheless,
we will establish this finiteness later, in Section 5.3 (see Theorem 6 there),
by using another idea.

Theorem 2. Under assumptions (41) and (42), we have (14), that is,

E0 β1 <∞ and E0 T1 <∞ ,

regardless of the initial states.
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Proof. For any server k, we denote by µ(k)(t) the corresponding idle time in
the interval [0, t], and let µ(t) be the total amount of time in [0, t] that the
system is not completely full (along this time, a new customer that arrives
to the system starts service immediately, without having to wait for it), that
is,

µ(t) =
∫ t

0

I(ν(s)<m) ds .

Obviously,

µ(k)(t) ≤ µ(t) for any t ≥ 0 and any server k = 1, . . . , m

(note that for the single-server queue, both time processes, µ(1)(t) and µ(t),
coincide).

Recall that V (t) =
N(t)∑
n=1

Sn−1 is the total workload arrived to the system

in [0, t] (see (16)). We have an inequality similar to (17):

W (0−) + V (t) = tm−
m∑
k=1

µ(k)(t) +W (t) ≥ mt−mµ(t) .

Then, µ(t) ≥ t− V (t)
m + o(t) as t→∞, and by (41),

(43) lim inf
t→∞

µ(t)
t
≥ 1− lim

t→∞

V (t)
N(t)

N(t)
t

1
m

= 1− ρ

m
> 0 by (41)

(compare with (19)) . This implies (20), and (21), which in turn can be
rewritten as

lim inf
t→∞

1
t

∫ t

0

P(ν(s) < m) ds > 0

instead of (22). Then, P(ν(t) < m) 6→ 0 as t → ∞ , that is, a non-
random sequence zi →∞ and a constant δ > 0 exist such that

inf
i≥1

P(ν(zi) < m) ≥ δ .

For each server k, we introduce the (right-continuous) residual service
time process

{S(k)(t), t ≥ 0} ,
where S(k)(t) is the amount of time needed by server k to finish the service
of the customer that is handling at instant t, if any, with S(k)(t) = 0 if the
server is idle at time t . It has been proved in [26] that the residual service

time process is tight. Note that the process {
m∑
k=1

S(k)(t), t ≥ 0} is also tight
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and moreover if ν(t) < m then W (t) =
m∑
k=1

S(k)(t) (because if there is at

least one server free, it is not allowed to have customers waiting for service).
Recall that process {τ(t), t ≥ 0}, which is the forward renewal time process
for input introduced in (1), is also tight. Hence, by the tightness, a finite
constant D > 0 exists such that

inf
i≥1

P(ν(zi) < m, W (zi) ≤ D, τ(zi) ≤ D) ≥ δ

2

(compare with (24) in the single-server case). It follows from the regener-
ation condition (42) and the fact that E τ < ∞ , that finite and positive
constants δ0, δ1 and R exist such that

P(R ≥ τ > S + δ0) ≥ δ1 .

Denote L = dDδ0 e and let n(i) = min(k : tk ≥ zi) be the arrival number
of the 1st arrival after zi (that is, tn(i) is the first arrival instant after zi).
Introduce the event

Ai(L) def=
L−1⋂
j=0

{R ≥ τn(i)+j > Sn(i)+j + δ0},

and note that events {R ≥ τn(i)+j > Sn(i)+j + δ0}, j = 0, . . . , L − 1, are
independent. Denote the event

Ei
def= {ν(zi) < m, W (zi) ≤ D, τ(zi) ≤ D} ,(44)

which is independent of Ai(L) for any i. By definition, on the event
Ei ∩ Ai(L), a customer arrives which sees an empty system and thus a
regeneration occurs. Moreover, it happens in interval [zi, zi+D+LR] with
constant length D + LR and with a probability bigger or equal to

P(Ei ∩Ai(L)) ≥ P(Ei) P(Ai(L)) ≥ δ

2
δL1 ,

because P(Ai(L)) ≥ δL1 . Hence, the forward regeneration time T (zi) at
instant zi satisfies

P(T (zi) ≤ b) ≥ P(Ei ∩Ai(L)) ≥ ε for any i ≥ 1 ,

with b = D + LR and ε = δ
2 δ

L
1 , that is, we have (11).

Since instant zi is arbitrary, then we obtain P− lim
t→∞

T (t) 6=∞ , and by

(7), E0 T1 <∞, and also E0 β1 <∞ by (8). �

Now we give an alternative proof of the fact that µ(t) → ∞ w.p.1. in
the proof of Theorem 2, by following the same notations (adapted to the
multi-server setting) of Section 2.2.
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As the basic process, we consider the superposition b′(t) =
m∑
k=1

b′k(t) of m

independent (stochastically equivalent) zero-delayed renewal processes

b′k(t) = min {n ≥ 1 : S(k)
0 + · · ·+ S(k)

n > t } if t > 0 , and b′k(0) = 1 ,

generated by the (i.i.d.) service times {S(k)
n , n ≥ 0} of customers handled

by server k, for any k = 1, . . . , m . Note that b′(0) =
m∑
k=1

b′k(0) = m . As

in Section 2.2, number b(t) of customers served in (0, t] satisfies inequality
b(t) ≤ N(t) + ν(0−), and moreover b(t) ≤ b′(t). So

b′(t)− b(t) ≥ b′(t)−N(t) + o(t) as t→∞ .

Since w.p.1, by the SLLN for renewal processes, we have

lim
t→∞

b′(t)
t

= mµ(45)

(compare with (32)), then

lim inf
t→∞

b′(t)− b(t)
t

≥ mµ− λ = µ(m− ρ) > 0(46)

by the negative drift assumption (41). Again (by using coupling) we obtain
analogously to (35):

b′(t)− b(t) ≤ b′(t)−
m∑
k=1

b′k(t− µ(k)(t)) +m ≤ b′(t)−
m∑
k=1

b′k(t− µ(t)) +m=

= b′(t)− b′(t− µ(t)) +m ≤st b′(µ(t)) +m ≤ b′(µ(t) + 1) +m.

Moreover, it follows from (45) that for any ε > 0 an instant t1 = t1(ε) exists
such that

b′(µ(t) + 1)
µ(t) + 1

≤ mµ+ ε+ b′(t1) for any t ≥ 0 ,

as in (39). Taking into account (46) we have that

∞ = lim inf
t→∞

b′(t)− b(t)√
t

≤ lim inf
t→∞

ξ
µ(t) + 1√

t
,(47)

being ξ = µm+ε+ b′(t1) a random variable finite w.p.1 . This implies (40),
and therefore µ(t)→∞ w.p.1. �
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4. Extensions of the GI/G/1 queue

In this Section, we study stability of some extensions of the standard
single-serverGI/G/1 queue considered in Section 2, in the zero-delayed case.
For that, we use the discret-time approach of Section 2.1 (adapted to our
setting) to prove the finiteness of expectations E0 β1 and E0 T1 regardless of
the initial states. As it was commented in the Remark 1 there, this approach
does not allow to prove finiteness of the first regeneration periods.

4.1. The GI/G/1 queue with (partially) impatient customers. In
our first extension, we allow impatient customers in queue (that is, cus-
tomers can leave the system without have been served). More specifically,
let γn be the time that customer n may wait in the queue before to desist
and leave the system. Recall that Wn denotes the waiting time of customer
n in the queue line. Then customer n leaves the system with no service
if Wn > γn. We assume (γn)n≥0 to be i.i.d. and let γ be a generic vari-
able with the distribution of any γn, that is assumed to be > 0 w.p.1. and
independent of S.

We also introduce the “persistent rate”

p
def= P(γ =∞) , which is assumed to be in [0, 1)

because p = 1 would mean that any customer is patient, and then in fact
we would be considering again the standard GI/G/1 queue, already studied
in Section 2. On the opposite situation, p = 0, which is actually allowed,
means that all customers are impatient, and 0 < p < 1 corresponds to the
partially impatient customers scenario.

Our main (negative drift) assumption takes now the following form,

ρ <
1
p
.(48)

(Note that if p = 0, this negative drift condition always holds, if we put
1
p = ∞, and that for the limit value p = 1 we obtain (12)). Note also that
assumption (48) can be rewritten as

E τ − pES = E(τ − S I(γ=∞)) > 0 ,(49)

which in turn implies that δ0 > 0 and δ1 > 0 exist such that

P(τ > S I(γ=∞) + δ0) ≥ δ1 .(50)

Define

ε0
def= E τ − pES (> 0 by (49)) .
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Assume also that the following regeneration assumption holds: for any finite
constant T ≥ 0, constants ε(T ) > 0 and δ(T ) > 0 exist such that

inf
y≤T

P(τ > S I(γ>y) + δ(T )) ≥ ε(T ) .(51)

Note that (51) is not implied by (50). Indeed, it is possible that δ(T ) → 0
(and also ε(T ) → 0) as T → ∞ while δ0 > 0 and δ1 > 0 are fixed. So in
general we can not eliminate (51) from the analysis and we need to assume it.

As in the classical case, the workload process W = {Wn, n ≥ 0} is
Markovian and satisfies a modified Lindley’s recursion (see (5)):

Wn+1 =
(
Wn + Sn I(γn≥Wn) − τn

)+
, n ≥ 0 .(52)

If we define for any y ∈ [0, ∞)

X(y) def= S I(γ≥y) − τ ,

the modified Lindley’s recursion implies that

Wn+1 =
(
Wn +X(Wn)

)+
, n ≥ 0 ,

and we have that with

X(∞) def= S I(γ=∞) − τ , EX(∞) = −ε0 < 0 by (49) .

Theorem 3. Under assumptions (48) and (51),

E0 β1 <∞ and E0 T1 <∞ .

Proof. The proof of this result is similar to that of (25) in Section 2.1 for
the standard GI/G/1 queue, and then we do not write all details, but point
out the differences: with ∆n = Wn+1 −Wn we have that for any y,

E(∆n |Wn = y) = E
(

(y +X(y))+ − y
)

=

= −y P(X(y) ≤ −y) +
∫
z>−y

z P(X(y) ∈ dz) ,
(53)

analogously to (26) by substituting U by X(y) . Because E τ < ∞, then
y P(X(y) ≤ −y) ≤ y P(τ ≥ y) → 0 and hence, −y P(X(y) ≤ −y) → 0, as
y →∞. And moreover∫

z>−y
z P(X(y) ∈ dz) ↓ EX(∞) = −ε0 < 0 as y →∞ ,

because the family {X(y), y ≥ 0} is uniformly integrable and EX(y) →
EX(∞) <∞ . Thus, by (53) we obtain that

lim
y→∞

E(∆n |Wn = y) = −ε0 < 0(54)
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(compare with (27)). We obtain the analogous formula to (28):

E∆n ≤ ES P(Wn ≤ y0)− ε0
2

P(Wn > y0)(55)

for any y0 > 0 big enough. From that, the proof that P− lim
n→∞

Wn 6=∞

follows as in Section 2.1 (by taking ε <
ε0/2

ε0/2 + 1/µ
) , and then we have

that constants δ > 0 and T < ∞, and a (non-random) sequence (ni)i≥1

with ni →∞ exist, such that (29) holds, that is,

inf
i≥1

P(Wni
≤ T ) ≥ δ .

We can denote L def= d T
δ(T )e , where δ(T ) is given by the regeneration as-

sumption (51), and we can prove that a regeneration is attained within a
finite interval with a positive probability. More precisely, we show that
process W reaches zero state within interval [ni, ni + L] from any point
Wni

= x ∈ [0, T ] with a probability which is uniformly lower bounded over
the set by a positive constant. To do this, we first consider the sequences
of events

Ai(L) =
L−1⋂
k=0

{τni+k > Sni+k I(γni+k≥Wni+k) + δ(T )} and

Bi = {Wni ≤ T} , for i ≥ 1 .(56)

By the modified Lindley’s recursion (52), we have that on Ai(L),

0 ≤Wni+1 =
(
Wni

+ Sni
I(γni

≥Wni
) − τni

)+

≤
(
Wni

− δ(T )
)+

0 ≤Wni+2 =
(
Wni+1 + Sni+1 I(γni+1≥Wni+1 ) − τni+1

)+

≤

≤
(
Wni+1 − δ(T )

)+

≤
(
Wni

− 2 δ(T )
)+

...

0 ≤Wni+L ≤ . . . ≤
(
Wni

− Lδ(T )
)+

≤
(
Wni

− T
)+ (

= 0 on B(i)
)
,

(57)

that is Wni+L = 0 on the events A(i) ∩ B(i). Therefore, when customer
ni+L arrives he meets an empty system and regeneration occurs in interval
[ni, ni + L].
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By the independence of the events whose intersection is Ai(L), and by
(51) we have that

P
(
Ai(L) |Bi) =

L−1∏
k=0

P(τni+k > Sni+k I(γni+k≥Wni+k) + δ(T ) |Wni ≤ T
)
≥

≥ (ε(T ))L,

because by (57),

Wni+k ≤
(
Wni

− k δ(T )
)+

≤Wni
for any k = 0, . . . , L− 1 ,

and then, if Wni
≤ T, we have that Wni+k ≤ T . As a consequence,

P(Ai(L) ∩ Bi) = P(Ai(L) |Bi) P(Bi) ≥ δ (ε(T ))L for any i ≥ 1 ,

and then,

P(β(ni) ≤ L) ≥ P(A(i) ∩ B(i)) ≥ δ (ε(T ))L > 0 .

With ε = δ (ε(T ))L > 0, we obtain (10) and from it, that E0 β1 < ∞, and
also that E0 T1 <∞ by Wald’s identity (8) . �

4.2. A state-dependent G/G/1 queue. Now we consider an extension
of the single-server GI/G/1 queue with impatient customers considered in
Section 4.1. We assume that on any event {Wn = y}, service time Sn
and interarrival time τn are distributed as random variables S(y) and τ(y),
respectively, depending on y, with given (conditional) distributions. That is
the state-dependent single-server GI/G/1 queue that we treat in this section.

By comparing with the impatient customers model of the previous sec-
tion, there τ(y) = τ did not depend in fact on y, and S(y) = S I(γ≥y),
which depend on y through the random variable γ. Denote now for any
y ∈ [0, ∞),

X(y) def= S(y)− τ(y)

and assume that the following (non-degeneration) conditions hold:

sup
y≥0

ES(y) <∞ ,(58)

sup
y≥0

E τ(y) <∞ .(59)

We also assume that the negative drift condition holds. This condition now
takes the form:

lim sup
y→∞

EX(y) < 0 ,(60)
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and also assume the regeneration condition: for any finite constant T ≥ 0,
constants ε(T ) > 0 and δ(T ) > 0 exist such that

inf
y≤T

P(τ(y) > S(y) + δ(T )) ≥ ε(T ) .(61)

Define ε0
def= − lim sup

y→∞
EX(y) (> 0) .

In this setting, analogously to Theorem 3 in the previous Section, we
obtain the following statement.

Theorem 4. Under assumptions (58)–(61),

E0 β1 <∞ and E0 T1 <∞ .

Proof. First of all we note that (58) and (59) imply

−∞ < inf
y≥0

EX(y) ≤ sup
y≥0

EX(y) <∞.

We obtain (54) as in the proof of Theorem 3, and instead of (55), we have:

E ∆n ≤ sup
y≥0

ES(y) P(Wn ≤ y0)− ε0
2

P(Wn > y0)

for any y0 > 0 big enough. As in the proof of Theorem 3, we have that
constants δ > 0 and T < ∞, and a (non-random) sequence (ni)i≥1 with
ni →∞ exist, such that

inf
i≥1

P(Wni
≤ T ) ≥ δ ,

and with L def= d T
δ(T )e , where δ(T ) is given by the regeneration assumption,

it can be proved that a regeneration is attained within a finite interval with
a positive probability. In fact, it can be shown similarly to Theorem 3 that
process W reaches zero state in [ni, ni + L] from any point Wni

= y ∈
[0, T ] with a probability which is uniformly lower bounded over the set by
a positive constant, by considering now (instead of (56)) the sequence of
events

Ai(L) =
L−1⋂
k=0

{τni+k(Wni+k) > Sni+k(Wni+k) + δ(T )} and

Bi = {Wni ≤ T} , as before, for any i ≥ 1 ,

and by using the modified Lindley’s recursion

Wn+1 =
(
Wn + Sn(Wn)− τn(Wn)

)+
, n ≥ 0 .

From that we have (10) and then E0 β1 <∞ .
We cannot use Wald’s identity (8) to obtain the finiteness of E0 T1 from

that of E0 β1. Nevertheless, denote supy E τ(y) = d (< ∞ by assumption
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(59)), and note that β1 is a stopping time (with respect to sequence (τn)n≥0)
and that T1 = τ0 + · · ·+ τβ1−1. Then we have

(62) E0 T1 =
∞∑
k=0

E(τk; β1 > k) =
∞∑
k=0

EτkP(β1 > k) ≤ dE0 β1 <∞ . �

5. Extensions of the multi-server GI/G/m queue

5.1. The multi-server GI/G/m queue with non-identical servers.
Consider a multi-server GI/G/m queue with m > 1 servers as in Section 3,
but now with non-identical servers. For any i = 1, . . . , m , service times
{S(i)

n , n ≥ 0} are assumed to be i.i.d, being S(i) a generic random variable
whose distribution is that of any S(i)

n , n ≥ 0 , assumed to be > 0 w.p.1, and
with finite expectation

ES(i)
n =

1
µ(i)
∈ (0, ∞) .

Random variables S(i) and S(j) are allowed to have different distributions

for i 6= j , with i, j ∈ {1, . . . , m} . Denote µ̃ def=
m∑
i=1

µ(i) . Using the same

other assumptions and notations as in Section 3, we assume negative drift
condition, that takes the form:

λ

µ̃
< 1 .(63)

Note that in the identical-servers scenario of Section 3, µ(i) = µ(j) = µ for
any i, j, so µ̃ = mµ, and therefore (63) becomes (41). Moreover, we assume
the regeneration condition:

P(τ > S(i)) > 0 for all i = 1, . . . , m .(64)

As in the standard (identical-servers) GI/G/m queue (with m > 1) con-
sidered in Section 3, regeneration condition is an extra assumption that
cannot be deduced from (63).

Analogously to Theorem 2 for the identical-servers setting, we can prove
the next result:

Theorem 5. Under assumptions (63) and (64), we have (14), that is,

E0 β1 <∞ and E0 T1 <∞ ,

regardless of the initial states.

Proof. Denote by Q the original GI/G/m queue, and consider also a mod-
ified queue Q∗ with the same initial state, the same input, but in which
an arriving customer goes to server i with probability p(i) = µ(i)/µ̃ , for
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any i = 1, . . . , m . In the sequel, we will put index ∗ on the quantities cor-
responding to the system Q∗, and index (i) on that corresponding to any
server i. Define

λ∗(i)
def= λ p(i), ρ∗(i)

def=
λ∗(i)

µ(i)
.

Therefore, (63) implies that

(65) ρ∗(i) < 1 for all i = 1, . . . , m .

As a consequence, by Theorem 1, the renewal processes of regenerations in
every single-server (which are standard GI/G/1 queues) of system Q∗ are
positive recurrent. By (14) and (15) we have that

(66) E0 T
∗(i)
1 <∞ and T

∗(i)
1 <∞ w.p.1 for any i = 1, . . . , m .

Let V (i)(t) be the total workload arrived to server i (in queue Q) in
the interval [0, t], W (i)(t) be the residual workload for server i at instant
t, and µ(i)(t) be the idle time for server i in interval [0, t] . For queue Q∗

the corresponding processes are denoted by V ∗(i)(t), W ∗(i)(t) and µ∗(i)(t),
respectively.

First of all, note that for each t ≥ 0 , a server i(t) exists such that
V (i(t))(t) ≤ V ∗(i(t))(t) (because if V (i)(t) > V ∗(i)(t) for any i = 1, . . . , m ,
we will have that N∗(t) > N(t) , that is a contradiction with the fact that
the total arrivals to both systems, Q and Q∗, are equal). With the notations
used in the proof of Theorem 2 (Section 3), we have that

µ(i)(t) ≤ µ(t) =
∫ t

0

I(ν(s)<m) ds for any i = 1, . . . , m and any t ≥ 0 .

Since W (i)(0−) = W ∗(i)(0−) for all i = 1, . . . , m , and we have that

W (i)(0−) + V (i)(t) = t− µ(i)(t) +W (i)(t)

and
W ∗(i)(0−) + V ∗(i)(t) = t− µ∗(i)(t) +W ∗(i)(t) ,

as a consequence we obtain that for any t ≥ 0, for server i(t),

µ∗(i(t))(t)−W ∗(i(t))(t) ≤ µ(i(t))(t)−W (i(t))(t) ≤ µ(i(t))(t)

and thus,

(67) µ(t) ≥ µ(i(t))(t) ≥ min
1≤i≤m

µ∗(i)(t)−
m∑
i=1

W ∗(i)(t) for any t ≥ 0 .

It now follows that in the collection of single-server GI/G/1 queues Q∗,
all waiting time processes are tight, and moreover, positive recurrent, and
in particular, W ∗(i)(t) = o(t), t → ∞. The latter result one can also be
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obtained from the following observation: let T ∗(i)(t) be the forward regen-
eration time for server i (in system Q∗) at instant t; then it follows from (66)
that T ∗(i)(t) = o(t) as t→∞ w.p.1 (see [32]). Because W ∗(i)(t) ≤ T ∗(i)(t) ,
the desired result follows. Now as in (18) we obtain that w.p.1, as t→∞,

(68) lim inf
t→∞

µ∗(i)(t)
t

≥ 1− ρ∗(i) > 0 for any i = 1, . . . , m , by (65) .

Hence, (67) implies

lim inf
t→∞

µ(t)
t
≥ min

1≤i≤m
lim inf
t→∞

µ∗(i)(t)
t

> 0 .

It now easily follows, as in the proof of Theorem 2 from (43), that

E0 β1 <∞ and E0 T1 <∞ . �

Remark 3. Note that we indeed need to impose regeneration condition (64)
to finish the proof from (68), as in the proof of Theorem 2, unlike modified
system Q∗, where such a kind of condition holds automatically for every
server i from the negative drift assumption (65).

5.2. A multi-server R/G/m queue with regenerative input. In this
section we consider a multi-server R/G/m queue with m ≥ 1 identical
servers and a classical regenerative (zero-delayed) input with arrival instants
(tn)n≥0 (t0 = 0), interarrival times (τn = tn+1 − tn)n≥0 , and regeneration
points (αn)n≥1 , 1 ≤ α1 < α2 < · · · ,which form an imbedded renewal
process. That is, groups

(τ0, . . . , τα1−1), (τα1 , . . . , τα2−1), . . . , (ταn
, . . . , ταn+1−1), . . .

are i.i.d., and regeneration periods αn+1 − αn, for n ≥ 1, and α1 (since we
are in the zero-delayed case) are i.i.d. and for any n ≥ 1, E0 (αn+1 − αn) =
E0 α1 <∞ .

Note that this model is a generalization of the multi-server GI/G/m
queue considered in Section 3, which corresponds to the particular case
α1 ≡ 1 (in which, therefore, the interarrival times τn are moreover indepen-
dent random variables).

The renewal process of regeneration instants for the input process is
(Γn)n≥0, with

Γn
def= tαn

for any n ≥ 1 , and Γ0 = 0 .

Assume that α = (αn)n≥1 and (Γn)n≥0 are positive recurrent, that is,

α1 <∞ w.p.1 , E0 α1 <∞;(69)

Γ1 <∞ w.p.1 , E0 Γ1 <∞.(70)
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The notations E0 (as before) and P0 (below) relate to the zero delayed case
(t0 = 0) in which the first input regeneration period α1 is distributed as
others.

Assume the next regeneration condition:

P0(τ0 > S, α1 = 1) > 0,(71)

where S is a generic random variable with the distribution of any service
time, assumed to be > 0 w.p.1, and with expectation 1/µ ∈ (0, ∞) .

The renewal processes of regenerations are now defined as:

βn+1
def= min {αk > βn : ναk

= 0 } for any n ≥ 0 , β0
def= 0

(instead of (2)), and

Tn+1
def= tβn+1

(
= min{Γk(= tαk

) > Tn : ναk
= 0}

)
for any n ≥ 0,

T0
def= t0 .

Note that these definitions are obtained by substituting {k ≥ 1} by {αk,
k ≥ 1} in (2) and (3), respectively.

The input rate and traffic intensity are defined as

λ =
E0 α1

E0 Γ1
and ρ =

λ

µ
, respectively .

The negative drift condition is, as for the standard GI/G/m queue,

ρ < m .(72)

Now we can establish the following result:

Theorem 6. Suppose that assumptions (69), (70), (71) and (72) hold.
Then,

E0 β1 <∞ and E0 T1 <∞ ,

regardless of the initial states.

Proof. The proof is similar to that of Theorem 2 in Section 3. We only
outline the differences: instead of process {τ(t), t ≥ 0} defined in (1),
we use here the forward regeneration time process for the input process,
{γ(t), t ≥ 0}, defined by

γ(t) def= min {Γk − t : Γk − t ≥ 0 } ,

and let for any t ≥ 0 ,

k(t) def= min { k : Γk ≥ t } (that is, γ(t) = Γk(t) − t (≥ 0) ) .
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By the positive recurrence of the process of regenerations of input process
(assumption (70)), the process {γ(t), t ≥ 0} is tight. Define the increments
Vn

def= V (Γn+1)− V (Γn), n ≥ 0, of the cumulative process of arrived work-
load to the system {V (t), t ≥ 0} (see (16) for definition), and note that

V0 = V (Γ1) = V (tα1) =
α1+1∑
n=1

Sn−1 .

Therefore,

E0 V1 =
E0 α1 + 1

µ
<∞ .

It follows that the process {∆(t) def= V (Γk(t)) − V (t), t ≥ 0} is also tight
(see [32]), and we can introduce here similarly to (44), the events

Ei
def= {ν(zi) < m, ∆(zi) ≤ d, W (zi) ≤ D, γ(zi) ≤ D} ,

where D and d are some positive constants, and (zi)i≥1 is a non-random

sequence such that zi → ∞ , which verify that inf
i≥1

P
(
Ei
)
≥ δ

2
for some

δ > 0 .
By the regeneration condition (71), positive constants R, δ1 and δ0 exist

such that

P0

(
R ≥ τ0 > S + δ0, α1 = 1

)
≥ δ1 .(73)

We call a customer n regenerative if n = αr for some r ≥ 1 . Let r(i) be
the next (after instant zi) regenerative customer, in particular then

tr(i) = zi + γ(zi) .

Thus, on the event Ei , regenerative customer r(i) arrives to the system
in the interval [zi, zi + D], and the residual workload upon his arrival is
W (r(i)) ≤ d+D , and this occurs with probability ≥ δ

2 , for any i ≥ 1 .
Define L = d(d+D)/δ0e, and consider the event

Ai(L) def=
L−1⋂
j=0

{
R ≥ τr(i)+j > Sr(i)+j + δ0, αk(i)+j = 1

}
.(74)

Obviously, P0 (Ai(L)) ≥ δL1 and it is easy to see that on the event Ei∩Ai(L),
a regenerative customer arrives in the interval [zi, zi + D + LR] and finds

an empty server, and this happens with probability ≥ δ

2
δL1 . Thus, for any

i ≥ 1 ,

P0 (T (zi) ≤ b) ≥ ε , with b = D + LR and ε =
δ

2
δL1 .
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Therefore, E0 T1 <∞. Taking into account that T1 = tβ1 (= tα`
for some `),

and that

tα`
= (τ0 + · · ·+ τα1−1) + (τα1 + · · ·+ τα2−1) + · · ·+ (τα`−1 + · · ·+ τα`−1) ,

by Wald’s identity we obtain ET1 = E0`E0Γ1 <∞. Because

β1 = α` = α1 + (α2 − α1) + · · ·+ (α` − α`−1),

we have then E0 β1 = E0 `E0 α1 <∞, and the proof is complete. �

5.3. Stability analysis in the delayed case for the standard GI/G/m
queue and an application. In this section, we extend stability analysis
to the delayed case for a class of queueing models. More precisely, we show
how to establish finiteness of the first regeneration periods β1 and T1 under
the same negative drift and regeneration assumptions which have been used
above to prove finiteness of the mean standard regeneration periods (E0 β1

and E0 T1).

As a basic model we consider the standard GI/G/m queue with m ≥ 1
servers, but this approach holds also for some other queues, as we will see
in the application. First of all we recall that Theorem 2 (Section 3) says
that under the negative drift assumption ρ < m (41) and the regeneration
condition P(τ > S) > 0 (42), E0 β1 < ∞ and E0 T1 < ∞. In its proof it is
showed that w.p.1,

lim inf
t→∞

µ(t)
t
≥ δ0 ,(75)

for some δ0 > 0 ( δ0 = 1− ρ
m in (43)) , with µ(t) =

∫ t

0

I(ν(s)<m) ds the total

amount of time in [0, t] that there is at least one free server in the system.
This implies that (see (20))

lim
t→∞

µ(t) =∞.(76)

Remark 2 (in Section 3) attract our attention to the fact that from (76)
it is not possible to deduce finiteness of the first regeneration periods (for
the multi-server queue) by following the same reasoning that in the proof
of Theorem 1 for the single-server queue. Now we use another approach to
show this finiteness, whose key element is the finiteness of the number of
instants the basic process hits any (fixed) compact set during a regeneration
period.

Theorem 7. Under assumptions (41) and (42), we have (15), that is,

β1 <∞ w.p.1 and T1 <∞ w.p.1 ,

regardless of the initial states.
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Proof. For any t ≥ 0, let S(t) def= (S(1)(t), . . . , S(m)(t)) (recall that in the
proof of Theorem 2 we defined S(k)(t) as the residual service time for server
k at instant t, that is, the remaining amount of time needed to finish the
service of the customer that is handling at instant t). As the basic pro-
cess for the queue we introduce the process Z = {Zt, t ≥ 0}, defined
by Z(t) def= (ν(t), S(t)) , and consider the embedded process (Zn)n≥0 with

Zn
def= (νn, S(t−n )). (Recall that νn was defined as ν(t−n ).)

We split the proof into two steps. Firstly we will show that the number of
arrivals within the interval [0, t] which see the basic process Z in a compact
set B, increases to infinity as t→∞. In the second step, we will show that
the number of visits to the set B by the process (Zn)n≥0 within the first
regeneration period [0, β1) is finite w.p.1 for any initial state. From these
facts, it is immediate to see that the total number of regeneration cycles
cannot be less than two, and thus, β1 < ∞ w.p.1. Moreover, recall that
T1 = t0 + τ0 + · · · + τβ1−1; then, from the finiteness of β1, it also follows
that T1 <∞ w.p.1.

Step 1: It follows from [15] that fixed δ0 > 0 (the one given by (75)),
M = M(δ0) > 0 exists such that if we define

BM
def= [0,M ]× · · · × [0,M ] ∈ Rm+ ,

we have that

lim inf
t→∞

1
t

∫ t

0

I(S(u)∈BM ) du ≥ 1− δ0
2
.(77)

Define B def= {0, . . . , m − 1} × BM . Then, from (75) and (77) it is easy to
obtain that

lim inf
t→∞

1
t

∫ t

0

I(Z(u)∈B) du ≥
δ0
2
.(78)

Let u(0) = 0 and define for any n ≥ 1 ,

u(n) def= min { k > u(n− 1) : Zk ∈ B } .
Then (tu(n))n≥1 are the arrival instants such that Zu(n) ∈ B (when the
customer u(n) meets the process Z in the set B).

Define the number G0(t) of arrivals within interval (t0, t], for t > t0,
which see the process Z in the set B, that is

G0(t) = #{n ≥ 1 : tu(n) ≤ t} .
Then

(79)
∫ t

0

I(Z(u)∈B) du ≤ t0 +
(
G0(t) + 1

)
( max
0≤n≤N(t)−1

τn) ,
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where, recall, N(t) denotes the number of arrivals in the interval [0, t] (in-
cluding t0). Note that possible first period [0, t0] (provided Z(0) ∈ B) is
included in the first right hand side term.

By assumption, Eτ <∞, and it is known (see for instance, [32]) that in
this case

(80) max
0≤n≤N(t)−1

τn = o(t) w.p.1 as t→∞ .

It now follows from (78)-(80) that G0(t) → ∞ as t → ∞ . Therefore, the
number of arrivals within [0, t] which see Z in B goes to infinity as t→∞ .

Step 2: Fixed the compact set B introduced in the previous step, we
know that constants ε > 0 and L < ∞ exist (both depending on B) such
that

inf
z∈B

Pz(β1 ≤ L) ≥ ε .(81)

For any fixed initial state z ∈ (N ∪ {0})× Rm+ , we obtain from (81) that

1 ≥
∑
k≥0

Pz(ZkL ∈ B, k L < β1 ≤ (k + 1)L) =

=
∑
k≥0

Pz(β1 ≤ (k + 1)L |Zk L ∈ B, β1 > kL) P(Zk L ∈ B, β1 > kL) ≥

≥ ε
∑
k≥0

Pz(Zk L ∈ B, β1 > kL) .

By analogy, we have for ` = 0, . . . , L− 1,

1 ≥ ε
∑
k≥0

Pz(Zk L+` ∈ B, β1 > kL+ `) .

Summing up all inequalities varying `, we obtain the following upper bound
(by taking n = K L+ `):∑

n≥0

Pz(Zn ∈ B, β1 > n) = Ez
( ∞∑
n=0

I(β1>n,Zn∈B)

)
=

= Ez
( β1−1∑
n=0

I(Zn∈B)

)
≤ L

ε
<∞ ,

(82)

which is independent of initial state z. Let D def=
β1−1∑
n=0

I(Zn∈B), which is

the number of visits to the set B by the process (Zn)n≥0 within the first
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regeneration period [0, β1). We have just seen that regardless of initial
state, z, EzD <∞ and then,

Pz (D <∞) = 1 for any initial state z . �

Application. Finally we show how this approach allows to simplify con-
siderably some steps on the study of stability analysis of the well-known
multi-server GI/G/m/K queue with a finite buffer K. Assume the negative
drift assumption ρ < m (41) and the regeneration condition P(τ > S) > 0
(42). We show that the renewal process of regenerations for this queue
(when arrivals see an empty system) is positive recurrent for any initial
state. Obviously,

max
n

νn ≤ K +m and W (t) ≤st
K∑
k=1

Sk +
m∑
i=1

S(i)(t) ,

and the workload process is tight by the tightness of residual service time
(see [26]). So previous analysis allows us to conclude that mean regeneration
period both for continuous- and discrete-time renewal processes are finite
in the zero-delayed case, that is,

E0 T1 <∞ and E0 β1 <∞ .(83)

As to the first regeneration period β1, we introduce the (tight) process
(Zn)n≥0 defined by Zn

def= (νn, Wn) . Analogously to (82) we have that for
any compact set B ,

Ez
( ∞∑
n=0

I(β1>n,Zn∈B)

)
<∞ ,

for any initial state z . Hence, Pz (β1 > n, Zn ∈ B)→ 0 as n→∞. But

Pz (β1 > n) = Pz (β1 > n, Zn ∈ B) + Pz (β1 > n, Zn 6∈ B) ,(84)

and it follows from the tightness of the process (Zn)n≥0 that the probability
Pz (β1 > n, Zn /∈ B) can be done arbitrarily small for the compact set
B = [0, K +m]× [0, D], with a constant D > 0 large enough. Hence,

Pz (β1 > n)→ 0 as n→∞ ,

for any initial state z, that is, β1 < ∞ w.p.1. (and hence also T1 < ∞
w.p.1.)
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