
LARGE DEVIATION FOR BSDE WITH
SUBDIFFERENTIAL OPERATOR

E. H. ESSAKY 1

Abstract. In this paper we prove that the solution of a backward
stochastic differential equation, which involves a subdifferential op-
erator and associated to a family of reflecting diffusion processes,
converges to the solution of a deterministic backward equation and
satisfies a large deviation principle.

1. Introduction

Let Xs,x,ε be the diffusion process that is the unique solution of the
stochastic differential equation

(1) Xs,x,ε
t = x +

∫ t

s

b(Xs,x,ε
r )dr +

√
ε

∫ t

s

σ(Xs,x,ε
r )dBr, 0 ≤ s ≤ t ≤ T,

where b : IRd −→ IRd is a uniformly Lipschitz continuous function, all
the elements of the diffusion matrix σ are bounded, uniformly lipschitz
continuous functions, and B is a standard Brownian motion in IRd. The
existence and uniqueness of the strong solution Xs,x,ε of (1) is standard
(see, for example, see Dembo and Zeitouni [4]). It is known, thanks to the
works of Freidlin and Wentzell [7], that Xs,x,ε converges in probability, as
ε goes to 0, to the solution χs,x of the following deterministic equation

(2) χs,x
t = x +

∫ t

s

b(χs,x
r )dr, 0 ≤ s ≤ t ≤ T,

and satisfies a large deviation principle. This result has been generalized
recently by Rainero [15] to the case of backward stochastic differential equa-
tion (BSDE for short), related to the family of diffusion processes {Xs,x,ε},
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of the form

(3) Y s,x,ε
t = h(Xs,x,ε

T ) +
∫ T

t

f(r,Xs,x,ε
r , Y s,x,ε

r , Zs,x,ε
r )dr −

∫ T

t

Zs,x,ε
r dBr,

0 ≤ s ≤ t ≤ T,

where h and f are a given functions and satisfy some appropriate assump-
tions. The author has proved that the solution (Y s,ε, Zs,ε) of equation (3)
converges, as ε goes to 0, to (Y s,x, 0) solution of the following backward
deterministic equation

Y s,x
t = h(χs,x

T ) +
∫ T

t

f(r, χs,x
r , Y s,x

r , 0)dr, 0 ≤ s ≤ t ≤ T,

and satisfies a large deviation principle.
Backward stochastic differential equations of type (3) have been first in-

troduced by Pardoux and Peng [12]. A solution for such equation is a couple
of adapted processes (Y,Z) with values in IRk × IRk×d which mainly satis-
fies equation (3). The aim of Pardoux and Peng was to give a probabilistic
interpretation of a solution of second order quasi-linear partial differential
equation. Since then, those equations have been intensively investigated
due to their connections with financial mathematics, optimal control and
stochastic game, non-linear PDEs and homogenization (see, for example,
[5, 6, 8, 9, 14, 12, 2, 3, 10, 1] and the references therein).

In this paper, we are interested to the system of forward-backward sto-
chastic differential equations
(4)



Xs,x,ε
t =

= x +
∫ t

s

b(Xs,x,ε
r )dr+

√
ε

∫ t

s

σ(Xs,x,ε
r )dBr+ρs,x,ε

t −ρs,x,ε
s , 0≤s≤1≤T,

ρs,x,ε
t =

∫ t

0

∇ψ(Xs,x,ε
r )d|ρs,x,ε|r, |ρs,x,ε|t =

∫ t

0

1{Xs,x,ε
r ∈∂Θ}d|ρs,x,ε|r,

(5)



Y s,x,ε
t =

= h(Xs,x,ε
T )+

∫ T

t

f(r,Xs,x,ε
r , Y s,x,ε

r , Zs,x,ε
r )dr−

∫ T

t

Zs,x,ε
r dBr−

∫ T

t

Us,x,ε
r dr

(Y s,x,ε
t , Us,x,ε

t ) ∈ ∂Π, and IE

∫ T

0

Π(Y s,x,ε
r )dr < +∞,

where ψ is C2
b (IRd) function and ρ is a bounded variation process such that

ρ0 = 0, Π is a proper lower semicontinuous convex function and ∂Π is
a subdifferntial operator. Equations of type (5) have been introduced by
Pardoux and Rascanu [13]. A solution of such equations is a triple of process
(Y, Z, U) with values in IRk×IRk×d×IRk and satisfies equation (5). Our aim
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is to prove that the solution (Xs,x,ε, ρs,x,ε, Y s,x,ε, Zs,x,ε, Us,x,ε) of system
(4)-(5) converges, as ε goes to 0, to the solution (χs,x, ρs,x, Y s,x, Zs,x, Us,x)
of the following system of forward-backward deterministic equation





χs,x
t = x +

∫ t

s

b(χs,x
r )dr + ρs,x

t − ρs,x
s

ρs,x
t =

∫ t

0
∇ψ(χs,x

r )d|ρs,x|r, |ρs,x|t =
∫ t

0

1{χs,x
r ∈∂Θ}d|ρs,x|r

Y s,x
t = h(χs,x

T ) +
∫ T

t

f(r, χs,x
r , Y s,x

r , 0)dr −
∫ T

t

Us,x
r dr

(Y s,x
t , Us,x

t ) ∈ ∂Π, and IE

∫ T

0

Π(Y s,x
r )dr < +∞,

and that Y s,x,ε satisfies a large deviation principle. Our paper is, in fact, a
generalization of the two works cited before.

2. Assumptions and problem formulation

Let (Ω,F , (Ft)t≤1)) be a stochastic basis such that F0 contains all P -null
sets of F , Ft+ =

⋂
ε>0

Ft+ε = Ft, ∀t ≤ 1, and suppose that the filtration is

generated by a d-dimensional Brownian motion (Bt)t≤1.
On the other hand, let
• Θ be an open connected bounded subset of IRd, which is such that for a
function ψ ∈ C2

b (IRd), Θ = {ψ > 0}, ∂Θ = {ψ = 0}, and | ∇ψ(x) |= 1,
x ∈ ∂Θ. Note that at any boundary point x ∈ ∂Θ, ∇ψ(x) is a unit normal
vector to the boundary, pointing towards the interior of Θ. The above
assumptions imply that there exists a constant δ > 0 such that for all
x ∈ ∂Θ, x′ ∈ Θ

(6) 2〈x′ − x,∇ψ(x)〉+ δ|x− x′|2 ≥ 0.

• b : Θ −→ IRd, σ : Θ −→ IRd×d be functions such that :
(A1) There exists a constant C > 0 such that

|b(x)|+ |σ(x)| ≤ C, ∀x ∈ Θ

|b(x)− b(x
′
)|+ |σ(x)− σ(x

′
)| ≤ C|x− x

′ |,∀x, x′ ∈ Θ.

(A2) The matrix a = σσ∗ is uniformly elliptic, that is, there exists a con-
stant γ > 0 such that

a(x) ≥ γ|x|2, ∀x ∈ Θ.

• h ∈ C(Θ; IRk), f ∈ C([0, 1]×Θ× IRk × IRk×d; IRk) be functions satisfying
the following assumptions :
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(A3) There exist constants α ∈ IR, K > 0, c > 0, µ > 0 such that

(i)∀t, ∀x, ∀y, ∀(z, z′),
| f(t, x, y, z)− f(t, x′, y, z′) |≤ µ(| z − z′ | + | x− x′ |)

(ii)∀t, ∀x, ∀z, ∀(y, y′),
〈y − y′, f(t, x, y, z)− f(t, x, y′, z)〉 ≤ α | y − y′ |2

(iii)∀x,∀x′, |h(x)− h(x′)| ≤ c|x− x′|,
(vi)∀t,∀x, ∀y, ∀z, | f(t, x, y, z) |≤ K(1+ | y | + | z |)
(v)∀x, |h(x)| ≤ K(1 + |x|).

• Π : IRk →]−∞,+∞], be a proper lower semicontinuous convex function
such that
(A4) There exists a constant C > 0 such that

Π(h(x)) ≤ C(1 + |x|), ∀x ∈ Θ,

Π(y) ≥ Π(0) = 0, ∀y ∈ IRk.

We need also the following notations :
• C[0, T ] denotes the space of continuous functions Φ : [0, T ] −→ IRd such
that f(0) ∈ Θ.
• C[0, T ] denotes the space of continuous functions Ψ : [0, T ] −→ Θ.
• V[0, T ] denotes the space of functions ρ : [0, T ] −→ IRd with bounded
variation and ρ(0) = 0.
For ρ ∈ V[0, T ], |ρ|t denotes the total variation of ρ in the interval [0, t].
Consider the system of forward-backward stochastic differential equations
(7)



Xs,x,ε
t =

= x+
∫ t

s

b(Xs,x,ε
r )dr+

√
ε

∫ t

s

σ(Xs,x,ε
r )dBr+ρs,x,ε

t −ρs,x,ε
s , 0 ≤ s ≤ t ≤ T,

ρs,x,ε
t =

∫ t

0
∇ψ(Xs,x,ε

r )d|ρs,x,ε|r, |ρs,x,ε|t =
∫ t

0

1{Xs,x,ε
r ∈∂Θ}d|ρs,x,ε|r

(8)



Y s,x,ε
t =

= h(Xs,x,ε
T )+

∫ T

t

f(r,Xs,x,ε
r , Y s,x,ε

r , Zs,x,ε
r )dr−

∫ T

t

Zs,x,ε
r dBr−

∫ T

t

Us,x,ε
r dr

(Y s,x,ε
t , Us,x,ε

t ) ∈ ∂Π, and IE

∫ T

0

Π(Y s,x,ε
r )dr < +∞,

where

∂Π(u) = {u∗ ∈ IRk : 〈u∗, v − u〉+ Π(u) ≤ Π(v),∀v ∈ IRk}
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Note that the subdifferential operator ∂Π : IRk −→ 2IRk

is a maximal
monotone operator, that is

〈u′ − v′, u− v〉 ≥ 0. ∀(u, u′), (v, v′) ∈ ∂Π.

The existence and uniqueness of the strong solution Xs,x,ε, under assump-
tion (A1), for equation (7) is standard (see, for example, Lions and Sznit-
man [11] or Saisho [16]). It follows also from the result of Pardoux and
Rascanu [13] that, under assumptions (A3) and (A4), there exists a unique
triple (Y s,x,ε, Zs,x,ε, Us,x,ε) for equation (8).
The objective of this work is to prove that the solution of forward-backward
stochastic differential equation (7)-(8) converges and satisfies a large devia-
tion principle.

For the sake of simplicity, we put, in general, s = 0. Of course, the
results hold true for all s ∈ [0, T ]. We denote then by Xx,ε := X0,x,ε,
Y 0,x,ε := Y x,ε,...

3. Large deviation principle and convergence of the solution
of the forward equation

Before giving a large deviation principle for the reflecting diffusion process
Xs,x,ε, we recall the following

Definition 3.1. The family of processes (Xt, 0 ≤ t ≤ T ) which depends
on a parameter ε is said to satisfy a large deviation principle with a rate
function S(Ψ) if the following condition hold for every Borel set A ⊆ C[0, T ]

1. lim sup
ε→0

ε ln(P (Xε ∈ A)) ≤ inf
Ψ∈A

S(Ψ)

2. lim inf
ε→0

ε ln(P (Xε ∈ A)) ≥ − inf
Ψ∈Å

S(Ψ),

where A is the closure of A and Å the interior of A.

Let Φ ∈ C[0, T ], Ψ ∈ C[0, T ], ρ ∈ V[0, T ] such that

(9)





Ψ(t) = Φ(t) + ρ(t),

ρt =
∫ t

0
∇ψ(Ψr)d|ρ|r, |ρ|t =

∫ t

0

1{Ψ(r)∈∂Θ}d|ρ|r

For Φ and Ψ defined as above, let Ψ = F (Φ). It is known from Lions and
Sznitman [11] or Saisho [16] that F is continuous. We have the following
theorem
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Theorem 3.1. The process Xx,ε given by equation (7) satisfies a large
deviation principle with rate function S(Ψ) defined by

S(Ψ) =
1
2

inf
Φ∈F−1(Ψ)

∫ T

0

(Φ̇(s)− b(Ψ(s)))∗a−1(Ψ(s))(Φ̇(s)− b(Ψ(s)))ds,

with the fact that S(Ψ) = ∞ if F−1(ψ) = ∅ or Φ is not absolutely continu-
ous.

Proof. The result follows by using the contraction principle (see Dembo
and Zeitouni [4]) and a large deviation principle for diffusion processes (see
Stroock [18] or [4], see also Sheu [17] for other assumptions on Θ).

Remark 3.1. The function S(Ψ) has the following properties
1. S(Ψ) is lower semi-continuous in Ψ.
2. If S(Ψ) < ∞, then there exists Φ ∈ C[0, T ] such that F (Φ) = Ψ and

S(Ψ) =
1
2

∫ T

0

(Φ̇(s)− b(Ψ(s)))∗a−1(Ψ(s))(Φ̇(s)− b(Ψ(s)))ds.

Let (χs,x, ρs,x) be the solution of the following deterministic equation





χs,x
t = x +

∫ t

s

b(χs,x
r )dr + ρs,x

t − ρs,x
s

ρs,x
t =

∫ t

0
∇ψ(χs,x

r )d|ρs,x|r, |ρs,x|t =
∫ t

0

1{χs,x
r ∈∂Θ}d|ρs,x|r.

We get the following

Lemma 3.1. For all ε ∈]0, 1], there exists a constant C > 0, independent
of x and ε, such that

(10) IE sup
0≤t≤T

|Xx,ε
t − χx

t |2 ≤ Cε.

Proof. Applying Itô’s formula to

e−δ(ψ(Xx,ε
t )+ψ(χx

t ))|Xx,ε
t − χx

t |2,
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where δ is given by the inequality (6), we get a.s for all t ∈ [0, T ]
(11)

e−δ(ψ(Xx,ε
t )+ψ(χx

t ))|Xx,ε
t − χx

t |2

= 2
∫ t

0

e−δ(ψ(Xx,ε
r )+ψ(χx

r ))
[〈Xx,ε

r − χx
r ,
√

εσ(Xx,ε
r )dBr〉+

+〈Xx,ε
r − χx

r , b(Xx,ε
r )− b(χx

r )〉dr
]

+2
∫ t

0

e−δ(ψ(Xx,ε
r )+ψ(χx

r ))
[〈Xx,ε

r − χx
r ,∇ψ(Xx,ε

r )〉d|ρx,ε|r−
−〈Xx,ε

r − χx
r ,∇ψ(χx

r )〉d|ρx|r
]

+ε

∫ t

0

e−δ(ψ(Xx,ε
r )+ψ(χx

r ))|σ(Xx,ε
r )|2dr

−δ

∫ t

0

e−δ(ψ(Xx,ε
r )+ψ(χx

r ))|Xx,ε
r − χx

r |2
(

(∇ψ(Xx,ε
r ))∗

√
εσ(Xx,ε

r )+

+ ε
2 tr(D2ψ(Xx,ε

r )σσ∗(Xx,ε
r )+〈∇ψ(Xx,ε

r ), b(Xx,ε
r )〉+

+〈∇ψ(χx
r ), b(χx

r )〉
)

dr − δ

∫ t

0

e−δ(ψ(Xx,ε
r )+ψ(χx

r ))|Xx,ε
r −

−χx
r |2

(
|∇ψ(Xx,ε

r )|2d|ρx,ε|r + |∇ψ(Xx
r )|2d|ρx|r

)

+ εδ2

2

∫ t

0

e−δ(ψ(Xx,ε
r )+ψ(χx

r ))|Xx,ε
r − χx

r |2|(σ(Xx,ε
r ))∗∇ψ(Xx,ε

r )|2dr

−2εδ

∫ t

0

e−δ(ψ(Xx,ε
r )+ψ(χx

r ))〈Xx,ε
r − χx

r , σ(Xx,ε
r )〉(σ(Xx,ε

r )∗∇ψ(Xx,ε
r )dr.

Since |∇φ| = 1 for all x ∈ ∂Θ, by inequality (6) we have

(12)
2

∫ t

0

e−δ(ψ(Xx,ε
r )+ψ(χx

r ))〈Xx,ε
r − χx

r ,∇ψ(Xx,ε
r )〉d|ρx,ε|r

−δ

∫ t

0

e−δ(ψ(Xx,ε
r )+ψ(χx

r ))|Xx,ε
r − χx

r |2|∇ψ(Xx,ε
r )|2d|ρx,ε|r ≤ 0,

and

(13)
−2

∫ t

0

e−δ(ψ(Xx,ε
r )+ψ(χx

r ))〈Xx,ε
r − χx

r ,∇ψ(Xx
r )〉d|ρx|r

−δ

∫ t

0

e−δ(ψ(Xx,ε
r )+ψ(χx

r ))|Xx,ε
r − χx

r |2|∇ψ(Xx
r )|2d|ρx|r ≤ 0.

The result is then a consequence of the boundeness of b, σ, ψ, ∇ψ, D2ψ,
inequalities (12)–(13) and Burkholder-Davis-Gundy inequality.

Remark 3.2. As a consequence of Lemma 3.1, the solution of the reflecting
diffusion process Xx,ε converges to the deterministic path χx in L2.
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4. Convergence and large deviation principle for the solution
of the backward equation

Let (χ(s,x), ρs,x, Y (s,x), 0, U (s,x)) be the solution of the following deter-
ministic equations





χs,x
t = x +

∫ t

s

b(χs,x
r )dr + ρs,x

t − ρs,x
s

ρs,x
t =

∫ t

0
∇ψ(χs,x

r )d|ρs,x|r, |ρs,x|t =
∫ t

0

1{χs,x
r ∈∂Θ}d|ρs,x|r

(14)





Y s,x
t = h(χs,x

T ) +
∫ T

t

f(r, χs,x
r , Y s,x

r , 0)dr −
∫ T

t

Us,x
r dr

(Y s,x
t , Us,x

t ) ∈ ∂Π, and IE

∫ T

0

Π(Y s,x
r )dr < +∞.

We have the following theorem

Theorem 4.1. ∀ε ∈]0, 1], there exists a constant C > 0, independent of s,
x and ε, such that

(15)
IE[ sup

s≤t≤T
|Y s,x,ε

t − Y s,x
t |2 +

∫ T

s

|Zs,x,ε
r |2dr]

≤ C[IE(Xs,x,ε
T − χs,x

T |2) + IE

∫ T

s

|Xs,x,ε
r − χs,x

r |2dr].

Proof. Applying Itô’s formula to |Y s,x,ε
t − Y s,x

t |2, we get

IE|Y s,x,ε
t −Y s,x

t |2+IE

∫ T

s

|Zs,x,ε
r |2dr+2IE

∫ T

s

〈Y s,x,ε
r −Y s,x

r , Us,x,ε
r −Us,x

r 〉dr

≤ IE(h(Xs,x,ε
T )− h(χs,x

T |2)
+2IE

∫ T

s

〈Y s,x,ε
r − Y s,x

r , f(r,Xs,x,ε
r , Y s,x,ε

r , Zs,x,ε
r )− f(r, χs,x

r , Y s,x
r , 0)〉dr.

But 〈Y s,x,ε
r −Y s,x

r , Us,x,ε
r −Us,x

r 〉 ≥ 0, dP ×dr a.e and f satisfies conditions
A3(i)− (ii), then

IE|Y s,x,ε
t − Y s,x

t |2 + IE

∫ T

s

|Zs,x,ε
r |2dr

≤ IE(h(Xs,x,ε
T )− h(χs,x

T |2) + 2αIE

∫ T

s

|Y s,x,ε
r − Y s,x

r |2dr

+2µIE

∫ T

s

|Y s,x,ε
r −Y s,x

r ||Xs,x,ε
r −χs,x

r |dr+2µIE

∫ T

s

|Y s,x,ε
r −Y s,x

r ||Zs,x,ε
r |dr
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Henceforth

IE[|Y s,x,ε
t − Y s,x

t |2 +
∫ T

s

|Zs,x,ε
r |2dr]

≤ C[IE(Xs,x,ε
T − χs,x

T |2) + IE

∫ T

s

|Xs,x,ε
r − χs,x

r |2dr],

where C is a positive constant. The result then follows from Burkholder-
Davis-Gundy inequality.

Remark 4.1. As a consequence of Theorem 4.1 and Lemma 3.1, we get

(16) IE[ sup
s≤t≤T

|Y s,x,ε
t − Y s,x

t |2 +
∫ T

s

|Zs,x,ε
r |2dr] ≤ Cε,

where C is a positive constant and then the solution of the BSDE (8) con-
verges to the deterministic solution of the equation (14).

We now consider the BSDE in the case k = 1. We want to prove that
the process Y s,x,ε satisfies a large deviation principle. For that reason, we
recall the link between Variational Inequality (VI, for short) and BSDE. For
all ε ≥ 0, we consider the following VI

(17)





∂uε

∂t
(t, x) + Lx,εuε (t, x)+

+f
(
t, x, uε (t, x) ,

(
(∇uε)∗

√
εσ

)
(t, x)

) ∈ ∂Π(uε (t, x)) ,
t ∈ ]0, T [ , x ∈ Θ

∂uε

∂n
(t, x) ∈ ∂Π(uε (t, x)) , x ∈ ∂Θ

uε (T, x) = h (x) , x ∈ Θ,

where Lx,ε is the second order partial differential operator

Lx,ε :=
ε

2

d∑

i,j=1

(σσ∗)ij
∂2

∂xi∂xj
+

d∑

i=1

bi
∂

∂xi
,

and at point x ∈ ∂Θ
∂

∂n
:=

d∑

i=1

∂ψ

∂xi
(x)

∂

∂xi
,

then we have, for each (t, x) ∈ [0, T ]×Θ,

(18) uε(t, x) = Y t,x,ε
t ,

both in the sense that any classical solution of the VI (17) is equal to Y t,x,ε
t ,

and Y t,x,ε
t is, in the case where all coefficients are continuous, a viscosity

solution of the VI (17) (see Pardoux and Rascanu [13]). Moreover, we have
also that

Y s,x,ε
t = uε(t,Xs,x,ε

t ).
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Let s ∈ [0, T ] and ε ≥ 0, we define the following applications :

F ε(Ψ) := [t → uε(t, Ψt)], t ∈ [s, T ], Ψ ∈ C[s, T ] satisfying equation (9).

Hence Y s,x,ε
t = F ε(Xs,x,ε)(t), for all t ∈ [0, T ], and Y s,x,ε = F ε(Xs,x,ε).

For ε = 0, u and F stand for u0 and F 0. We have the following theorem

Theorem 4.2. Y x,ε satisfies a large deviation principle with a rate function

S′(Ψ′) = inf{S(Ψ)|Ψ′t = F (Ψ)(t) = u(t,Ψt), ∀t ∈ [0, T ]}.
Proof. In order to apply the contraction principle, we need to prove that
F ε, ε ≥ 0 are continuous and {F ε} converges uniformly to F on every com-
pact of C[0, T ]. Since uε is continuous, it is not hard to prove that F ε is also
continuous. The uniform convergence of {F ε} is a consequence of Remark
4.1.
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