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Abstract. Finitely generated linear semigroups over a field K that
have intermediate growth are considered. New classes of such semi-

groups are found and a conjecture on the equivalence of the subex-

ponential growth of a finitely generated linear semigroup S and the
nonexistence of free noncommutative subsemigroups in S, or equiva-

lently the existence of a nontrivial identity satisfied in S, is stated.

This ‘growth alternative’ conjecture is proved for linear semigroups of
degree 2, 3 or 4. Certain results supporting the general conjecture are

obtained. As the main tool, a new combinatorial property of groups

is introduced and studied.

1. Introduction

Let S = 〈g1, . . . , gm〉 be a finitely generated semigroup. The growth
function dS : N −→ N of S is obtained by defining dS(n) as the number of
elements of S that can be presented as words of length not exceeding n in
the generators g1, . . . , gm. The growth of S is the equivalence class of dS

for the relation ∼ defined on the set of possible growth functions by the
condition: f ∼ g if f(n) ≤ g(cn) and g(n) ≤ f(cn) for some c > 0 and
all sufficiently big positive integers n. This is independent of the choice of
the generating set of S. We refer to [7] for the basic facts on the theory
of growth of algebras, semigroups and groups. Gromov proved that the
class of groups of polynomial growth coincides with the class of finitely
generated nilpotent-by-finite groups, [3]. On the other hand, after Golod’s
construction of a counterexample to the general Burnside problem, it is not
hard to see that there exist finitely generated periodic groups of exponential
growth (see [13], pages 413-415). Clearly, such groups do not have any
free noncommutative subsemigroup. Recall that the growth of a finitely
generated group G can also be intermediate, that is, not polynomial and
not exponential. This was first shown by Grigorchuk, who later proved that
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the growth of such a group exceeds e
√

n, [2]. On the other hand, finitely
generated groups of matrices over a field either have a polynomial growth or
contain a free noncommutative subsemigroup. The latter is a consequence
of Tits alternative [19] and of a theorem of Rosenblatt, [15].

Let R = 〈g, e〉 be the subsemigroup of the full linear (multiplicative)

monoid M3(Q) generated by g =

 1 1 1
0 2 1
0 0 1

 and e =

 1 0 0
0 0 0
0 0 1

.

Using the classical theory of partitions [5], it was first shown in [11], see
also [12], that R has intermediate growth. Moreover, every nonempty inter-
section of R with a maximal subgroup of the multiplicative monoid M3(Q)
is contained in an infinite cyclic group. Actually, R ⊆ T = 〈g〉 ∪ I, where
I = M(H,X,X;P ) for a completely 0-simple semigroup I over an infinite
cyclic group H, where X is a countable infinite set and P is a sandwich
matrix (for the definition see [1] or Section 3). Here I consists of matrices
of rank 2, so it is an ideal in T .

Another example of the latter type is the semigroup Q = 〈h, f〉 ⊆M2(Q),

where h =
(

1 1
0 1

)
, f =

(
1 0
1 0

)
, considered later in [10]. However, in

this example, Q∩fM2(Q)f generates an infinitely generated subgroup of the
maximal subgroup fM2(Q)f \{0} ∼= Q∗ of M2(Q). An exact rate of growth
of Q was determined in [8]. Namely, the growth function is equivalent to
e
√

n/ log n. So, this is also in contrast with Grigorchuk’s result on the growth
of groups.

It is known that a linear semigroup S ⊆ Mn(K) over a field K satis-
fies a semigroup identity if and only if every nontrivial intersection G ∩ S
with a maximal subgroup G of the multiplicative monoid Mn(K) gener-
ates a nilpotent-by-finite subgroup of G. Moreover, if the field K is finitely
generated, the latter is equivalent to the fact that S does not have free
noncommutative subsemigroups, see [12, Theorem 6.11]. In particular, the
semigroup R defined above satisfies an identity and it was the first exam-
ple of a semigroup of intermediate growth that satisfies an identity and is
linear. This is clearly in contrast with the case of linear groups. In this
context, we notice also that an example of a group G that contains a free
nonabelian subgroup and is generated by a finite subset {a1, . . . , an} such
that the semigroup 〈a1, . . . , an〉 satisfies a nontrivial identity has been re-
cently constructed in [6].

In this paper, we study the growth of finitely generated linear semigroups
S ⊆ Mn(K) over a field K. A general ‘growth alternative’ conjecture is
proposed, which asserts that S has subexponential growth if and only if S
has no free noncommutative subsemigroups. The problem leads in a natural
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way to the study of the behavior of the subexponential growth property
under ideal extensions of semigroups of certain special types. This, in turn,
leads to a new combinatorially defined property of groups that is introduced
in Section 2 and becomes the main tool in the paper. The conjecture is
confirmed in case n ≤ 4 in Section 3. Certain results supporting the general
case are obtained in Section 4, where we also discuss certain natural related
problems. Finally, in Section 5, new examples of semigroups of intermediate
growth are constructed and used to establish the equivalence of some of
the proposed conjectures. All this shows, rather unexpectedly, that there
is an abundance of linear semigroups of intermediate growth that satisfy
nontrivial identities.

It is worth mentioning that semigroups of arbitrarily large subexponen-
tial growth have been constructed in [16]. A very nice recent result of
Shneerson shows that, in nonperiodic varieties of semigroups that satisfy
identities of certain types, every finitely generated semigroup has subex-
ponential growth, [17]. However, this type of identities does not apply to
the general identities satisfied by linear semigroups. We refer to [17] for the
bibliography on several other results on growth, considered in the context of
varieties of semigroups. Recall also that some partial results on the growth
of linear semigroups, with an emphasis on polynomial growth, can be found
in [12], which is also our main reference for the theory of linear semigroups.
For the necessary background on semigroup theory we refer to [1].

2. Subexponential property for sequences in groups

We start with a combinatorial property for sequences of elements of a
group, which will play a crucial role for the main techniques and results of
the paper. It will be mainly considered in the context of nilpotent-by-finite
groups.

Definition 2.1. Let G be a group. Let b(1), b(2), . . . be a sequence of positive
integers. For a sequence

g1,1, g1,2, . . . , g1,b(1), g2,1, g2,2, . . . , g2,b(2), . . .(1)

of elements of G, define the set

Tn = {gi1,j1gi2,j2 · · · gis,js
∈ G | s ≥ 1, i1 + · · ·+ is ≤ n}.

Let g(n) = |Tn| and f(n) =
∑n

i=1 b(i).
We say that G satisfies the subexponential property for sequences if for

every sequence (1):

lim sup
n→∞

f(n)
1
n ≤ 1 =⇒ lim sup

n→∞
g(n)

1
n ≤ 1.
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We say that G satisfies the subexponential weak property for sequences if
for every sequence (1):

f has polynomial growth =⇒ g has subexponential growth.

Recall that the latter means that there is no c > 1 such that g(n) ≥ cn for
sufficiently big n. Note that, for a monotone increasing function f : N −→
R+, where R+ is the set of nonnegative real numbers, the condition

lim sup
n→∞

f(n)
1
n ≤ 1

implies that f has subexponential growth. Recall also that f has polynomial
growth if and only if there exist positive integers d and m such that f(n) ≤
nd for all n ≥ m. Therefore, we distinguish the following types of growth:
polynomial, intermediate (that is, subexponential but not polynomial) and
exponential.

In order to give simplest examples, we first need the following combina-
torial observation.

Lemma 2.2. Let {Cn}∞n=1 be a family of finite pairwise disjoint sets. Let
T =

⋃∞
n=1 Cn. Let l : T −→ N be defined by l(t) = n if and only if t ∈ Cn.

Let ≤ be a well-order on T . Let an be the number of all finite ordered
sequences t1 ≤ t2 ≤ · · · ≤ tk of elements in T such that

∑k
j=1 l(tj) = n. Let

bn be the number of elements in Cn. Then
∞∏

m=1

(1− xm)−bm = 1 +
∞∑

n=1

anx
n.

Proof. Let Ln be the set of all finite ordered sequences

t1 ≤ t2 ≤ · · · ≤ tk

of elements in T such that
∑k

j=1l(tj)=n. Let Fn ={f : T −→ {0, 1, . . . , n}}.
We define ϕ : Ln −→ Fn by ϕ(t1, . . . , tk)(t) = m where m is the number of
times t appears in the sequence (t1, . . . , tk). It is clear that ϕ is injective.
Hence an is the number of all f ∈ Fn such that

∑
t∈T l(t)f(t) = n.

Consider the set of commuting indeterminates X = {xt | t ∈ T}. Let

g =
∏
t∈T

(1− x
l(t)
t )−1 =

∏
t∈T

(
∞∑

i=0

x
il(t)
t ) ∈ Z[[X]].

It is easy to see that there is a one-to-one correspondence between the set
of all f ∈ Fn such that

∑
t∈T l(t)f(t) = n, and the set of all monomials of

total degree n in the support of g. Let ψ be the homomorphism from Z[[X]]
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to Z[[x]] such that ψ(xt) = x for all t ∈ T . Then

ψ(g) =
∞∏

m=1

(1− xm)−bm = 1 +
∞∑

n=1

anx
n.

The following result is due to M. K. Smith [18].

Lemma 2.3. Let f : N −→ N be a monotone increasing function. Let
b(n) = f(n)−f(n−1) for all positive integers n. Let (a(n)) be the sequence
that satisfies

∞∏
m=1

(1− tm)−b(m) =
∞∑

n=0

a(n)tn ∈ Z[[t]].

Let g : N −→ N be the function defined by g(n) =
∑n

m=0 a(m).
If lim supn→∞ f(n)

1
n ≤ 1 then lim supn→∞ g(n)

1
n ≤ 1, and thus g has

subexponential growth.

A more precise relation between the asymptotics of the sequences (b(n))
and (a(n)) can be found in [14].

We can now derive our first consequence of Lemma 2.2 and Lemma 2.3.

Corollary 2.4. Every abelian group satisfies the subexponential property
for sequences.

Proof. Let G be an abelian group. Let b(1), b(2), . . . be a sequence of
positive integers and let

g1,1, g1,2, . . . , g1,b(1), g2,1, g2,2, . . . , g2,b(2), . . .(2)

be a sequence of elements in G. Define the set

Tn = {gi1,j1gi2,j2 · · · gis,js
∈ G | s ≥ 1, i1 + · · ·+ is ≤ n}.

Let g(n) = |Tn| and f(n) =
∑n

i=1 b(i). Suppose that

lim sup
n→∞

f(n)
1
n ≤ 1.

By Lemma 2.2, with Cn = {gn,1, gn,2, . . . , gn,b(n)} and the well-order on⋃∞
n=1 Cn determined by the sequence (2), we have

∞∏
m=1

(1− xm)−b(m) = 1 +
∞∑

n=1

a(n)xn,

where a(n) is the number of all finite ordered sequences

gi1,j1 ≤ gi2,j2 ≤ · · · ≤ gis,js

of elements in
⋃∞

n=1 Cn such that i1 + · · ·+ is = n.
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Since G is abelian, g(n) ≤ 1 +
∑n

m=1 a(m). By Lemma 2.3,

lim sup
n→∞

g(n)
1
n ≤ 1.

Hence G satisfies the subexponential property for sequences.

Clearly, if a group G satisfies the subexponential (weak) property for
sequences, then every subgroup of G also satisfies this property. In this
case, if H is a normal subgroup of G, then G/H satisfies the subexponential
(weak) property for sequences. The converse can be proved if the index of
H in G is finite. In particular, this allows us to extend the assertion of
Corollary 2.4 to the class of abelian-by-finite groups.

Lemma 2.5. Let G be a group. Let H be a normal subgroup of finite index
in G. Then G satisfies the subexponential (weak) property for sequences if
and only if H satisfies this property.

Proof. Suppose that H satisfies the subexponential (weak) property for
sequences. Let b(1), b(2), . . . be a sequence of positive integers and let

g1,1, g1,2, . . . , g1,b(1), g2,1, g2,2, . . . , g2,b(2), . . .

be a sequence of elements in G. Let

Tn = {gi1,j1gi2,j2 · · · gis,js ∈ G | s ≥ 1, i1 + · · ·+ is ≤ n}.
Define g(n) = |Tn| and f(n) =

∑n
i=1 b(i). Suppose that

lim sup
n→∞

f(n)
1
n ≤ 1

(respectively, f has polynomial growth).
Let x1, x2, . . . , xr be a complete set of left coset representatives for H in

G. We may assume that x1 = 1. Thus we have G = x1H∪· · ·∪xrH. Given
i, j ∈ {1, . . . , r},

xixj ∈ xk(i,j)H,

for some k(i, j) ∈ {1, . . . , r}. Let hi,j = x−1
k(i,j)xixj ∈ H. For all gi,j in

the sequence, there exist g′i,j ∈ H and xf(i,j) ∈ {x1, . . . , xr} such that
gi,j = xf(i,j)g

′
i,j .

Let ap,q,t,i,j = hp,qx
−1
t g′i,jxt. Let

Cn = {ap,q,t,n,j | p, q, t ∈ {1, . . . , r}, j = 1, . . . , b(n)}.
Then |Cn| ≤ r3b(n). Define also

T ′n = {ap1,q1,t1,i1,j1 · · · aps,qs,ts,is,js
| s ≥ 1, i1 + · · ·+ is ≤ n}

and g1(n) = |T ′n|. Since H satisfies the subexponential (weak) property for
sequences, we have lim supn→∞ g1(n)

1
n ≤ 1 (respectively, g1 has subexpo-

nential growth).
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We claim that Tn ⊆ x1T
′
n ∪ · · · ∪ xrT

′
n. Let t = gi1,j1gi2,j2 · · · gis,js

∈ Tn,
(with i1 + · · ·+ is ≤ n). If s = 1 then

t = gi1,j1 = xf(i1,j1)g
′
i1,j1 = xf(i1,j1)a1,1,1,i1,j1 ∈ xf(i1,j1)T

′
n.

Suppose that s > 1 and

gi2,j2 · · · gis,js
= xsap2,q2,t2,i2,j2 · · · aps,qs,ts,is,js

∈ xsT
′
n

for some s ∈ {1, . . . , r}. Then

t = gi1,j1xsap2,q2,t2,i2,j2 · · · aps,qs,ts,is,js

= xf(i1,j1)g
′
i1,j1xsap2,q2,t2,i2,j2 · · · aps,qs,ts,is,js

= xf(i1,j1)xsx
−1
s g′i1,j1xsap2,q2,t2,i2,j2 · · · aps,qs,ts,is,js

= xk(f(i1,j1),s)hf(i1,j1),sx
−1
s g′i1,j1xsap2,q2,t2,i2,j2 · · · aps,qs,ts,is,js

= xk(f(i1,j1),s)af(i1,j1),s,s,i1,j1ap2,q2,t2,i2,j2 · · · aps,qs,ts,is,js
.

Hence, by induction we get Tn ⊆ x1T
′
n ∪ · · · ∪ xrT

′
n, as claimed.

It follows that g(n) ≤ rg1(n). Therefore,

lim sup
n→∞

g(n)
1
n ≤ 1 (respectively, g has subexponential growth.)

This completes the proof of the lemma.

Corollary 2.6. Every abelian-by-finite group satisfies the subexponential
property for sequences.

In order to provide more examples (that will be also crucial for linear
semigroups of degree not exceeding 4, in view of Lemma 3.3), we first need
some results on nilpotent groups of class 2.

Lemma 2.7. Let H be a free nilpotent group of class 2 on generators
x1, x2, . . .. Suppose that w = xi1 · · ·xin , w

′ = xi′1
· · ·xi′m ∈ H for some

n,m ≥ 1 and some positive integers ij , i′j. If i, j ≥ 1 then define ai,j for the
word w (and similarly a′i,j for the word w′) as the number of all pairs k, l
such that i = ik, j = il and k < l. Then w = w′ if and only if ai,j = a′i,j for
all 1 ≤ j ≤ i. In particular, in this case n = m.

Proof. This is a consequence of the so called collecting process, and of the
uniqueness of the presentation of elements of H in terms of basic products
of basic commutators, see [4, Chapter 11].

Assume that ai,j = a′i,j for all 1 ≤ j ≤ i and choose minimal j which
is of the form j = ik. We may bring all copies of xj in front of the word
w. Then w = x

rj

j w
∏

j≤i[xi, xj ]ai,j , where rj is the multiplicity of xj in w,
and w is obtained from w by erasing all copies of xj . This is because H is

nilpotent of class 2. Similarly we obtain w′ = x
r′j
j w

′∏
j≤i[xi, xj ]a

′
i,j . Notice
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that rj(rj − 1)/2 = aj,j , so rj = r′j . The equalities ai,j = a′i,j imply that∏
j≤i[xi, xj ]ai,j =

∏
j≤i[xi, xj ]a

′
i,j . So, by induction on n + m applied to

w,w′, it follows that w = w′. Thus, we easily get w = w′, as desired. Since
ri1 + · · ·+ris

= n, where xi1 , . . . , xis
are all the different generators involved

in w, it follows also that n = m. Conversely, if w = w′, then ai,j = a′i,j for
all i, j is a consequence of [4, Theorem 11.2.4].

Theorem 2.8. Let b(1), b(2), . . . be a sequence of positive integers and let
H be the free nilpotent group of class 2 on generators

x1,1, x1,2, . . . , x1,b(1), x2,1, x2,2, . . . , x2,b(2), . . . .

Let Tn = {xi1,j1xi2,j2 · · ·xis,js
∈ H | s ≥ 1, i1 + · · · + is ≤ n}. Let

g(n) = |Tn|. If the function b has polynomial growth, then the function g
has subexponential growth. So H satisfies the subexponential weak property
for sequences.

Proof. By the proof of Lemma 2.7, the elements w of Tn are of the form

w = x
r1,1
1,1 x

r1,2
1,2 · · ·xrn,b(n)

n,b(n) [x1,2, x1,1]a1,2,1,1

· · · [xn,b(n), x1,1]an,b(n),1,1 · · · [xn,b(n), xn,b(n)−1]an,b(n),n,b(n)−1 ,(3)

for some nonnegative integers ri,j and ai,j,i′,j′ , such that
∑n

i=1i(
∑b(i)

j=1ri,j)≤
n. Furthermore, ai,j,i′,j′ ≤ ri,jri′,j′ ≤ n2. We call (3) the basic form
of w. By Lemmas 2.2 and 2.3, the function λ measuring the number
λ(n) of sequences of nonnegative integers (r1,1, r1,2, . . . , rn,b(n)) such that∑n

i=1 i(
∑b(i)

j=1 ri,j) ≤ n has subexponential growth.
Let w = xi1,j1xi2,j2 · · ·xis,js

∈ Tn. Let ri,j(w) be the degree in xi,j of
the word xi1,j1xi2,j2 · · ·xis,js

. For all (i, j) > (i′, j′), with respect to the
lexicographical order, let ai,j,i′,j′(w) be the number of all pairs k, l such
that i = ik, j = jk, i′ = il, j′ = jl and k < l in the word w. Suppose that
(3) is the basic form of w. Then, by the proof of Lemma 2.7, ri,j(w) = ri,j
and ai,j,i′,j′(w) = ai,j,i′,j′ .

Since b(n) has polynomial growth, with no loss of generality we may
assume that b(n) = (2n)d for some positive integer d. Let r1,1, . . . , rn,b(n)

be nonnegative integers such that
∑n

i=1 i(
∑b(i)

j=1 ri,j) ≤ n. Let

T (r1,1, . . . , rn,b(n))={w ∈ Tn |ri,j(w)=ri,j ,∀j = 1, . . . , b(i),∀i = 1, . . . , n}.
Let w = xi1,j1 · · ·xis,js

∈ T (r1,1, . . . , rn,b(n)). Let w′ denote the

word obtained from w by erasing all the xi,j with i ≥ n
1

d2+3d+3 . Let w′′ de-
note the word obtained from w by erasing all the xi,j with i < n

1
d2+3d+3 . De-

fine the sets T ′(r1,1, . . . , rn,b(n)) = {w′ | w ∈ T (r1,1, . . . , rn,b(n))}
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and T ′′(r1,1, . . . , rn,b(n)) = {w′′ | w ∈ T (r1,1, . . . , rn,b(n))}. Since∑n
i=1 i(

∑b(i)
j=1 ri,j) ≤ n, it follows that

n
1

d2+3d+3
∑

n
1

d2+3d+3≤i≤n

b(i)∑
j=1

ri,j ≤
∑

n
1

d2+3d+3≤i≤n

i

b(i)∑
j=1

ri,j

 ≤ n.

Therefore ∑
n

1
d2+3d+3≤i≤n

b(i)∑
j=1

ri,j ≤ n
1− 1

d2+3d+3 = n
d2+3d+2
d2+3d+3 .

Hence

|T ′′(r1,1, . . . , rn,b(n))| ≤
[
n

d2+3d+2
d2+3d+3

]
!.(4)

Note that ai,j,i′,j′(w′) = ai,j,i′,j′(w) for all (i, j) > (i′, j′) such that 1 ≤
i, i′ < n

1
d2+3d+3 . Note also that

n∑
i=1

b(i) ≤
∫ n+1

0

2dtddt =
2d(n+ 1)d+1

d+ 1
.(5)

The number of all quadruples (i, j, i′, j′) such that (i, j) > (i′, j′), 1 ≤ j ≤
b(i), 1 ≤ j′ ≤ b(i′) and 1 ≤ i, i′ < n

1
d2+3d+3 is less than∑�

n
1

d2+3d+3

�

i=1 b(i)

2

2
≤

4d
(
n

1
d2+3d+3 + 1

)2(d+1)

2(d+ 1)2
<

42d+1n
2(d+1)

d2+3d+3

2
,

where the first inequality follows from (5). Since ai,j,i′,j′(w) ≤ n2, looking
at the basic form of the elements w′, we thus get that

|T ′(r1,1, . . . , rn,b(n))| < n42d+1n
2(d+1)

d2+3d+3
.(6)

In order to determine an element w ∈ T (r1,1, . . . , rn,b(n)), it is sufficient to

know w′, w′′ and all ai,j,i′,j′(w), for n
1

d2+3d+3 ≤ i ≤ n and 1 ≤ i′ < n
1

d2+3d+3 ,
such that ri,jri′,j′ 6= 0.

Let k(n) be the nonnegative integer satisfying

k(n)∑
i=1

ib(i) ≤ n <

k(n)+1∑
i=1

ib(i).(7)
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Let µ = |{(i, j) | ri,j 6= 0}|. Note that

µ <

k(n)+1∑
i=1

b(i).(8)

Since
2dnd+2

d+ 2
=

∫ n

0

2dtd+1dt ≤
n∑

i=1

ib(i),

from (7) it follows that 2dk(n)d+2

d+2 ≤ n. Thus

k(n) ≤ ((d+ 2)n)
1

d+2

2
d

d+2
≤ ((d+ 2)n)

1
d+2 .(9)

By (5), (8) and (9), we have

µ <
2d(k(n) + 2)d+1

d+ 1
≤ 2d(((d+ 2)n)

1
d+2 + 2)d+1

d+ 1
(10)

< 2d3d+1((d+ 2)n)
d+1
d+2 .

On the other hand, the number of different pairs (i′, j′), with
1 ≤ i′ < n

1
d2+3d+3 and 1 ≤ j′ ≤ b(i′), is less than

�

n
1

d2+3d+3

�∑
i=1

b(i) ≤
2d

(
n

1
d2+3d+3 + 1

)d+1

d+ 1
< 22d+1n

d+1
d2+3d+3 ,(11)

where the first inequality follows from (5). Let

µ′ = |{(i, j) | n
1

d2+3d+3 ≤ i ≤ n and ri,j 6= 0}|.
Let

µ′′ = |{(i, j, i′, j′) | n
1

d2+3d+3 ≤ i ≤ n, 1 ≤ i′ < n
1

d2+3d+3 and ri,jri′,j′ 6= 0}|.
By (11),

µ′′ ≤ 22d+1n
d+1

d2+3d+3µ′.

Since ai,j,i′,j′(w) ≤ n2, the number of all lexicographically ordered sequences
(ai,j,i′,j′(w)), with n

1
d2+3d+3 ≤ i ≤ n and 1 ≤ i′ < n

1
d2+3d+3 , such that

ri,jri′,j′ 6= 0, obtained from the elements w ∈ T (r1,1, . . . , rn,b(n)), is less
than or equal to

n2µ′′ ≤ n22d+2n
d+1

d2+3d+3 µ′ ≤ n22d+2n
d+1

d2+3d+3 µ.

In view of (10),

22d+2n
d+1

d2+3d+3µ < 22d+2n
d+1

d2+3d+3 2d3d+1((d+ 2)n)
d+1
d+2 ,
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and
d+ 1

d2 + 3d+ 3
+
d+ 1
d+ 2

=
d3 + 5d2 + 9d+ 5
d3 + 5d2 + 9d+ 6

.

Therefore

|T (r1, . . . , rn)| ≤

≤ |T ′(r1, . . . , rn)| · |T ′′(r1, . . . , rn)| · n22d+2n
d+1

d2+3d+3 µ

< n42d+1n
2(d+1)

d2+3d+3 ·
[
n

d2+3d+2
d2+3d+3

]
! · n23d+23d+1(d+2)

d+1
d+2 n

d3+5d2+9d+5
d3+5d2+9d+6

,

(by (4) and (6)).

Thus we get

g(n) =

|Tn| ≤ λ(n) · n42d+1n
2(d+1)

d2+3d+3 ·
[
n

d2+3d+2
d2+3d+3

]
! · n23d+23d+1(d+2)

d+1
d+2 n

d3+5d2+9d+5
d3+5d2+9d+6

.

Hence g has subexponential growth.

The following is now an immediate consequence of Lemma 2.5.

Corollary 2.9. Every group that is a finite extension of a nilpotent group
of class 2 satisfies the subexponential weak property for sequences.

3. Linear semigroups of degree 2, 3 and 4

In order to apply the results of the preceding section, we need to re-
call some basic facts about the structure of the full linear (multiplicative)
monoid Mn(K) over a field K. For this, we follow [12]. Let H be a group,
X,Y nonempty sets and let P = (pyx) be a Y × X matrix over H ∪ {0}
(called a sandwich matrix). Then M(H,X, Y ;P ) denotes the correspond-
ing semigroup of matrix type. So, this is the set consisting of the zero
element θ and of all triples (h, x, y) with h ∈ H,x ∈ X, y ∈ Y , sub-
ject to the operation (h, x, y)(h′, x′, y′) = (hpyx′h

′, x, y′) if pyx′ ∈ H and
(h, x, y)(h′, x′, y′) = θ otherwise. For every nonnegative integer j ≤ n define
Mj = {a ∈Mn(K) | rank(a) ≤ j}. It is well-known that Mj , j = 0, 1, . . . , n,
are the only ideals of the monoid Mn(K). Moreover, every Rees factor
Mj/Mj−1, j = 1, . . . , n, is a completely 0-simple semigroup. In other words,
it is isomorphic to a semigroup of matrix type whose sandwich matrix has
no zero rows or columns. The maximal subgroups of the monoid Mn(K)
are of the form Ge = eMn(K)e \Mr−1, where e = e2 ∈Mn(K), e 6= 0, and
r = rank(e). Hence Ge

∼= GLr(K).
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Let S be a subsemigroup of Mn(K). Put Sj = Mj ∩ S and

Tj = {a ∈ Sj | the ideal of S generated by a does not intersect
maximal subgroups of Mn(K) contained in Mj \Mj−1}.

By [12, Theorem 3.5],

S0 ⊆ T1 ⊆ S1 ⊆ T2 ⊆ S2 ⊆ · · · ⊆ Sn−1 = Tn ⊆ Sn = S

are ideals of S (if nonempty). Moreover,
(1) every Tj/Sj−1 is a nilpotent ideal of S/Sj−1,
(2) every Sj/Tj is a 0-disjoint union of finitely many subsemigroups

Uj1, . . ., Ujnj of completely 0-simple semigroups Jji =
M(Gji, Xji, Yji;Pji) ⊆ Mj/Mj−1, i = 1, . . . , nj , over subgroups
Gji of Mn(K) contained in Mj \Mj−1; furthermore every Uji is an
ideal of Sj/Tj .

Here we use the convention that T/∅ = T and only nonempty factors are
considered in conditions (1) and (2). Moreover, every Uji is of a rather
special type (referred to as a uniform subsemigroup of Jji). In particular,
for every maximal subgroup H of Jji, the subgroup generated by H ∩Uji is
equal to H. Clearly, H ∼= Gji embeds into GLj(K). Actually, S1 ⊆M1 and
the latter is a completely 0-simple semigroup over the group K∗ = GL1(K).

Furthermore, if S is finitely generated, then S does not have free non-
commutative subsemigroups if and only if every nontrivial intersection G∩S
with a maximal subgroup G of the monoid Mn(K) generates a nilpotent-by-
finite subgroup of G. So, in terms of the ideal chain described above, this
means that all groups Gij are nilpotent-by-finite. The latter is also equiva-
lent to the fact that S satisfies a nontrivial identity, [12, Theorem 6.11].

Because of the ideal chain discussed above, it is clear that in order to
control the growth of S ⊆ Mn(K) one has to consider ideal extensions of
the appropriate types. The first type creates no problem.

Lemma 3.1. Assume that I is a nilpotent ideal of a finitely generated
semigroup S with zero. Then S and S/I have growth of the same type.

Proof. Suppose first that I2 = 0. Assume that S = 〈a1, . . . , am〉. Define
the set

A = {ai1 · · · ain
∈ I | ai2 · · · ain

6∈ I, ai1 · · · ain−1 6∈ I, n ≥ 1}.
Let n be a positive integer and let a = ai1 · · · aiq

∈ I for some q ≤ n. Since
I2 = 0, we may write

a = (ai1 · · · aik−1)(aik
· · · aim

)(aim+1 · · · aiq
)

for some k ≤ m such that ai1 · · · aik−1 6∈ I and aim+1 · · · aiq 6∈ I but
aik

· · · aim ∈ A. Moreover aik
· · · aim = aik

(aik+1 · · · aim) and aik+1 · · · aim 6∈
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I. Therefore the growth functions dS(n), dS/I(n) of S and S/I correspond-
ing to the given set of generators of S (and their images in S/I) satisfy

dS/I(n) ≤ dS(n) ≤ dS/I(n) + dS/I(n− 1)3m ≤ dS/I(n)3(m+ 1).

Hence the types of growth of S and S/I are the same. The assertion now
follows by an easy induction on the nilpotency index of the ideal I.

In view of the above observation, the problem of characterizing linear
semigroups of subexponential growth leads naturally to the case where S
has an ideal I such that S/I has subexponential growth and I ⊆ J =
M(G,X, Y ;P ) for a completely 0-simple semigroup J .

Let S be a semigroup generated by a set A = {g1, . . . , gm}. We say
that an element s ∈ S has length n in the generators g1, . . . , gm if s can
be expressed as a word of length n in these generators and not as a word
of smaller length. Let lA(s) denote the length of s ∈ S in the generators
g1, . . . , gm. Let S(A,n) = {s ∈ S | lA(s) ≤ n} and dS,A(n) = |S(A,n)|.
Milnor proved that limn→∞ dS,A(n)

1
n always exists (see [9]). Furthermore

S has exponential growth if and only if limn→∞ dS,A(n)
1
n > 1.

Our first main result reads as follows.

Theorem 3.2. Let S be a finitely generated semigroup. Suppose that S has
an ideal I which is a 0-disjoint union of finitely many ideals I1, . . . , Im of S
such that Ii is a subsemigroup of a semigroup of matrix type
M(Gi, Xi, Yi;Pi) over a group Gi, i = 1, . . . ,m. If S/I has subexponential
(respectively, polynomial) growth and the groups Gi satisfy the subexponen-
tial (respectively, the subexponential weak) property for sequences, then S
has subexponential growth.

Proof. Suppose that S/I has subexponential (respectively, polynomial)
growth and the groups Gi satisfy the subexponential (respectively, the
subexponential weak) property for sequences.

Let S = 〈g1, . . . , gr〉. Let l1(s) denote the length of s ∈ S in the genera-
tors g1, . . . , gr. Let A = {g1, . . . , gr}. For any positive integer n, let

Cn = {s ∈ I | l1(s) = n and there exist gi1 , . . . , gin ∈ A
such that s = gi1 · · · gin and gi1 · · · gin−1 /∈ I}.

We know that I =
⋃m

i=1 Ii is a 0-disjoint union of some subsemigroups
Ii of M(Gi, Xi, Yi;Pi). Thus, the nonzero elements of I are of the form
(h, x, y), with h ∈ Gi, x ∈ Xi and y ∈ Yi for some i = 1, . . . ,m, and
(h, x, y) · (h′, x′, y′) = 0 if (h, x, y) ∈ Ii, (h′, x′, y′) ∈ Ij and i 6= j. Let

X
(n)
i = {x ∈ Xi | ∃(h, x, y) ∈

n⋃
j=1

Cj},
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Y
(n)
i = {y ∈ Yi | ∃(h, x, y) ∈

n⋃
j=1

Cj}.

Let P (n)
i be the corresponding Y (n)

i ×X
(n)
i submatrix of Pi. Let

P ′i,n = {h ∈ Gi | h is an entry of P (n)
i }.

Let B = A \ I. Then B ∪ {0} is a set of generators of S/I. Let l2(s) denote
the length of s ∈ S/I in the generators in B ∪ {0}. Clearly, l2(s) = l1(s)
for all s ∈ S \ I. Let f(n) be the number of all elements s ∈ S/I such that
l2(s) ≤ n. Note that for every integer n > 1 we have |

⋃n
j=1 Cj | ≤ rf(n− 1),

|P ′i,n| ≤ |X(n)
i | · |Y (n)

i |(12)

and

|X(n)
i |, |Y (n)

i | ≤ |
n⋃

j=1

Cj | =
n∑

j=1

|Cj | ≤ rf(n− 1),(13)

because the sets Cj are pairwise disjoint.
For t = (h, x, y) ∈ I, let t̄ = h. Let Ci,n = Cn ∩ Ii. Let C′i,n = {s̄p | s ∈

Ci,n, p ∈ P ′i,n ∪ {1}}. Let bi(n) be the number of all elements in C′i,n. For
every integer n > 1, we have

n∑
j=1

bi(j) ≤
(
1 + |P ′i,n|

)
·

n∑
j=1

|Ci,j | ≤ rf(n− 1) + r3f(n− 1)3,

where the second inequality follows from (12) and (13). Since S/I has
subexponential (respectively, polynomial) growth, limn→∞ f(n)

1
n ≤ 1 (re-

spectively, f has polynomial growth). Let

Ti,n = {s1p1s2p2 · · · skpk | sz ∈
n⋃

j=1

Ci,j , pz ∈ P ′i,n∪{1} and
k∑

z=1

l1(sz) ≤ n},

Tn =
m⋃

i=1

Ti,n.

Let gi(n) = |Ti,n|. Since the groups Gi satisfy the subexponential (re-
spectively, the subexponential weak) property for sequences, all functions
gi, i = 1, . . . ,m, have subexponential growth. Let g(n) = |Tn|. Since
g(n) ≤

∑m
i=1 gi(n), the function g also has subexponential growth.

Let S(A,n) = {s ∈ S | l1(s) ≤ n}. Let s ∈ S(A,n) ∩ I be such that
l1(s) = n′ ≤ n. Then there exist a1, . . . , an′ ∈ A such that s = a1 · · · an′ .
Since s ∈ Ii for some i, there exist positive integers

1 ≤ j1 < j2 < · · · < jq ≤ n′
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such that a1 · · · aj1 ∈ Ci,j1 and ajk+1 · · · ajk+1 ∈ Ci,jk+1−jk
for all k =

1, . . . , q−1, and ajq+1· · ·an′ /∈I. Let s1 =a1 · · · aj1 and sk+1 = ajk+1 · · · ajk+1

for all k = 1, . . . , q − 1. Thus there exist p1, . . . , pq−1 ∈ P ′i,n, x ∈ X(n)
i and

y ∈ Y (n)
i such that

(14) s = s1 · · · sqajq+1 · · · an′ = (s1p1s2p2 · · · sq−1pq−1sq, x, y)ajq+1 · · · an′ .

Hence, the number of elements s1p1s2p2 · · · sq−1pq−1sq that can be obtained
in (14) is less than or equal to gi(n). Since ajq+1 · · · an′ ∈ S \ I, the number
of such elements that can be obtained in (14) is less than or equal to f(n).
Thus

|S(A,n) ∩ I| ≤
m∑

i=1

gi(n)|X(n)
i | · |Y (n)

i |f(n).

Since S(A,n) = (S(A,n) \ I) ∪ (S(A,n) ∩ I) and f(n) ≥ |S(A,n) \ I|, we
have

|S(A,n)| ≤ f(n)+
m∑

i=1

gi(n)|X(n)
i | · |Y (n)

i |f(n) ≤ f(n)+g(n)r2f(n−1)2f(n),

where the second inequality follows from (13). Therefore S has subexpo-
nential growth.

In order to apply this to linear semigroups of small degrees, we need the
following observation, which seems to be well-known.

Lemma 3.3. Let K be a field. Let G be a nilpotent subgroup of the multi-
plicative monoid Mn(K), with n > 1. Then there exists a nilpotent subgroup
N of class < n of G such that [G : N ] <∞.

Proof. We may assume that K is algebraically closed. Let e ∈ G be the
unity of G. Then there exists g ∈ GLn(K) such that

g−1eg =
(
Ir 0
0 0

)
,

where Ir ∈ Mr(K) is the identity matrix and r is the rank of e. Thus
G ∼= g−1Gg is isomorphic to a subgroup of GLr(K). Therefore we may
assume that G is a nilpotent subgroup of GLn(K). By [20, Theorem 5.11
and Lemma 5.2], we may also assume that G is a closed connected nilpotent
subgroup of GLn(K). By [20, Theorem 14.22], G = Gu ×Gd, where Gu =
{a ∈ G | a is unipotent} is a closed connected subgroup of G and Gd is a
closed connected diagonalizable subgroup of G. In particular, Gd is abelian
and Gu is conjugate to a unipotent triangular subgroup of GLn(K) and
hence G is nilpotent of class n− 1 at most.
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We can now apply Theorem 3.2 to linear semigroups of degrees not ex-
ceeding 4.

Theorem 3.4. Let K be a field. Let n be an integer such that 1 ≤ n ≤ 4.
Assume that S ⊆ Mn(K) is a finitely generated semigroup. Then S has
subexponential growth if and only if S has no free noncommutative subsemi-
groups, or equivalently, S satisfies a nontrivial identity.

Proof. Clearly, we may assume that n = 4. Suppose that S has no free
noncommutative subsemigroups. By the comments at the beginning of Sec-
tion 3, S has a finite ideal chain S1 ⊆ T2 ⊆ S2 ⊆ T3 ⊆ S3 = T4 ⊆ S4 = S
such that each of S2/T2 and S3/T3 (if nonempty) is a 0-disjoint union of
finitely many ideals that are subsemigroups of completely 0-simple semi-
groups of the form M(Gi, Xi, Yi;Pi). Moreover, we may assume that the
groups Gi are nilpotent-by-finite and the groups arising from Sj/Tj em-
bed into GLj(K), for j = 2, 3. By Lemma 3.3, these groups are abelian-
by-finite for j = 2 and they have nilpotent of class at most 2 subgroups
of finite index if j = 3. Also S1 embeds into a semigroup of the form
M(K∗, X, Y ;P ) ∼= M1/M0. Moreover S \ S3 (if nonempty) generates a
nilpotent-by-finite subgroup G of GL4(K). Furthermore, the factors T2/S1

and T3/S2 are nilpotent (if nonempty).
Since S is finitely generated and G is of polynomial growth, it follows

that S/S3 has polynomial growth. The groups arising from S3/T2 satisfy
the subexponential weak property for sequences by Theorem 2.8. There-
fore, Theorem 3.2 implies that S/T3 has subexponential growth. From
Lemma 3.1 it then follows that S/S2 has subexponential growth. Notice
that, in view of Corollary 2.6, the groups Gi arising from S2/T2 and the
group K∗ satisfy the subexponential property for sequences. Hence, using
Theorem 3.2, followed by Lemma 3.1, and again by Theorem 3.2, we get
that S has subexponential growth.

Since the converse implication is clear, the result follows.

Our next result is another simple consequence of Theorem 3.2 and of the
ideal structure of linear semigroups.

Corollary 3.5. Assume that S ⊆ Mn(K) is a finitely generated linear
semigroup such that, for every maximal subgroup H of the monoid Mn(K),
the intersection S ∩ H generates an abelian-by-finite group, if nonempty.
Then S has subexponential growth.

Proof. As in the proof of Theorem 3.4, the assertion follows from Theo-
rem 3.2, Lemma 3.1, and Corollary 2.6.
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4. Growth alternative conjecture

The results of the preceding section motivate the following conjecture.

Conjecture 4.1. Let K be a field. Let S ⊆Mn(K) be a finitely generated
linear semigroup. Then S has subexponential growth if and only if S has no
free noncommutative subsemigroups.

Recall that the latter is equivalent to the fact that S satisfies a nontrivial
identity. As mentioned before, it is clear that if S has a free noncommutative
subsemigroup then S has exponential growth.

In view of our approach via natural ideal chains in S, one might even ex-
pect that a result more general than the above conjecture is true: if a finitely
generated semigroup S has a finite ideal chain such that every factor of the
chain is either nilpotent or it embeds into a completely 0-simple semigroup
over a nilpotent-by-finite group, then S has subexponential growth. Then
Lemma 3.1 can be used to reduce the problem to the case where I is an
ideal of S such that I ⊆ M(G,X, Y ;P ) for a nilpotent-by-finite group G
and S/I has subexponential growth. Thus, the next conjecture is stronger
than Conjecture 4.1.

Conjecture 4.2. Let S be a finitely generated semigroup. Suppose that S
has an ideal I such that S/I has subexponential growth. If I is a subsemi-
group of a semigroup of matrix type M(G,X, Y ;P ) over a nilpotent-by-finite
group G, then S has subexponential growth.

In view of the proof of Theorem 3.4, it is clear that, if one can generalize
Corollary 2.6 to nilpotent-by-finite groups, then Conjecture 4.1 would be
true. Thus the following conjecture seems natural.

Conjecture 4.3. Nilpotent groups satisfy the subexponential property for
sequences.

In Section 5 we will see that Conjectures 4.3 and 4.2 actually are equiv-
alent.

We do not know whether Conjecture 4.3 is true for nilpotent groups of
class 2. This case will be now studied in more detail.

Let G be a free nilpotent group of class 2 on generators x1, x2, . . . Let
w = xi1 · · ·xin , w

′ = xi′1
· · ·xi′m

∈ G. As a consequence of Lemma 2.7, if
i1, . . . , in are n different positive integers, then w = w′ if and only if n = m
and ij = i′j for all j = 1, . . . , n. Thus, in view of Conjecture 4.3, one can
ask the following question.

Let b(1), b(2), . . . be a sequence of positive integers and let H be the free
group on free generators

x1,1, x1,2, . . . , x1,b(1), x2,1, x2,2, . . . , x2,b(2), . . .
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Let

T ′n = {xi1,j1xi2,j2 · · ·xis,js
∈ H | i1 + · · ·+ is ≤ n

and xi1,j1 , xi2,j2 , . . . , xis,js
are different }.

Let g(n) = |T ′n| and f(n) =
∑n

i=1 b(i). Is it true that, if

lim sup
n→∞

f(n)
1
n ≤ 1,

then g(n) has subexponential growth?
The answer to the above question is positive if b(1) ≤ b(2) ≤ . . . are

positive integers such that b(m+n) ≤ b(m)b(n) for all m,n. In order to see
this, we need some preparatory results.

Lemma 4.4. Let f : R+ −→ R+ be a strictly increasing differentiable func-
tion such that f ′(x) is continuous for all x > 0. Suppose that there exists
δ > 0 such that f ′(x) ≥ δ for all x > 0 and

lim
x→+∞

f(x)
cx

= 0 ∀c > 1.

Let k : R+ −→ R+ be the function defined by∫ k(x)

0

tf ′(t)dt = x.

(Note that k(x) is well-defined because tf ′(t) > 0 for t > 0 and∫ +∞
0

tf ′(t)dt = +∞). Then:
(i) for all c > 1,

lim
x→+∞

ef(k(x))

cx
= 0,

(ii) limx→+∞
f(k(x))

x = 0,
(iii) limx→+∞

ln x
k(x) = 0.

Proof. (i) Since
∫ k(x)

0
tf ′(t)dt = x, by differentiation we have,

k′(x)k(x)f ′(k(x)) = 1.(15)

Let c > 1. Note that k(x) is a strictly increasing function and
limx→+∞ k(x) = +∞. Thus there exists x0 such that 1

ln c < k(x) and

x ln c = ln c
∫ 1

ln c

0

tf ′(t)dt+
∫ k(x)

1
ln c

ln c · tf ′(t)dt

≥
∫ k(x)

1
ln c

f ′(t)dt = f(k(x))− f

(
1

ln c

)
,(16)
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for all x > x0. Therefore

lim
x→+∞

ef(k(x))

cx
= lim

x→+∞

ef(k(x))

ex ln c

= lim
x→+∞

k′(x)f ′(k(x))ef(k(x))

ln c · ex ln c
(by l’Hôpital)

= lim
x→+∞

ef(k(x))−x ln c

k(x) ln c
(by (15))

≤ lim
x→+∞

ef( 1
ln c )

k(x) ln c
(by (16)),

and thus

lim
x→+∞

ef(k(x))

cx
= 0.

(ii) Let ε > 0. For c = eε, we have by (i) that

lim
x→+∞

ef(k(x))

exε
= lim

x→+∞
ef(k(x))−xε = 0.

Hence limx→+∞(f(k(x))− xε) = −∞. Thus there exists x0 such that

f(k(x))− xε < 0,

for all x > x0. Therefore limx→+∞
f(k(x))

x = 0.
(iii) Let F (x) =

∫ x

0
tf ′(t)dt. Clearly F (x) is a strictly increasing function

and for all c > 1,

lim
x→+∞

F (x)
cx

≤ lim
x→+∞

x(f(x)− f(0))
cx

= 0,

because limx→+∞
f(x)
cx = 0 for all c > 1. Since k(x) = F−1(x), we have

lim
x→+∞

x

ck(x)
= 0,

for all c > 1. Since x
ck(x) = eln x−k(x) ln c,

lim
x→+∞

(lnx− k(x) ln c) = −∞.

Thus, as in (ii), it is easy to see that

lim
x→+∞

lnx
k(x)

= 0.
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Proposition 4.5. Let f : R+ −→ R+ be a strictly increasing differentiable
function such that f ′(x) is continuous for all x > 0. Suppose that there
exists δ > 0 such that f ′(x) ≥ δ for all x > 0 and

lim
x→+∞

f(x)
cx

= 0 ∀c > 1.

Let k : R+ −→ R+ be the function defined by∫ k(x)

0

tf ′(t)dt = x.

Then for all c > 1,

lim
x→+∞

xf(k(x))

cx
= 0.

Proof. Let M > 0 and c > 1. By l’Hôpital, we have

lim
x→+∞

f(k(x)) lnx
x ln c−M

= lim
x→+∞

f(k(x))
x ln c

+ lim
x→+∞

k′(x)f ′(k(x)) lnx
ln c

= lim
x→+∞

f(k(x))
x ln c

+ lim
x→+∞

lnx
k(x) ln c

(by (15))

= 0 (by Lemma 4.4).

Therefore, there exists x0 such that
f(k(x)) lnx
x ln c−M

< 1 and x ln c > M,

for all x > x0. Hence

f(k(x)) lnx < x ln c−M,

and thus
f(k(x)) lnx− x ln c < −M,

for all x > x0. It follows that limx→+∞(f(k(x)) lnx − x ln c) = −∞, and
therefore

lim
x→+∞

xf(k(x))

cx
= lim

x→+∞
ef(k(x)) ln x−x ln c = 0.

Now we can settle a special case of the question raised before Lemma 4.4.

Theorem 4.6. Let H be the free group on free generators

x1,1, x1,2, . . . , x1,b(1), x2,1, x2,2, . . . , x2,b(2), . . . ,

where b(1) ≤ b(2) ≤ . . . are positive integers such that b(m+ n) ≤ b(m)b(n)
for all m,n. Let Tn = {xi1,j1xi2,j2 · · ·xis,js

∈ H | s ≥ 1, i1 + · · · + is ≤ n
and xi1,j1 , xi2,j2 , . . . , xis,js are different}. Let g(n) = |Tn| and f(n) =
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∑n
i=1 b(i). If lim supn→∞ f(n)

1
n ≤ 1 then lim supn→∞ g(n)

1
n ≤ 1, and thus

g has subexponential growth.

Proof. Let H = H/H ′, where H ′ is the commutator subgroup of H, and
let Tn be the image of Tn under the natural map H −→ H. Let µ(n) be
the maximum length of the elements of Tn. Let λ(n) = |Tn|. Then clearly
g(n) ≤ λ(n) · µ(n)!. By Corollary 2.4, lim supn→∞ λ(n)

1
n ≤ 1.

Let k(n) be the nonnegative integer such that

k(n)∑
i=1

ib(i) ≤ n <

k(n)+1∑
i=1

ib(i).(17)

Note that

µ(n) ≤
k(n)+1∑

i=1

b(i) = f(k(n) + 1).(18)

We extend the function b to a function, that we also denote by b, from R+ to
R+, by defining b(0) = b(1) and b(x) = b(i)(1−x+i)+b(i+1)(x−i) for every
nonnegative integer i and for all i < x ≤ i + 1. Note that b : R+ −→ R+

is continuous monotone increasing and b(x) ≥ 1 for all x. Let f1(x) =∫ x

0
b(t)dt. Clearly

f1(n) =
n∑

i=1

b(i− 1) + b(i)
2

= f(n)+
b(0)− b(n)

2
< f(n)+

b(0)
2

< f1(n+1).

Thus, by the hypothesis on f , lim supn→∞ f1(n)
1
n ≤ 1 (for n ∈ N). Note

that for all x > 1 we have f1(x) > f1(1) = b(1) ≥ 1, and

f1(x)
1
x ≤ f1([x] + 1)

1
[x] ≤ (f1([x]) + b([x] + 1))

1
[x]

(since 1 < f1([x] + 1) ≤ f1([x]) + b([x] + 1))

≤ (f1([x]) + b(1)b([x]))
1
[x] ≤ (f1([x])(1 + 2b(1)))

1
[x]

(by the assumption on b and since b([x]) ≤ 2f1([x])).

Hence lim supx→+∞ f1(x)
1
x ≤ 1, and thus

lim
x→+∞

f1(x)
cx

= 0 ∀c > 1.(19)

Let k1 : R+ −→ R+ be the function defined by∫ k1(x)

0

tb(t)dt = x.
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Then, for every positive integer n,

n =
∫ k1(n)

0

tb(t)dt <
∫ [k1(n)]+1

0

tb(t)dt ≤
[k1(n)]+1∑

i=1

ib(i).

By (17), we have that k(n) ≤ [k1(n)] ≤ k1(n) for every positive integer n.
In view of (18), this implies that

µ(n) ≤ f(k(n) + 1) ≤ f1(k(n) + 2) ≤ f1(k1(n) + 2).(20)

On the other hand, since b(m+n) ≤ b(m)b(n) for all positive integers m,n,
and b(0) = b(1) ≥ 1, it follows that b(x + 2) ≤ b(x)b(2) for all x ≥ 0, and
thus

f1(k1(n) + 2) =
∫ k1(n)+2

0

b(t)dt ≤
∫ 2

0

b(t)dt+
∫ k1(n)+2

2

b(t− 2)b(2)dt

= f1(2) + b(2)f1(k1(n)).

Since limx→+∞ k1(x) = +∞, there exists n0 such that k1(n) > 2 for all
n ≥ n0. Hence, for all n ≥ n0,

f1(k1(n) + 2) ≤ (1 + b(2))f1(k1(n)),

and, by (20),

µ(n)! ≤ µ(n)µ(n) ≤ ((1 + b(2))f1(k1(n)))(1+b(2))f1(k1(n)).

By (19) and Lemma 4.4, limn→∞
f1(k1(n))

n = 0. Thus there exists an integer
n1 > n0 such that f1(k1(n)) < n for all n > n1. Therefore

µ(n)! ≤ ((1 + b(2))n)(1+b(2))f1(k1(n)),

for all n > n1. Since, by (19) and Proposition 4.5, limx→+∞
xf1(k1(x))

cx = 0
for all c > 1, this implies that limn→∞

µ(n)!
cn = 0 for all c > 1, and thus

lim sup
n→∞

(µ(n)!)
1
n ≤ 1.

Therefore, the first paragraph of the proof implies that

lim sup
n→∞

g(n)
1
n ≤ 1

and the result follows.
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5. Examples and more about the conjectures

We conclude with some examples of semigroups of intermediate growth
arising from ideal extensions of simplest types that were used in our con-
siderations in the preceding sections. Also, we show that Conjectures 4.2
and 4.3 are equivalent.

In order to prove this equivalence we need the following construction.

Example 5.1. Let T be a semigroup. Then there exists a semigroup S =
T ∪I, a disjoint union, where T is a subsemigroup of S, I = M(G,X, Y ;P )
is a completely 0-simple ideal of S and G is the free group on {xt | t ∈
T \ {1}}. Furthermore, there exists an idempotent e ∈ I such that the
subsemigroup S′ = {eu1eu2 · · · euke | u1, u2, . . . , uk ∈ T} of S is isomorphic
to the subsemigroup {1} ∪ 〈xt | t ∈ T \ {1}〉 of G.

Proof. Let T be a semigroup. Let I = M(G,X, Y ;P ) be the semigroup of
matrix type over the free group G on {xt | t ∈ T \{1}}, with X = Y = T , if
T has unity, or X = Y = T ∪ {1}, if T has no unity, and with the sandwich
matrix P = (pu,v), where

pu,v =
{

1 if u = 1 or v = 1
x−1

u xuvx
−1
v if u 6= 1 and v 6= 1.

Let S be the disjoint union S = T ∪ I. Let x1 denote the unity of G. We
extend the operations of the semigroups T and I to an operation in S by
defining t(g, u, v) = (xtux

−1
u g, tu, v) and (g, u, v)t = (gx−1

v xvt, u, vt), for all
t ∈ T and (g, u, v) ∈ I. We claim that S with this operation is a semigroup.
Let t, t′ ∈ T and (g, u, v), (g′, u′, v′) ∈ I. We have

t(t′(g, u, v)) = t(xt′ux
−1
u g, t′u, v) = (xtt′ux

−1
u g, tt′u, v) = (tt′)(g, u, v),

((g, u, v)t)t′ = (gx−1
v xvt, u, vt)t′ = (gx−1

v xvtt′ , u, vtt
′) = (g, u, v)(tt′),

(t(g, u, v))t′ = (xtux
−1
u g, tu, v)t′ = (xtux

−1
u gx−1

v xvt′ , tu, vt
′)

= t(gx−1
v xvt′ , u, vt

′) = t((g, u, v)t′),

((g, u, v)(g′, u′, v′))t=(gpv,u′g
′, u, v′)t = (gpv,u′g

′x−1
v′ xv′t, u, v

′t)

= (g, u, v)(g′x−1
v′ xv′t, u

′, v′t) = (g, u, v)((g′, u′, v′)t),

t((g, u, v)(g′, u′, v′))= t(gpv,u′g
′, u, v′) = (xtux

−1
u gpv,u′g

′, tu, v′)

= (xtux
−1
u g, tu, v)(g′, u′, v′) = (t(g, u, v))(g′, u′, v′),

((g, u, v)t)(g′, u′, v′)= (gx−1
v xvt, u, vt)(g′, u′, v′)=(gx−1

v xvtpvt,u′g
′, u, v′),

(g, u, v)(t(g′, u′, v′))= (g, u, v)(xtu′x
−1
u′ g

′, tu′, v′)=(gpv,tu′xtu′x
−1
u′ g

′, u, v′).

Note that

x−1
v xvtpvt,u′ =

{
x−1

v xvt if vt = 1 or u′ = 1
x−1

v xvtu′x
−1
u′ if vt 6= 1 and u′ 6= 1
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and

pv,tu′xtu′x
−1
u′ =

{
xtu′x

−1
u′ if v = 1 or tu′ = 1

x−1
v xvtu′x

−1
u′ if v 6= 1 and tu′ 6= 1.

Hence, if vt 6= 1, u′ 6= 1, v 6= 1 and tu′ 6= 1, then

((g, u, v)t)(g′, u′, v′) = (g, u, v)(t(g′, u′, v′)).(21)

If vt = 1, v 6= 1 and tu′ 6= 1, then x−1
v xvt = x−1

v xvtu′x
−1
u′ , and thus (21)

holds. If vt = 1 and v = 1, then t = 1 and x−1
v xvt = xtu′x

−1
u′ , and thus (21)

holds. If vt = 1 and tu′ = 1, then v = u′ and x−1
v xvt = xtu′x

−1
u′ , and

thus (21) holds. If u′ = 1, v 6= 1 and tu′ 6= 1, then x−1
v xvt = x−1

v xvtu′x
−1
u′ ,

and thus (21) holds. If u′ = 1 and v = 1, then x−1
v xvt = xtu′x

−1
u′ , and

thus (21) holds. If u′ = 1 and tu′ = 1, then t = 1 and x−1
v xvt = xtu′x

−1
u′ , and

thus (21) holds. If vt 6= 1, u′ 6= 1 and v = 1, then x−1
v xvtu′x

−1
u′ = xtu′x

−1
u′ ,

and thus (21) holds. If vt 6= 1, u′ 6= 1 and tu′ = 1, then x−1
v xvtu′x

−1
u′ =

xtu′x
−1
u′ , and thus (21) holds. Therefore the operation is associative. Hence

S is a semigroup, as claimed, T is a subsemigroup and I is an ideal of S.
Let e = (x1, 1, 1) ∈ I. Let S′ = {eu1eu2 · · · euke | u1, u2, . . . , uk ∈ T}.

Since e2 = e, S′ is a subsemigroup of S. Note that

(eu1)(eu2) · · · (euk)e = (xu1 , 1, u1)(xu2 , 1, u2) · · · (xuk
, 1, uk)(x1, 1, 1)

= (xu1xu2 · · ·xuk
, 1, 1),

for all u1, u1, . . . , uk ∈ T . Now it is easy to see that S′ is isomorphic to the
subsemigroup {x1} ∪ 〈xt | t ∈ T \ {1}〉 of G.

Assume that T is a semigroup (not necessarily a monoid), G is a group
and χ : T \ {1} −→ G is a mapping. Then we can construct, as above, a
semigroup S(T,G, χ) = T∪I, a disjoint union, such that T is a subsemigroup
of S(T,G, χ), and I = M(G,X, Y ;P ) is the semigroup of matrix type over
G with X = Y = T , if T has unity, or X = Y = T ∪ {1}, if T has no unity,
and with the sandwich matrix P = (pu,v), where

pu,v =
{

1 if u = 1 or v = 1
χ(u)−1χ(uv)χ(v)−1 if u 6= 1 and v 6= 1.

This is accomplished by defining t(g, u, v) = (χ(tu)χ(u)−1g, tu, v) and
(g, u, v)t = (gχ(v)−1χ(vt), u, vt), for all t ∈ T and (g, u, v) ∈ I, where
χ(1) denotes the unity of G. Then I is a completely 0-simple ideal of
S(T,G, χ) and e = (1, 1, 1) ∈ I is an idempotent such that the subsemi-
group S′(T,G, χ) = {eu1eu2 · · · euke | u1, u2, . . . , uk ∈ T} of S(T,G, χ) is
isomorphic to the subsemigroup {1} ∪ 〈χ(t) | t ∈ T \ {1}〉 of G.

Theorem 5.2. Conjecture 4.2 is true if and only if Conjecture 4.3 is true.
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Proof. Suppose that Conjecture 4.3 is true. Then, by Lemma 2.5, nilpo-
tent-by-finite groups satisfy the subexponential property for sequences.
Thus, Theorem 3.2 implies that Conjecture 4.2 is true.

Conversely, suppose that Conjecture 4.2 is true. Let H be a nilpotent
group of class m. Let b(1), b(2), . . . be a sequence of positive integers and

h1,1, h1,2, . . . , h1,b(1), h2,1, h2,2, . . . , h2,b(2), . . .(22)

a sequence of elements in H. Define the set

Tn = {hi1,j1hi2,j2 · · ·his,js
∈ H | s ≥ 1, i1 + · · ·+ is ≤ n}.

Let g(n) = |Tn| and f(n) =
∑n

i=1 b(i). Suppose that lim supn→∞ f(n)
1
n ≤

1.
By [16, Theorem 1.1], there exists a 2-generated semigroup T = 〈a, b〉

whose growth is intermediate and larger than the growth of f . In fact, we
may assume that there exists a positive integer n0 such that dT,{a,b}(n) >
f(n) for all n ≥ n0 (see [16]). Let S be the free semigroup on generators
y1, . . . , yf(n0). Consider the ideal J of S generated by all products yiyj , and
set S = S/J . We denote by s̄ the image of s under the natural projection
π : S −→ S. Thus, S = 〈ȳ1, . . . , ȳf(n0)〉. Let T 1 = T ∪{1} and S

1
= S∪{1}.

Let A1 = {1, a, b} and B1 = {1, ȳ1, . . . , ȳf(n0)}. Let T ′ = T 1 × T 1 × S
1

and

A = A1 ×A1 ×B1. Thus T ′ = 〈A〉. Since S
1

= {0, 1, ȳ1, . . . , ȳf(n0)},

dT ′,A(n) ≤ dT 1,A1(n)2(f(n0) + 2).

Since T has subexponential growth, T 1 also has subexponential growth.
Hence T ′ has subexponential growth.

Since T 1 is an infinite finitely generated semigroup, for every positive
integer n there exists an element wn ∈ T 1 of length n in the generators
from A1. Let

Cn = {w ∈ T 1 | w has length n in the generators from A1}.

Then D = {(wn, 1, ȳj) | j = 1, . . . , f(n0)}, Dn+1 = Cn+1 × {1} × {1} and
Di = (Ci \ {1})× (Cn+1−i \ {1})×{1}, for i = 1, . . . , n, are disjoint subsets
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of elements of T ′ of length n+ 1 in the generators from A. Hence

dT ′,A(n+ 1)− dT ′,A(n) ≤

≥ |D|+ |Dn+1|+
n∑

i=1

|Di|

= f(n0) + |Cn+1|+
n∑

i=1

|Ci \ {1}| · |Cn+1−i \ {1}|

≥ f(n0)− 1 +
n+1∑
i=1

|Ci|

(since Ck = Ck \ {1}, for k > 1)
= f(n0)− 1 + dT 1,A1(n+ 1)
= f(n0) + dT,{a,b}(n+ 1)
> f(n+ 1) ≥ b(n+ 1),

for all n ≥ 1. Furthermore, dT ′,A(1) > f(n0) ≥ b(1).
Let G be the free nilpotent group of class m on generators {xt | t ∈

T ′ \ {1}}. Let χ : T ′ \ {1} −→ G be the map defined by χ(t) = xt for all
t ∈ T ′ \ {1}. Let S(T ′, G, χ) be the semigroup constructed as above. Define
S1 as the subsemigroup of S(T ′, G, χ) generated by the set C = A ∪ {e},
where e = (1, 1, 1) ∈ S(T ′, G, χ) \ T ′. Let l(t) denote the length of t ∈ T ′ in
the generators from A. Let

T ′n = {xt1xt2 · · ·xts
∈ G | l(t1) + · · ·+ l(ts) ≤ n}

and g1(n) = |T ′n|. Since dT ′,A(1) > f(n0) ≥ b(1) and dT ′,A(n + 1) −
dT ′,A(n) > b(n+1), for all n ≥ 1, we have that g1(n) ≥ g(n) for all n. Since

ψ:S′(T ′, G, χ) −→ {1} ∪〈xt | t ∈ T ′ \ {1}〉,

defined by ψ(et1et2· · ·etse)=xt1xt2 · · ·xts
, is an isomorphism, we obtain

|T ′n|= |{et1et2· · ·etse ∈ S′(T ′, G, χ) | l(t1)+. . .+l(ts)≤n}|≤ dS1,C(2n+ 1).

Since Conjecture 4.2 is true, dS1,C has subexponential growth. Therefore

lim
n→+∞

dS1,C(n)
1
n ≤ 1.

Hence

lim sup
n→+∞

g(n)
1
n ≤ lim sup

n→+∞
g1(n)

1
n ≤ lim sup

n→+∞
dS1,C(2n+ 1)

1
n

≤ lim sup
n→+∞

dS1,C(3n)
1
n ≤ lim sup

n→+∞
dS1,C(n)

3
n ≤ 1.

The result follows.
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Let T = 〈g〉 be an infinite cyclic semigroup, G a free nilpotent group of
class 2 on generators x1, x2, . . ., and let χ : T −→ G be defined by χ(gi) = xi.
Then the semigroup S(T,G, χ) is a simple example of a semigroup satisfying
the hypotheses of Theorem 3.2. We continue with another construction of
a semigroup of intermediate growth that has the form S = T ∪ I, a disjoint
union, where T is an infinite cyclic semigroup and I is an ideal, satisfying
the hypotheses of Theorem 3.2.

Example 5.3. There exists a semigroup of the form S = 〈g〉∪ I, a disjoint
union, where I = M(H,Z,Z;Q) is a completely 0-simple ideal of S over a
free nilpotent of class 2 group H, such that:

(i) e = (1, 1, 1) ∈ I is an idempotent,
(ii) e〈g, e〉e generates a subgroup of I isomorphic to H,
(iii) 〈g, e〉 has intermediate growth.

Proof. Let G be the free group on free generators x1, x2, . . .. First we
construct a monoid of the form T = 〈g, g−1〉 ∪ J , where J = M(G,Z,Z;P )
is a completely 0-simple semigroup. We interpret elements of J as Z × Z-
matrices with at most one nonzero entry, chosen from G. Hence (g, i, j)
denotes the matrix with g ∈ G in position (i, j). We need to define the
sandwich matrix P = (pij) and the action of the cyclic group generated
by g on J . Define z1 = x1, zn = x−1

n−1xn for n > 1 and zn = 1 for n ≤
0. Let A = (aij) be the Z × Z-matrix with entries in G ∪ {0} such that
aij = zi if j = i + 1 and aij = 0 otherwise. We shall find P such that
A ◦ P = P ◦ A, where ◦ stands for the usual matrix multiplication (notice
that these products make sense because of the form of A). Then we define
gka = Ak ◦ a and agk = a ◦ Ak for a ∈ J and k ∈ Z. Thus, for every b ∈ J
we have (a ◦ Ak)b = (a ◦ Ak) ◦ P ◦ b = a ◦ P ◦ (Ak ◦ b) = a(Ak ◦ b) because
A and P commute. The remaining conditions needed for the associativity
of the operation in T follow immediately. Next, notice that the condition
A ◦ P = P ◦A is equivalent to

zipi+1,j = pi,j−1zj−1 for every i, j ∈ Z.(23)

We claim that P can be chosen so that pi1 = 1 for every i ∈ Z. Indeed,
we have chosen one column of P (the column with index 1). Then relations
(23) allow us to determine uniquely all other entries of P . (These relations
allow to determine the entire diagonal consisting of all entries prs of P
such that r − s = i − 1, knowing only pi1.) So we have determined a
semigroup structure on T , extending the structure of J . Now, consider
the natural homomorphism φ : G −→ H onto the free nilpotent of class
2 group on free generators also denoted by x1, x2, . . .. Then we have an
induced homomorphism J −→ I = M(H,Z,Z, Q), obtained by mapping
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every (gij) ∈ J to (φ(gij)), and defining the entries of the sandwich matrix
Q by the rule qij = φ(pij) if pij ∈ G (notice that all entries of P are
nonzero). It is easy to see that this determines an onto homomorphism
T −→ 〈g, g−1〉 ∪ I.

Let e = (eij) ∈ I be the matrix with the only nonzero entry e11 = 1. It
is clear that e2 = e, which proves (i). For n ≥ 1 write An = (h(n)

ij ). Then,
for all i ∈ Z, we have

h
(n)
ij = 0 if j 6= i+ n,

and
h

(n)
i,i+n = ai,i+1ai+1,i+2 · · · ai+n−1,i+n = zizi+1 · · · zi+n−1.

In particular,

h
(n)
1,1+n = z1z2 · · · zn = x1(x−1

1 x2) · · · (x−1
n−1xn) = xn.

If t is a positive integer, then

egte = (egt)e = (xt, 1, t+ 1)(1, 1, 1) = (xtpt+1,1, 1, 1) = (xt, 1, 1).

Therefore the subgroup of I generated by e〈g, e〉e is isomorphic to H, and
this proves (ii).

Note that, for every positive integer n and every i1, i2, . . . , ik such that
k + 1 +

∑k
j=1 ij = n, the only nonzero entry of u = egi1egi2e · · · egike is

equal to xi1 · · ·xik
. Moreover, u has length n in e, g. Now, by Theorem 2.8,

it follows easily that 〈g, e〉 has intermediate growth, and this proves (iii).

Let Z≤1,Z≥1 be the sets of integers ≤ 1 and ≥ 1, respectively. It is
easy to see that I+ = M(H,Z≤1,Z≥1;Q+), where Q+ is the corresponding
submatrix of Q, is a completely 0-simple subsemigroup of I. Moreover, for
every m ∈ Z≤1 and n ∈ Z≥1, the semigroup 〈g, e〉 contains an element of
the form (h,m, n), h ∈ H. Therefore, 〈g, e〉 ∩ I is a uniform subsemigroup
of I+ in the sense of [12].

Our final aim is to show that examples of similar types can be constructed
within the class of linear semigroups. Namely, we find a matrix realization
of a semigroup of intermediate growth arising from Example 5.1.

Example 5.4. Let

h =


1 1 0 0 0
0 x 1 0 0
0 0 1 1 0
0 0 0 y 1
0 0 0 0 1

 , f =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1

 ⊆M5(K),

where K = Q(x, y) is the field of rational functions in the indeterminates x
and y. Let S = 〈h, f〉. Then S = 〈h〉 ∪ J , where J is the ideal consisting
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of matrices of rank 3 and it is a subsemigroup of a completely 0-simple
semigroup M(H,X, Y ;P ), for a nilpotent group H of class 2. Moreover, if
T = 〈g〉 is an infinite cyclic semigroup, G a free nilpotent group of class 2
on generators x1, x2, . . ., and χ : T −→ G is defined by χ(gi) = xi for i =
1, 2, . . . , then 〈h3, f〉 ∼= 〈g, e〉 ⊆ S(T,G, χ), where e = (1, 1, 1) ∈ S(T,G, χ).
In particular, S has intermediate growth.

Proof. It is clear that the set J of all matrices of rank 3 in S forms an
ideal of S and S = 〈h〉 ∪ J . As explained at the beginning of Section 3,
from the general structure theorem for linear semigroups it then follows
that J embeds into a completely 0-simple semigroup M(H,X, Y ;P ) and H
can be identified with the group generated by S ∩ fM5(K)f . The latter
is isomorphic to a unipotent nonabelian subgroup of GL3(K). Thus H is
nilpotent of class 2. By Theorem 2.8 and Theorem 3.2, S has subexponential
growth.

Let n be a positive integer. Then, using induction, it is easy to check
that hn is of the form

hn =


1 an fn ∗ kn

0 xn an ∗ ∗
0 0 1 bn gn

0 0 0 yn bn
0 0 0 0 1


where an = 1 + x + · · · + xn−1, bn = 1 + y + · · · + yn−1 and fn = a1 +
· · · + an−1, gn = b1 + · · · + bn−1 and kn is a polynomial in x, y. Con-
sider any element of the form w = fhi1fhi2f · · · fhikf . Clearly w =
(fhi1f)(fhi2f) · · · (fhikf) and hence

w =


1 0 pw 0 zw

0 0 0 0 0
0 0 1 0 qw
0 0 0 0 0
0 0 0 0 1

 ,

where pw = fi1 + · · ·+ fik
. Since fj is a monic polynomial with deg(fj) =

j − 2 for j ≥ 2, the (1, 3) entry pw of w determines the exponents i1, . . . , ik
(taking their multiplicities into account). In particular, fh3if, i = 1, 2, . . .,
are independent modulo the commutator subgroup H ′ of H.

It is easy to see that the commutator [fhif, fhjf ] in the group H is of the
form 1 + e15(figj − gifj), where e15 is the corresponding matrix unit. The
leading term of the polynomial figj−gifj is xi−2yj−2−yi−2xj−2. Therefore
[fh3if, fh3jf ], i > j ≥ 1, are independent in the abelian group H ′. Thus,
from Lemma 2.7 it follows that the map fh3if 7→ xi, i = 1, 2, . . ., extends to
an injective homomorphism from the semigroup F generated by fh3if, i =
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1, 2, . . ., to the free nilpotent group G of class 2 on free generators x1, x2, . . ..
Since F ⊆ H has a group of right quotients because H is nilpotent, this
implies that fh3if, i = 1, 2, . . ., are free generators of a free nilpotent group
of class 2. Since egie, i = 1, 2, . . ., also have this property by Example 5.1, it
follows that the map egie 7→ fh3if extends to an isomorphism e〈g, e〉e −→
f〈h3, f〉f . Suppose that hiwhj = hpvhq for some w, v ∈ H and some
integers i, j, p, q. Then w = hp−ivhq−j = hp−i(vhq−jf) and comparing the
(2, 3)-entries of these matrices we get p = i. A symmetric argument yields
q = j. This implies that 〈h3, f〉 =

⋃∞
i,j=1 h

3iWh3j , where W = f〈h3, f〉f ,
is a disjoint union. Since giGgj , i, j ≥ 1, are also disjoint, it follows that the
rules:

gi(egi1egi2e · · · egike)gj 7→ h3i(fh3i1fh3i2f · · · fh3ikf)h3j and gm 7→ h3m,

for any nonnegative integers i, j, k, i1, . . . , ik,m, determine a bijection
π : 〈g, e〉 −→ 〈h3, f〉. It is then clear that π is an isomorphism.
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