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Abstract. For bilipschitz images of Cantor sets in Rd we estimate
the Lipschitz harmonic capacity and show this capacity is invariant
under bilipschitz homeomorphisms.

1. Introduction

Let Lip1
loc(Rd) be the set of locally Lipschitz real functions on Euclidean

space Rd, let E be compact subset of Rd, and let

L(E, 1) = {f ∈: Lip1
loc : supp(∆f) ⊂ E, ||∇f ||∞ ≤ 1, ∇f(∞) = 0}

be the set of locally Lipschitz functions harmonic on Rd \E and normalized
by the conditions ||∇f ||∞ ≤ 1 and ∇f(∞) = 0. The Lipschitz harmonic
capacity of E is defined by

κ(E) = sup{|〈∆f, 1〉| : f ∈ L(E, 1)}.
It was introduced by Paramonov [P] to study problems of C 1 approximation
by harmonic functions in Rd.

If d = 2, if C \ E is simply connected, and if the Hausdorff measure
Λ2(E) = 0, then f ∈ L(E, 1) if and only if F (z) = fx − ify is a single-
valued bounded analytic function on C \ E which satisfies |F (z)| ≤ 1. In
that case it then follows from Green’s theorem that κ(E) = 2πγR(E), where

γR(E) =

= sup{| lim
z→∞

zF (z)| : F is analytic on C \ E, |F | ≤ 1, F (∞) = 0, ∂̄F real}

is the so called real analytic capacity of E. (See [P].)

Now let T : Rd → Rd be a bilipschitz homeomorphism:

A−1|x− y| ≤ |Tx− Ty| ≤ A|x− y|. (1)

This paper is concerned with the following conjecture.
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Conjecture 1.1. If T is a bilipschitz homeomorphism, then

κ(T (E)) ≤ C(A)κ(E),

where A is the constant in (1).

When d = 2 this conjecture was established in [T2] using the connection
between analytic capacity and Menger curvature obtained in [T1]. The
papers [T1] and [T2] were preceded by two papers [MTV] and [GV] that
estimated the analytic capacity of planar Cantor sets and of their bilipschitz
images. The recent paper [MT] estimated the Lipschitz harmonic capacity of
certain Cantor sets in Rd, and our purpose here is to establish Conjecture
1.1 for bilipschitz images of these Cantor sets. Thus in the language of
fractions, this paper is to [MT] as paper [GV] was to [MTV] or paper [T2]
was to [T1].

For fixed ratios λn such that

2−
d

d−1 ≤ λn ≤ λ0 <
1
2
, (2)

we write

σn =
n∏

k=0

λk,

and define the sets

E =
∞⋂

n=0

En, En =
⋃

|J|=n

Qn
J , (3)

where J = (j1, j2, . . . , jn) is a multi-index of length n with jk ∈ {1, 2, . . . 2d}
and the Qn

J are compact sets such that

Qn+1
(J,jn+1)

⊂ Qn
J , for all n and J,

and such that for all n and J ,

c1σn ≤ diam(Qn
J) ≤ c2σn, (4)

and
dist(Qn

J , Qn
K) ≥ c3σn, J 6= K. (5)

for positive constants c1, c2, and c3.

When Qn
J is a cube with sides parallel to the coordinate axes and side-

length σn and
{Qn+1

(J,jn+1)
⊂ Qn

J : jn+1 = 1, . . . , 2d}
consists of the 2d corner subcubes of Qn

J , the set defined by (3) is the Cantor
set studied in [MT], and a set E is the bilipschitz image of such a Cantor
set if and only if E satisfies (3), (4), and (5). Write
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θn =
2−nd

σd−1
n

and θ(Q) = θn if Q = Qn
J . Note that by (2),

θn+1 ≤ θn.

For Cantor sets it was proved in [MT] that

C−1
( ∞∑

n=0

θ2
n

)− 1
2 ≤ κ(E) ≤ C

( ∞∑
n=0

θ2
n

)− 1
2
,

where C depends only on the constant λ0 in (2) and we extend their result
to bilipschitz images of Cantor sets.

Theorem 1.2. If E is defined by (3), (4), and (5), then there is constant

C = C(c1, c2, c3, λ0)

such that

C−1
( ∞∑

n=1

θ2
n

)− 1
2 ≤ κ(E) ≤ C

( ∞∑
n=1

θ2
n

)− 1
2
.

The proof of Theorem 1.2 follows the reasoning in [MT], but with certain
changes. In Section 2 we give some needed geometric properties of the sets
E. In Section 3 we obtain L2 estimates for the (truncated) Riesz transforms
with respect to the probability measure p on E defined by p(Qn

J ) = 2−nd.
In Section 4 we derive Theorem 1.2 from the L2-estimates in section 3 by
applying the dyadic T (b) Theorem of M. Christ to a measure used in [MTV]
and [MT].

2. The Geometry of E

Fix E such that (2) - (5) hold.

Lemma 2.1. There is c4 = c4(λ0, c1, c2, c3) such that for j = 1, 2, . . . , d,
and all Qn

J

sup
Qn

J∩E
xj − inf

Qn
J∩E

xj ≥ c4σn. (6)

Proof. Write
w = sup

Qn
J∩E

xj − inf
Qn

J∩E
xj .

Let P be the hyperplane

xj =
1
2
( sup
Qn

J∩E
xj + inf

Qn
J∩E

xj),
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and let Q̃k
K be the orthogonal projection of Qk

K onto P. If

w <
c3

2
σn+p

then for k = n + 1, · · · , n + p, (5) and the Pythagorean Theorem give

dist(Q̃k
J′ , Q̃

k
J ′′ ) ≥

√
3

2
c3σk,

and there are (d − 1)-dimensional balls Bk
J ′ with diameter comparable to

the diameter of Q̃k
J′ and such that

dist(Q̃k
J ′ , B

k
J′) ≤ c4σk

and
Bk

J ∩Bm
K = ∅, when k ≥ m.

Hence for constants c5 > c6 depending only on d and c1, c2, and c3,

c5σ
d−1
n ≥ Λd−1

( p⋃

k=1

⋃

|K|=k

Bn+k
(J,K)

)

≥
p∑

k=1

∑

|K|=k

Λd−1

(
Bn+k

(J,K)

)

≥
p∑

k=1

c62kdσd−1
n+k,

and by (2) this can only happen if p ≤ c5
c6

. Thus (6) holds with c4 =

c32
−d

d−1
c5
c6
−1. ¤

Define the probability measure p on E by p(Qn
J ) = 2−nd.

Lemma 2.2. There exist c7, c8, and 0 < γ < 1, depending only on λ0, c1, c2,
and c3 such that for j = 1, 2, . . . , d, there exist c72n disjoint slabs of the form

Sk = {ak ≤ xj ≤ bk}
such that bk − ak ≤ c7σn, p(

⋃
Sk) ≥ c8, but p(Sk) < c7γ

n.

Proof. Condition (4) implies that there exist disjoint slabs Sk satisfying all
the conditions of the lemma except possibly p(Sk) ≤ c7γ

n. However, by
Lemma 2.1 there exists m0 such that if m ≤ n − m0, then for each Qm

J

at most 2d − 1 cubes Qm+1
K ⊂ Qm

J can meet Sk. Hence the number of
Qn

L with Qn
L ∩ Sk 6= ∅ does not exceed (2d − 1)(n−m0)2dm0 and p(Sk) ≤

(1− 2−d)n−m0 ≤ c7γ
n. ¤
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3. The L2 Estimate

Let E satisfy properties (2) - (5). For x ∈ E we define Qn
x = Qn

J to be
the unique Qn

J such that x ∈ Qn
J . If f ∈ L2(p) and j = 1, 2, . . . , d, we define

the truncated Riesz transform as

Rj
Nf(x) =

∫

y/∈QN
x

Kj(y − x)f(y)dp(y),

where Kj(y − x) =
(y − x)j

|y − x|d . By (5) it is clear that ‖Rj
N‖L2(p) < ∞.

Theorem 3.1. Let 0 < α < 1 and let G ⊂ E be a closed set such that
p(G) > α. There are constants C1(α) and C2, both depending on λ0, c1, c2

and c3, such that for all N big enough,

C1

( N∑
n=0

θ2
n

) 1
2 ≤ ‖Rj

N‖L2(G,p) ≤ C2

( N∑
n=0

θ2
n

) 1
2
. (7)

To begin we prove the upper bound in (7). Since the norm ‖Rj
N‖L2(G,p)

increases with G we may assume G = E, which also means C2 does not
depend on α. The proof of the upper bound in (7) follows the paper [MT],
but for convenience we repeat their argument. By the T (1)-Theorem for
spaces of homogeneous type

‖Rj
N‖L2(p) ≤ C sup

n≤N
sup
|J|=n

p(Qn
J)

σd−1
n

+ C sup
n≤N

sup
|J|=n

‖Rj
N (χQn

J
)‖L2(Qn

J ,p)

p(Qn
J )

1
2

.

Therefore the upper bound in (7) will be an immediate consequence of the
following two lemmas. For convenience we fix j, write K(y−x) = Kj(y−x),
and define

Rmf(x) =
∫

Qm
x \Qm+1

x

Kj(y − x)f(y)dp(y).

Lemma 3.2. If n ≤ m, there is c7 such that

‖RmχQn
J
‖L2(Qn

J ,p) ≤ c7θmp(Qn
J)

1
2

Proof. For y ∈ Qm
x \Qm+1

x , (5) gives

|K(y − x)| ≤ 1
cd−1
3 σd−1

m+1

.

Hence by (2)

|RmχQn
J
| ≤ 2d

cd−1
3

θm,

and
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||RmχQn
J
||L2(p) ≤

2d

c3
d−1

θmp(Qn
J)

1
2 .

¤

Lemma 3.3. There is a constant C depending only on λ0, c1, c2 and c3

such that for all N > n and all J ,

‖Rj
NχQn

J
‖2L2(Qn

J ,p) ≤ C

N∑

k=n

θ2
kp(Qn

J).

Proof. Fix j = 1, . . . , d, then for x ∈ Qn
J

Rj
NχQn

J
(x) =

N−1∑
m=n

RmχQn
J
(x).

We claim that for m 6= k,
∣∣∣
∫

RmχQn
J
RkχQn

J
dp

∣∣∣ ≤ C2−|m−k|‖RmχQn
J
‖L2(p)‖RkχQn

J
‖L2(p). (8)

Accepting (8) for the moment, we conclude that

‖Rj
NχQn

J
‖2L2(Qn

J ) = ‖
N−1∑
m=n

RmχQn
J
‖2

=
N−1∑
m=n

‖RmχQn
J
‖2 + 2

∑

n≤k<m≤N−1

〈RmχQn
J
, RkχQn

J
〉

≤ C

N−1∑
m=n

‖RmχQn
J
‖2,

so that Lemma 3.2 gives the right inequality in (7).

To prove (8) assume n ≤ k < m ≤ N − 1. Then because the kernel K is
odd,

∫

Qm
K

RmχQn
J
(x)dp(x) =

∑

r 6=q

∫

Qm+1
(K,r)

∫

Qm+1
(K,q)

K(x− y)dp(y)dp(x) = 0,

so that for any xm
K ∈ Qm

K ,
∫

Qm
K

RmχQn
J
(x)RkχQn

J
(x)dp(x) =

∫

Qm
K

RmχQn
J
(x)(RkχQn

J
(x)−RkχQn

J
(xm

K))dp(x).
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But when x ∈ Qm
K , (4), (5) and (2) give

|RkχQn
J
(x)−RkχQn

J
(xm

K)| ≤ C
σmp(Qk

x)
σd

k

≤ Cθk
σm

σk
≤ C2−(m−k)θk.

Hence using Lemma 3.2

|
∫

RmχQn
J
RkχQn

J
dp| ≤ C2−(m−k)θk‖RmχQn

J
‖L1(Qn

J ,p)

≤ C2−(m−k)θkp(Qn
J)

1
2 ‖RmχQn

J
‖L2(p)

≤ C2−(m−k)‖RmχQn
J
‖L2(p)‖RkχQn

J
‖L2(p)

and (8) holds. ¤

The proof of the lower bound in (7) also follows [MT] but with two
alterations because G 6= E and because the sets Qn

J may be incongruent.
When Q = Qn

J we also write n = n(Q), Q ∈ Dn, and θ(Q) = θn.

Let 0 < δ < 1, fix G and define B(δ) = {Q ∈ ⋃
nDn : p(G∩Q) < δp(Q)}.

Lemma 3.4. Assume δ < α and p(G) ≥ α.
(a) Then for all n,

p(G \
⋃

Dn∩B(δ)

QJ
n) ≥ p(G \

⋃

B(δ)

Q) ≥ α− δ.

(b) For N0 ∈ N there exists M(N0) such that whenever Q /∈ B(δ), there
exist Q′ ⊂ Q with n(Q′) ≤ n(Q) + M such that for all Q′′ ⊂ Q′ with
n(Q′′) ≤ n(Q′) + N0

Q′′ /∈ B(
δ

2
).

Proof. To prove (a) let {Qj} be a family of maximal cubes in B(δ), note
that

p(G ∩
⋃

B(δ)

Q) ≤
∑

p(G ∩Qj) ≤ δp(E) = δ

and subtract this quantity from p(G).

To prove (b) fix N0 and suppose (b) is false for N0, δ,Q and M = 0. Write
n = n(Q). Then there is Q1 ⊂ Q with n(Q1) ≤ n + N0 and Q1 ∈ B( δ

2 ).
Set F1 = {Q1}. Then p(Q \Q1) ≤ (1− 2−N0d)p(Q) = βp(Q). Now assume
(b) is also false for N0, δ,Q and M = N0 and write Q \ Q1 =

⋃{Q′ :
n(Q′) = n(Q1), Q′ 6= Q1}. Then for each Q′ 6= Q1 with n(Q′) = n(Q1)
there is Q2 ⊂ Q′ with n(Q2) ≤ 2N0 and Q2 ∈ B( δ

2 ). Set F2 = {Q2}. Then
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p(Q \ ⋃
F1∪F2

Qj) ≤ β2p(Q). Further assume (b) is false for N0, δ,Q and
M = 2N0 and repeat the above construction in each Q′ \Q2. After m steps
we obtain families Fj of cubes Qj ∈ B( δ

2 ) such that ∪Fj is disjoint and

p(Q \
m⋃

j=1

⋃

Fj

Qj) ≤ βmp(Q)

and for βm < δ
2 we obtain p(Q∩G) ≤ δ

2

∑m
j=1

∑
Fj

p(Qj)+βmp(Q) < δp(Q),
which is a contradiction. We conclude that (b) holds for M = mN0. ¤

We will later fix δ = α
2 . But for any δ < α we say Q′ ∈ G∗(δ) if Q′

satisfies conclusion (b) of Lemma 3.4 for N0 and δ. Then by parts (b) and
(a) of Lemma 3.4 we have:

Lemma 3.5. If p(G) ≥ α then
∑

G∗( δ
2 )

θ(Q′)2p(Q′ ∩G) ≥ C(M)
∑

Q/∈B(δ)

θ(Q)2p(Q ∩G) ≥ C(M, α)
∑

θ2
n.

Now let A be a large constant. As in [MT], for R ∈ D we will define a
family Stop(R) of “stopping cubes” Q ⊂ R. We say Q ∈ Stop0(R) if Q ⊂ R
and Q /∈ B( δ

2 ), and if

inf
Q

∣∣∣
∫

G∩(R\Q)

K(y − x)dp(y)
∣∣∣ ≥ Aθ(R).

We further say Q ∈ Stop1(R) if Q ⊂ R and Q /∈ B( δ
2 ), if θ(Q) ≤ ηθ(R) for

constant η to be chosen below, if n(Q) ≥ n(R) + N1 for constant N1 to be
chosen below, and if

P ∈ Stop0(R) ⇒ n(P ) ≥ n(Q).

Then define

Stop(R) = {Q ∈ Stop0(R) ∪ Stop1(R) : Q is maximal}.
Notice that by the construction either Stop(R) ⊂ Stop0(R) or Stop(R) ⊂
Stop1(R). Inductively we define Stop1(P ) = Stop(P ) and

Stopk(P ) =
⋃
{Stop(Q) : Q ∈ Stopk−1(P )},

Top = {P0} ∪
⋃

k≥1

Stopk(P0),

and
P stp =

⋃

Stop(P )

Q,

where P0 is the unique cube in D0.
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Remark. The constants N0, N1, A, η are chosen as follows. First we take
δ = α/2, then N1 is fixed in Lemma 3.7, then η and A in the proof of
Lemma 3.8, and N0 which depends on A, η, δ in the proof of Lemma 3.6.

Lemma 3.6. Assume p(G) ≥ α, and take δ = α
2 . If N0 = N0(A, η, δ) is

sufficiently large, then for all Q ∈ G∗( δ
2 ) there exists a cube P ⊂ Q such

that P ∈ Top and n(P ) ≤ n(Q) + N0.

Proof. Let Q ∈ G∗( δ
2 ) and let R be the smallest cube R ∈ Top such that

Q ⊂ R. We assume the conclusion of the lemma is false for Q. Thus
Q /∈ Top, and Q /∈ Stop(R). Hence by definition there is x0 ∈ Q such
that ∣∣∣

∫

G∩R\Q
K(y − x0)dp(y)

∣∣∣ ≤ Aθ(R).

Then for x ∈ Q (5) gives

∣∣∣
∫

G∩R\Q
(K(y − x)−K(y − x0))dp

∣∣∣ ≤ Cσn(Q)

n(Q)−1∑

k=n(R)

θk

σk
≤ C1θ(R)

so that
sup
Q

∣∣∣
∫

G∩R\Q
K(y − x)dp(y)

∣∣∣ ≤ (A + C1)θ(R). (9)

Take x∗ ∈ Q ∩ E with x∗j = infQ xj and let Q∗ be that Q∗ ⊂ Q such that
x∗ ∈ Q∗ and n(Q∗) = n(Q) + N0. Then by Lemma 2.1 there is a constant
n0 such that

K(y − x∗) ≥ c

σd−1
n

if y ∈ Qn
J ⊂ (Q \Q∗) and n ≤ n(Q∗)− n0. Because θn+1 ≤ θn and because

we assume the lemma is false for Q, we also have θ(Qn
J) ≥ ηθ(R) for every

such Qn
J . Hence by (5)∫

G∩Q\Q∗
K(y − x∗)dp(y) ≥ (N0 − n0)η

δ

2
θ(R)

and by the proof of (9),

inf
Q∗

∫

G∩Q\Q∗
K(y − x)dp(y) ≥ ((N0 − n0)η

δ

2
− C)θ(R). (10)

Taking N0 = N0(A) sufficiently large and comparing (10) with (9) we con-
clude that Q∗ ∈ Stop0(R), which is a contradiction. ¤

Note that by Lemma 3.5 and Lemma 3.6 we have for all P ,
N∑

n=0

θ2
n ≤ C(α)

N∑
n=0

∑

Dn\B(δ)

θ(Q)2p(Q) ≤ C ′(α)
∑

Top

θ(P )2p(G ∩ P ). (11)
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We define

KP 1(x) =
∑

Q∈Stop(P )

χG∩Q(x)
∫

G∩P\Q
K(y − x)dp(y)

+ χG∩P\P stp(x)
∫

G∩P\QN (x)

K(y − x)dp(y).

By construction
χGRN1 =

∑

Top

KP 1

and

‖RN1‖2L2(G) =
∑

Top

‖KP 1‖2L2(G) +
∑

P,Q∈Top,P 6=Q

〈KP 1,KQ1〉L2(G).

Lemma 3.7. If N1 is chosen big enough, then for all P ∈ Top,

‖KP 1‖2L2(G) ≥ C−1θ(P )2p(G ∩ P ), (12)

where C = C(α), and

‖KP 1‖2L2(G) ≥ A2θ(P )2p(G ∩ P stp0), (13)

where
P stp0 =

⋃{
Q : Q ∈ Stop(P ) ∩ Stop0(P )

}
.

Lemma 3.8.∑

P,Q∈Top,P 6=Q

|〈KP 1, KQ1〉L2(G)| ≤ C(A−1 + c(η))
∑

Top

‖KP 1‖2L2(G), (14)

with c(η) → 0 as η → 0.

Assuming Lemma 3.7 and Lemma 3.8 for the moment, we see that if A
is large and η is small, then

‖RN1‖2L2(G) ≥ C−1
∑

Top

θ(P )2p(G ∩ P )

and then the lower bound in (7) follows from inequality (11).

To prove Lemma 3.7, first note that (13) follows from the definitions
of Stop0(P ) and Stop(P ). To prove (12), recall that K = Kj for some
1 ≤ j ≤ d. We apply Lemma 2.2 to P with γn ∼ α to obtain sets S1 ⊂ P
and S2 ⊂ P such that

sup
S1

xj = a < inf
S2

xj
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and

Min(p(G ∩ S1), p(G ∩ S2)) ≥ c(α)p(P ).

We may assume that S1, S2 are much bigger that any stopping cube of P ,
because if there exists some Q ∈ Stop0(P ) with size similar to S1 or S2,
then (12) follows from (13); and if we choose N1 big enough, any cube
Q ∈ Stop1(P ) will be much smaller that S1, S2. Then we get

∣∣
∫

S2∩G

KP χS1(x)dp(x)
∣∣ ≥ C−1p(S2 ∩G)

p(S1 ∩G)
diam(P )d−1

.

Set

E1 = P ∩ {xj ≤ a} and E2 = P ∩ {xj > a}.
By its definition,

KP 1 = χG(x)
∑

k

χQk
(x)

∫

G∩P\Qk

K(y − x)dp(y)

where {Qk} is a cover of P by disjoint cubes from D. We also have

KP 1(x) = χG(x)
∑

i=1,2

∑

k

χQk
(x)

∫

G∩Ei\Qk

K(y − x)dp(y)

≡ KP χE1(x) + KP χE2(x).

Write Qk = Q(x) when x ∈ Qk and note that

y /∈ Q(x) ⇐⇒ x /∈ Q(y).

Hence by the antisymmetry K(y − x) = −K(x− y) we have
∫

G∩E2

KP χE2(x)dp(x) = 0.

Therefore by the construction of E1 and E2,

(p(G ∩ E2))1/2‖KP 1‖L2(G) ≥
∣∣
∫

G∩E2

KP 1(x)dp(x)
∣∣

=
∣∣
∫

G∩E2

KP χE1(x)dp(x)
∣∣

≥ p(G ∩ E2)
c(α)p(G ∩ P )
diam(P )d−1

,

which is (12).
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To prove Lemma 3.8 we again follow [MT]. Suppose P 6= Q ∈ Top and
Q ⊂ P. Let PQ ∈ Stop(P ) be such that Q ⊂ PQ ⊂ P. By the antisymmetry
of K we have

∫
Q∩G

KQ1dp = 0 so that
∣∣∣
∫

Q∩G

KQ1(x)KP 1(x)dp
∣∣∣ =

∣∣∣
∫

Q∩G

KQ1(x)(KP 1(x)−KP 1(xQ))dp(x)
∣∣∣

≤ ‖KQ1‖L1(Q) sup
Q
|KP 1(x)−KP 1(xQ)|,

where xQ is a fixed point from Q. But for any x ∈ Q, standard estimates
yield

∣∣KP 1(x)−KP 1(xQ)
∣∣ ≤

∫

G∩P\PQ

|K(y − x)−K(y − xQ)|dp(y)

≤ C diam(Q)
∫

G∩P\PQ

dp(y)
|x− y|d

≤ C diam(Q)
∑

PQ⊂R⊂P

θ(R)
diam(R)

.

Assume first that PQ ∈ Stop0(P ). Since θ(R) ≤ θ(P ) in the last sum, we
get

∣∣KP 1(x)−KP 1(xQ)
∣∣ ≤ C

diam(Q)
diam(PQ)

θ(P ).

Hence by (13) ∣∣〈KP 1,KQ1〉L2(G,p)

∣∣ ≤

≤ C

A

diam(Q)
diam(PQ)

(
p(G ∩Q)

p(G ∩ P stp0)

)1/2

‖KQ1‖L2(G)‖KP 1‖L2(G),

when PQ ∈ Stop0(P ).
Consider now the case PQ ∈ Stop1(P ). This means that θ(PQ) ≤ ηθ(P ).

It is easy to check that this implies that

diam(Q)
∑

PQ⊂R⊂P

θ(R)
diam(R)

≤ c(η)
diam(Q)
diam(PQ)

θ(P ) with c(η) → 0 as η → 0.

(See Lemma 3.6 in [MT] for a similar argument). So we get

∣∣〈KP 1,KQ1〉L2(G,p)

∣∣ ≤ c(η)
diam(Q)
diam(PQ)

‖KQ1‖L2(G)‖KP 1‖L2(G).

Thus (14) follows from Schur’s lemma. ¤
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4. Lipschitz harmonic capacity

In this section we will prove Theorem 1.2. We will assume that each cube
Qn

J in the definition of the Cantor set E (see (3)) contains a closed ball Bn
J

such that
c′1σn ≤ diam(Bn

J ).
This assumption comes for free from the definition of E in Section 1. Indeed,
one easily deduces that there exists a family of balls Bn

J centered at Qn
J such

that
c′1σn ≤ diam(Bn

J ) ≤ c′2σn,

and
dist(Bn

J , Bn
K) ≥ c′3σn, J 6= K.

Then if one replaces the cubes Qn
J in the definition of E by the sets

Q̃n
J =

⋃

Qm
K⊂Qn

J

(Qm
K ∪Bm

K ),

E does not change.
Given a real Radon measure µ and f ∈ L1(µ), let

Rµ,ε(fdµ)(x) =
∫

|y−x|>ε

y − x

|y − x|d f(y)dµ(y)

be the (truncated) (d− 1)-Riesz transform of f ∈ L1(µ) with respect to the
measure µ and set ‖Rµ‖L2(µ) = supε>0 ‖Rµ,ε‖L2(µ).

As in [MT], we need to introduce the following capacity of the sets EN :

κp(EN ) = sup{α : 0 ≤ α ≤ 1, ‖RαµN ‖L2(αµN ) ≤ 1},
where µN is a probability measure on EN such that µN (QN

J ) = 2−Nd.
The L2 estimates from the previous section yield the following lemma.

Lemma 4.1.

κp(EN ) ≈
( N∑

n=1

θ2
n

)−1/2

.

Proof. By Theorem 3.1 we have

‖RαµN ‖L2(αµN ) = α‖RµN ‖L2(µN ) ≈ α
( N∑

n=1

θ2
n

)1/2

.

The lemma follows because the sum above is ≥ 2−d. ¤

We will prove the following:
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Lemma 4.2. There exists an absolute constant C0 such that for all N ∈ N
we have

κ(EN ) ≤ C0κp(EN ). (15)

Notice that Theorem 1.2 follows from Lemma 4.2 and

κ(EN ) ≥ κ+(EN ) ≥ C−1κp(EN ), (16)

where

κ+(E) = sup{|〈∆f, 1〉| : f ∈ L(E, 1), ∆f = µ ∈ M+(E)}
and M+(E) is the set of positive Borel measures supported on E. The first
inequality in (16) is just a consequence of the definitions of κ and κ+ and
the second inequality follows from a well known method that dualizes a
weak (1,1) inequality (see Theorem 23 in [Ch2] and Theorem 2.2 in [MTV].
The original proof is from [DØ]).

In [Vo] it is shown that the capacities κ and κ+ are comparable for all
subsets of Rd, but we do not use that deep result.

For any s > 0, we write Λs and Λ∞s for the s-dimensional Hausdorff
measure and the s-dimensional Hausdorff content, respectively.

Proof. The arguments are similar to those in [MTV] and [MT], but a little
more involved because our Cantor sets are not homogeneous. Also, instead
of using the local T (b)-Theorem of M. Christ, we will run a stopping time
argument in the spirit of [Ch1] and then use a dyadic T (b)-Theorem (see
Theorem 20 in [Ch1]).

We set
Sn = θ2

1 + θ2
2 + · · ·+ θ2

n.

Without loss of generality we can assume that for each N > 1 there exists
1 ≤ M < N such that

SM ≤ SN

2
< SM+1. (17)

Otherwise SN

2 < S1 and by Lemma 4.1 it follows that κp(EN ) ≥ C−1λd−1
1 .

By [P] we have

κ(EN ) ≤ κ(E1) ≤ CΛ∞d−1(E1) ≤ Cλd−1
1 ,

and if C0 is chosen big enough the conclusion of the lemma will follow in
this case.

Assuming (17), we will now prove (15) by induction on N . For N = 1
(15) holds clearly. The induction hypothesis is

κ(En) ≤ C0κp(En), for 0 < n < N,

where the precise value of C0 is to be determined later.
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Notice that for n ≥ 0, (QN
K ∩ E)n is the n−th generation of the Cantor

set QN
K ∩ E, i.e. the union of 2nd sets Qn+N

J satisfying properties (4) and
(5) with n replaced by n + N . Let J∗ be the multi-index of length M such
that

κ((QM
J∗ ∩ E)N−M ) = max

|J|=M
κ((QM

J ∩ E)N−M ).

We distinguish two cases.
Case 1: For some absolute constant A0 to be determined below,

κ((QM
J∗ ∩ E)N−M ) ≥ A02−Mdκ(EN ),

By the induction hypothesis (applied to (QM
J∗ ∩E)N−M ) and by Lemma 4.1

we have that

κ(EN ) ≤ A−1
0 2Mdκ((QM

J∗ ∩ E)N−M ) ≤ A−1
0 2MdC0κp((QM

J∗ ∩ E)N−M )

≤ A−1
0 C0C2Md

(N−M∑
n=1

( 2−dn

σd−1
M+n

)2)−1/2

= A−1
0 C0C

( N∑

n=M+1

θ2
n

)−1/2

.

Now by using that SM ≤ SN/2 is equivalent to
∑N

n=1 θ2
n ≤ 2

∑N
n=M+1 θ2

n

and Lemma 4.1 again, we obtain that

κ(EN ) ≤ 21/2A−1
0 C0C

( N∑
n=1

θ2
n

)−1/2

≤ CA−1
0 C0κp(EN ).

Hence if A0 = C, we obtain (15).

Case 2: For the same constant A0,

κ((QM
J∗ ∩ E)N−M ) ≤ A02−Mdκ(EN ). (18)

Then if θ2
M+1 > SM , SM+1 = SM + θ2

M+1 ≈ θ2
M+1. Therefore

κp(EM+1) ≈ S
−1/2
M+1 ≈ θ−1

M+1 ≥ CΛ∞d−1(EM+1).

Hence by (17),

κ(EN ) ≤ κ(EM+1) ≤ CΛ∞d−1(EM+1) ≤ Cκp(EM+1) ≈ κp(EN ),

which is (15) if C0 is chosen big enough.
On the other hand, if θ2

M+1 ≤ SM , then SM+1 ≈ SM ≈ SN . Recall that
we are assuming that each cube QM

J contains some ball BM
J with comparable

diameter. Moreover, we may suppose that all the balls BM
J , J = 1, . . . , 2Md,

have the same diameter dM . We set

ẼM =
⋃

|J|=M

BM
J .
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We consider now the measure

σ = κ(EN )µ′M ,

where µ′M is defined by

µ′M (K) =
∑

BM
J :BM

J ∩K 6=∅

Λd−1(∂BM
J )

Λd−1(∂ẼM )
, for compact sets K.

Clearly σ(ẼM ) = κ(EN ).
Note that the measure σ is doubling and has (d− 1)−growth. To verify

this, one uses that

κ(EN ) ≤ κ(EM ) ≤ CΛ∞d−1(EM ) ≤ CΛd−1(∂ẼM )

and µ′M (Qn
K) = 2−nd for all 0 ≤ n ≤ M (see (4.8) and (4.9) of [MT]).

We will show that there exists a good set G ⊂ ẼM with σ(G) ≈ σ(ẼM )
such that Rσ|G is bounded on L2(σ|G) with absolute constants. From this
fact, by Theorem 3.1 we have

‖Rσ|G‖L2(σ|G) ≈ κ(EN )S1/2
M ≤ C.

So by Lemma 4.1 we infer

κ(EN ) ≤ CS
−1/2
M ≤ CS

−1/2
N ≈ Cκp(EN ),

which proves the lemma.
To establish the existence of the set G, we run a stopping time argument.

First we construct a set E′ and a doubling measure σ′ on E′. The pair
(E′, σ′) is endowed with a system of dyadic cubes Q(E′), where

Q(E′) = {Qk
β ⊂ E′ : β ∈ N, k ∈ N}

(see Theorem 11 in [Ch1]). We also define a function b′ on E′, dyadic
para-accretive with respect to this system of dyadic cubes, i.e. for every
Qk

β ∈ Q(E′), there exists Ql
γ ∈ Q(E′), Ql

γ ⊂ Qk
β , with l ≤ k + N and

|
∫

Ql
γ

b′dσ′| ≥ cσ′(Ql
γ)

for some fixed constants c > 0 and N ∈ N, and such that the function
R(b′dσ′) belongs to dyadic BMO(σ′). Therefore, the (d−1)-Riesz transform
R associated to σ′ will be bounded on L2(E′, σ′) by the T (b)−theorem on
a space of homogeneous type (see Theorem 20 in [Ch1]). Our set G will be
contained in E′ ∩ ẼM .

Now we turn to the construction of the set E′ and the measure σ′. By
definition there exists a distribution T supported on EN such that

κ(EN ) ≤ C|〈T, 1〉|
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and
‖RT‖L∞(Rd) ≤ 1.

We replace T by a real measure ν supported on EN . Then κ(EN ) ≤
C|ν(EN )| and ‖Rν‖L∞(Rd) ≤ 1. The definition of σ implies that

|ν(EN )| ≥ C−1σ(ẼM ) > ε0σ(ẼM ), (19)

where ε0 is a sufficiently small constant to be fixed later. Notice that for
a fixed generation n, 0 ≤ n ≤ M , there exists at least one cube Qn

K , such
that |ν(Qn

K)| > ε0σ(Qn
K), since otherwise for 0 ≤ n ≤ M

|ν(EN )| ≤
∑

|K|=n

ε0σ(Qn
K) = ε0

∑

|J|=M

σ(BM
J ) = ε0σ(ẼM ),

which contradicts (19).
We now run a stopping-time procedure. Let ε > 0 be another constant

to be chosen later, much smaller than ε0. We check whether or not the
condition

|ν(Q1
J)| ≤ εσ(Q1

J) (20)

holds for the cubes Q1
J . If (20) holds for the cube Q1

J , we call it stopping-
time cube. If (20) does not hold for Q1

J , we examine the children Q2
K of

Q1
J and repeat the procedure until we get to generation M . We obtain in

this way a collection of pairwise disjoint stopping-time cubes {Pγ}γ , where
Pγ = Qn

J , for some 0 ≤ n ≤ M . Moreover, each Pγ satisfies condition (20)
with Q1

J replaced by Pγ .
Consider now the function

b =
∑

|J|=M

ν(QM
J )

σ(BM
J )

χBM
J

.

The function b has the following three important properties:

(1) for 0 ≤ n ≤ M ,
∫

Qn
K

bdσ = ν(Qn
K).

(2) ‖b‖∞ ≤ C.
(3) For any 0 ≤ n ≤ M ,

‖R(bχQK
n

dσ)‖L∞(Rd) ≤ C. (21)

To show that b is bounded it is enough to verify that

|ν(QM
J )| ≤ Cσ(BM

J ), for |J | = M. (22)

Inequality (22) can be shown by localizing the potential ν ∗ x/|x|d (see
[P] and [MPrV]) and using (18), namely

|ν(QM
J )| ≤ Cκ((QM

J ∩ E)N−M ) ≤ CA02−Mdκ(EN ) = CA0σ(BM
J ).
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To see (21), notice that

‖R(χBM
J

dσ)‖L∞(Rd) ≤ C
κ(EM )

Λd−1(∂EM )
‖R(χBM

J
dΛd−1)‖L∞(Rd) ≤ C. (23)

Since ‖R(χQn
K

dν)‖L∞(Rd) ≤ C, to show (21) we therefore only need to
estimate the following differences for 0 ≤ n < M

R(bχQK
n

dσ)(x)−R(χQn
K

dν)(x) =
∑

QM
J ⊂Qn

K

RαM
J (x),

where αM
J =

ν(QM
J )

σ(BM
J )

χBM
J

dσ − χQM
J

dν. Since
∫

dαM
J = 0, ‖RαM

J ‖L∞(Rd) ≤
C and for |x− c(BM

J )| > cσM ,

|R(αM
J )(x)| ≤ C

σd
M

dist(x, QM
J )d

,

(21) follows.
Given a cube Qn

J , 0 ≤ n ≤ M , set

Q̃n
J =

⋃

BM
J ∩Qn

J 6=∅
BM

J .

Notice that diam(Q̃n
J) = cσn ≈ diam(Qn

J) and σ|Qn
J

= σ|Q̃n
J
. By (19) and

(20) we have

σ(ẼM \
⋃
γ

P̃γ) ≥ 1
C

∫

ẼM\
S

γ P̃γ

|b|dσ

≥ 1
C
|
∫

ẼM

bdσ| − 1
C

∑
γ

|
∫

Pγ

bdσ|

>
1
C

(ε0σ(ẼM )− ε
∑

γ

σ(Pγ)).

Therefore, for η =
ε0 − ε

C − ε
,

∑
γ

σ(Pγ) ≤ (1− η)σ(ẼM ). (24)

We can now define our good set G ⊂ ẼM . Set

G = ẼM \
⋃
γ

P̃γ .
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By (24), ησ(ẼM ) ≤ σ(G) ≤ σ(ẼM ). We want to construct the set E′, by
excising from ẼM the union of the stopping time cubes P̃γ , and replacing
each P̃γ by a union of two spheres. For each stopping time cube P̃γ , set

Sγ = ∂B1
γ ∪ ∂B2

γ ,

where Bj
γ , j = 1, 2 are two balls with center c(Sγ) := c(B1

γ) = c(B2
γ) ∈ Pγ

and such that

2diam(B1
γ) = diam(B2

γ) =





c
2σn if Pγ = Qn

J , for some 0 ≤ n < M,

dM if Pγ = QM
J .

Set
E′ = G ∪

⋃
γ

Sγ =
(
ẼM \

⋃
γ

P̃γ

)
∪

⋃
γ

Sγ ,

and define a measure σ′ on E′ as follows:

σ′ =





σ on G

σ(Pγ)
2

( Λd−1|∂B1
γ

Λd−1(∂B1
γ)

+
Λd−1|∂B2

γ

Λd−1(∂B2
γ)

)
on Sγ .

Using that σ is doubling and has (d− 1)−growth it is easy to see that σ′

also satisfies these two properties.
For a system of dyadic cubes in E′ satisfying the required properties (see

Theorem 11 in [Ch1]), we take all cubes Q̃n
J , 0 ≤ n ≤ M , which are not

contained in any stopping time cube P̃γ , together with each Sγ , together
with each ∂Bj

γ , j = 1, 2 comprising Sγ , together with subsets of the two
spheres,... and repeatedly.

We will now modify the function b on the union ∪γSγ in order to obtain
a new function b′ defined on E′, bounded and dyadic para-accretive with
respect to the system of dyadic cubes defined above. Let

b′(x) =





b(x) if x ∈ G

gγ(x) = c1
γχ∂B1

γ
(x)− c2

γχ∂B2
γ
(x) on Sγ ,

where

c1
γ = 2ωγ , c2

γ = 2ωγ

(
1− |ν(Pγ)|

σ(Pγ)

)
and ωγ =





ν(Pγ)
|ν(Pγ)| if |ν(Pγ)| 6= 0

1 otherwise.

Notice that the coefficients cj
γ , j = 1, 2, are defined so that
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∫

Sγ

gγdσ′ =
∫

Pγ

bdσ = ν(Pγ), (25)

and |c1
γ | = 2 and 2(1 − ε) ≤ |c2

γ | ≤ 2, because Pγ is a stopping time cube.
The function b′ is bounded because of the upper bound on the coefficients
cj
γ , j = 1, 2 and the fact that ‖b‖∞ ≤ C.

For future reference, notice that, for every dyadic cube Q in E′, such
that Q * Sγ for all γ, there is a non-stopping time cube Q∗ (Q∗ = Q̃n

K for
some 1 ≤ n ≤ M) uniquely associated to Q by the identity

Q = (Q∗ \
⋃

P̃γ⊂Q∗

P̃γ) ∪ (
⋃

P̃γ⊂Q∗

Sγ). (26)

Moreover one has diam(Q) ≈ diam(Q∗) and

σ′(Q) = σ(Q∗)−
∑

P̃γ⊂Q∗

σ(P̃γ) +
∑

P̃γ⊂Q∗

σ′(Sγ) = σ(Q∗). (27)

We will check now that, by construction, the function b′ is dyadic para-
accretive with respect to the system of dyadic cubes in E′:

If for some γ, Q ⊆ Sγ , the para-accretivity of b′ follows from the definition
of gγ and the lower bound on |cj

γ |, j = 1, 2. Recall that, when examining
the para-accretivity condition on Sγ , although identity (25) holds, we have
a satisfactory lower bound on the integral over each child ∂Bj

γ of Sγ , which
turns to be enough for b′ to be dyadic para-accretive.

Otherwise, let Q∗ be non-stopping time cube defined in (26). Then due
to (25) and (27) we can write

∣∣∣
∫

Q

b′dσ′
∣∣∣ =

∣∣∣
∫

Q∗
bdσ

∣∣∣ ≥ εσ(Q∗) = εσ′(Q).

We must still show that R(b′σ′) belongs to dyadic BMO(σ′). It is enough
to show the following L1− inequality

‖R(b′χQ)‖L1(σ′Q) ≤ Cσ′(Q), (28)

for every dyadic cube in E′.
Let Q be some dyadic cube in E′. We distinguish between two cases:

Case 1: For some γ, Q ⊆ Sγ . Then (28) follows from the boundedness
of the coefficients |cj

γ |, j = 1, 2, σ(Pγ) ≤ Cdiam(Pγ)d−1 and Λd−1(Sγ) ≈
diam(Pγ)d−1.
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Case 2: Otherwise, Q = (Q∗ \
⋃

P̃γ⊂Q∗

P̃γ) ∪ (
⋃

P̃γ⊂Q∗

Sγ) for some non-stopping

Q∗ = Q̃n
K , 1 ≤ n ≤ M . Due to (25) we can write

R(b′χQ)(y) = R(bχQ∗)(y)

+
∑

γ:P̃γ⊂Q∗

∫

Sγ

gγ(x)
(
K(x− y)−K(c(Sγ)− y)

)
dσ′(x)

+
∑

γ:P̃γ⊂Q∗

∫

Pγ

b(x)
(
K(c(Sγ)− y)−K(x− y)

)
dσ(x)

= A + B + C.

By (21) (or (23) if Q∗ = BM
J ), ‖R(bχQ∗)‖L∞(Rd) ≤ C. Hence

∫

Q

|A|dσ′ ≤ Cσ′(Q).

We deal now with term B. Set

B1 =
∫

Q\Sγ

∣∣∣
∫

Sγ

gγ(x)
(
K(x− y)−K(c(Sγ)− y)

)
dσ′(x)

∣∣∣dσ′(y)

and

B2 =
∫

Sγ

∣∣∣
∫

Sγ

gγ(x)
(
K(x− y)−K(c(Sγ)− y)

)
dσ′(x)

∣∣∣dσ′(y).

For B1, let g(Q) ∈ N be such that diam(Q) ≈ σg(Q) and Pγ = Qn
J

for some 0 ≤ n ≤ M . Observe that diam(Sγ) ≈diam(Pγ) ≈ σn. Denote
by Qi, g(Q) ≤ i ≤ n, the cubes in E′ contained in Q and containing Sγ

such that diam(Qi) ≈ σi (note that the Qi are either Q̃i
Js or unions of

spheres replacing the stopping time cubes of generation i). Then by the
boundedness of gγ , the (d− 1)-growth of σ′ and the upper bound in (2),

B1 ≤ Cσ′(Sγ)
n−1∑

i=g(Q)

∫

Qi\Qi+1

σn

σd
i

dσ′

≤ Cσ′(Sγ)
n−1∑

i=g(Q)

σn

σi
≤ Cσ′(Sγ)

∑

i

2−i ≤ Cσ′(Sγ).
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For B2 argue like in the previous case, i.e. (28) for Q = Sγ , to get that
B2 ≤ Cσ′(Sγ). Therefore by σ′(Sγ) = σ(Pγ), the packing condition (24)

(with ẼM replaced by Q∗) and (27) we get that
∫

Q

|B|dσ′ ≤ Cσ′(Q).

Similar arguments work to show
∫

Q

|C|dσ′ ≤ Cσ′(Q). Therefore we are

done. ¤

Acknowledgements: J. G. and L. P. were supported in part by NSF
Grant DMS-0402720. L. P. was supported by a Fulbright/MECD scholar-
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