LIPSCHITZ HARMONIC CAPACITY AND BILIPSCHITZ
IMAGES OF CANTOR SETS
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ABSTRACT. For bilipschitz images of Cantor sets in R% we estimate
the Lipschitz harmonic capacity and show this capacity is invariant
under bilipschitz homeomorphisms.

1. INTRODUCTION

Let Lipi (R%) be the set of locally Lipschitz real functions on Euclidean
space R%, let E be compact subset of R?, and let

L(E,1) = {f €: Lip,, : supp(Af) C E, ||V fllec <1, Vf(o0) =0}

be the set of locally Lipschitz functions harmonic on R¢\ E and normalized
by the conditions ||V f||lec < 1 and V f(co) = 0. The Lipschitz harmonic

capacity of E is defined by
K(E) =sup{[(Af,1)| : f € L(E,1)}.

It was introduced by Paramonov [P] to study problems of C'? approximation
by harmonic functions in R,

If d =2, if C\ FE is simply connected, and if the Hausdorff measure
A2(E) = 0, then f € L(E,1) if and only if F(z) = f, — ify, is a single-
valued bounded analytic function on C\ E which satisfies |F(z)| < 1. In
that case it then follows from Green’s theorem that x(E) = 2mygr(E), where
&(E) =
=sup{| lim 2F(z)|: F is analytic on C\ E, |F| < 1, F(c0) =0, OF real}
is the so called real analytic capacity of E. (See [P].)

Now let T : R4 — R? be a bilipschitz homeomorphism:

Ao —y| < Tz — Ty| < Alz —y). (1)
This paper is concerned with the following conjecture.
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Conjecture 1.1. If T is a bilipschitz homeomorphism, then
#(T(E)) < C(A)R(E),
where A is the constant in (1).

When d = 2 this conjecture was established in [T2] using the connection
between analytic capacity and Menger curvature obtained in [T1]. The
papers [T1] and [T2] were preceded by two papers [MTV] and [GV] that
estimated the analytic capacity of planar Cantor sets and of their bilipschitz
images. The recent paper [MT] estimated the Lipschitz harmonic capacity of
certain Cantor sets in R?, and our purpose here is to establish Conjecture
1.1 for bilipschitz images of these Cantor sets. Thus in the language of
fractions, this paper is to [MT] as paper [GV] was to [MTV] or paper [T2]
was to [T1].

For fixed ratios A,, such that
1

27% S)\n§>\0< 57 (2)
we write
On = H )\ka
k=0
and define the sets
o0
E= ﬂ Eru En = U Q?a (3)
n=0 |J|=n

where J = (j1,ja, . .., jn) is a multi-index of length n with j € {1,2,...2%}
and the Q7 are compact sets such that

Qrit ) C Q7;, for all n and J,

(J,Jn+1
and such that for all n and J,
c10, < diam(Q7) < caom, (4)
and
dist(Q7, Q%) > cson, J # K. (5)

for positive constants ¢y, co, and c3.

When Q7 is a cube with sides parallel to the coordinate axes and side-
length o, and
{Q?I]'ln+l) C QT} : jn+1 =1,..., Qd}
consists of the 2¢ corner subcubes of Q", the set defined by (3) is the Cantor

set studied in [MT], and a set E is the bilipschitz image of such a Cantor
set if and only if E satisfies (3), (4), and (5). Write
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and 6(Q) = 6, if @ = Q. Note that by (2),
0n+1 S gn

For Cantor sets it was proved in [MT] that

C—l(igi)_% <k(E) < C(i@%)_%7
n=0 n=0

where C' depends only on the constant Ag in (2) and we extend their result
to bilipschitz images of Cantor sets.

Theorem 1.2. If E is defined by (3), (4), and (5), then there is constant
C = C(c1, 2,3, Mo)
such that

o (i 93) L () < c(i 93)7%.

The proof of Theorem 1.2 follows the reasoning in [MT], but with certain
changes. In Section 2 we give some needed geometric properties of the sets
E. In Section 3 we obtain L? estimates for the (truncated) Riesz transforms
with respect to the probability measure p on E defined by p(Q%) = 27",
In Section 4 we derive Theorem 1.2 from the L2-estimates in section 3 by
applying the dyadic T'(b) Theorem of M. Christ to a measure used in [MTV]
and [MT].

2. THE GEOMETRY OF F
Fix E such that (2) - (5) hold.

Lemma 2.1. There is ¢y = c4(No, 1, C2,¢3) such that for j = 1,2,...,d,
and all Q7

sup x; — inf z; > cq0,. (6)
Qune © Qe "

Proof. Write

w= sup x; — inf x;.
QnNE QINE

Let P be the hyperplane

L +oinf ;)
T, = — Sup €T; m CL",
J Q3om I gunp
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and let Q’}( be the orthogonal projection of Q¥ onto P. If

€3
w < EO'n_i,_p

then for k =n+1,--- ,n+p, (5) and the Pythagorean Theorem give
dlst( 5/,@5//) 2 7030’]@7
and there are (d — 1)-dimensional balls B, with diameter comparable to
the diameter of Qf}’, and such that
dist(@f“,,,BL]},) < c40p

and
BYN By = @, when k > m.

Hence for constants c5 > ¢ depending only on d and ¢y, co, and c3,

P
650271 > Adﬂ(U U B(”E’%)
k=1|K|=k
> 33 A (B
k=1|K|=k

p
E kd __d—1
> CG2 O'n+]€7
k=1

and by (2) this can only happen if p < E—; Thus (6) holds with ¢4 =

—d 5 _ 1

c32d-Tes | U
Define the probability measure p on E by p(Q7%) = 27"

Lemma 2.2. There exist c7,cs, and 0 < v < 1, depending only on A, c1, c2,
and c3 such that for j = 1,2,...,d, there exist c;2™ disjoint slabs of the form

Sp ={ar <z; < by}
such that by, — ap, < czop, p(USk) > cs, but p(Sk) < cry™.

Proof. Condition (4) implies that there exist disjoint slabs Sy satisfying all
the conditions of the lemma except possibly p(Sk) < c¢7v"™. However, by
Lemma 2.1 there exists mg such that if m < n — my, then for each Q7
at most 2¢ — 1 cubes Q%H C @'} can meet S;. Hence the number of

" with Q7 N S, # @ does not exceed (24 — 1)("=m0)2dm0 and p(Sy,) <
(1 —27d)n=mo < ey, O
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3. THE L? ESTIMATE

Let E satisfy properties (2) - (5). For x € E we define Q7 = Q" to be
the unique Q" such that z € Q%. If f € L?(p) and j = 1,2,...,d, we define
the truncated Riesz transform as

Ryf)= | K=,

(y —x);

byt By (5) it is clear that |[R} | 12y < 0.

where K;(y — ) =
Theorem 3.1. Let 0 < o < 1 and let G C E be a closed set such that

p(G) > a. There are constants C1(a) and Cy, both depending on Xo, c¢1, ¢2
and csz, such that for all N big enough,

1 N

cl(i 02)" < IR o < C2(D_02) " (7)
n=0

n=0

[N

To begin we prove the upper bound in (7). Since the norm ||R§\/||L2(G,p)
increases with G we may assume G = FE, which also means Cs does not
depend on «. The proof of the upper bound in (7) follows the paper [MT],
but for convenience we repeat their argument. By the T'(1)-Theorem for
spaces of homogeneous type

, n Rl M r2ion
IR L2(p) < C sup sup (@) + C sup sup | N(XQ")”Ll (@3.p)
NIIL2(p) d—1 I
n<N |J|=n On n<N |J|=n p(Q7%)2

Therefore the upper bound in (7) will be an immediate consequence of the
following two lemmas. For convenience we fix j, write K (y—z) = K;(y—x),
and define

Buf)= [ K056,

Lemma 3.2. If n < m, there is c; such that
1
[BmXxqnllz(@n.p < crmp(Q)2
Proof. For y € Q™ \ QM "1, (5) gives

1
Kly—x)| < .
e
Hence by (2)
2d
‘RmXQﬂ < ﬂema
€3

and
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24 L
HRmXQ"||L2(p) < 3d 1 mp(Q )2

O

Lemma 3.3. There is a constant C depending only on Ay, c1, co and c3
such that for all N > n and all J,

N
RN x5 720, < C Y 0in(Q7).
k=n

Proof. Fix j =1,...,d, then for x € Q7

R?VXQ" Z Rmen
We claim that for m # k,
| [ Rxos Fuxapde] < €27 By liago | Rixas oo (9

Accepting (8) for the moment, we conclude that

IRlxaslBaoy = IS Ruxasl?
N-1
= Z [Rmxqy 1 +2 Z (RmXxqn, Rexqn)
m=n n<k<m<N-1

IN

N-1
C Y 1Rmxasl®,
m=n

so that Lemma 3.2 gives the right inequality in (7).

To prove (8) assume n < k < m < N — 1. Then because the kernel K is
odd,

/ , ey (@ => / / K (« — y)dp(y)dp(x) = 0,

m+1 m+1
r#q Q(K ™) Q(K )

so that for any z'% € Q%

/Rmxczf; () Rrxqr (x)dp(z) = /RmXQ§ (@) (Brxqy (r) = Rixqy (¢F))dp(@).

m m
K K
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But when z € Q%, (4), (5) and (2) give

k
[Rixay (@) — Rixay ()| < 7223 < 09,72 < comtm g,
oy &

Hence using Lemma 3.2

|/RmXQ§RkXQT}’dp| < C27 M0 RinxayllL @y p)
< 0270 p(QN) 2 | Rux @y |12 ()
< 27" Ruxanllz2 | Rexan 2w
and (8) holds. U

The proof of the lower bound in (7) also follows [MT] but with two
alterations because G' # E and because the sets Q'; may be incongruent.
When Q = Q7 we also write n = n(Q), Q € D,,, and 0(Q) = 6,,.

Let 0 < 0 < 1, fix G and define B(6) ={Q € |,, D» : p(GNQ) < dp(Q)}.

Lemma 3.4. Assume § < a and p(G) > «.
(a) Then for all n,

pG\ J enzp@\Jza-a
D,,NB(3) B(5)
(b) For Ny € N there exists M(Ny) such that whenever Q ¢ B(9), there
exist Q' C Q with n(Q') < n(Q) + M such that for all Q" C Q' with
n(Q") <n(Q') + No
5
Q"¢ B
Proof. To prove (a) let {Q;} be a family of maximal cubes in B(d), note
that
p(GN Q) <D pGNQ)) <p(B) =46
B(5)
and subtract this quantity from p(G).

To prove (b) fix Ny and suppose (b) is false for Ny, d,Q and M = 0. Write
n = n(Q). Then there is Q1 C Q with n(Q1) < n+ Ny and Q1 € B(g).
Set F1 = {Q1}. Then p(Q \ Q1) < (1 — 27 NoD)p(Q) = Bp(Q). Now assume
(b) is also false for Ny,d,@Q and M = Ny and write Q \ Q1 = Q' :

n(Q") = n(Q1),Q" # Q1}. Then for each Q" # Q1 with n(Q’) = n(Q1)
there is Q2 C Q' with n(Q2) < 2Ny and Q2 € B($). Set F» = {Q2}. Then
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P(Q\ Ug,ur, Qi) < 6°p(Q). Further assume (b) is false for Ny, d,Q and
M = 2N, and repeat the above construction in each Q' \ Q2. After m steps
we obtain families F; of cubes Q; € B(é) such that UF; is disjoint and

Q\UUQJ < B"p(Q)

j=1F;
and for §™ < § we obtain p(QNG) < § -1, Y p(Q))+8™p(Q) < 5p(Q),
which is a contradiction. We conclude that (b) holds for M = mNj. O

We will later fix 0 = §. But for any § < a we say Q' € G*(0) if Q'
satisfies conclusion (b) of Lemma 3.4 for Ny and §. Then by parts (b) and
(a) of Lemma 3.4 we have:

Lemma 3.5. pr( ) > « then

> 0@Q)pQNG) =C(M) Y 0(Q)*p(QNG) > C(M,a)> 67
g*(%) Q%B(é)

Now let A be a large constant. As in [MT], for R € D we will define a
family Stop(R) of “stopping cubes” @ C R. We say Q € Stopy(R) if Q C R
and Q ¢ B(%), and if

il [ K- a)dv(w)| = A0(8).
GN(R\Q

We further say @ € Stop;(R) if @ C R and Q ¢ IS’(g)7 if 0(Q) < nb(R) for
constant 7 to be chosen below, if n(Q) > n(R) + N; for constant Nj to be
chosen below, and if

P € Stopy(R) = n(P) > n(Q).
Then define
Stop(R) = {Q € Stopy(R) U Stop; (R) : Q is maximal}.

Notice that by the construction either Stop(R) C Stopy(R) or Stop(R) C
Stop, (R). Inductively we define Stop'(P) = Stop(P) and

Stop"(P) = |_J{Stop(Q) : @ € Stop* ' (P)},

Top = {Po} U | Stop"(Py),
k>1

pr= ] @

Stop(P)

and

where P, is the unique cube in Dy.
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Remark. The constants Ny, N1, A,n are chosen as follows. First we take
d = a/2, then Nj is fixed in Lemma 3.7, then n and A in the proof of
Lemma 3.8, and Ny which depends on A,7,d in the proof of Lemma 3.6.

Lemma 3.6. Assume p(G) > «, and take 6 = §. If Ng = No(A,n,0) is
sufficiently large, then for all Q € Q*(%) there exists a cube P C Q such
that P € Top and n(P) < n(Q) + No.

Proof. Let Q € g*(g) and let R be the smallest cube R € Top such that
@ C R. We assume the conclusion of the lemma is false for (). Thus
Q ¢ Top, and @ ¢ Stop(R). Hence by definition there is zy € @ such
that

‘/GQR\Q K(y - :co)dp(y)‘ < AG(R).

Then for z € Q (5) gives

n(Q)—1
0
[ @y-a) - Ky mo)dp] < Cowgy 3. 2 <Co(R)
GNR\Q k=n(R) Ok
so that
swp| [ Ky~ a)dp(w)| < (4 +Co(R). )
GNR\Q

Take z* € @ N E with 2} = infg z; and let Q" be that @* C @ such that
z* € Q" and n(Q*) = n(Q) + No. Then by Lemma 2.1 there is a constant

ng such that
c

-1
o

ifye Q) C(Q\Q") and n < n(Q*) — ng. Because 8,41 < 6, and because
we assume the lemma is false for @, we also have 6(Q%) > nf(R) for every
such Q. Hence by (5)

K(y—a*) >

[ K= atdse) = (N~ ma)n30()
GNR\Q*

and by the proof of (9),

it [ g K D) 2 (o~ nomy ~C(R). (10)

Taking Ng = No(A) sufficiently large and comparing (10) with (9) we con-
clude that Q* € Stopy(R), which is a contradiction. a

Note that by Lemma 3.5 and Lemma 3.6 we have for all P,

Za2<c Z > 0@)p(Q) < C'() Y 6(P)’p(GNP). (1)

n=0D,\B(J) Top
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‘We define
Kpl@) = Y xene(@) / K(y — 2)dp(y)
QeStop(P) GNP\Q
T / K(y — z)dp(y).
GﬁP\QN(af)

By construction

xaRn1 = Z Kpl
Top
and

HRN1||2L2(G) = Z ||KP1||2L2(G) + Z (Kpl,Kql)12(c)-
Top P,Q€eTop,P#Q

Lemma 3.7. If Ny is chosen big enough, then for all P € Top,

IKP1[72) = CT1O(P)*p(G N P), (12)
where C = C(a), and
IKPLlIZ2 ) = A%0(P)?*p(G N P*'™), (13)

where

pstro — U{Q : Q € Stop(P) N StopO(P)}.

Lemma 3.8.
(Kpl,Kql) oo < CA™ +en) Y IKp1[72q),  (14)
P,Q€eTop,P#Q Top

with ¢(n) — 0 as n — 0.

Assuming Lemma 3.7 and Lemma 3.8 for the moment, we see that if A
is large and 7 is small, then

IRN1[F20) = C71 ) 0(P)*p(G N P)

Top
and then the lower bound in (7) follows from inequality (11).

To prove Lemma 3.7, first note that (13) follows from the definitions
of Stopy(P) and Stop(P). To prove (12), recall that K = K; for some
1 < j <d. We apply Lemma 2.2 to P with v ~ « to obtain sets S; C P
and S, C P such that

supz; = a < inf z;
Sy S2
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and
Min(p(G N S1), p(GN S3)) > c(a)p(P).

We may assume that Si, 52 are much bigger that any stopping cube of P,
because if there exists some @ € Stop,(P) with size similar to Sy or Sa,
then (12) follows from (13); and if we choose N big enough, any cube
Q € Stop; (P) will be much smaller that Sp,S3. Then we get

$1NG)
K > —1 p( 1 )
| oo XS (z)dp(z)| = C~'p(S2 N G)idiam(P)dfl

Set
E,=Pn{z; <a}and E; = PN{z; > a}.
By its definition,

Kpl=xa(®))_ xq.(r) / K(y — x)dp(y)
k GﬂP\Qk
where {Qy} is a cover of P by disjoint cubes from D. We also have

Kpl(z) = xal(x) Y Zka(w)/ K(y — z)dp(y)

=12 k GNE\Qx

= l{p){E1 (1‘) + KPXE2 (.’L’)
Write Q = Q(z) when = € Q) and note that

y ¢ Qz) =z ¢ Qy).
Hence by the antisymmetry K(y —z) = —K(x — y) we have

/ Kpxp, ()dp(z) = 0.
GNEy

Therefore by the construction of Fy and FEs,

(G N ENIKPllne > |[  Kel@dp()]
GNEs
= | Kpxg, (z)dp(z)|
GNEsy
c(a)p(GNP)
> —_ -~ 7
= plGNE) diam(P)4-1’

which is (12).
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To prove Lemma 3.8 we again follow [MT]. Suppose P # @ € Top and

Q@ C P. Let Py € Stop(P) be such that @ C Py C P. By the antisymmetry
of K we have [, Kqldp = 0 so that

KQl(a:)Kpl(x)dp’

| [ Kol@)(Kpi) - Kplag))dp()
QNG QNG

IA

IKQlzr (@) Sup [Kpl(z) — Kpl(zq)l,
where z¢ is a fixed point from Q. But for any z € @, standard estimates
yield

Kpl(z) - Kpl(zg)| < /G o Ky =)~ Ky =)o)

< Cdiam(Q)/ %y)d
GNP\Pq |z —yl

< C diam(Q) LR)
Assume first that Py € Stopy(P). Since 8(R) < 6(P) in the last sum, we
get

|Kpl(z) — Kpl(zg)| < c(m (P).
Hence by (13)

(Kpl, KQl)p2apy| <

o O diam(Q) <pp(GﬂQ)

1/2

— Kol Kpl

< G ((HEEDS)  IKelle | Krllie,
when Py € Stopy(P).

Consider now the case Pg € Stop, (P). This means that 0(Pg) < nf(P).
It is easy to check that this implies that

. 0(R) diam(Q) .
diam —— < ¢(n) ———=0(P) with ¢(n) - 0asn — 0.
D () = 0 iy ) Vb ) 05

(See Lemma 3.6 in [MT] for a similar argument). So we get

diam(Q)
[(Kpl, Kql)L2(cp)| < c(n) Gam(Po) I1KQ1I2 ) [ K P2 (c)-
Thus (14) follows from Schur’s lemma.
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4. LIPSCHITZ HARMONIC CAPACITY

In this section we will prove Theorem 1.2. We will assume that each cube
" in the definition of the Cantor set E (see (3)) contains a closed ball B
such that
cyo, < diam(BY).
This assumption comes for free from the definition of F in Section 1. Indeed,
one easily deduces that there exists a family of balls B’} centered at Q’; such
that
o, < diam(BY%) < cho,,
and
dist(BY, BY) > c¢s0n, J # K.
Then if one replaces the cubes '} in the definition of E by the sets
= U @rusp.
QRCQY
E does not change.
Given a real Radon measure p and f € L'(u), let

Ruc(fdn)@) = [ A w)inty

ly—z|>€ |y

be the (truncated) (d — 1)-Riesz transform of f € L (u) with respect to the
measure p and set ||[R,||L2¢) = supeso | Ruell 2 ()

As in [MT], we need to introduce the following capacity of the sets En:

HP(EN) =sup{a:0<a<1, ”ROZMN”LQ(OWN) <1},

where py is a probability measure on Epn such that MN(QJ}’ )= 9—Nd,

The L? estimates from the previous section yield the following lemma.

Lemma 4.1.

kp(EN) & (i\’: 92)71/2.
n=1

Proof. By Theorem 3.1 we have

N N\ 1/2
| Ren 122 o) = 0l Bl 2uy = (32 02)
n=1
The lemma follows because the sum above is > 27¢. O

We will prove the following:
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Lemma 4.2. There exists an absolute constant Cy such that for all N € N
we have

K(EN) < Cokp(En). (15)
Notice that Theorem 1.2 follows from Lemma 4.2 and
K(EN) 2 k1 (En) 2 C Ry (EN), (16)
where
5 (B) = sup{|(Af,1)] : f € L(E,1),Af = p € My (E)}

and M, (E) is the set of positive Borel measures supported on E. The first
inequality in (16) is just a consequence of the definitions of x and k4 and
the second inequality follows from a well known method that dualizes a
weak (1,1) inequality (see Theorem 23 in [Ch2] and Theorem 2.2 in [MTV].
The original proof is from [DQ]).

In [Vo] it is shown that the capacities x and k4 are comparable for all
subsets of R, but we do not use that deep result.

For any s > 0, we write A; and AS® for the s-dimensional Hausdorff
measure and the s-dimensional Hausdorff content, respectively.

Proof. The arguments are similar to those in [MTV] and [MT], but a little
more involved because our Cantor sets are not homogeneous. Also, instead
of using the local T'(b)-Theorem of M. Christ, we will run a stopping time
argument in the spirit of [Chl] and then use a dyadic T'(b)-Theorem (see
Theorem 20 in [Ch1]).

We set
Sp =02 4654 +02.
Without loss of generality we can assume that for each N > 1 there exists
1 < M < N such that

S
Su < TN < Sy (17)
Otherwise %X < S; and by Lemma 4.1 it follows that #,(Ex) > C7IA{ .
By [P] we have
R(EN) < K(B1) < CAF ((B1) < OA

and if Cy is chosen big enough the conclusion of the lemma will follow in
this case.

Assuming (17), we will now prove (15) by induction on N. For N =1
(15) holds clearly. The induction hypothesis is

k(Ey,) < Cokp(Ey), for 0 <n < N,

where the precise value of Cj is to be determined later.
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Notice that for n > 0, (Q¥ N E), is the n—th generation of the Cantor
set QN N E, i.e. the union of 2" sets Q3+N satisfying properties (4) and
(5) with n replaced by n+ N. Let J* be the multi-index of length M such
that

QY NE)N-m) = nas QY NE)N-m).

|=

We distinguish two cases.

Case 1: For some absolute constant Ay to be determined below,
QY NE)N-—m) > A2~ Mk(EN),

By the induction hypothesis (applied to (Q3L N E)y_as) and by Lemma 4.1
we have that

K(En) < Ag"2Y96((QFE N E)n_nr) < Ay 2MCokp(QY N E)N_n1)

SA510002Md(i (%)2)_1/2:%1000( i 92)_1/2
n=1 9M+n n=M+1

Now by using that Sy < Sn/2 is equivalent to 22;1 02 <2 ZfY:M_H 62
and Lemma 4.1 again, we obtain that

N ~1/2
K(Ey) < 21/2,451000(2 93) < CAF Cokp(Ex).
n=1
Hence if A9 = C, we obtain (15).

Case 2: For the same constant Ay,
QY NE)Ny_m) < A2 Mik(Ey). (18)
Then if 63, > Sar, Svg1 = Su + 03,1 = 03/, Therefore
kp(Barsr) & Syt = 04y, > CAZ ((Barga).
Hence by (17),
K(EN) < K(Evt1) < CAZ (Ev) < Chp(En) = fp(EN),

which is (15) if Cp is chosen big enough.

On the other hand, if HJQV[H < Sur, then Syr41 =~ Sy =~ Sy. Recall that
we are assuming that each cube Qy contains some ball B f,” with comparable
diameter. Moreover, we may suppose that all the balls Bf,\/[7 J=1,...,2Md
have the same diameter d;. We set

Ey = |J B}
|J|=M



16 JOHN GARNETT, LAURA PRAT AND XAVIER TOLSA

We consider now the measure

0 = H(EN>/1'/1\/[7
where py, is defined by
Ag—1(0BY
phy(K) = Z Lj’), for compact sets K.
Ai—1(0FEn)

BY:BM KA

Clearly o(Ey) = k(Ey).
Note that the measure ¢ is doubling and has (d — 1)—growth. To verify
this, one uses that

K(En) < k(Ey) < CAF (En) < CAg_1(OFEn)

and p,(Q%) = 27" for all 0 < n < M (see (4.8) and (4.9) of [MT]).

We will show that there exists a good set G C Eyy with o(G) = o(Ea)
such that R, is bounded on L?(0)) with absolute constants. From this
fact, by Theorem 3.1 we have

1/2
1Ry |l 22010 & K(EN)Sy,” < C.
So by Lemma 4.1 we infer
—1/2 —1/2
H(EN) SCSM SCSN %CKP(EN),

which proves the lemma.

To establish the existence of the set G, we run a stopping time argument.
First we construct a set E’ and a doubling measure ¢/ on E’. The pair
(E',0’) is endowed with a system of dyadic cubes Q(E’), where

Q(E)={Q5 CE: BEN, keN}

(see Theorem 11 in [Chl]). We also define a function ¥ on E’, dyadic
para-accretive with respect to this system of dyadic cubes, i.e. for every
Qg € Q(E'), there exists Qﬂf € Q(FE"), Qly C QZ, with [ <k + N and

| /Q Vo] > o' (@)

for some fixed constants ¢ > 0 and N € N, and such that the function
R(V'do’) belongs to dyadic BMO(o”). Therefore, the (d—1)-Riesz transform
R associated to o’ will be bounded on L?(E’,¢’) by the T(b)—theorem on
a space of homogeneous type (see Theorem 20 in [Chl]). Our set G will be
contained in E' N Eyy.

Now we turn to the construction of the set E’ and the measure o’. By
definition there exists a distribution 7" supported on Ex such that

K(En) < C(T,1)]
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and

[ RT|| oo (ray < 1.
We replace T by a real measure v supported on Ey. Then s(Ey) <
C|lv(EN)| and ||Rv|p=(R%) < 1. The definition of ¢ implies that

[V(EN)| > Cto(En) > oo (Enr), (19)

where €q is a sufficiently small constant to be fixed later. Notice that for
a fixed generation n, 0 < n < M, there exists at least one cube Q%, such
that [v(Q%)| > e0o(Q%), since otherwise for 0 < n < M

W(EN) < Y «o(Qk) =€ > o(B))=eo(Ey),
|K|=n |J|=M
which contradicts (19).

We now run a stopping-time procedure. Let ¢ > 0 be another constant
to be chosen later, much smaller than ¢g. We check whether or not the
condition

v(Q))] < eo(Q)) (20)
holds for the cubes QY. If (20) holds for the cube @}, we call it stopping-
time cube. If (20) does not hold for @}, we examine the children Q% of
Q% and repeat the procedure until we get to generation M. We obtain in
this way a collection of pairwise disjoint stopping-time cubes {P,},, where
P, = Q7, for some 0 < n < M. Moreover, each P, satisfies condition (20)
with Q) replaced by P,.

Consider now the function

b= Z v(QY) Xpy-

(B

The function b has the following three important properties:

(1) for0<n < M, bdo = v(Q%).

Qk
(2) [blloc < C.
(3) Forany 0 <n < M,
[R(bxqx do)l| Lo may < C. (21)

To show that b is bounded it is enough to verify that
Q)] < Co(BJ), for |J| = M. (22)

Inequality (22) can be shown by localizing the potential v x x/|z|¢ (see
[P] and [MPrV]) and using (18), namely

(@] < Cr((QY NE)n_n) < CA2Mik(EN) = CAgo(BY).
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To see (21), notice that

K(Em)
Ag_1(0Ey)

Since [[R(xqy dv)||pe®sy < C, to show (21) we therefore only need to
estimate the following differences for 0 <n < M

R(bxgrdo)(x) — R(xqpdv)(z) = Y Raj(),
QY CQx

[R(xpudo)| L rey < C IR(xpy dAg—1)| L re)y < C. (23)

M
where oY = d &)
o(BJ')

C and for |z — c¢(BY)| > cop,

Xpudo — xgudv. Since Jdat =0, |Rad} || poe ray <

d
M <C—M o
|R(ay )(z)] < Cdist(:v,Q%d’

(21) follows.
Given a cube Q7, 0 <n < M, set

Q= J B
BMNQn£0

Notice that diam(Q"%) = co, ~ diam(Q") and )@y = 0)gn- By (19) and
(20) we have

~ ~ 1
sEx\UUP) = =/ _ |bldo
y c Env\U, Py
o o, b= 2
> = bdo| — — bdo
> gl [, el =g 31 ], v
1 .
> 5(€OU(EM)_€ZU(PW))-
¥
_60—6
Therefore, for n = ot
> o(Py) < (1—n)o(En). (24)
v

We can now define our good set G C Ej;. Set
G=Eu\{JP,

~
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By (24), n0(Eyx) < 0(G) < 0(Ey). We want to construct the set E', by
excising from Ejs the union of the stopping time cubes P,, and replacing
each P, by a union of two spheres. For each stopping time cube P,, set

Sy =0B,UdB2,
where BJ, j = 1,2 are two balls with center ¢(S,) := ¢(Bl) = ¢(B2) € P,
and such that
Son if P, =Q7, for some 0 <n < M,

2diam (B}

3= diam(B?Y) =

dy if Py = QM.

B =culJs, = (B \UP)ulUs,

~

Set

and define a measure o’ on E’ as follows:

o onG

g =

a(P,) ( Ag—vjom: Aa—110B2

2 \Ay_1(0BY) Ad,1(333)> on Sy.

Using that ¢ is doubling and has (d — 1)—growth it is easy to see that o’
also satisfies these two properties.

For a system of dyadic cubes in E’ satisfying the required properties (see
Theorem 11 in [Chl]), we take all cubes Q%, 0 < n < M, which are not
contained in any stopping time cube ]57, together with each S, together
with each 634, j = 1,2 comprising S, together with subsets of the two
spheres,... and repeatedly.

We will now modify the function b on the union U,.S, in order to obtain
a new function b’ defined on E’, bounded and dyadic para-accretive with
respect to the system of dyadic cubes defined above. Let

bz) ifxeG
b(z) =
0,(2) = cxom () — Axopz (1) on S,
where
. ) v (Py)] UL [(Py)| # 0
Cy = 2wy, € = 2w, (1 — W) and w, =

1 otherwise.

Notice that the coefficients CZ{, j = 1,2, are defined so that
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/ gydo’ :/ bdo = v(Py), (25)
s, P,
and |c}| = 2 and 2(1 — €) < [¢2| < 2, because P, is a stopping time cube.
The function b’ is bounded because of the upper bound on the coefficients
¢/, j=1,2 and the fact that |[b]|o < C.

For future reference, notice that, for every dyadic cube @ in E’, such
that @ ¢ S, for all , there is a non-stopping time cube Q* (Q* = Q?{ for
some 1 <n < M) uniquely associated to @ by the identity

=@\ U vl s (26)

P,CQ* P,CQ*

Moreover one has diam(Q) ~ diam(Q*) and

Q) =0@Q)- Y oB)+ Y o(S)=0@). (27

P,cQ~ P,CcQ*

We will check now that, by construction, the function b’ is dyadic para-
accretive with respect to the system of dyadic cubes in E':

If for some vy, @ C S5, the para-accretivity of b’ follows from the definition
of g, and the lower bound on ‘ij|, 7 = 1,2. Recall that, when examining
the para-accretivity condition on S, although identity (25) holds, we have
a satisfactory lower bound on the integral over each child 33% of S, which
turns to be enough for b’ to be dyadic para-accretive.

Otherwise, let @* be non-stopping time cube defined in (26). Then due
to (25) and (27) we can write

’ / b do’
Q

We must still show that R(b'0”) belongs to dyadic BMO(o”). It is enough
to show the following L'— inequality

IR X)Lt (0r,) < Co'(Q), (28)

- ’/ . bda’ > €0(Q") = €0’ (Q).

for every dyadic cube in E’.
Let Q be some dyadic cube in E'. We distinguish between two cases:

Case 1: For some v, @ C S,. Then (28) follows from the boundedness
of the coefficients ||, j = 1,2, o(P,) < Cdiam(P,)%! and Ay_1(S,) ~
diam(P, )41,
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Case 2: Otherwise, Q = (Q* \ U }57) U ( U S.) for some non-stopping

_ B,cQ* P,cQ*
Q*=Q%,1<n<M. Due to (25) we can write
R(t'xq)y) = R(bxq-))

Y [ a@(Ee-y - Kes) - 9)d'@)

W:IS,YCQ* S
Y[ H(Ks,) ~) - K =)ol
y:P,CQ* v
= A+B+C.
By (21) (or (23) if @" = BJ), | Ribxg-)

| Lo (rey < C. Hence

/ Aldo’ < Co'(Q).
Q

We deal now with term B. Set
Bl = /Q\Sw ‘/SW 9+(x) (K(x —y) — K(c(S,) — y))da'(x)‘dg’(y)

and
B2= /S ‘/S 91(@) (K (@ = ) = K(c(Sy) — 9))do’ (2)|do’ ().

For B1, let g(Q) € N be such that diam(Q) ~ o4y and P, = Q%
for some 0 < n < M. Observe that diam(S,) ~diam(P,) ~ 0,. Denote
by Qf, g(Q) < i < n, the cubes in E’ contained in @ and containing S,
such that diam(Q°) ~ o; (note that the Q° are either Qf]s or unions of
spheres replacing the stopping time cubes of generation 7). Then by the
boundedness of g., the (d — 1)-growth of ¢’ and the upper bound in (2),

n—1
Bl < Cd'(8 / @dol
<o)y [ o
i=g(Q)

A
Q
q\

&
|
A
Q
q\
&
1
L
IN
Q
q\
™
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For B2 argue like in the previous case, i.e. (28) for Q@ = S, to get that
B2 < Co'(S,). Therefore by ¢'(S,) = o(P,), the packing condition (24)

(with Ejs replaced by Q*) and (27) we get that / |Bldo’ < Co'(Q).
Q

Similar arguments work to show / |C|do’ < Co’(Q). Therefore we are
Q
done. 0
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