
HOPF BIFURCATION OF A DELAY DIFFERENTIAL
EQUATION WITH TWO DELAYS

JAUME LLIBRE1 AND ALEXANDRINA–ALINA TARŢA2,3
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Abstract. We consider a delay differential equation with two delays.
The Hopf bifurcation of this equation is investigated together with
the stability of the bifurcated periodic solution, its period and the
bifurcation direction. Finally, three applications are given.

1. Introduction

Hopf [9] was the first who state a theorem concerning the bifurcation of
periodic solutions from a singular point of an ordinary differential equation.
Many generalizations to infinite–dimensional systems have been given (see
[12] for references). As far as we know, the first statement similar to this
theorem for retarded functional–differential equations was given by Chow
and Mallet–Paret in a course at Brown University in 1974, see [7]. Efficient
procedures for determining the stability and the amplitude of the bifurcating
periodic orbit using a method of averaging have been given by Chow and
Mallet–Paret [4]. The global existence of a Hopf bifurcation as a function
of initial data and the period has been discussed by Chow and Mallet–
Paret [5] and Nussbaum [14]. The interest on the periodic orbits of a delay
differential equation has increased strongly these last years, see for instance
[2], [3], [13], [15]–[17].

In this paper we study the delay differential equation of the form

ẋ(t) = −(aπ + µ)[x(t− 1) + x(t− 2) + G2(x(t), x(t− 1), x(t− 2))] ·(1)
[1 + G1(x(t), x(t− 1), x(t− 2))],

where 9/100 ≤ a ≤ √
3/9, and G1(x, y, z) and G2(x, y, z) are analytic func-

tions in a neighborhood of 0 ∈ R3, starting with terms of degree at least
1 and 2 respectively. We prove that equation (1) exhibits a Hopf bifurca-
tion and we discuss for distinct functions G1 and G2 about the period, the
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stability of the bifurcated periodic orbit and its direction in the parameter
space.

The periodic orbits of the delay differential equation (1) for the particular
case a =

√
3/9, G1(x, y, z) = −x2 and G2(x, y, z) = 0 were studied by Jones

[10], and Kaplan and Yorke [11]. The Hopf bifurcation for this particular
delay differential equation has been analyzed in Hassard, Kazarinoff and
Wan [8].

2. Analysis of the equation

Consider the delay differential equation (1). We define the function

F (x, y, z, µ) = −(aπ + µ)[y + z + G2(x, y, z)][1 + G1(x, y, z)].

Clearly it satisfies
(i) F is analytic in (x, y, z) and µ in a neighborhood of (0, 0) ∈ R3×R,
(ii) F (0, µ) = 0 for µ in an open interval containing 0.

Additionally we assume that
(iii) 0 ∈ R3 is an isolated stationary zero of F for µ in an open interval

containing the zero.

The linearization of (1) about x = 0 is

(2) ẋ(t) = −(aπ + µ)(x(t− 1) + x(t− 2)),

and its characteristic equation is given by

(3) −(aπ + µ)(e−λ + e−2λ)− λ = 0,

for more details see [8, 6] or Appendix 2.

Proposition 1. At µ = 0 equation (3) has exactly two pure imaginary roots
and no roots with positive real part.

Proof: The straight line u = −λ/(aπ) does not intersect the curve u =
e−λ + e−2λ for λ ≥ 0. Thus, at µ = 0, equation (3) has no positive real
roots.

In order that equation (3) has a pure imaginary root λ = iω with ω > 0 at
µ = 0 it must be that its real and imaginary parts are zero, or equivalently
that

(4) cos ω + cos 2ω = 2 cos
ω

2
cos

3ω

2
= 0,

and

(5) ω = aπ(sinω + sin 2ω).
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Equation (5) can be written in the following form

(6) sin
3ω

2
cos

ω

2
=

ω

2aπ

If cos(ω/2) = 0, equation (6) is not satisfied. Thus cos(3ω/2) = 0. That
means 3ω/2 ∈ {π/2 + kπ|k ∈ Z}. In this case, sin(3ω/2) = ±1. Using the
graphics of the functions cos(ω/2) and ±ω/(2aπ), it is easy to see that for
a ∈ [9/100,

√
3/9], the equation cos(ω/2) = ω/(2aπ) has exactly one solu-

tion, ω0 ∈ [17π/100, 33π/100], and that the equation cos(ω/2) = −ω/(2aπ)
has no solution for ω > 0.

It remains to prove that equation (3) has no complex roots with positive
real part for µ = 0. Suppose λ = α + iω, α > 0 is a solution of (3). Then
α − iω is also a solution. So we can consider ω > 0. We note that λ is a
root of (3) at µ = 0 if and only if

(7) α = −aπ(e−α cos ω + e−2α cos 2ω)

and

(8) ω = aπ(e−α sin ω + e−2α sin 2ω).

If α > 0, (8) implies that | ω |≤ 2aπ. Therefore we only need to look for
solutions of (7)–(8) for ω ∈ (0, 2aπ]. Now (7) implies

(9) − α

aπ cos ω
= e−α +

cos 2ω

cosω
e−2α.

Since cos 2t/ cos t ≥ −1 if t ∈ (0, π/3], the right–hand side of (9) is positive.

When 1/6 < a ≤ √
3/9, we need only to look for solutions of (7)–(8) with

ω ∈ (π/3, 2aπ). But

K(ω) = ω − aπe−α sinω − aπe−2α sin 2ω

has a positive derivative for such ω and K(π/3) > 0. Hence (3) has no
complex roots with positive real parts for µ = 0.

Theorem 2. The delay differential equation (1) satisfying (iii) has a family
of Hopf periodic solutions bifurcating from the origin at µ = 0.

Proof: Clearly from (i), (ii) and (iii) the delay differential equation (1)
satisfies the conditions (a) and (b) of Theorem 5 from Appendix 1.

Derivating the characteristic equation (3) with respect to µ we get

λ′(µ) = (aπ + µ)(e−λ(µ) + 2e−2λ(µ))λ′(µ)− (e−λ(µ) + e−2λ(µ)).

Evaluating the above equation at µ = 0 and noticing that λ(0) = iω0 we
obtain

λ′(0) = − e−iω0 + e−2iω0

1− aπ(e−iω0 + 2e−2iω0)
,
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or equivalently

λ′(0) =
2 cos(ω0

2 )2(1 + 3aπ − 2 cos ω0) + i sin ω0(1 + aπ + 2 cos ω0)
1 + 5a2π2 − 2aπ[(1− 2aπ) cos ω0 + 2 cos 2ω0]

= α′(0) + iω′(0).

Hence, we obtain that

α′(0) =
2 cos(ω0

2 )2(1 + 3aπ − 2 cos ω0)
1 + 5a2π2 − 2aπ[(1− 2aπ) cos ω0 + 2 cos 2ω0]

.

Substituting ω0 with 2v and noticing that cos v = v/aπ we get

α′(0) =
2(3a2π2(1 + aπ)− 4v2)v2

a4π4(−1 + aπ)2 + 4a3π3(7 + 2aπ)v2 − 32πv4
.

Replacing 2v with ω0, we have

α′(0) =
(3a2π2(1 + aπ)− ω2

0)ω2
0

2a4π4(−1 + aπ)2 + 2a3π3(7 + 2aπ)ω2
0 − 4πω4

0

.

In the following we prove that α′(0) is positive. Since the denominator of
α′(0) is positive (because is the the square module of a complex number) it is
enough to show that the numerator is positive, i.e. 3a2π2(1+ aπ)−ω2

0 > 0.
This is obvious because the derivative of h(a) = 3a2π2(1 + aπ) − ω2

0 is
positive for a ∈ [9/100,

√
3/9] and since ω0 = 0.544648 for a = 9/100, we

have that h(9/100) = 0.0110011 > 0.

In particular the transversality condition α′(0) > 0 of statement (c) of
Theorem 5 is satisfied. Consequently, by Proposition 1, assumptions (c)
and (d) of Theorem 5 of Appendix 1 hold. In short, we can apply the Hopf
bifurcation theory to equation (1) at µ = 0. Therefore, a family of Hopf
periodic solutions bifurcates from the origin at µ = 0.

If we are in the assumptions of Theorem 2 due to Theorem 5 of Appendix
1, the following result is satisfied.

Theorem 3. For the delay differential equation (1) satisfying (iii) the fol-
lowing statements hold.

(a) There is an ε0 > 0 and an analytic function µ(ε) = µ2ε
2 + O(ε3)

for 0 < ε < ε0 such that for each ε ∈ (0, ε0) there exists a periodic
solution pε(t) occuring for µ = µ(ε).

(b) The period T (ε) = 2π[1 + τ2ε
2 + O(ε3)]/ω0 of pε(t) is an analytic

function.
(c) The periodic solution pε(t) is orbitally asymptotically stable if β2 <

0, and unstable if β2 > 0.
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Now we shall compute µ2, τ2 and β2 for some function G1 and G2.
For the delay differential equation (1) we have that r = 2. Now we

follow Appendix 2. The function from the Riesz representation theorem is
dη(θ, µ) = −(aπ + µ)[δ(θ + 2) + δ(θ + 1)]. For equation (1) it follows that
A and R are

(10) A(µ)(φ) =





dφ

dθ
if −2 ≤ θ < 0,

−(aπ + µ)[φ(−1) + φ(−2)] if θ = 0,

and

R(φ) =





0 if −2 ≤ θ < 0,

f(φ, µ) if θ = 0,

where

(11)
f(φ, µ) = −(aπ + µ)[G2(φ(0), φ(−1), φ(−2))+

(φ(−1) + φ(−2))G1(φ(0), φ(−1), φ(−2))+
G2(φ(0), φ(−1), φ(−2))G1(φ(0), φ(−1), φ(−2))].

We define q(θ) = eiω0θ and q∗(θ) = Deiω0θ.

Lemma 4. Normalizing q and q∗ by the condition 〈q∗, q〉 = 1 we obtain
that D = ReD + ImD where

ReD =
2a3π3 − 2a4π4 + 7a2π2ω2

0 − 2ω4
0

2a3π3(aπ − 1)2 + 2a2π2(7 + 2aπ)ω2
0 − 4ω4

0

,

ImD =
−3a2π2ω0

√
4a2π2 − ω2

0 + 2ω3
√

4a2π2 − ω2
0

2a3π3(aπ − 1)2 + 2a2π2(7 + 2aπ)ω2
0 − 4ω4

0

.

Proof: Since

〈q∗, q〉 = q̄∗(0)q(0)−
∫ 0

θ=−2

(∫ θ

ξ=0

q̄∗(ξ − θ)q(ξ)dξ

)
dη(θ)

= D̄ −
∫ 0

θ=−2

(∫ θ

ξ=0

D̄e−iω0(ξ−θ)eiω0ξdξ

)
dη(θ)

= D̄ + aπD̄

∫ 0

θ=−2

(∫ θ

ξ=0

eiω0θdξ

)
(δ(θ + 1) + δ(θ + 2))dθ

= D̄ + aπD̄

∫ 0

θ=−2

θeiω0θ(δ(θ + 1) + δ(θ + 2))dθ

= D̄
(
1− aπ(e−iω0 + 2e−2iω0)

)
,
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we obtain

D̄ =
(
1− aπ(e−iω0 + 2e−2iω0)

)−1

= (1− aπ(cosω0 + 2 cos 2ω0) + iaπ(sinω0 + 2 sin 2ω0))−1.

Rationalizing the above equation, we get

D̄ =
1− aπ(cos ω0 + 2 cos 2ω0)− iaπ(sinω0 + 2 sin 2ω0)

1 + 5a2π2 − 2aπ[(1− 2aπ) cos ω0 + 2 cos 2ω0]
.

Taking into account that cos(ω0/2) = ω0/(2aπ), we obtain the value of
D.

From the definition of z and w in Appendix 2, and (24) we have

ż(t) = iω0z(t) + D̄f(w(z(t), z̄(t), 0) + 2Re(z(t)q(0)), 0)
= iω0z(t) + D̄f0(z(t), z̄(t))(12)
= iω0z + g(z, z̄).

Next step is to solve system (29) and find the coefficients wij for i + j = 2.
From the equations (26) and (27) we have for θ ∈ [−2, 0) that

H(z, z̄, θ) = −D̄f0q(θ)−Df̄0q̄(θ) = −gq(θ)− ḡq̄(θ).

Using the expression for H obtained in (28) and for g given in (30), we get

(13) H20(θ) = −g20q(θ)− ḡ02q̄(θ),

(14) H11(θ) = −g11q(θ)− ḡ11q̄(θ).

Using the definition of A, the first equation of (29) and (13) we have

ẇ20(θ) = A(µ)(w20(θ))
= 2iω0w20(θ)−H20(θ)
= 2iω0w20(θ) + g20q(θ) + ḡ02q̄(θ).

Noticing that q(θ) = eiω0θ, we solve the linear differential equation in the
variable w20(θ), and we obtain

(15) w20(θ) =
i

ω0
g20e

iω0θ +
i

3ω0
ḡ02e

−iω0θ + ce2iω0θ,

where c is a complex constant.
Similarly, using the definition of A, the second equation of (29) and (14) we
obtain

ẇ11(θ) = g11q(θ) + ḡ11q̄(θ),
which leads to

(16) w11(θ) = − i

ω0
g11e

iω0θ +
i

ω0
ḡ11e

−iω0θ + d,
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where d is also a complex constant.
In the following we have to find the constants c and d. From equations (26),
(27) and (12), for θ = 0 we have that

H(z, z̄, 0) = −D̄f0q(0)−Df̄0q̄(0) + f0

= −gq(0)− ḡq̄(0) +
q̄∗(0)f0

q̄∗(0)

= −g − ḡ +
g

D̄
.

Using the expression for H obtained in (28) and for g obtained in (30), we
get

(17) H20(0) = −g20 − ḡ02 +
g20

D̄
,

(18) H11(0) = −g11 − ḡ11 +
g11

D̄
.

From the definition of A (see (10)), the first two equations of (29), (17) and
(18), for θ = 0 we have that

−aπ(w20(−1) + w20(−2)) = 2iω0w20(0)−H20(0)
= 2iω0w20(0)− g20 − ḡ02 + D̄−1g20,

and

−aπ(w11(−1) + w11(−2)) = −H11(0)
= −g11 − ḡ11 + D̄−1g11.

Substituting w20 and w11 in the above equations we obtain

−aπ(
i

ω0
g20e

−iω0+
i

3ω0
ḡ02e

iω0 +ce−2ω0 +
i

ω0
g20e

−2iω0 +
i

3ω0
ḡ02e

2iω0)+ce−4ω0)

= −2(g20 +
1
3
ḡ02 − ic ω0)− g20 − ḡ02 + D̄−1g20,

and

−aπ (− i

ω0
g11e

−iω0 +
i

ω0
ḡ11e

iω0 + d− i

ω0
g11e

−2iω0 +
i

ω0
ḡ11e

2iω0 + d)

= −g11 − ḡ11 + D̄−1g11.

Solving these two equations for c and d, we get

c = −
iaπ
ω0

(g20e
−iω0 + 1

3 ḡ02e
iω0 +g20e

−2iω0 + 1
3 ḡ02e

2iω0)−3g20− 5
3 ḡ02+D̄−1g20

aπe−2iω0 +aπe−4iω0 + 2iω0
,

and

d =
iaπ
ω0

(g11e
−iω0 − ḡ11e

iω0 + g11e
−2iω0 − ḡ11e

2iω0) + g11 + ḡ11 − D̄−1g11

2aπ
.
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From the definition of w we have that xt(θ) = w(t, θ) + zq(θ) + z̄q̄(θ).
Replacing w with the expression obtained in (23), we find that
(19)

xt(θ) = zeiω0θ + z̄e−iω0θ + w20(θ)
z2

2
+ w11(θ)zz̄ + w02(θ)

z̄2

2
+ O(| z, z̄ |3).

Taking into account (11), (12) and (19), we can find g20, g11, g02, g21 and

µ2 =
1

2ω0α′(0)
(−ω0Re(g21) + Im(g20)Re(g11) + Im(g11)Re(g20)),

τ2 = − 1
6ω2

0

[−Im(g02)2−6Im(g11)2−3Im(g11)Im(g20)−Re(g02)2−6Re(g11)2

+ 3Re(g11)Re(g20) + 3Im(g21)ω0]− 1
ω0

µ2ω
′(0)

and

β2 =
1
ω0

(ω0Re(g21)− Im(g20)Re(g11)− Im(g11)Re(g20)).

3. Applications

In this section we give some applications of the theory developed in Sec-
tion 2 .

3.1. Example 1. We consider the delay differential equation (1) with
9/100 6 a 6

√
3/9, G1 = −mx and G2 = mxy + mxz + nxz2 where

m,n are arbitrary real numbers. Thus equation (1) has a Hopf periodic
orbit for the value of the parameter µ = µ2ε

2 + O(ε3) having period

T =
2π

ω0
(1 + τ2ε

2) + O(ε3), where ω0 is the imaginary part of the pure

imaginary root of the characteristic equation of delay differential equation
(1). This periodic orbit is asymptotically stable if β2ε

2 + O(ε3) < 0 and
unstable if β2ε

2 + O(ε3) > 0. In this case µ2, τ2 and β2 are given by

µ2 =
1

6πa− 4 cos(w0) + 2
(anπ

(
5π2a2 + 2π(2aπ − 1) cos(w0)a

− 4π cos(2w0)a+1) sec2
(w0

2

)
(ReD(cos(4w0)+2)−ImD sin(4w0))),
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τ2 =
1

w0(−3πa + 2 cos(w0)− 1)
(anπ sec

(w0

2

)
(6aImDπ cos

(w0

2

)

− 2ImD cos
(

3w0

2

)
− ImD cos

(
5w0

2

)
+ aImDπ cos

(
7w0

2

)

+ 2aImDπ cos
(

9w0

2

)
+ 2aReDπ sin

(w0

2

)
+ 2ReD sin

(
3w0

2

)

− ReD sin
(

5w0

2

)
+ aReDπ sin

(
7w0

2

)
+ 2aReDπ sin

(
9w0

2

)
)),

and
β2 = −2anπ(ReD(cos(4w0) + 2)− ImD sin(4w0)),

where ReD and ImD are given in Lemma 4.

3.2. Example 2. We consider the delay differential equation (1) for a =√
3/9. It follows that ω0 = π/3. We take G1 = 0 and G2 = mx2 +ny2 +pz2

with m,n, p arbitrary real numbers. Here µ2, τ2 and β2 are

µ2 =

=
1

µ21
(2
√

3(−59049π7(34234m2 + 1200nm− 15917pm− 15917n2

− 133336p2 − 132136np)−3486784401
√

3(8m2+9nm+5pm+5n2

− 5p2 + 4np)− 117649(2m2+12nm+11pm+11n2+28p2+40np)π13

+ 151263
√

3(16m2 + 5nm− 3pm− 3n2 − 49p2 − 44np)π12

+ 194481(62m2 + 8nm− 23pm− 23n2 − 224p2 − 216np)π11

+ 3695139
√

3(8m2 + 9nm + 5pm + 5n2 − 5p2 + 4np)π10

+ 13931190(2m2 + 12nm + 11pm + 11n2 + 28p2 + 40np)π9

− 275562
√

3(964m2 − 131nm− 613pm− 613n2 − 4249p2 − 4380np)π8

− 531441
√

3(9208m2+5497nm+893pm+893n2−20341p2−14844np)π6

− 9565938(1778m2 + 944nm + 55pm + 55n2 − 4280p2 − 3336np)π5

− 15943230
√

3(1468m2+1203nm+469pm+469n2−2263p2−1060np)π4

− 43046721(1138m2 + 848nm + 279pm + 279n2 − 2008p2 − 1160np)π3

− 129140163
√

3(344m2 + 335nm + 163pm + 163n2 − 371p2 − 36np)π2

− 387420489(122m2 + 108nm + 47pm + 47n2 − 164p2 − 56np)π)),

where

µ21 = 117(27 + 3
√

3π + 7π2)(27
√

3 + π(9 + 7
√

3π))2 ·
· (19683 + π(6561

√
3 + π(17496

+ π(3483
√

3 + 7π(648 + 7π(9
√

3 + 7π))))));
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τ2 =

=
1

τ21
(−2(8m2 + 9nm + 5pm + 5n2 − 5p2 + 4np)(−31381059609

√
3

+ π(−66248903619 + π(−65861483130
√

3 + π(−91043814915

+ π(−47939698287
√

3 + π(−46193914602 + π(−15740750979
√

3

+ π(−10381699935 + 7π(−323883765
√

3 + 7π(−17281674

+ 7π(−187353
√

3+7π(11421+7π(810
√

3+7π(45+7
√

3π))))))))))))))),

where

τ21 =
= 13π(729 + π(162

√
3 + π(405 + 7π(6

√
3 + 7π))))2(19683 + π(6561

√
3

+ π(17496 + π(3483
√

3 + 7π(648 + 7π(9
√

3 + 7π))))));

and

β2 =

=
1

β21
(6π(59049π7(34234m2 + 1200nm− 15917pm− 15917n2

− 133336p2 − 132136np) + 3486784401
√

3(8m2 + 9nm + 5pm + 5n2

− 5p2 + 4np) + 117649(2m2+12nm+11pm+11n2+28p2+40np)π13

− 151263
√

3(16m2 + 5nm− 3pm− 3n2 − 49p2 − 44np)π12

− 194481(62m2 + 8nm− 23pm− 23n2 − 224p2 − 216np)π11

− 3695139
√

3(8m2 + 9nm + 5pm + 5n2 − 5p2 + 4np)π10

− 13931190(2m2 + 12nm + 11pm + 11n2 + 28p2 + 40np)π9

+ 275562
√

3(964m2 − 131nm− 613pm− 613n2 − 4249p2 − 4380np)π8

+ 531441
√

3(9208m2+5497nm+893pm+893n2−20341p2−14844np)π6

+ 9565938(1778m2+944nm+55pm+55n2−4280p2−3336np)π5

+ 15943230
√

3(1468m2+1203nm+469pm+469n2−2263p2−1060np)π4

+ 43046721(1138m2 + 848nm + 279pm + 279n2 − 2008p2 − 1160np)π3

+ 129140163
√

3(344m2 + 335nm + 163pm + 163n2 − 371p2

− 36np)π2 + 387420489(122m2 + 108nm + 47pm + 47n2

− 164p2 − 56np)π)),

where

β21 = 13(729 + π(162
√

3 + π(405 + 7π(6
√

3 + 7π))))2(19683

+ π(6561
√

3+π(17496+π(3483
√

3+7π(648+7π(9
√

3+7π)))))).
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3.3. Example 3. We consider the delay differential equation (1) for
9/100 6 a 6

√
3/9, G1 = −x and G2 = xy + xz + x3. Thus, µ2, τ2

and β2 are given by

µ2 =
6aReDπ

(
5π2a2 + 2π(2aπ − 1) cos(w0)a− 4π cos(2w0)a + 1

)

(6πa− 4 cos(w0) + 2)(cos(w0) + 1)
,

τ2 = − 1
w0(3πa− 2 cos(w0) + 1)

(3aπ sec
(w0

2

)
(3aImDπ cos

(w0

2

)

− ImD cos
(

3w0

2

)
+ ReD(πa + 2 cos(w0) + 1) sin

(w0

2

)
)),

and

β2 = −6aReDπ,

where ReD and ImD are given in Lemma 4.

4. Appendix 1: The Hopf bifurcation Theorem

The following result can be found in [8].

Theorem 5. We consider the delay differential equation

(20) ẋ(t) =
dx(t)

dt
= F (x(t), x(t− r1), . . . , x(t− rn−1), µ)

If
(a) F is analytic in x and µ in a neighborhood of (0, 0) in Rn × R,
(b) F (0, µ) = 0 for µ in an open interval containing 0, and x(t) = 0 is

an isolated stationary solution of (20),
(c) the characteristic equation of (20) has a pair of complex conjugate

eigenvalues λ and λ̄ such that λ(µ) = α(µ) + iω(µ) where ω(0) =
ω0 > 0, α(0) = 0, α′(0) 6= 0,

(d) the remaining eigenvalues of the characteristic equation have strictly
negative real parts,

then the delay differential equation (20) has a family of Hopf periodic solu-
tions. More precisely, there is an ε0 > 0 and an analytic function µ(ε) =∑∞

i=2 µiε
i for 0 < ε < ε0 such that for each ε ∈ (0, ε0) there exists a

periodic solution pε(t) occurring for µ = µ(ε). If µ(ε) is not identically
zero, the first nonvanishing coefficient µi has an even subscript, and there
is an ε1 ∈ (0, ε0] such that µ(ε) is either strictly positive or strictly neg-
ative for ε ∈ (0, ε1). For each L > 2π/ω0 there is a neighborhood V of
x = 0 and an open interval I containing 0 such that for any µ ∈ I the
only nonconstant periodic solutions of the delay differential equation (20)
with period less then L which lie in V are members of the family pε(t)
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for values of a satisfying µ(ε) = µ, ε ∈ (0, ε0). For 0 < ε < ε0 the pe-
riod T (ε) = 2π

[
1 +

∑∞
i=2 τiε

i
]
/ω0 of pε(t) is an analytic function. Exactly

two of the Floquet exponents of pε(t) approach 0 as ε ↘ 0. One is 0 for
ε ∈ (0, ε0), and the other is an analytic function β(ε) =

∑∞
i=2 βiε

i for
0 < ε < ε0. The periodic solution pε(t) is orbitally asymptotically stable if
β(ε) < 0, and unstable if β(ε) > 0.

5. Appendix 2: The algorithm for computing the period and
the stability of the Hopf periodic orbit

The following algorithm also follows from [8]. Since the algorithm for
computing the period and the stability of the Hopf periodic orbit does not
depend from the fact that there is one or more delays, we describe it for
one delay differential equation with a unique delay.

Consider the autonomous equation

(21)

dx(t)
dt

= Lµxt + f(xt(·), µ), t > 0, µ ∈ R,

µ̇ = 0,

where for some r > 0

xt(θ) = x(t + θ), x : [−r, 0] → R, θ ∈ [−r, 0].

We denote by C[−r, 0] the set of all continuous functions from [−r, 0] to R.
In C[−r, 0] we put the topology of the supremum. Then we define C as the
set of all continuous functions from C[−r, 0] to R. An orbit corresponding to
a solution x(t) of (21) is a curve in C traced out by the family of functions
x(·), (xt(θ) = x(t + θ)) as t rangers over (0,∞); the orbit of a periodic
solution is a closed curve in C. The individual periodic orbits will belong
to slices Cµ, (µ–constant) of C.

Here Lµ : C[−r, 0] → R and the operator f(·, µ) : C[−r, 0] → R contains
the nonlinear terms, beginning with at least quadratic terms, i.e.

f(0, µ) = 0, f ′x(0, µ) = 0.

For simplicity we consider that f(·, µ) is analytic and Lµ depends analyti-
cally on the bifurcation parameter µ for | µ | small.

In the following we transform the linear problem ẋ = Lµxt. By the Riesz
representation theorem, there exists a function η(θ, µ) of bounded variation
for θ ∈ [−r, 0] such that for all φ ∈ C[−r, 0],

Lµφ =
∫ 0

−r

φ(θ)dη(θ, µ).
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In particular

Lµxt =
∫ 0

−r

x(t + θ)dη(θ, µ).

For example, if Lµxt = µx(t − 1), then dη(θ, µ) = µδ(θ + 1), where δ(θ) is
the Dirac delta function. The choice dη(θ, µ) = µδ(θ) corresponds to the
ordinary differential equation ẋ = µx.

We make the usual Hopf assumption on the spectrum σ(µ) =
=

{
λ | λ− Lµeλθ = 0

}
of Lµ; namely

(1) there exists a pair of complex, simple eigenvalues λ(µ) and λ̄(µ)
such that λ(µ) = α(µ) + iω(µ), where α and ω are real and α(0) =
0, ω(0) = ω0 > 0, and α′(0) 6= 0 (the transversality hypothesis);

(2) all the other elements of σ(0) have negative real parts.
We identify λ(µ) by choosing λ(0) = iω0. Of course, λ − Lµeλθ = 0 is the
characteristic equation of (21).

Next we define for φ ∈ C1[−r, 0]

A(µ)(φ) =





dφ

dθ
if −r ≤ θ < 0,

∫ 0

−r
φ(s)dη(s, µ) = Lµφ if θ = 0,

and

R(φ) =





0 if −r ≤ θ < 0,

f(φ, µ) if θ = 0.

Then since dxt/dθ = dxt/dt, (21) can be written as

(22) ẋt = A(µ)(xt) + R(xt),

which is a more mathematically pleasing one because this equation involves
a single unknown variable xt rather than both x and xt.

We shall obtain explicit expressions only for µ2, τ2 and β2 (see Appendix
1). We define q(θ) to be the eigenvector for A(0) corresponding to λ(0);
namely A(0)(q(θ)) = iω0q(θ). The adjoint operator A∗(0) is defined by

A∗(0)(α(s)) =





dα

ds
if 0 < s ≤ r,

∫ 0

−r
α(−t)dη(t, 0) if s = 0.

We shall henceforth simply right A for A(0), A∗ for A∗(0), η(s) for η(s, 0),
etc. Since A(q(θ)) = λ(0)q(θ) = iω0q(θ), λ̄(0) is an eigenvalue for A∗, and
A∗(q∗) = −iω0q

∗ for some nonzero vector q∗.
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To construct coordinates to describe C0 near 0 ∈ R3, we need an inner
product. For ψ ∈ C[0, r] and φ ∈ C[−r, 0] that is defined by

〈ψ, φ〉 = ψ̄(0)φ(0)−
∫ 0

θ=−r

(∫ θ

ξ=0

ψ̄(ξ − θ)φ(ξ)dξ

)
dη(θ),

Then, as usual, 〈ψ, Aφ〉 = 〈A∗ψ, φ〉 for (φ, ψ) ∈ D(A)×D(A∗), where D(A)
denotes the definition domain of A. We normalize q and q∗ by the condition
〈q∗〉 = 1. Of course 〈q∗, q̄〉 = 0, since iω0 is a simple eigenvalue for A. For
each x ∈ D(A), we may than associate the pair (z, w) where z = 〈q∗, x〉 and
w = x− zq − z̄q̄ = x− 2Re(zq).

For xt a solution of (22) at µ = 0, we define z(t) = 〈q∗, xt〉 and then
define w(t, θ) = xt(θ) − 2Re(z(t)q(t)). On the manifold C0, w(t, θ) =
w(z(t), z̄(t), θ) where

(23) w(z, z̄, θ) = w20(θ)
z2

2
+ w11(θ)zz̄ + w02(θ)

z̄2

2
+ w30(θ)

z3

6
+ . . . .

In effect, z and z̄ are local coordinates for C0 in C in the directions of q∗

and q̄∗. Note that w is real if xt is; we shall deal with real solutions only.
It is easy to see that 〈q∗, w〉 = 0.

Now, for solutions xt ∈ C0 of (22), 〈q∗, ẋt〉 = 〈q∗, A(xt)+R(xt)〉 or, since
µ = 0,

ż(t) = 〈q̇∗, xt〉+ 〈q̇∗, A(xt) + R(xt)〉
= iω0z(t) + 〈q̇∗, A(xt)〉+ 〈q̇∗, R(xt)〉
= iω0z(t) + q̄∗(0)f(xt, 0)(24)
= iω0z(t) + q̄∗(0)f(w(z(t), z̄(t), 0) + 2Re(z(t)q(0)), 0)
= iω0z(t) + q̄∗(0)f0(z(t), z̄(t)),

which we write in abbreviated form as

(25) ż = iω0z + g(z, z̄).

Our next object is to expand g in powers of z and z̄; and then to obtain
from this expansion the values of µ2, τ2 and β2. First, it is required to derive
equations for the coefficient wij(θ). We write ẇ = ẋt− żq− ˙̄zq̄ and use (25)
and (22) to obtain

(26) ẇ =





A(w)− 2Re(q̄∗(0) · f0q(θ)) if −r ≤ θ < 0,

A(w)− 2Re(q̄∗(0) · f0q(0)) + f0 if θ = 0,
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which we rewrite as

(27) ẇ = A(w) + H(z, z̄, θ),

where

(28) H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ . . . .

On the other hand, on C0 near the origin ẇ = wz ż+wz̄ ˙̄z. Using (23) and (25)
to replace wz and ż and their conjugates by their power series expansions
(which involve the wij), we get a second expression for ẇ. We equate this
to the right–hand side of (27). The result is an equation from which we can
derive equations for the n–vectors wij(θ), (i + j = 2, 3, . . . ). These are

(29)
2iω0w20(θ)−A(w20(θ)) = H20(θ),

−A(w11(θ)) = H11(θ),
−2iω0w02(θ)−A(w02(θ)) = H02(θ),

. . .

Now the Hij with i + j = 2 do not involve any of the wij with i + j > 2.
Further, by hypothesis 2iω0 and 0 are not eigenvalues of A. Thus, the first
three equations (29) can be solved for w20, w11 and w02 = w̄20. At each stage
the equations for wij (i+ j ≤ k +1) only involve via the Hij coefficients wij

with i + j ≤ k. Hence the equations (29) can be solved successively for the
wij . Only the values of wij (i+ j = 2) are needed to compute µ2, τ2 and β2.
If µ2k, τ2k and β2k are desired for some k > 1, then µ must not be set equal
to 0 in the previous analysis.

Once the wij are determined, the differential equation (25) for z can be
written as

(30) ż = iω0z + g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ . . . ,

where the coefficients gij for i + j ≤ 3 may be computed by expanding the
expression

(31) q̄∗(0) · f
(

zq(θ) + z̄q̄(θ) + w20(θ)
z2

2
+ w11(θ)zz̄ + w02(θ)

z̄2

2

)
.

The coefficient c1(0) of the Poincaré normal form (see [8], pp. 25–36, 45–51
and [1], chapters 5 and 6) is given in terms of these gij by formula

c1(0) =
i

2ω0

(
g20g11 − 2 | g11 |2 −1

3
| g02 |2

)
+

g21

2
.

The following formulas give us the values of µ2, τ2 and β2

(32) µ2 = −Re(c1(0))
α′(0)

,
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(33) τ2 = − 1
ω0

[Im(c1(0)) + µ2ω
′(0)] ,

(34) β2 = 2Re(c1(0)).

For more details see [8] pages 29, 31 and 44, respectively. We recall that
µ = µ2ε

2 + O(ε3), T (ε) = 2π(1 + τ2ε
2 + O(ε3))/ω0, and that the Hopf

periodic orbit is orbitally asymptotically stable if β2 < 0, and unstable if
β2 > 0.
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3 Centre de Recerca Matemàtica, Apartat 50, 08193, Bellaterra, Spain
E-mail address: atarta@crm.es


