
THE MEAN DEHN FUNCTIONS OF ABELIAN GROUPS

O. BOGOPOLSKI AND E. VENTURA

Abstract. While Dehn functions, D(n), of finitely presented groups
are very well studied in the literature, mean Dehn functions are much
less considered. M. Gromov introduced the notion of mean Dehn func-
tion of a group, Dmean(n), suggesting that in many cases it should
grow much more slowly than the Dehn function itself. Using only
elementary counting methods, this paper presents some computa-
tions pointing into this direction. Particularizing them to the case
of any finite presentation of a finitely generated abelian group (for
which it is well known that D(n) ∼ n2 except in the 1-dimensional
case), we show that the three variations Dosmean(n), Dsmean(n) and
Dmean(n) all are bounded above by Kn(ln n)2, where the constant K
depends only on the presentation (and the geodesic combing) chosen.
This improves an earlier bound given by Kukina and Roman’kov.

1. Introduction

For all the paper, let A = {a1, . . . , ar} be an alphabet with r letters and
let A∗ be the free monoid on A ∪A−1.

Let also G be an r-generated finitely presented group, and choose a finite
presentation G = 〈A |R〉, with A as set of generators. We have the natural
epimorphisms A∗ ³ F ³ G, where F is the free group on A. Whenever
clear from the context, we shall use the same notation for referring to a
formal word w in A∗, and to its images in F and G. When necessary,
we shall use =A , =F and =G to denote equality in these three algebraic
structures.

Let w ∈ A∗ be a (possibly non-reduced) word. We shall denote by |w|A ,
|w|

F
and |w|

G
the metric lengths of w in A∗, F and G, respectively. In other

words, |w|
A

equals the number of letters in w, |w|
F

means the number of
letters in w after free reduction, and |w|

G
equals the number of letters in

the shortest word w′ ∈ A∗ such that w =G w′. To avoid possible confusions
with lengths, we shall write the cardinal of a set S as ]S.

Clearly, if H is a quotient of G, say A∗ ³ F ³ G ³ H, then |w|
A

>
|w|

F
> |w|

G
> |w|

H
. For example, taking A = {a}, F = 〈a〉 ' Z, G =

1
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〈a | a10〉 ' Z/10Z, H = 〈a | a5〉 ' Z/5Z and w = aaa−1aaa, we have |w|A =
6, |w|

F
= 4, |w|

G
= 4 and |w|

H
= 1.

Let Γ(G) denote the Cayley graph of G with respect to A, and let e be
the vertex corresponding to the trivial element. There is a natural bijection,
w ←→ γw, between (possibly non-reduced) words in A∗ and paths in Γ(G)
starting at e (and possibly with backtrackings). In the future, we will not
distinguish between w and γw, usually using w to denote the corresponding
path as well (if there is no risk of confusion). Clearly, the length of γw

is |w|
A
, the length of γw after reducing all possible backtrackings is |w|

F
,

and the distance in Γ(G) from e to τγw (the terminal point of γw) is |w|
G
.

Any path in Γ(G) of the minimal possible length from e to τγw is called a
geodesic for w ∈ G and, in fact, it represents a word w′ ∈ A∗ of the shortest
possible A-length such that w =

G
w′. Of course, geodesics are not unique,

in general.
Let w ∈ A∗. Clearly, w =

G
1 if and only if γw is closed. In this case,

w ∈ F belongs to the kernel of the projection F ³ G and so, it can be
expressed as

w =
m∏

i=1

f−1
i rεi

i fi,

where fi ∈ F , ri ∈ R, and εi = ±1. The minimal such m is called the
area of w, denoted area(w). The motivation for this name is obviously of
geometric nature. For every vertex v ∈ Γ(G) and every relator ri, there is a
closed path at v which labels ri. For every such path p, let us add a 2-cell
to Γ(G) with boundary p. In the resulting 2-complex, the area of w is the
minimal number of 2-cells needed to fill a disc with boundary w.

Note that if w,w′ ∈ A∗ reduce to the same element in F which maps
to the identity element in G, then area(w) = area(w′). It is clear from the
definition that, for w,w′ ∈ A∗ with w =

G
w′ =

G
1, we have area(ww′) 6

area(w)+area(w′). Also, area(w−1) = area(w) and area(vwv−1) = area(w)
for every v ∈ A∗.

The way those areas grow when considering longer and longer words in
the group G, is measured by the so-called Dehn function associated to the
prefixed presentation for G. To give the precise definition, we need the
following notation. For every positive integer n define the sets

BG(n) = {w ∈ A∗ | w =
G

1, |w|
A

6 n}.
and

SG(n) = {w ∈ A∗ | w =
G

1, |w|
A

= n} = BG(n) \BG(n− 1).

By convention, let us write BG(0) = SG(0) = {1}. The notation BG(n)
and SG(n) reflects the idea of balls and spheres, respectively. However, note
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that these sets are not real balls or spheres in the metric of G, but sets of
closed paths at e with possible backtrackings, and with bounded or given
A-length.

Note that, if H is a quotient of G then BG(n) ⊆ BH(n) and SG(n) ⊆
SH(n). So, the bigger sets correspond to the trivial group (in this case we
delete the subindex to avoid confusions). This way,

B(n) = {w ∈ A∗ | |w|
A

6 n}

and

S(n) = {w ∈ A∗ | |w|
A

= n}
are the real ball and the real sphere in the monoid A∗, respectively. Fur-
thermore, it is easy to see that ]SG(n) 6 ]S(n) = (2r)n and ]BG(n) 6
]B(n) = (2r)0 + (2r)1 + · · ·+ (2r)n = (2r)n+1−1

2r−1 .
Now, the Dehn function of the finite presentation G = 〈A |R〉 is the

function D : N→ N defined by

D(n) = max
w∈BG(n)

{area(w)}.

It measures the biggest area of those words in the ball of a given radius.
In principle, this function depends on the presentation but it is well-know
that, changing to another presentation of the same group, D(n) remains the
same up to multiplicative and additive constants, both in the argument and
in the range. In particular, the asymptotic behavior of D(n) only depends
on G.

There are a lot of papers in the literature investigating Dehn functions
of groups (specially because of its relation with the word problem of the
group). For example, it is well known that every word-hyperbolic group
has a linear Dehn function, and that automatic groups have Dehn function
at most quadratic (see [2] for a general exposition). Also, a relevant theo-
rem attributed to Gromov states that every subquadratic Dehn function is
in fact linear (see [7] for a detailed proof), thus existing a gap between n
and n2 on the asymptotic behavior of Dehn functions of finitely generated
groups. A consequence of these results is that non-cyclic finitely generated
free abelian groups (as automatic but non word-hyperbolic groups) have
precisely quadratic Dehn function, i.e., C1n

2 6 D(n) 6 C2n
2 for appropri-

ate constants C1, C2 > 0.

In the literature, there are interesting variations of the concept of Dehn
function, which are still not deeply investigated. In this paper, we are
concerned to mean Dehn functions, first introduced by M. Gromov in [4].
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The mean Dehn function of the presentation 〈A |R〉 for G, denoted
Dmean, is the mapping Dmean : N→ Q defined by

Dmean(n) =

∑
w∈BG(n)

area(w)

]BG(n)

(note that the denominator is never 0 since the empty word always belongs
to BG(n)).

Similarly, the spherical mean Dehn function, denoted Dsmean, is defined
as

Dsmean(n) =

∑
w∈SG(n)

area(w)

]SG(n)
,

where we understand Dsmean(n) = 0 if the sphere SG(n) is empty.
Since areas of words (and also balls and spheres) do depend on the chosen

presentation for G, the functions Dmean and Dsmean also depend on that
presentation. Contrasting with the situation for the classical Dehn function,
it is still not known in general whether the asymptotic behavior of these
averaged versions is also invariant under changing the presentation.

As we said, these averaged Dehn functions are still very poorly considered
in the literature. One of the few existing results is due to E. G. Kukina and
V. A. Roman’kov [5] who proved that, for finitely generated free abelian
groups,

lim
n→∞

Dmean(n)
n7/4

= 0.

This is considerably improved in the present paper, where we give the fol-
lowing much better asymptotic bound:

Theorem 1.1. The mean Dehn function of a finitely generated abelian
group G satisfies Dmean(n) = O

(
n(lnn)2

)
(with the constant depending

only on the chosen finite presentation for G). The same assertion is valid
for the spherical mean Dehn function of G.

Here, as in the rest of the paper, we make use of the “O” notation for
comparing the growth of pairs of functions. Given two functions f, g : N→
R+ defined on the set of natural numbers and having positive values, one
writes f(n) = O(g(n)) when there exists a constant K (independent on
n) such that f(n) 6 Kg(n) for every n > 1. Note that, by changing
K to max{K, f(1)/g(1), . . . , f(n0)/g(n0)}, this is the same as having the
inequality for big enough n, say n > n0 (we shall refer to this by writing
n À 0). This notation is useful when one is mostly interested on the
existence of such constant, more than on its actual value (this is the case in
the present paper; however, following the details in our arguments, one can
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always extract from them a concrete value for the corresponding constant
in all our statements involving “O”).

Back to Dehn functions, it is worth remarking that M. Sapir recently
introduced another interesting variation of the concept of Dehn function,
namely his random Dehn function. It uses the notion of area of a word
w ∈ A∗ (not necessarily equal to 1 in G) with respect to a given geodesic
combing in Γ(G) (see the beginning of section 2, below). Having chosen a
geodesic combing in Γ(G), say that f : N → N is a random isoperimetric
function for G if

]{w ∈ A∗ | |w|
A

6 n, area(w) > f(n)}
]{w ∈ A∗ | |w|

A
6 n} → 0,

for n →∞. Then, the random Dehn function for G is the smallest random
isoperimetric function (which, a priori, depends on the presentation of G and
on the chosen combing). M. Sapir claimed (private communication) that, for
any finite presentation of an abelian group G, and for any geodesic combing
in Γ(G), there exists a constant K such that the random Dehn function of
G is dominated by n 7→ Kn ln n. It would be interesting to investigate the
possible relationships between mean and random Dehn functions.

To conclude this introduction, let us avoid possible notational confusions
by saying that, all over the paper, we use the term “ln” meaning neperian
logarithm (i.e. exp(ln n) = n). Just for technical reasons (ln 1 = 0 and
we will need to work with functions f : N → R+ taking strictly positive
values) the set N will be taken to be all natural numbers except 1. Also,
for every real number x, we shall denote by bxc its integral part (i.e. the
biggest integer which is less than or equal to x), and dxe = bxc + 1. So,
bxc 6 x < dxe. Note that, for a positive integer n, n > x is equivalent to
n > dxe; and n 6 x is equivalent to n 6 bxc. Also, for every integer n > 0,
bn

2 c+ dn
2 e = n.

The paper is organized as follows. In Section 2 we introduce the notion
of open mean Dehn function and give a general upper bound for it, as-
suming that the presentation satisfies some technical assumptions. We also
give some indications on how to convert this bound into a bound for the
spherical mean and the mean Dehn functions. In Section 3 we concentrate
on finitely generated abelian groups, making the necessary countings there
to ensure that every finite presentation of such a group satisfies the as-
sumptions required in the previous section. Finally, in Section 4 we deduce
explicit upper bounds for the mean and the spherical mean Dehn functions
of any finite presentation of an abelian group. It is interesting to remark
that the techniques developed in Section 2 can probably be applied to other
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groups as well. As soon as one can find two functions satisfying assump-
tion 2.1 for his favorite group presentation, an upper bound for the open
spherical mean Dehn function of that presentation will follow easily. With
some more computations, one can also hope to obtain an upper bound for
the mean Dehn function of such presentation.

We have to mention that, during the long process of publication of the
present paper, another preprint appeared with similar results. Totally in-
dependently from us, R. Young [10] considers finitely generated nilpotent
groups and proves several results about what he calls their averaged Dehn
function. His results imply that, for the finitely generated abelian case,
this function is O(n ln n). However, a rather technical but quite important
detail needs to be highlighted when comparing both papers (i.e. when com-
paring the definitions of averaged and mean Dehn functions). In [10], the
author considers what he calls lazy words, which are elements of the free
monoid on A ∪ A−1 ∪ {e} i.e., formal sequences of the form a1 · · · an with
ai ∈ A∪A−1 ∪{e}. Because of the possibility of using the symbol e (which
represents the trivial element in G), a lazy word of length n corresponds
to a (non-necessarily reduced) word of length less than or equal to n, in
our terminology. But when counting them (and averaging their areas) there
is a significant difference. The total number of lazy words of length n is
(2r + 1)n, while the total number of our words of length less than or equal
to n is (2r)n+1−1

2r−1 , asymptotically like (2r)n ¿ (2r + 1)n. The difference is
due to the fact that every word w of length m < n appears many times
counted as a lazy word, precisely as many as ways there are of expanding
w to a sequence of n symbols by adding n −m “e”’s between the existing
ones. And all these different representations of the same element of G, of
course have the same area. So, for sure, this effect introduces an artificial
distortion when estimating the corresponding areas. When averaging the
areas of lazy words of length n (as is done in [10]) one is counting shorter
words with bigger multiplicity (the maximum distortion appears around
words of length n/2). And, of course, those shorter words have smaller area
in average. So, this distortion in the counting contributes to artificially de-
crease the global average of areas. It is very difficult to make a quantitative
estimation of this effect, but we believe it can very well be the reason of
the difference between the bound O(n ln n) obtained in [10], and the bound
O(n(ln n)2) obtained here.

Beyond this discussion, there is the question of which is the good (...or
the most appropriate, or the best ...) notion of mean Dehn function from
the group theory point of view. In other words, which is the exact set that
must be considered to average the areas over it? The appendix at the end
of this paper pretends to contribute to this discussion.
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2. Combings in groups and the open mean Dehn function

For technical reasons, we will need an extension of the concept of area to
arbitrary paths in Γ(G) (not just those which are closed at e, i.e. words in
A∗ mapping to 1 in G). Accordingly, we shall introduce the notion of open
mean Dehn function averaging over all those words.

A combing in Γ(G) is a set T consisting of exactly one path from e to
every vertex v ∈ Γ(G), denoted T [e, v] or simply T [v], and such that T [e] is
the trivial path. By translation, such a set also determines a (unique) path
between every given pair of vertices in Γ(G), namely T [u, v] = uT [e, u−1v].
A combing T is said to be geodesic if T [v] (and so, T [u, v]) is a geodesic
path, for every pair of vertices u, v. Using a combing T , any path γ in Γ(G)
can be closed up by returning back to its initial vertex through the combing.
That is, defining γ̃ = T [ιγ, τγ], we have that γγ̃−1 is a closed path at ιγ.
Note that if T is geodesic then |γ̃|

A
6 |γ|

A
.

Standard examples of combings are the tree combings, i.e. those deter-
mined by a maximal tree T in Γ(G). In this case, T [v] is the unique reduced
path from e to v in T . For example, Γ(Z2) (with the standard presentation)
is the two dimensional integral lattice; and the maximal tree given by the
X-axis plus all the vertical lines, determines the geodesic combing of G = Z2

where T [(r, s)] is the path that goes first r steps to the right and then t steps
up. Note that, for these tree combings, usually T [wu, wv] = wT [u, v] is not
the path determined by the tree from wu to wv.

With the help of combings, we can define the area of an arbitrary path
γ in Γ(G) (not-necessarily reduced, neither closed, neither even starting at
e). If γ is closed at e we already know the meaning of area(γ). If γ is closed
at a vertex u = ιγ = τγ 6= e we define the area of γ by first translating γ
to e (i.e. reading the same word γ but from the vertex e) or, equivalently,
going first to (and then coming back from) u through an arbitrary path
(which makes no difference at the level of the area because it is conjugacy
invariant):

area(γ) = area(T [e, u]γT [e, u]−1)
(caution! T [e, u]−1 6= T [u, e] = uT [e, u−1] in general). Finally, suppose γ is
an arbitrary path in Γ(G) (with u = ιγ and v = τγ not necessarily equal,
neither equal to e). The area of γ is defined by first closing it through the
combing:

area(γ) = area(γγ̃−1).
Since, by definition T [u, v] = uT [e, u−1v], closing up γ and translating the
result to e reads the same as translating first γ to e and then closing it up.

To analyze the mean Dehn function of a group G, we have to evaluate
the sum of areas of all words in A∗ mapping to 1 in G, and having a given
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length. That is, the sum of areas of all paths in Γ(G) of a given length,
and closed at e. To do this, we will do inductive arguments that force us
to consider more general sums, like the sum of areas of all paths in Γ(G)
starting at e and of a given length (...and being closed or not). The following
notation will be useful in order to manipulate these sums.

For a given set of paths P starting at e (i.e. a given P ⊆ A∗) we denote
by AP the sum of areas of paths in P , AP =

∑
γ∈P area(γ). Specially, if

v is a vertex in Γ(G) and n is a positive integer, we denote by Av(n) the
sum of areas of all paths γ in Γ(G) having length n, starting at ιγ = e and
ending at τγ = v. Note that, if |v|

G
> n, then there are no such paths

and so Av(n) = 0. Note also that Ae(n) is the sum of areas of all closed
paths at e with length n, which is precisely the numerator of the spherical
mean Dehn function of G evaluated at n. Finally, let A(n) denote the sum
of areas of all paths γ in Γ(G) having length n and starting at e. Thus, we
have

Av(n) =
∑

|γ|
A

=n

ιγ=e, τγ=v

area(γ),

A(n) =
∑
v
Av(n) =

∑
|γ|

A
=n

ιγ=e

area(γ),

Similarly, we denote by Nv(n) the number of paths γ in Γ(G) having length
n, starting at ιγ = e and ending at τγ = v. Of course, Nv(n) = 0 if
|v|

G
> n. Also,

∑
v Nv(n) = (2r)n. This notation allows us to write

Dsmean(n) =
Ae(n)
Ne(n)

,

and suggests to define the open (spherical) mean Dehn function as the av-
eraged area over all such paths:

Dosmean(n) =
A(n)
(2r)n

=
∑

v Av(n)∑
v Nv(n)

.

In order to find an upper bound for Dosmean(n), we shall be guided by the
following intuitive idea. Out of the (2r)n paths of length n, those arriving
“far” from e will mostly contribute with a “big” area; but there are “few”
of them. And those arriving “close” to e (which are “much more” frequent)
are going to contribute less because they mostly have “small” area.

To develop this intuitive idea, giving precise sense to the quoted words, we
consider the following technical condition. For all those finite presentations
satisfying it, we will be able to give a recurrent estimation of A(n).
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Assumption 2.1. Let A = {a1, . . . , ar}, F be the free group on A, and
G = 〈A |R〉 be a finite presentation of a quotient of F . For the rest of
the present section we shall assume the existence of two non-decreasing
functions f, g : N→ R+ and a constant c0 such that, for every c À 0,

]{w ∈ A∗ | |w|
A

= n, |w|
G

> cf(n)} = O
( (2r)n

g(n)c−c0

)
.

(Note that this assumption is vacuous if f(n) grows faster than linear, or if
c 6 c0.)

Proposition 2.2. Let A = {a1, . . . , ar}, F be the free group on A, and G =
〈A |R〉 be a finite presentation of a quotient of F satisfying assumption 2.1.
Choose an arbitrary geodesic combing T in Γ(G). Then, for every c À 0,
we have

A(n) 6 (2r)dn/2eA(bn
2 c) + (2r)bn/2cA(dn

2 e)+

(2r)nD(4cf(n)) + D(2n)O
( (2r)n

g(n)c−c0

)
.

Proof. Fix c ∈ R+ big enough from assumption 2.1. Every summand
in A(n) has the form area(γ) = area(γγ̃−1) and so is bounded above by
D(2n) (since |γ̃|

A
6 |γ|

A
6 n). On the other hand, A(n) is a sum of (2r)n

summands. Let us split A(n) into two terms in such a way that we can
improve one of these two estimates in each. Consider P1 = {γ | |γ|A =
n, ι(γ) = e, |τγ|G > cf(n)}, P2 = {γ | |γ|A = n, ι(γ) = e, |τγ|G 6 cf(n)}.
Separating

(1) A(n) = AP1 +AP2 ,

the first term has a small number of summands (according to assump-
tion 2.1), while the summands in the second term are small (because they
are areas of paths near to closed at e). More precisely,

(2) AP1 6 D(2n) · ]P1 = D(2n)O
( (2r)n

g(n)c−c0

)
,

and let us evaluate now the second term in (1). A typical summand there
is the area of a path γ of length n, starting at e, and ending at some
vertex v such that |v|

G
6 cf(n). That is, area(γγ̃−1), where |γ|

A
= n

and |γ̃|
A

6 cf(n). Break γ into two parts, γ = γ1γ2 with |γ1|A = bn
2 c and

|γ2|A = dn
2 e, and denote by u the middle point, τγ1 = u = ιγ2 (see Figure 1,

where γ̃1 = T [e, u], γ̃2 = T [u, v] and γ̃ = T [e, v]). For every such γ ∈ P2,
we have
area(γ)=area(γ1γ2γ̃

−1)6area(γ1γ̃
−1
1 )+area(γ̃1γ2γ̃

−1
2 γ̃ −1

1 )+area(γ̃1γ̃2γ̃
−1)

= area(γ1) + area(γ2) + area(γ̃1γ̃2γ̃
−1).
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Figure 1. Breaking γ into two parts.

So,

(3) AP2 =
∑

γ∈P2

area(γ) 6
∑

γ∈P2

(area(γ1) + area(γ2)) +
∑

γ∈P2

area(γ̃1γ̃2γ̃
−1).

To estimate the first summand in (3) observe that, moving γ arround P2,
γ1 moves inside the set of words in A∗ of length bn

2 c (and γ2 inside the set
of words of length dn

2 e). Note also that every word of length bn
2 c appears

as γ1 at most (2r)d
n
2 e times (while every word of length dn

2 e appears as γ2

at most (2r)b
n
2 c times). Thus,

(4)
∑

γ∈P2

(area(γ1) + area(γ2)) 6 (2r)d
n
2 eA(bn

2
c) + (2r)b

n
2 cA(dn

2
e).

It remains to estimate the second summand in (3), i.e. the areas of geodesic
triangles. To do this, we split again P2 into two disjoint sets, depending
on |u|

G
. Let P3 = {γ ∈ P2 | |γ̃1|A = |u|

G
> cf(bn

2 c)} and P4 = {γ ∈
P2 | |γ̃1|A = |u|G 6 cf(bn

2 c)}, and

(5)
∑

γ∈P2

area(γ̃1γ̃2γ̃
−1) =

∑

γ∈P3

area(γ̃1γ̃2γ̃
−1) +

∑

γ∈P4

area(γ̃1γ̃2γ̃
−1).

Again using the same argument as above, we can bound the first summand
in (5) using the fact that it has few summands,

(6)
∑

γ∈P3

area(γ̃1γ̃2γ̃
−1) 6 D(2n)O

( (2r)n

g(bn
2 c)c−c0

)
.

Finally, the second summand in (5) can be bounded taking into account that
all the involved triangles have perimeter |γ̃1|A + |γ̃2|A + |γ̃|A 6 2(|γ̃1|A +
|γ̃|A) 6 2(cf(bn

2 c) + cf(n)) 6 4cf(n). Hence,

(7)
∑

γ∈P4

area(γ̃1γ̃2γ̃
−1) 6 D(4cf(n))(2r)n.
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Combining together equations (1) to (7), we conclude the proof:

A(n) 6 (2r)d
n
2 eA(bn

2 c) + (2r)b
n
2 cA(dn

2 e)+
D(2n)O

( (2r)n

g(n)c−c0

)
+ D(2n)O

( (2r)n

g(bn
2 c)c−c0

)
+ D(4cf(n))(2r)n

= (2r)d
n
2 eA(bn

2 c) + (2r)b
n
2 cA(dn

2 e)+
(2r)nD(4cf(n)) + D(2n)O

( (2r)n

g(bn
2 c)c−c0

)
. 2

Let us make now another assumption to clear out one of the terms in the
previous formula

Assumption 2.3. From now on, we shall also assume that our group has
polynomial Dehn function, say D(n) = O(nk) for some k ∈ R+, and that
our function g(n) additionally satisfies that g(n)

nα is uniformly bounded away
from zero, for some α > 0.

Proposition 2.4. Under assumptions 2.1 and 2.3, we have

A(n) 6 (2r)dn/2eA(bn
2
c) + (2r)bn/2cA(dn

2
e) + (2r)nO(f(n)k).

Proof. In the actual conditions, and taking c > c0 + k/α, the last term in
the statement of Proposition 2.2 will be

D(2n)O
( (2r)n

g(n)c−c0

)
6 L · (2r)n nk

g(n)c−c0

(g(n)
nα

)c−c0 =L(2r)nnk+α(c0−c)

6 L(2r)n,

for an appropriate constant L, and so it is negligible:

A(n) 6 (2r)dn/2eA(bn
2 c) + (2r)bn/2cA(dn

2 e)
+(2r)nD(4cf(n)) + D(2n)O

( (2r)n

g(n)c−c0

)

= (2r)dn/2eA(bn
2 c) + (2r)bn/2cA(dn

2 e) + (2r)nO(f(n)k). 2

To conclude this section, let us unwrap the recurrence given at the previ-
ous statement, obtaining an upper bound for the open spherical mean Dehn
function of all finite presentations satisfying assumptions 2.1 and 2.3.

Theorem 2.5. For every finite presentation (and geodesic combing) sat-
isfying assumptions 2.1 and 2.3, and for every non-decreasing function
h : N→ R+ satisfying 2h(dn

2 e) + f(n)k 6 h(n) for n À 0, we have

Dosmean(n) = O
(
h(n)

)
.
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Proof. From Proposition 2.4, there exists a constant M such that, for every
n > 2,

A(n) 6 (2r)d
n
2 eA(bn

2
c) + (2r)b

n
2 cA(dn

2
e) + M(2r)nf(n)k.

Now take h as in the statement (for n > n0), and let K =
max{M, A(2)/h(2), . . . ,A(n0)/h(n0)}. Let us prove that, for n > 2,

A(n) 6 K(2r)nh(n).

For n = 2, . . . , n0 the inequality is true, by construction. Fix a value of
n > n0, and assume the inequality true for all smaller values. We have

A(n) 6 (2r)d
n
2 eA(bn

2 c) + (2r)b
n
2 cA(dn

2 e) + M(2r)nf(n)k

6 (2r)d
n
2 eK(2r)b

n
2 ch(bn

2 c)+(2r)b
n
2 cK(2r)d

n
2 eh(dn

2 e)+M(2r)nf(n)k

6 K(2r)n
(
h(bn

2 c) + h(dn
2 e) + f(n)k

)
6 K(2r)nh(n).

Hence, Dosmean(n) = A(n)/(2r)n = O(h(n)) concluding the proof. ¤
From Theorem 2.5 to being able to bound the spherical mean Dehn func-

tion, we will need to extract and use another piece of information from the
presentation of G. Namely, which proportion of the total (2r)n paths of
length n are closed. Or, more generally, how sensible Nv(n) is in terms of
v. This information strongly depends on the group G and on the specific
presentation considered.

Finally, going from an estimation of the spherical mean Dehn function
to an estimation of the mean Dehn function for the same presentation, is
easy after the following observation.

Proposition 2.6. For any finite presentation of a group G, we have

Dmean(n) 6 max
06m6n

Dsmean(m).

Proof. Directly from the definitions, we have

∑

w∈BG(n)

area(w) =
n∑

m=0

∑

w∈SG(m)

area(w) =
n∑

m=0

Dsmean(m) · ]SG(m) 6

6
(

max
06m6n

Dsmean(m)
) n∑

m=0

]SG(m) =
(

max
06m6n

Dsmean(m)
) · ]BG(n). 2

3. Counting words in abelian groups

Let us apply now the techniques developed in the previous section to
any finite presentation of an abelian group, until obtaining explicit upper
bounds for Dosmean(n), Dsmean(n) and Dmean(n). To do this, we need first
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to verify that those presentations satisfy assumption 2.1 for appropriate
functions f, g. This is the goal of the present section.

We start with a simple and well known lemma, which is straightforward
to verify by induction.

Lemma 3.1. Let x1, . . . , xr and y1, . . . , yr be two lists of r positive real
numbers. Then,

min
{x1

y1
, . . . ,

xr

yr

}
6 x1 + · · ·+ xr

y1 + · · ·+ yr
6 max

{x1

y1
, . . . ,

xr

yr

}
.2

Our arguments will strongly use the following lemma due to Kolmogorov
(see Lemma 8.1 in page 378 of [6]). It seems that this useful result proved
in 1929, is somewhat forgotten in the literature and not known to many
authors. For this reason, and also for completion of the present paper, we
add here a self-contained proof extracted from [6]. It uses the following
Tchebyshev inequality, which is straightforward to verify.

Lemma 3.2 (Tchebyshev). Let X be a random variable and f(x) be a
nondecreasing real function. Then, for any real number a such that f(a) >
0, the following inequality holds:

Pr (X > a) 6 E(f(X))
f(a)

.

Lemma 3.3 (Kolmogorov). Consider n pairwise independent random vari-
ables {Xi}, i = 1, . . . , n, with zero means and variances σ2

i = E(X2
i ), and

suppose that |Xi| 6 d < ∞. Let Sn =
∑n

i=1 Xi, and let t be a real number
such that 0 < td 6 sn, where s2

n = var(Sn) =
∑n

i=1 σ2
i . Then, for any

ε > 0,

Pr (Sn > εsn) 6 exp
(−tε +

1
2
t2(1 +

1
2
tds−1

n )
)
.

Proof. For each Xi, and for every j > 2 we have

E(Xj
i ) = E(Xj−2

i X2
i ) 6 d j−2E(X2

i ) = d j−2σ2
i .
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Also, the following series are absolutely convergent and, since 0 < tds−1
n 6 1,

and
∑∞

j=3
2
j! = 2(e− 2.5) < 0.5, we have

E
(
ets−1

n Xi) = E(
∑∞

j=0
1
j! (ts

−1
n Xi)j

)

=
∑∞

j=0
1
j! (ts

−1
n )jE(Xj

i )

6 1 + 0 +
∑∞

j=2
1
j! t

js−j
n dj−2σ2

i

= 1 + 1
2 (tσis

−1
n )2

(∑∞
j=2

2
j! (tds−1

n )j−2
)

6 1 + 1
2 (tσis

−1
n )2

(
1 + tds−1

n

∑∞
j=3

2
j! (tds−1

n )j−3
)

6 1 + 1
2 (tσis

−1
n )2(1 + tds−1

n

∑∞
j=3

2
j! )

6 1 + 1
2 (tσis

−1
n )2(1 + 1

2 tds−1
n )

6 exp
(

1
2 (tσis

−1
n )2(1 + 1

2 tds−1
n )

)
.

Now, using Tchebyshev’s inequality (Lemma 3.2) applied to X = Sn, f(x) =
ets−1

n x and a = εsn, we have

Pr
(
Sn > εsn

)
6 e−tεE

(
ets−1

n Sn
)

= e−tεE
(∏n

i=1 ets−1
n Xi

)

= e−tε
∏n

i=1 E
(
ets−1

n Xi
)

6 e−tε
∏n

i=1 exp
(

1
2 (tσis

−1
n )2(1 + 1

2 tds−1
n )

)

= exp
(− tε +

∑n
i=1

1
2 (tσis

−1
n )2(1 + 1

2 tds−1
n )

)

= exp
(− tε + 1

2 t2(1 + 1
2 tds−1

n )
)
.

This completes the proof. ¤
As a corollary, we easily deduce the following result on 1-dimensional

random walks.

Proposition 3.4. Let A = {a} and let F = G ' Z be the infinite cyclic
group generated by A. Given a real number c > 0, the number of words
w ∈ A∗ with |w|A = n and |w|Z > c

√
n ln n is O( 2n

nc− 1
2
).

Proof. Let us assume n > 2, and consider a 1-dimensional random walk on
Z of length n, i.e. n independent (and uniform) random variables {Xi} with
Xi ∈ {−1, 1} and E(Xi) = 0, i = 1, . . . , n. We have σ2

i = 1 and s2
n = n.

Now, apply Kolmogorov Lemma with d = 1, t =
√

ln n and ε = c
√

ln n. We
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obtain that

Pr
( ∑n

i=1 Xi > c
√

n ln n
)

6 exp
(−c ln n + ln n

2 (1 +
√

ln n
2
√

n
)
)

= exp
(
(lnn)(−c + 1

2 + 1
4

√
ln n
n )

)

=
n

1
4

√
ln n

n

nc− 1
2

6 K

nc− 1
2
,

where the last inequality is due to the fact that limn→∞ n
1
4

√
ln n

n = 1 (we
can take, for example, K = 1.35).

But the number of words in A∗ of A-length n is 2n. So, the previous
inequality means that the number of words w ∈ A∗ with |w|

A
= n, |w|Z >

c
√

n ln n, and representing positive integers is less than or equal to K 2n

nc− 1
2
.

By symmetry, the number of words w ∈ A∗ with |w|
A

= n and |w|Z >

c
√

n ln n is at most 2K 2n

nc− 1
2
. Finally, since K does not depend on n (neither

on c) we have the result. ¤
The next statement is the analog of Proposition 3.4 for an arbitrary

finitely generated abelian group.

Proposition 3.5. Let A = {a1, . . . , ar}, F be the free group on A, and
G = 〈A |R〉 be a finite presentation of an abelian quotient of F . Given
a real number c > 1/2, the number of words w ∈ A∗ with |w|A = n and
|w|G > rc

√
n ln n is O

( (2r)n

(
√

n ln n )c− 1
2

)
.

Proof. Since G is an r-generated abelian group, the map F ³ G factors
through Zr, so we have A∗ ³ F ³ Zr ³ G. And, as we have observed
before, |w|Zr > |w|

G
. Therefore, it is enough to prove the result for Zr. So,

we are reduced to consider only the case where G is the free abelian group
of rank r.

Let w ∈ A∗. For any i = 1, . . . , r, let wai ∈ {ai}∗ be the word which
can be obtained from w by deleting all letters different from ai and a−1

i .
Clearly, |w|

A
=

∑r
i=1 |wai |A (note that |wai |A = |wai |{ai}). Also, since G is

free abelian, |w|Zr =
∑r

i=1 |wai |Zr .
Now, let ` = c

√
n ln n. Note also that |w|Zr > r` implies |wai |Zr > ` for

some i. Therefore, we have

]{w ∈ S(n) | |w|Zr > r` }
]S(n)

6
∑r

i=1 ]{w ∈ S(n) | |wai |Zr > ` }
]S(n)

.

Furthermore, for every i = 1, . . . , r, we also have
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]{w ∈ S(n) | |wai
|Zr > `}

]S(n)
=

=

∑n
m=d`e ]{w ∈ S(n) | |wai |A = m, |wai |Zr > d`e}

]S(n)

6
∑n

m=d`e ]{w ∈ S(n) | |wai
|
A

= m, |wai
|Zr > d`e}∑n

m=d`e ]{w ∈ S(n) | |wai |A = m}

6 max
d`e6m6n

]{w ∈ S(n) | |wai |A = m, |wai |Zr > d`e}
]{w ∈ S(n) | |wai |A = m} ,

where the last inequality is justified by Lemma 3.1. But, given a word
v ∈ {ai}∗, the number of words w ∈ S(n) such that wai

= v do not depend
on v, but only on m = |v|

A
= |v|{ai}

. So, for every d`e 6 m 6 n, we have

]{w ∈ S(n) | |wai
|
A

= m, |wai
|Zr > d`e}

]{w ∈ S(n) | |wai |A = m} =

=
]{v ∈ {ai}∗ | |v|{ai}

= m, |v|Z > d`e}
]{v ∈ {ai}∗ | |v|{ai}

= m}

=
]{v ∈ {ai}∗ | |v|{ai}

= m, |v|Z > c
√

n ln n }
2m

6
]{v ∈ {ai}∗ | |v|{ai}

= m, |v|Z > c
√

m ln m }
2m

6 K

mc− 1
2
,

for an appropriate constant K (according to Proposition 3.4, we can take
K = 2.7). Thus, collecting all together,

]{w ∈ S(n) | |w|Zr > rc
√

n ln n }
(2r)n

=
]{w ∈ S(n) | |w|Zr > r` }

]S(n)

6
r∑

i=1

(
max

d`e6m6n

K

mc− 1
2

)
=

rK

d`ec− 1
2

6 rK

(c
√

n ln n )c− 1
2
,

where we used c > 1/2. This proves that the number of words w ∈ A∗ with
|w|

A
= n and |w|

G
> rc

√
n ln n is O

( (2r)n

(
√

n ln n )c− 1
2

)
. ¤

We can rephrase Proposition 3.5 by saying that finite presentations of
abelian groups satisfy assumption 2.1.

Corollary 3.6. Let A = {a1, . . . , ar}, F be the free group on A, and G =
〈A |R〉 be a finite presentation of an abelian quotient of F . The functions
f(n) = (n ln n)1/2 and g(n) = (n ln n)1/2r and the constant c0 = r/2 satisfy
assumption 2.1 for all c > r/2.
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Proof. For any given c > r/2, Proposition 3.5 tells us that

]{w ∈ A∗ | |w|
A

= n, |w|
G

> cf(n)} =

= ]{w ∈ A∗ | |w|
A

= n, |w|
G

> r(c/r)
√

n ln n}
= O

( (2r)n

(
√

n ln n )
c
r
− 1

2

)

= O
( (2r)n

g(n)c− r
2

)

= O
( (2r)n

g(n)c−c0

)
.

Hence, assumption 2.1 is satisfied starting at c > r/2. ¤

4. The mean Dehn function of abelian groups

The next step is to fulfill assumption 2.3 for finite presentations of abelian
groups. This is easy since it is well known that those groups have quadratic
Dehn function (take, k = 2 in 2.3) and because g(n) = (n ln n)1/2r so, taking
α = 1/2r, we have g(n)

nα uniformly bounded away from zero.
In this situation, Theorem 2.5 allows us to deduce the following upper

bound for the open spherical mean Dehn function of an abelian group.

Theorem 4.1. Let A = {a1, . . . , ar}, F be the free group on A, and G =
〈A |R〉 be a finite presentation of an abelian quotient of F . Then,

Dosmean(n) = O
(
n(lnn)2

)
.

Proof. In our situation, Theorem 2.5 ensures us that Dosmean(n) = O
(
h(n)

)
for every non-increasing function h : N→ R+ satisfying 2h(dn

2 e) + n ln n 6
h(n) for n À 0. And this is the case of the function h(n) = n(lnn)2. An
straightforward calculus exercise shows that

2dn
2
e(lndn

2
e)2 + n ln n 6 2

n + 1
2

(ln
n + 1

2
)2 + n ln n 6 n(lnn)2

is true, precisely for n > 15 (in fact, one can show that any function growing
asymptotically more slowly does not satisfy the required inequality). ¤

As announced at the end of Section 2, to estimate the spherical mean
Dehn function, we need some more information from the presentation of G,
namely how the terms Nv(n) depend on the vertex v. For abelian groups,
this can be deduced from the following more general result.

Theorem 4.2. [9, Chapter VI.5]. Let A = {a1, . . . , ar}, F be the free
group on A, and G = 〈A |R〉 be a finite presentation of a virtually nilpotent
quotient of F . Then,

max
v∈Γ(G)

{Nv(n)} = O
( (2r)n

nd/2

)
,
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where d is the degree of the (polynomial) growth function of G. Moreover,
there exists another constant L > 0 such that

Ne(n) > L
(2r)n

nd/2
,

for every even n > 2.

Regardless the meaning of d (which is very significant within the group G
but is not relevant for the present computations) the previous result allows
us to transfer our upper bound to the spherical mean Dehn function.

Theorem 4.3. Let A = {a1, . . . , ar}, F be the free group on A, and G =
〈A |R〉 be a finite presentation of an abelian quotient of F . Then,

Dsmean(n) = O
(
n(ln n)2

)
.

Proof. Using the present notation, we have Dsmean(n) = Ae(n)
Ne(n) . We are

going to estimane the numerator again by cutting paths on two halfs. Let
P be the set of closed paths in Γ(G), based at e and having length n. As
in the proof of Proposition 2.2, break every γ ∈ P into two parts, γ = γ1γ2

with |γ1|A = bn
2 c and |γ2|A = dn

2 e, and denote by u the middle point,
τγ1 = u = ιγ2. We have

area(γ) = area(γ1γ2) 6 area(γ1γ̃
−1
1 ) + area(γ̃1γ2) = area(γ1) + area(γ2).

Now, taking into account that |u|G 6 bn
2 c, and applying Theorem 4.2, we

have

Ae(n) =
∑

γ∈P

area(γ)

6
∑

γ∈P

area(γ1) +
∑

γ∈P

area(γ2)

=
∑

06|u|
G

6bn/2c
Au(bn

2 c)Nu(dn
2 e) +

∑
06|u|

G
6bn/2c

Nu(bn
2 c)Au(dn

2 e)

6 max
u∈Γ(G)

{Nu(dn/2e)} · ∑
06|u|

G
6bn/2c

Au(bn
2 c)

+ max
u∈Γ(G)

{Nu(bn/2c)} · ∑
06|u|

G
6bn/2c

Au(dn
2 e)

= max
u∈Γ(G)

{Nu(dn/2e)} · A(bn
2 c) + max

u∈Γ(G)
{Nu(bn/2c)} · A(dn

2 e)

6 M (2r)dn/2e

dn/2ed/2A(bn
2 c) + M (2r)bn/2c

bn/2cd/2A(dn
2 e),
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for a appropriate constant M . Finally, applying again Theorem 4.2, and
Theorem 4.1, and collecting together all the constants, we conclude

Dsmean(n) =
Ae(n)
Ne(n)

6
M

(2r)dn/2e
dn/2ed/2 A(bn

2 c)+M
(2r)bn/2c
bn/2cd/2 A(dn

2 e)
L

(2r)n

nd/2

6 M
L

(
n
bn

2 c
)d/2 (2r)dn/2eA(bn

2 c)+(2r)bn/2cA(dn
2 e)

(2r)n

6 M
L · 3d/2

(A(bn
2 c)

(2r)b
n
2 c

+ A(dn
2 e)

(2r)d
n
2 e

)

= K
(
Dosmean(bn

2 c) + Dosmean(dn
2 e)

)

= O
(
n(ln n)2

)
.

However, a remark about the parity of the closed paths in Γ(G) needs to
be done here, since we have used the second part of Theorem 4.2 for an
arbitrary n, while it was stated only for the even ones. If all the relations R
in our presentation have even length, then all closed paths have also even
length, and Dsmean(n) = 0 for every odd n, by convention. In this case, the
above computations form a complete proof of the Theorem, understanding
everywhere that n is even.

Otherwise, let γ0 be a closed path in Γ(G) of the smallest possible odd
length, say n0. Then for every closed path γ of even length n, γ0γ is again
a closed path, now of odd length n + n0. This proves that Ne(n + n0) >
Ne(n) > L (2r)n

nd/2 . Adjusting the constants appropriately, this shows that
the assumption “n even” in the second part of Theorem 4.2 can be removed
in this case. Hence, the proof is complete. ¤

Finally, a similar result is true for the mean Dehn function.

Theorem 4.4. Let A = {a1, . . . , ar}, F be the free group on A, and G =
〈A |R〉 be a finite presentation of an abelian quotient of F . Then,

Dmean(n) = O
(
n(ln n)2

)
.

Proof. This follows immediately from Theorem 4.3 and Proposition 2.6,
since n(ln n)2 is an increasing function. ¤

Appendix

At the end of the introduction, we pointed out the question of which is
the most appropriate or natural notion of mean Dehn function of a group
G = 〈A |R〉, from the group theory point of view. That is, which is the set
that must be considered to average the areas over it? In this appendix we
defend the opinion that the most appropriate one is the set of closed paths
in the Cayley graph Γ(G,A) without backtrackings, that is the set of genuine
words in the free group on A, mapping to 1 in G. However, we also want
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to illustrate that counting those paths (and averaging the areas over them)
seems to be a much more difficult task than doing the same over the set of
closed paths with possible backtrackings (as done in the present paper), or
over the set of lazy words (as done in [10]).

Let A be a finite set and G = 〈A |R〉 be a finite presentation of a group
G. Above G we can consider the following tower of algebraic structures,
each being a quotient of the previous one:

(A ∪ {1})∗ ³ A∗ ³ F ³ G.

Here, (A∪{1})∗ is the free monoid on A∪A−1 ∪{1}, A∗ is the free monoid
on A∪A−1, F is the free group on A, and the arrows represent the canonical
maps. The elements of these three algebraic structures can be geometrically
viewed into the Cayley graph Γ(G,A): elements in F (usually called words)
are paths in Γ(G,A) starting at e and having no backtrackings; elements in
A∗ (called non-necessarily reduced words) are paths in Γ(G,A) starting at e
and having possible backtrackings; finally, elements in (A∪{1})∗ (called lazy
words) are paths in Γ(G,A) starting at e, with possible backtrackings, and
allowed to temporarily stop at some of the visited vertices (one can think
of them as regular paths in the Cayley graph Γ(G, A ∪ {1}), i.e. Γ(G,A)
with loops labeled 1 added everywhere). Then, a path of each of these three
types represents an element mapping to 1 in G if and only if it is closed.

The intrinsic definition of area is for words mapping to 1 in G (i.e. ele-
ments in the kernel of F ³ G). And the area of such a word is the minimal
number of relations (again words) that are needed to express it. Then, going
to F through the maps (A∪ {1})∗ ³ A∗ ³ F , the notion of area naturally
extends to non-necessarily reduced words, and to lazy words. Averaging
then over length n elements in these three different sets, we get three dif-
ferent notions of mean Dehn function. From this point of view, the most
natural and canonical one seems to be that working directly in F , that is,
averaging areas of words rather than non-necessarily reduced or lazy words.

A completely different issue is the fact that averaging and estimating
areas of words, even just counting words, seems to be much more com-
plicated and technically difficult that doing the same with non-necessarily
reduced words, or with lazy words. In this appendix we want to stress this
difficulty by making some initial considerations about counting or asymp-
totically estimating the number of closed paths without backtracking in the
two dimensional integral lattice: a timid and superficial starting into a field
thats looks both interesting and complicated.

Before, we would like to suggest two more possible definitions of mean
Dehn functions. If, for technical reasons, one prefers to work with non-
necessarily reduced words, then it makes sense to modify the notion of area
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by adding also the number of cancelations needed. That is, think G not as
a quotient of the (free) group F but as a quotient of the (free) monoid A∗;
then look at the monoid presentation G = 〈a1, . . . , ar |R∪{aia

−1
i , a−1

i ai | i =
1, . . . , r}〉 and define, accordingly, the area of a word w ∈ A∗ with w =

G
1

as the minimal number of relations in this monoid presentation required to
express it. Averaging these areas over all elements in A∗ of a given prefixed
length, we get a new notion of mean Dehn function.

Similarly, we can also think G as a quotient of the (free) monoid (A ∪
{1})∗, then look at the monoid presentation G = 〈1, a1, . . . , ar |R ∪ {1} ∪
{aia

−1
i , a−1

i ai | i = 1, . . . , r}〉 and define, accordingly, the area of a lazy
word w ∈ (A ∪ {1})∗ with w =

G
1 as the minimal number of relations in

this monoid presentation required to express it (so additionally counting the
number of 1’s, i.e. the total time lost in the corresponding random walk).
Averaging these new areas over all elements in (A∪{1})∗ of a given prefixed
length, we get another notion of mean Dehn function.

It seems interesting to analyze the relations between all these notions, and
to understand up to which point they are all equivalent, and independent
of the presentation (if they are). We hope that future research works will
clarify this picure.

let A = {a1, . . . , ar} be an alphabet with r letters, let G = 〈A |R〉 be a
finite presentation of a group G, and let Γ = Γ(G,A) be the corresponding
Cayley graph. Let gn be the number of paths of length n in Γ which are
closed at e (denoted Ne(n) in section 2). And let fn be the total number of
those having no backtracking. Clearly, fn 6 gn. Let us introduce generating
functions for fn and gn:

F (t) =
∞∑

n=0

fntn, G(t) =
∞∑

n=0

gntn.

The following formula connects F (t) and G(t) (see [1]):

(8) F (t) =
1− t2

1 + (2r − 1)t2
·G

( t

1 + (2r − 1)t2
)
.

Let us concentrate now on the free abelian group of rank 2 with the
standard set of r = 2 generators, G = Z2 and A = {a, b}. And let us find
both, exact formulas and the asymptotic behavior, for the corresponding
numbers fn. It is clear that fn = gn = 0 whenever n is odd. So, we can
restrict our attention to even lengths.

It is not difficult to see that g2n =
(
2n
n

)2
. Here is a very elegant argument

that V. Guba pointed out to us during his stay at CRM, Barcelona, in late
2004. A path of length 2n closed at the origin, is a sequence of 2n symbols
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from the alphabet {a, a−1, b, b−1} such that the total number of a’s coincide
with that of a−1’s, and the total number of b’s coincide with that of b−1’s.
Consider the set of positions in the sequence, {1, 2, . . . , 2n}, and choose
two subsets C and D, both of cardinality n. Clearly, #(C \ (C ∩ D)) =
#(D \ (C ∩ D)) and #(C ∩ D) = #({1, 2, . . . , 2n} \ (C ∪ D)). We can
then built a closed path at the origin by putting, for instance, a’s at the
positions in C ∩D, a−1’s at the positions in {1, 2, . . . , 2n} \ (C ∪D), b’s at
the positions in C \ (C ∩D), and b−1’s at the positions in D \ (C ∩D). This
procedure gives a bijection between the set of paths we are interested in,
and the set of pairs of subsets {C, D} of {1, 2, . . . , 2n} with cardinality n.
Hence, g2n =

(
2n
n

)2
.

So, retaking generating functions, we have G(t) =
∑∞

n=0

(
2n
n

)2
t2n. We

shall use this to give exact recurrent formulas for f2n. Particularizing for-
mula (8) to our case, we have

F (t) =
1− t2

1 + 3t2
·G

( t

1 + 3t2

)
.

Consider the following expansion

h(t) =
t

1 + 3t2
= t− 3t3 + 9t5 − 27t7 + · · · =

∞∑
i=1

i odd

(−3)
i−1
2 ti,

and denote by A2n the coefficient of t2n in the series

G(h(t)) = 1 +
(

2
1

)2

h(t)2 +
(

4
2

)2

h(t)4 +
(

6
3

)2

h(t)6 + . . .

Clearly A0 = 1, and

A2n =
(

2
1

)2

A
(2)
2n +

(
4
2

)2

A
(4)
2n +

(
6
3

)2

A
(6)
2n + · · ·+

(
2n

n

)2

A
(2n)
2n ,

where A
(k)
2n is the coefficient of t2n it h(t)k.

For any two natural numbers m and l, denote by P (m, l) the set of all
ordered l-tuples (i1, i2, . . . , il) such that each ij is an odd positive number
and i1 + i2 + · · ·+ il = m. We have

A
(2k)
2n t2n =

∑

(i1,...,i2k)∈P (2n,2k)

(−3)
i1−1

2 ti1 . . . (−3)
i2k−1

2 ti2k

=
∑

(i1,...,i2k)∈P (2n,2k)

(−3)n−kt2n.

Now observe that, every ij in any 2k-tuple from P (2n, 2k) is odd and so
at least 1; hence, #P (2n, 2k) equals the number of ways of assigning the
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remaining 2n−2k
2 = n − k (indistinguishable) twos into 2k boxes, namely(

n−k+2k−1
2k−1

)
=

(
n+k−1
k+k−1

)
. Thus

A
(2k)
2n = #P (2n, 2k) · (−3)n−k =

(
n + k − 1
k + k − 1

)
(−3)n−k,

and so,

A2n =
n∑

k=1

(
2k

k

)2(
n + k − 1
k + k − 1

)
(−3)n−k.

Finally, since
1− t2

1 + 3t2
= 1− 4

∞∑
s=1

(−3)s−1t2s,

we have

f2n = A2n − 4
n∑

s=1

(−3)s−1A2n−2s.

From this, we can deduce the following recurrent formula to compute the
numbers fn:

f2n + 3f2n−2 = A2n −A2n−2.

For the problem of finding the asymptotic behavior of fn and gn, define
the numbers

α = lim
n→∞

f1/n
n , β = lim

n→∞
g1/n

n

(α is called the co-growth of the pair (G,A), and 1
2r β the spectral radius

of (G,A)). In [3], R.I. Grigorchuck found the following interesting formula
relating α, β and 2r (the size of the alphabet):

β =





α + 2r−1
α if α >

√
2r − 1,

2
√

2r−1
2r otherwise.

(Since F (t) and G(t) have radii of convergence 1
α and 1

β respectively, for-
mula (8) connects the numbers α, β and 2r, wherefrom one can deduce
Grigorchuck’s formula.)

Back to the case of Z2, we have g2n =
(
2n
n

)2
. Hence, using Stirling’s

formula, g2n ∼ 2
π

42n

2n . Thus, β = 4. Since 2r = 4, Grigorchuk’s formula
implies that α = 3. Therefore one can expect that f2n = O( 32n

2n ). And using
a result of Sharp, we prove that this is precisely the asymptotic behavior of
these numbers.

In [8], R. Sharp gave an asymptotic formula for counting paths without
backtrackings in the case G = Zr and with respect to the standard set of
generators. For v ∈ G, let N ′

v (n) denote the number of paths in the Cayley
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graph, without backtrackings, having length n, starting at e and ending at
v. Consider also the constant σ given by

σ2 =
1√

2r − 1

[
1 +

(r +
√

2r − 1
r −√2r − 1

)1/2]
=
√

2r − 1 + 1
r − 1

.

Theorem 4.5 (Sharp, [8]). Let G ∼= Zr be the free abelian group on
r > 2 generators. With the above notations we have that

lim
n→∞
n∈2Z

∣∣∣σrnr/2 · N ′
v (n)

(2r)(2r − 1)n−1
− 2

(2π)r/2
e−||v||

2/(2σ2n)
∣∣∣ = 0,

uniformly in v ∈ Zr.

The following two corollaries can be easily deduced from this result.

Corollary 4.6. With the above notation for Z2,

f2n ∼ 4
3(
√

3 + 1)π
· 32n

2n
.

Corollary 4.7. There exist positive constants C1 and C2 (depending only
on r) such that

C1 · (2r − 1)nn−r/2 6 N ′
0 (n) 6 max

v∈Zr
N ′

v (n) 6 C2 · (2r − 1)nn−r/2

for all positive even n.

The analysis performed above allowed us to obtain recurrent formulas for
f2n and also its asymptotic behavior, in the case of dimension 2. However,
it is unclear to us how to use this information in order to obtain a good
enough estimate from above for the number of paths without backtracking,
having length n, starting at e and terminating outside the ball of radius√

n ln n. Being able to do this, we would have the starting point to develop
a project similar to the one contained in the present paper, but centered on
genuine words rather than non-necessarily reduced words.
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